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Abstract. Fuzzy Description Logics (FDLs) combine classical Descrip-
tion Logics with the semantics of Fuzzy Logics in order to represent and
reason with vague knowledge. Most FDLs using truth values from the
interval [0, 1] have been shown to be undecidable in the presence of a
negation constructor and general concept inclusions. One exception are
those FDLs whose semantics is based on the infinitely valued Gödel t-
norm (G). We extend previous decidability results for the FDL G-ALC
to deal with complex role inclusions, nominals, inverse roles, and quali-
fied number restrictions. Our novel approach is based on a combination
of the known crispification technique for finitely valued FDLs and an
automata-based procedure for reasoning in G-ALC.

1 Introduction

Description Logics (DLs) are a well-studied family of knowledge representation
formalisms [1]. They constitute the logical backbone of the standard Semantic
Web ontology language OWL2,3 and its profiles, and have been successfully
applied to represent the knowledge of many and diverse application domains,
particularly in the bio-medical sciences. DLs describe the domain knowledge
using concepts (such as Patient) that represent sets of individuals, and roles
(hasChild) that represent connections between individuals. Ontologies are col-
lections of axioms formulated over these concepts and roles, which restrict the
possible interpretations. The typical axioms considered in DLs are assertions,
like alice:Patient, providing knowledge about specific individuals; general concept
inclusions (GCIs), such as Patient v Human, which express subset relations be-
tween concepts; and role inclusions hasChild ◦ hasChild v hasGrandchild between
(chains of) roles. Different DLs are characterized by the constructors allowed to
formulate complex concepts, roles, and axioms.
ALC [30] is a prototypical DL of intermediate expressivity that uses as con-

cept constructors: conjunction (PatientuFemale), negation (¬Smoker), existential
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restriction (∃hasChild.HeavySmoker), and value restriction (∀hasChild.Male), and
allows assertions and GCIs. The DL underlying the OWL2DL standard is called
SROIQ and additionally provides, among others, role inclusions, number restric-
tions (>3 hasChild.Adult), nominals ({alice}), and inverse roles (hasChild−). The
complexity of common reasoning problems, such as consistency of ontologies or
subsumption between concepts, has been extensively studied for these DLs, and
ranges from ExpTime to (co-)2-NExpTime [26, 29,33].

Fuzzy Description Logics (FDLs) have been introduced as extensions of clas-
sical DLs to represent and reason with vague knowledge. The main idea is to
use truth values from the interval [0, 1] instead of only true and false. In this
way, one can give a more fine-grained semantics to inherently vague concepts
like LowFrequency or HighConcentration, which can be found in biomedical on-
tologies like SNOMEDCT4 and Galen.5 Different FDLs are characterized not
only by the constructors they allow, but also by the way these constructors are
interpreted. To interpret conjunction in complex concepts like

∃hasHeartRate.LowFrequency u
∃hasBloodAlcohol.HighConcentration,

a popular approach is to use so-called t-norms [27]. The semantics of the other
logical constructors can then be derived from these t-norms in a principled way,
as suggested in [20]. Following the principles of mathematical fuzzy logic, ex-
istential and value restrictions are interpreted as suprema and infima of truth
values, respectively. However, to avoid problems with infinitely many truth val-
ues, reasoning in fuzzy DLs is often restricted to so-called witnessed models [21],
in which these suprema (infima) are required to be maxima (minima); i.e. the
truth value of the restriction is witnessed by at least one domain element.

Unfortunately, most FDLs become undecidable when the logic uses GCIs and
negation under witnessed model semantics [2, 13,18]. One of the few exceptions
are FDLs using the Gödel t-norm, which is defined as min{x, y}, to interpret con-
junctions [12]. In the absence of an involutive negation constructor and negated
assertions, such FDLs are even trivially equivalent to classical DLs [13]. However,
in the presence of the involutive negation, reasoning becomes more complicated.
Despite not being as well-behaved as finitely valued FDLs, which use a finite to-
tal order of truth values instead of the infinite interval [0, 1], it was shown using
an automata-based approach that reasoning in Gödel extensions of ALC exhibits
the same complexity as in the classical case, i.e. it is ExpTime-complete [12]. A
major drawback of this approach is that it always has an exponential runtime,
even when the input ontology has a simple form.

In the present paper, we present a combination of the automata-based con-
struction for ALC from [12] and automata-based algorithms and reduction tech-
niques developed for more expressive finitely valued FDLs [5,6,10,11,14,15,31].
We exploit the forest model property of classical DLs [17, 25] to encode order

4 http://www.ihtsdo.org/snomed-ct/
5 http://www.opengalen.org/



relationships between concepts in a fuzzy interpretation in a manner similar to
the Hintikka trees from [12]. However, instead of using automata to determine
the existence of such trees, we reduce the fuzzy ontology directly into a classical
ALCOQ ontology, which enables us to use optimized reasoners for classical DLs.
In addition to the cut-concepts of the form C > p for a fuzzy concept C and a
value p, which are used in the reductions for finitely valued DLs [6, 10, 31], we
employ order concepts C 6 D expressing relationships between fuzzy concepts.
The details of these concepts are explained in Section 4. In contrast to the re-
ductions for finitely valued Gödel FDLs [6, 7], our reduction does not produce
an exponential blowup in the nesting depth of concepts in the input ontology.

Although our reduction deals with the Gödel extension of SROIQ, it is not
correct if all three constructors nominals (O), inverse roles (I), and number
restrictions (Q) are present in the ontology, since then one cannot restrict rea-
soning to forest-shaped models [32]. However, it is correct for SRIQ, SROQ, and
SROI, and we obtain several complexity results that match the currently best
known upper bounds for reasoning in (sublogics of) these DLs. In particular,
we show that reasoning in Gödel extensions of SRIQ is 2-ExpTime-complete,
and for SHOI and SHIQ it is ExpTime-complete. Full proofs of all presented
results can be found in [16].

2 Preliminaries

We consider vague statements taking truth degrees from the subset [0, 1] of the
reals, where the Gödel t-norm min{x, y} is used to interpret logical conjunction.
The semantics of implications is given by the residuum of this t-norm; i.e.,

x⇒ y :=

{
1 if x 6 y,
y otherwise.

We use both the residual negation x 7→ (x ⇒ 0) and the involutive negation
x 7→ (1− x) in the rest of this paper.

We recall some basic definitions from [12]. An order structure S is a finite
set containing at least the numbers 0, 0.5, and 1, endowed with an involutive
unary operation inv : S → S such that inv(x) = 1−x for all x ∈ S∩ [0, 1]. A total
preorder over S is a transitive and total binary relation 4 ⊆ S×S. For x, y ∈ S,
we write x ≡ y if x 4 y and y 4 x. Notice that ≡ is an equivalence relation
on S. The total preorders considered in [12] have to satisfy additional properties,
e.g. that 0 and 1 are always the least and greatest elements, respectively. These
properties can be found in our reduction in the axioms of red(U) (see Section 4).

We now define the fuzzy description logic G-SROIQ. Let NI, NC, and NR be
three mutually disjoint sets of individual names, concept names, and role names,
respectively, where NR contains the universal role ru. The set of (complex) roles
is N−R := NR ∪ {r− | r ∈ NR}; the elements of the form r− are called inverse
roles. Since there are several syntactic restrictions based on which roles appear
in which role axioms, we start by defining role hierarchies. A role hierarchy Rh



is a finite set of (complex) role inclusions of the form 〈w v r > p〉, where r 6= ru
is a role name, w ∈ (N−R )+ is a non-empty role chain not including the universal
role,6 and p ∈ (0, 1]. Such a role inclusion is called simple if w ∈ N−R . We extend
the notation ·− to inverse roles r− and role chains w = r1 . . . rn by setting
(r−)− := r and w− := r−n . . . r

−
1 .

We recall the regularity condition from [5,23]. Let ≺ be a strict partial order
on N−R such that r ≺ s iff r− ≺ s. A role inclusion 〈w v r > p〉 is ≺-regular if

– w is of the form rr or r−, or
– w is of the form r1 . . . rn, rr1 . . . rn, or r1 . . . rnr, and for all 1 6 i 6 n it

holds that ri ≺ r.

A role hierarchy Rh is regular if there is a strict partial order ≺ as above such
that each role inclusion in Rh is ≺-regular. A role name r is simple (w.r.t. Rh)
if for each 〈w v r > p〉 ∈ Rh we have that w is of the form s or s− for a
simple role s. This notion is well-defined since the regularity condition prevents
any cyclic dependencies between role names in Rh. An inverse role r− is simple
if r is simple. In the following, we always assume that we have a regular role
hierarchy Rh.

Concepts in G-SROIQ are built from concept names using the construc-
tors listed in the upper part of Table 1, where C,D denote concepts, p is a
rational number from [0, 1], n ∈ N, a ∈ NI, r ∈ N−R , and s ∈ N−R is a simple
role. The restriction to simple roles in at-least restrictions is necessary to en-
sure decidability [24]. We also use the common DL constructors > := 1 (top
concept), ⊥ := 0 (bottom concept), C t D := ¬(¬C u ¬D) (disjunction), and
6n s.C := ¬(>(n+ 1) s.C) (at-most restriction).

Note that we use the involutive negation to define at-most restrictions. In [7],
they are defined using the residual negation: 6n s.C := (>(n + 1) s.C) → ⊥.
This has the effect that the value of 6n r.C is always either 0 or 1 (see the se-
mantics below). However, this discrepancy in definitions is not an issue since
our reduction can handle both cases. The use of rational truth constants p
is not standard in FDLs, but it allows us to simulate fuzzy nominals [4] of
the form {p1/a1, . . . , pn/an} with pi ∈ [0, 1] and ai ∈ NI, 1 6 i 6 n, via
({a1} u p1) t · · · t ({an} u pn).

The semantics of G-SROIQ is based on G-interpretations I = (∆I , ·I) over a
non-empty domain ∆I , which assign to each individual name a ∈ NI an element
aI ∈ ∆I , to each concept name A ∈ NC a fuzzy set AI : ∆I → [0, 1], and
to each role name r ∈ NR a fuzzy binary relation rI : ∆I × ∆I → [0, 1]. This
interpretation is extended to complex concepts and roles as defined in the last
column of Table 1, for all d, e ∈ ∆I .

We restrict all reasoning problems to witnessed G-interpretations [21], which
intuitively require the suprema and infima in the semantics to be maxima and
minima, respectively. Formally, a G-interpretation I is witnessed if, for ev-
ery d ∈ ∆I , n > 0, r ∈ N−R , simple s ∈ N−R , and concept C, there are

6 For ease of presentation, we omit the composition symbol ◦ from role chains.



Table 1. Syntax and semantics of G-SROIQ

Name Syntax Semantics (CI(d) / rI(d, e))

concept name A AI(d) ∈ [0, 1]

truth constant p p

conjunction C uD min{CI(d), DI(d)}
implication C → D CI(d)⇒ DI(d)

negation ¬C 1− CI(d)
existential restriction ∃r.C sup

e∈∆I
min{rI(d, e), CI(e)}

value restriction ∀r.C inf
e∈∆I

rI(d, e)⇒ CI(e)

nominal {a}

{
1 if d = aI

0 otherwise

at-least restriction >n s.C sup
e1,...,en∈∆I

pairwise different

n

min
i=1

min{sI(d, ei), CI(ei)}

local reflexivity ∃s.Self rI(d, d)

role name r rI(d, e) ∈ [0, 1]

inverse role r− rI(e, d)

universal role ru 1

e, e′, e1, . . . , en ∈ ∆I such that e1, . . . , en are pairwise different,

(∃r.C)I(d) = min{rI(d, e), CI(e)},
(∀r.C)I(d) = rI(d, e′)⇒ CI(e′), and

(>n s.C)I(d) =
n

min
i=1

min{sI(d, ei), C
I(ei)}.

As we have seen already in the role inclusions, the axioms of G-SROIQ extend
classical axioms by stating a degree in (0, 1] to which the axioms hold. Moreover,
we can compare the degrees of arbitrary classical assertions of the form a:C or
(a, b):r for a, b ∈ NI, r ∈ NR, and a concept C. An order assertion [12] is of
the form 〈α ./ p〉 or 〈α ./ β〉 for classical assertions α, β, ./ ∈ {<,6,=,>, >},
and p ∈ [0, 1]. An ordered ABox is a finite set of order assertions and individual
(in)equality assertions of the form a ≈ b (a 6≈ b) for a, b ∈ NI. A general concept
inclusion (GCI) is of the form 〈C v D > p〉 for concepts C,D and p ∈ (0, 1]. A
TBox is a finite set of GCIs. A disjoint role axiom is of the form 〈dis(r, s) > p〉
for two simple roles r, s ∈ N−R and p ∈ (0, 1]. A reflexivity axiom is of the form
〈ref(r) > p〉 for a role r ∈ N−R and p ∈ (0, 1]. An RBox R = Rh ∪ Ra consists
of a role hierarchy Rh and a finite set Ra of disjoint role and reflexivity axioms.
An ontology O = (A, T ,R) consists of an ABox A, a TBox T , and an RBox R.

A G-interpretation I satisfies (or is a model of)



– an order assertion 〈α ./ β〉 if αI ./ βI (where pI := p, (a:C)I := CI(aI),
and ((a, b):r)I := rI(aI , bI));

– an (in)equality assertion a ≈ b (a 6≈ b) if aI = bI (aI 6= bI);
– a GCI 〈C v D > p〉 if CI(d)⇒ DI(d) > p holds for all d ∈ ∆I ;
– a role inclusion 〈r1 . . . rn v r > p〉 if (r1 . . . rn)I(d0, dn) ⇒ rI(d0, dn) > p

holds for all d0, dn ∈ ∆I , where

(r1 . . . rn)I(d0, dn) := sup
d1,...,dn−1∈∆I

n
min
i=1

rIi (di−1, di);

– a disjoint role axiom 〈dis(r, s) > p〉 if min{rI(d, e), sI(d, e)} 6 1 − p holds
for all d, e ∈ ∆I ;

– a reflexivity axiom 〈ref(r) > p〉 if rI(d, d) > p holds for all d ∈ ∆I ;
– an ontology if it satisfies all its axioms.

An ontology is consistent if it has a (witnessed) model.
We can simulate other common role axioms in G-SROIQ [7,22] by those we

introduced above:

– transitivity axioms 〈tra(r) > p〉 by 〈rr v r > p〉;
– symmetry axioms 〈sym(r) > p〉 by 〈r− v r > p〉;
– asymmetry axioms 〈asy(s) > p〉 by 〈dis(s, s−) > p〉;
– irreflexivity axioms 〈irr(s) > p〉 by 〈∃s.Self v ¬p > 1〉; and
– negated role assertions 〈(a, b):¬r > p〉 by 〈(a, b):r 6 1− p〉.

For an ontology O, we denote by rol(O) the set of all roles occurring in O,
together with their inverses; by ind(O) the set of all individual names occurring
in O, and by sub(O) the closure under negation of the set of all subconcepts
occurring in O. We consider ¬¬C to be equal to C, and thus sub(O) is of
quadratic size in the size of O. We denote by VO the closure under the involutive
negation x 7→ 1−x of the set of all truth degrees appearing in O (either in axioms
or in truth constants), together with 0, 0.5, and 1. This set is of linear size.

Other common reasoning problems for FDLs, such as concept satisfiability
and subsumption can be reduced to consistency [12]: the subsumption between
C and D to degree q w.r.t. a TBox T and an RBox R is equivalent to the
inconsistency of ({〈a:C → D < q〉}, T ,R), and the satisfiability of C to degree q
w.r.t. T and R is equivalent to the consistency of ({〈a:C > q〉}, T ,R).

The letter I in G-SROIQ denotes the presence of inverse roles and the univer-
sal role. If such roles are not allowed, the resulting logic is written as G-SROQ.
Likewise, the name G-SRIQ indicates the absence of nominals, and G-SROI
that of at-least and at-most restrictions. Replacing the letter R with H indi-
cates that RBoxes are restricted to simple role inclusions, ABoxes are restricted
to order assertions, and local reflexivity is not allowed; however, the letter S
indicates that transitivity axioms are still allowed. Hence, in G-SHOIQ we can
use role inclusions of the forms 〈r v s > p〉 and 〈rr v r > p〉. Disallowing axioms
of the first type removes the letter H, while the absence of transitivity axioms
is denoted by replacing S with ALC.



Classical DLs are obtained from the above definitions by restricting the set
of truth values to 0 and 1. The semantics of a classical concept C is then viewed
as a set CI ⊆ ∆I instead of the characteristic function CI : ∆I → {0, 1}, and
likewise for roles. In this setting, all axioms (also order assertions) are restricted
to be of the form 〈α > 1〉, and usually this is simply written as α, e.g. C v D
instead of 〈C v D > 1〉. We also use C ≡ D to abbreviate C v D and D v C.
Furthermore, the implication constructor C → D, although usually not included
in classical DLs, can be expressed via ¬C tD.

In this paper, we provide a reduction from a G-SROIQ ontology to a clas-
sical ALCOQ ontology. For all sublogics of G-SROIQ that do not contain the
constructors O, I, and Q at the same time, the reduction preserves consistency.
Before we describe the main reduction, however, we provide a characterization
of role hierarchies using (weighted) finite automata.

3 Automata for Complex Role Inclusions

Let O = (A, T ,R) be a G-SROIQ ontology. We extend the idea from [23] of
using finite automata to characterize all role chains that imply a given role
w.r.t. Rh. Here, we use a kind of weighted automata [19], which use as input
symbols the roles in rol(O), and compute a weight for any given input word.

Definition 1 (WFA). A weighted finite automaton (WFA) is a quadruple
A = (Q, qini,wt, qfin), consisting of a non-empty set Q of states, an initial state
qini ∈ Q, a transition weight function wt : Q × (rol(O) ∪ {ε}) × Q → [0, 1], and
a final state qfin ∈ Q. Given an input word w ∈ rol(O)∗, a run of A on w is
a non-empty sequence of pairs r = (wi, qi)06i6m such that (w0, q0) = (w, qini),
(wm, qm) = (ε, qfin), and for each i, 1 6 i 6 m, it holds that wi−1 = xiwi for some
xi ∈ rol(O) ∪ {ε}. The weight of such a run is wt(r) := minm

i=1 wt(qi−1, xi, qi).
The behavior of A on w is (‖A‖, w) := supr run of A on w wt(r).

We often denote by q x,p−−→ q′ ∈ A the fact that wt(q, x, q′) = p. Further, for a
state q of A, we denote by Aq the automaton resulting from A by making q the
initial state.

Following [23], we now construct, for each role r, a WFA Ar that recognizes
all role chains that “imply” r w.r.t. Rh (with associated degrees). This con-
struction proceeds in several steps. The first automaton A0

r contains the initial
state ir, the final state fr, and the transition ir

r,1−−→ fr, as well as the following
transitions for each 〈w v r > p〉 ∈ R:

– if w = rr, then fr
ε,p−−→ ir;

– if w = r1 . . . rn with r1 6= r 6= rn, then ir
r1,1−−→ q1

w
r2,1−−→ . . .

rn,1−−−→ qnw
ε,p−−→ fr;

– if w = rr1 . . . rn, then fr
r1,1−−→ q1

w
r2,1−−→ . . .

rn,1−−−→ qnw
ε,p−−→ fr; and

– if w = r1 . . . rnr, then ir
r1,1−−→ q1

w
r2,1−−→ . . .

rn,1−−−→ qnw
ε,p−−→ ir,



where all states qiw are distinct. Here and in the following, all transitions that
are not explicitly mentioned have weight 0.

The WFA A1
r is now defined as A0

r if there is no role inclusion of the form
〈r− v r > p〉 ∈ R; otherwise, A1

r is the disjoint union of A0
r and a mirrored

copy of A0
r, where ir is the only initial state, fr is the only final state, and

the following transitions are added for the copy f ′r of fr and the copy i′r of ir:
ir

ε,p−−→ f ′r, f ′r
ε,p−−→ ir, fr

ε,p−−→ i′r, and i′r
ε,p−−→ fr.

Finally, we define the WFA Ar by induction on ≺ as follows:

– if r is minimal w.r.t. ≺, then Ar := A1
r;

– otherwise, Ar is the disjoint union of A1
r with a copy A1

s
′ of A1

s for each
transition q

s,1−−→ q′ in A1
r with s 6= r.7 For each such transition, we add

ε-transitions with weight 1 from q to the initial state of A1
s
′ and from the

final state of A1
s
′ to q′.

– The automaton Ar− is a mirrored copy of Ar.

The difference to the construction in [23] is only the inclusion of the appropriate
weights for each considered role inclusion. As shown in [23], the size of each Ar

is bounded exponentially in the length of the longest chain r1 ≺ · · · ≺ rn for
which there are role inclusions 〈uiri−1vi v ri > pi〉 ∈ R for all i, 2 6 i 6 n.

The following generalization of [23, Proposition 9] describes the promised
characterization of the role inclusions in R in terms of the behavior of the au-
tomata Ar. A detailed proof can be found in [16].

Lemma 2. A G-interpretation I satisfies all role inclusions in R iff for every
r ∈ rol(O), every w ∈ rol(O)+, and all d, e ∈ ∆I , we have

wI(d, e)⇒ rI(d, e) > (‖Ar‖, w).

Intuitively, the degree to which the interpretation of w must be “included” in the
interpretation of r is determined by the behavior of ‖Ar‖ on w.

For the universal role ru, we define Aru as above based on the role inclusions
〈r−u v ru > 1〉, 〈ruru v ru > 1〉, and 〈r v ru > 1〉 for all r ∈ rol(O). Hence, Aru

accepts any (non-empty) word w ∈ rol(O)+ with degree 1, and it is easy to see
that Lemma 2 also holds for ru.

4 The Reduction

We now describe the reduction from O to a classical ALCOQ ontology red(O).
This reduction always uses nominals, even in the logic G-SRIQ. However, if
number restrictions are not allowed (e.g. in G-SROI), then red(O) is an ALCO
ontology. For ease of presentation, we consider here only the FDL G-SROQ
without (local) reflexivity statements of the form ∃r.Self or 〈ref(r) > p〉. In the
presence of these constructors and inverse roles, the reduction contains some
7 Note that all transitions labeled with roles have weight 0 or 1.



additional concepts and axioms, but the main ideas remain the same. The full
construction can be found in [16].

We first extend the set sub(O) by all nominals {a}, a ∈ ind(O), (and their
negations) to be able to distinguish all named domain elements. We further add
all “concepts” of the form ∀Aq

r.C (∃Aq
r.C) for all ∀r.C (∃r.C) occurring in O and

all states q of Ar. These concepts help to transfer the constraints imposed by
the existential and value restrictions along all role chains that imply the possibly
non-simple role r. The semantics of ∀A.C is defined as follows:

(∀A.C)I(d) := inf
w∈rol(O)∗

inf
e∈∆I

min{(‖A‖, w), wI(d, e)} ⇒ CI(e),

where εI(d, e) := 1 if d = e, and εI(d, e) := 0 otherwise. Intuitively, it behaves
like a value restriction, but instead of considering only the role r, we consider
any role chain w, weighted by the behavior of A on w. Recall that for Ar, this
behavior represents the degree to which w implies r w.r.t. Rh (see Lemma 2).

The idea is that in our reduction we do not need to explicitly represent all role
connections, but only a “skeleton” of connections which are necessary to satisfy
the witnessing conditions for role restrictions. The restrictions for all implied role
connections are then handled by the concepts ∀Ar.C and ∃Ar.C by simulating
the transitions of Ar; each transition corresponds to a role connection to a new
domain element. Note that we do not need to introduce concepts of the form
>nAr.C since all roles in at-least restrictions must be simple, i.e. there can be
no role chains of length > 1 that imply them (at least not with a degree > 0).

The main idea of the reduction is that instead of precisely defining the inter-
pretation of all concepts at each domain element, it suffices to consider a total
preorder on them. For example, if an axiom restricts the value of C → D at
each domain element to be > 0.5, then we do not have to find the exact values
of C and D, but only to ensure that either CI(d) 6 DI(d) or else DI(d) > 0.5.
This information is encoded by total preorders over the order structure U that is
defined below. The other main insight for our reduction is that we consider only
(quasi-)forest-shaped models of O [17]. In such a model, the domain elements
identified by individual names serve as the roots of several tree-shaped struc-
tures. The roots themselves may be arbitrarily interconnected by roles. Due to
nominals, there may also be role connections from any domain element back to
the roots. Note that complex role inclusions may actually imply role connections
between arbitrary domain elements, but the underlying tree-shaped “skeleton”
is what is important for reasoning purposes (for details, see [17] and our correct-
ness proof in [16]). This dependence on forest-shaped models is the reason why
our reduction works only for G-SROI, G-SROQ, and G-SRIQ—even classical
ALCOIQ does not have the forest model property [32].

We now define the order structure U as follows:

UA := VO ∪ {a:C | a ∈ ind(O), C ∈ sub(O)} ∪
{(a, b):s | a, b ∈ ind(O), r ∈ rol(O), s ∈ {r,¬r}}

U := UA ∪ sub(O) ∪ sub↑(O) ∪
{s, (∗, a):s | a ∈ ind(O), r ∈ rol(O), s ∈ {r,¬r}},



where sub↑(O) := {〈C〉↑ | C ∈ sub(O)} and the function inv is defined by
inv(C) := ¬C, inv(a:C) := a:¬C, inv(∗, a):r := (∗, a):¬r, etc.

Total preorders on assertions in UA are used to describe the behavior of the
named root elements in the forest-shaped model. For example, if the order is
such that a:C > (a, b):r, the idea is that in the corresponding G-model I of O
the value of C at a is strictly greater that the value of the r-connection from a
to b, i.e. CI(aI) > rI(aI , bI). For each domain element of I, total preorders on
the elements of sub(O) describe the degrees of all relevant concepts in a similar
way. The elements of sub↑(O) are used to refer to degrees of concepts at the
unique predecessor element in the tree-shaped parts of the interpretation. For
convenience, we also define 〈p〉↑ := p for all p ∈ VO. The elements r ∈ rol(O)
represent the values of the role connections from the predecessor. The special
elements (∗, a):r describe role connections between arbitrary domain elements
(represented by ∗) and the named elements in the roots.

In order to describe total preorders over U with a classical ALCOQ ontology,
we use special concept names of the form α 6 β for α, β ∈ U . This differs from
previous reductions for finitely valued FDLs [7,9,31] in that we not only consider
cut-concepts of the form p 6 C with p ∈ VO, but also relationships between dif-
ferent concepts.8 We use the abbreviations α > β := β 6 α , α < β := ¬α > β ,
and similarly for = and >. Furthermore, we define the complex expressions

– α > min{β, γ} := α > β t α > γ ,
– α 6 min{β, γ} := α 6 β u α 6 γ ,
– α > β ⇒ γ := ( β 6 γ → α > 1 ) u ( β > γ → α > γ ),
– α 6 β ⇒ γ := β 6 γ t α 6 γ ,

and extend these notions to α ./ β ⇒ γ etc., for ./ ∈ {<,=, >}, analogously.
In our reduction, we additionally use the special concept name AN to identify

the anonymous domain elements, i.e. those which are not of the form bI for any
b ∈ ind(O). The reduction uses only one classical role name r, which simulates
the tree structure of the fuzzy interpretation; the actual values of the fuzzy roles
in this tree are expressed using the elements in U . The reduced ontology red(O)
consists of the parts red(U), red(A), red(AN), red(↑), red(R), red(T ), and red(C)
for all C ∈ sub(O), which we define in the following. We emphasize again that
red(O) is formulated in ALCOQ, whenever O is in G-SRIQ or G-SROQ, and in
ALCO if O is a G-SROI ontology. This is due to the fact that we always use
nominals to distinguish the named from the anonymous part of the forest-shaped
model, and the inverse of r is not needed in the reduction (see [16] for details).

The first part of red(O) is

red(U) := {α 6 β u β 6 γ v α 6 γ | α, β, γ ∈ U} ∪
{> v α 6 β t β 6 α | α, β ∈ U} ∪
{> v 0 6 α u α 6 1 | α ∈ U} ∪
{> v α ./ β | α, β ∈ VO, α ./ β} ∪
{α 6 β v inv(β) 6 inv(α) | α, β ∈ U}.

8 For the rest of this paper, the expressions α 6 β denote classical concept names.



These axioms ensure that at each domain element the relation “6” forms a total
preorder compatible with the values in VO, and that inv is an antitone operator.

To describe the behavior of the named elements, we use the following axioms:

red(A) := {c: α ./ β | 〈α ./ β〉 ∈ A} ∪ {a ≈ b ∈ A} ∪ {a 6≈ b ∈ A} ∪
{(a, b):r | a, b ∈ ind(O)} ∪ {α ./ β v ∀r. α ./ β | α, β ∈ UA} ∪
{a: a:C = C | a ∈ ind(O), C ∈ sub(O)} ∪
{a: (a, b):r = (∗, b):r | a, b ∈ ind(O), r ∈ rol(O)},

where c is an arbitrary individual name. The first two lines are responsible for
enforcing that the ABox is satisfied and that information about the behavior of
the named individuals is available throughout the whole model. The remaining
axioms describe various equivalences for named individuals, e.g. that (a, b):r and
(∗, b):r should have the same value when evaluated at a.

The next axiom defines the concept AN of all anonymous elements, i.e. those
that are not designated by an individual name:

red(AN) :=
{
¬AN ≡ t

a∈ind(O)
{a}
}
.

The following axioms ensure that the order of an element in a tree-shaped part
of the model is known at each of its successors via the elements of sub↑(O):

red(↑) := {α ./ β v ∀r.
(
AN→ 〈α〉↑ ./ 〈β〉↑

)
| α, β ∈ VO ∪ sub(O)}.

We now come to the reduction of the RBox:

red(R) := {> v (a, b):r ⇒ (a, b):s > p u r ⇒ s > p |
〈r v s > p〉 ∈ R, a, b ∈ ind(O) ∪ {∗}} ∪

{> v min{(a, b):r, (a, b):s} 6 1− p u min{r, s} 6 1− p |
〈dis(r, s) > p〉 ∈ R, a, b ∈ ind(O) ∪ {∗}}

These axioms ensure that the various elements of U that represent the values
of role connections, such as (a, b):r and r, respect the axioms in R. Although
simple role inclusions 〈r v s > p〉 are handled by the automata Ar, we include
them also here. The reason is that the reduction of at-least restrictions below
does not need to use these automata since only simple roles can occur in them.

The GCIs in T can be translated in a straightforward manner:

red(T ) := {> v p 6 C ⇒ D | 〈C v D > p〉 ∈ T }

We now come to the reductions of the concepts. Intuitively, each red(C) with
C ∈ sub(O) describes the semantics of C in terms of its order relationships
to other elements of U . Note that the semantics of the involutive negation



¬C = inv(C) is already handled by the operator inv (see red(U) above):

red(>) := {> v > > 1 }
red({a}) := {{a} v 1 6 {a} , ¬{a} v {a} 6 0 }

red(p) := {> v p = p }
red(¬C) := ∅

red(C uD) := {> v C uD = min{C,D} }
red(C → D) := {> v C → D = C ⇒ D }

The reductions of role restrictions are more involved. In particular, in the case
of value and existential restrictions we have to deal with non-simple roles, for
which we employ the automata Ar from the previous section:

red(∀r.C) := {> v (∀r.C) 6 (∀Ar.C) ,

> v ∃r.
(
AN u 〈∀r.C〉↑ > r ⇒ C

)
t

t
a∈ind(O)

(
∃r.{a} u (∀r.C) > (∗, a):r ⇒ a:C

)
}

The second axiom of red(∀r.C) ensures the existence of a witness for ∀r.C at
each domain element. For example, assume that the preorder represented by the
concepts α 6 β at some domain element d satisfies 0.5 < ∀r.C < 1. The first pos-
sibility is that the above axiom creates an anonymous element e that is connected
to d via r, and hence by red(AN) we know that e satisfies 0.5 < 〈∀r.C〉↑ < 1. The
axiom further requires that 〈∀r.C〉↑ > r ⇒ C, which implies that 〈∀r.C〉↑ > C
and r > C. We will see below that the reduction of ∀Ar.C further ensures that
〈∀r.C〉↑ 6 r ⇒ C, and thus we get 〈∀r.C〉↑ = C. Hence, e can be seen as an
abstract representation of the witness of ∀r.C at d; the precise value of the r-
connection between d and e (represented by the element r) is irrelevant, as long
as it is strictly greater than the value of C at e. The other disjuncts of this axiom
deal with the possibility that a named domain element acts as the witness for
the value restriction in a similar way.

Together with the first axiom of red(∀r.C), the following axioms ensure that
no other r-successor of d violates the lower bound on r ⇒ C given by ∀r.C at d:

red(∀Aq.C) := {> v (∀Aq.C) 6 C | q is final} ∪
⋃

q
x,p−−→q′∈A

redx,p,q′(∀Aq.C)

redε,p,q′(∀Aq.C) := {> v (∀Aq.C) 6 p⇒ (∀Aq′ .C) }
reds,p,q′(∀Aq.C) :=

{> v ∀r.
(
AN→ 〈∀Aq.C〉↑ 6 min{p, s} ⇒ (∀Aq′ .C)

)
} ∪

{∃r.{a} v (∀Aq.C) 6 min{p, (∗, a):s} ⇒ a:(∀Aq′ .C) | a ∈ ind(O)}

Recall that Ar in particular contains the transition ir
r,1−−→ fr from the initial

state ir to the final state fr. By the first axiom in red(∀r.C) and the first axiom



in redr,1,fr (∀Ar.C), the witness e satisfies 〈∀r.C〉↑ 6 〈∀Ar.C〉↑ 6 r ⇒ (∀Afr
r .C)

Since fr is final, we further have (∀Afr
r .C) 6 C by red(∀Afr

r .C), and hence
〈∀r.C〉↑ 6 r ⇒ C, as claimed above.

Using arbitrary runs through the automaton Ar, we can ensure that no other
r-successor of d violates the value restriction. For example, if rI(d, e1) = 0.3
and rI(e1, e2) = 0.5 for two other (anonymous) domain elements e1, e2, and
we further have the role inclusion 〈rr v r > 0.7〉, then we know that rI(d, e2)
must be at least 0.5. Although this r-connection is not explicitly represented
in our forest-based encoding, concepts of the form ∀Aq

r.C are appropriately
transferred from d via e1 to e2 in order to ensure that the value of C at e2

satisfies 0.5 < (∀r.C)I(d) 6 rI(d, e2)⇒ CI(e2). In this example, since we know
only that rI(d, e2) > 0.5, it must be ensured that CI(e2) > rI(d, e2).

The reduction for existential restrictions can be defined similarly to that for
value restrictions, but replacing > with 6 (and vice versa) and ⇒ with min.

We now come to the final component of red(O):

red(>n r.C) := {> v
nt

m=0
t

S⊆ind(O)
|S|=n−m

u redm,S,6(>n r.C),

AN v ¬
nt

m=0
t

S⊆ind(O)
|S|=n−m

u redm,S,<(>n r.C)} ∪

{a:¬>n r.
((
AN u 〈>n r.C〉↑ < min{r, C}

)
t(

¬AN u (a:>n r.C) < min{(a, ∗):r, C}
))
| a ∈ ind(O)}

redm,S,C(>n r.C) := {>m r.
(
AN u 〈>n r.C〉↑ C min{r, C}

)
} ∪

{∃r.({a} u ¬{b}) | a, b ∈ S, a 6= b} ∪
{ (>n r.C) C min{(∗, a):r, a:C} | a ∈ S}

The reduction of at-least restrictions works similarly to the one of value restric-
tions: the first axiom ensures the existence of the n required witnesses, while
the second one ensures that no n different elements can exceed the value of the
at-least restriction. Unfortunately, the number of named successors cannot be
counted using a classical at-least restriction in our encoding, since these named
successors do not know about the degree of the role connection from an anony-
mous element; otherwise they would have to store a possibly infinite amount of
information since they may have infinitely many anonymous role predecessors.
For this reason, the above axioms first guess how many (n−m) and which (S)
named elements are connected to the current domain element to the appropriate
degrees (given by (∗, a):r). The assertions in red(>n r.C) express a restriction
similar to that of the second GCI for named domain elements.

The proof of the following correctness result can be found in [16]. As men-
tioned before, this holds only for logics with the forest model property [17].
However, it is not affected by the presence or absence of (local) reflexivity.



Lemma 3. In G-SRIQ, G-SROQ, or G-SROI, O has a G-model iff red(O) has
a classical model.

We now analyze the complexity of the reduction. As in [23], the construction of
the automata Ar causes an exponential blowup in the size of R, which cannot
be avoided [26]. Independent of this, our reduction also involves an exponential
blowup in the (binary encoding of) the largest number n involved in a number
restriction in O, and in the number of individual names occurring in O, since
the number of disjuncts in each GCI from red(>n r.C) is linear in n · 2|ind(O)|.
However, we can avoid this blowup if we remove either nominals or number
restrictions [16]. Hence, we obtain the following complexity results.

Theorem 4. Deciding consistency is

– 2-ExpTime-complete in G-SRIQ,
– in 2-ExpTime in G-SROI and G-SROQ, and
– ExpTime-complete in all FDLs between G-ALC and G-SHOI or G-SHIQ.

Proof. The consistency of the ALCOQ ontology red(O) is decidable in exponen-
tial time in the size of red(O) [17]. The first upper bounds thus follow from the
fact that the size of red(O) is exponential in the size of O. 2-ExpTime-hardness
holds already for G-SRIQ without involutive negation and only assertions of the
form 〈α > p〉 since in this case reasoning in G-SRIQ is equivalent to reasoning
in classical SRIQ [13, 26].

Without complex role inclusions, i.e. restricting to simple role inclusions
and transitivity axioms, the size of the automata Ar is polynomial in the size
of R [23]. The other exponential blowup can be avoided by disallowing nominals
or number restrictions. Hence, for G-SHOI and G-SHIQ, the size of red(O) is
polynomial in the size of O, and the lower bound follows again from the reduc-
tion in [13] and ExpTime-hardness of consistency in classical ALC [29]. ut

To the best of our knowledge, it is still open whether consistency in SROI and
SROQ is 2-ExpTime-hard, even in the classical case [17, 28]; the best known
lower bound is the ExpTime-hardness of ALC [29]. We also leave open the
complexity of G-SHOQ, which is ExpTime-complete in the classical case [17,29].

5 Conclusions

Using a combination of techniques developed for infinitely valued Gödel exten-
sions of ALC [12] and for finitely valued Gödel extensions of SROIQ [6,7,14,15],
we derived several tight complexity bounds for consistency in sublogics of G-
SROIQ. Our reduction circumvents the best-case exponential behavior of the
automata-based approach in [12] and avoids the exponential blowup in the nest-
ing depth of concepts of the reductions in [6,7]. However, it introduces an expo-
nential blowup in the size of the binary encoding of numbers in number restric-
tions and the number of individual names occurring in the ontology. Beyond the
complexity results, an important benefit of our approach is that it does not need



the development of a specialized fuzzy DL reasoner, but can use any state-of-
the-art reasoner for classical ALCOQ. For that reason, this new reduction aids
in closing the gap between efficient classical and fuzzy DL reasoners.

A promising direction for future research is to integrate our reduction directly
into a classical tableaux procedure. Observe that the axioms in red(C) are already
closely related to the rules employed in (classical and fuzzy) tableaux algorithms
(see, e.g. [3,8,23]). For example, the concept ∀r.C in a node leads to the creation
of an r-successor node that witnesses the value of ∀r.C, i.e., that satisfies the
inequations in red(∀r.C). Such a tableaux procedure would need to deal with
total preorders in each node, possibly using an external solver.

On the theoretical side, we want to prove 2-NExpTime-completeness of rea-
soning in G-SROIQ. As a prerequisite, we would have to eliminate the depen-
dency on the forest-shaped structure of interpretations. It may be possible to
adapt the tableaux rules from [22] for this purpose. It also remains open whether
consistency in G-SHOQ is ExpTime-complete, as for its classical counterpart.

As done in [7], we can also combine our reduction with the one for infinitely
valued Zadeh semantics. While not based on a t-norm, it is one of the most
widely used semantics for fuzzy applications. It also shares many properties of
the classical semantics, and hence is a natural choice for simple applications.
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