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Abstract
Fuzzy Description Logics (FDLs) are logic-based
formalisms used to represent and reason with vague
or imprecise knowledge. It has been recently
shown that reasoning in most FDLs using truth val-
ues from the interval [0, 1] becomes undecidable
in the presence of a negation constructor and gen-
eral concept inclusion axioms. One exception to
this negative result are FDLs whose semantics is
based on the infinitely valued Gödel t-norm (G).
In this paper, we extend previous decidability re-
sults for G-IALC to deal also with qualified num-
ber restrictions. Our novel approach is based on
a combination of the known crispification tech-
nique for finitely valued FDLs and the automata-
based procedure originally developed for reasoning
in G-IALC. The proposed approach combines the
advantages of these two methods, while removing
their respective drawbacks.

1 Introduction
It is well-known that one of the main requirements for the de-
velopment of an intelligent application is a formalism capable
of representing and handling knowledge without ambiguity.
Description Logics (DLs) are a well-studied family of knowl-
edge representation formalisms [Baader et al., 2007]. They
constitute the logical backbone of the standard Semantic Web
ontology language OWL 2,1 and its profiles, and have been
successfully applied to represent the knowledge of many and
diverse application domains, particularly in the bio-medical
sciences.

DLs describe the domain knowledge using concepts (such
as Patient) that represent sets of individuals, and roles
(hasRelative) that represent connections between individ-
uals. Ontologies are collections of axioms formulated over
these concepts and roles, which restrict their possible inter-
pretations. The typical axioms considered in DLs are asser-
tions, like bob:Patient, providing knowledge about specific
individuals; and general concept inclusions (GCIs), such as
Patient v Human, which express general relations between
concepts. Different DLs are characterized by the constructors

1http://www.w3.org/TR/owl2-overview/

allowed to generate complex concepts and roles from atomic
ones. ALC [Schmidt-Schauß and Smolka, 1991] is a proto-
typical DL of intermediate expressivity that contains the con-
cept constructors conjunction (C u D), negation (¬C), and
existential restriction (∃r.C for a role r). If additionally qual-
ified number restrictions (>n r.C for n ∈ N) are allowed,
the resulting logic is denoted by ALCQ. Common reason-
ing problems in ALCQ, such as consistency of ontologies or
subsumption between concepts, are known to be EXPTIME-
complete [Schild, 1991; Tobies, 2001].

Fuzzy Description Logics (FDLs) have been introduced
as extensions of classical DLs to represent and reason with
vague knowledge. The main idea is to consider all the truth
values from the interval [0, 1] instead of only true and false.
In this way, it is possible give a more fine-grained seman-
tics to inherently vague concepts like LowFrequency or
HighConcentration, which can be found in biomedical on-
tologies like SNOMED CT,2 and Galen.3 The different mem-
bers of the family of FDLs are characterized not only by the
constructors they allow, but also by the way these construc-
tors are interpreted.

To interpret conjunction in complex concepts like

∃hasHeartRate.LowFrequency u
∃hasBloodAlcohol.HighConcentration,

a popular approach is to use so-called t-norms [Klement et
al., 2000]. The semantics of the other logical constructors
can then be derived from these t-norms in a principled way, as
suggested by Hájek [2001]. Following the principles of math-
ematical fuzzy logic, existential restrictions are interpreted as
suprema of truth values. However, to avoid problems with
infinitely many truth values, reasoning in fuzzy DLs is of-
ten restricted to so-called witnessed models [Hájek, 2005], in
which these suprema are required to be maxima; i.e., the de-
gree is witnessed by at least one domain element.

Unfortunately, reasoning in most FDLs becomes undecid-
able when the logic allows to use GCIs and negation un-
der witnessed model semantics [Baader and Peñaloza, 2011;
Cerami and Straccia, 2013; Borgwardt et al., 2015]. One of
the few exceptions known are FDLs using the Gödel t-norm
defined as min{x, y} to interpret conjunctions [Borgwardt et

2http://www.ihtsdo.org/snomed-ct/
3http://www.opengalen.org/



al., 2014]. Despite not being as well-behaved as finitely val-
ued FDLs, which use a finite total order of truth values instead
of the infinite interval [0, 1] [Borgwardt and Peñaloza, 2013],
it has been shown using an automata-based approach that rea-
soning in Gödel extensions of ALC exhibits the same com-
plexity as in the classical case, i.e. it is EXPTIME-complete.
A major drawback of this approach is that it always has an ex-
ponential runtime, even when the input ontology has a simple
form.

In this paper, we extend the results of [Borgwardt et al.,
2014] to deal with qualified number restrictions, showing
again that the complexity of reasoning remains the same
as for the classical case; i.e., it is EXPTIME-complete. To
this end, we focus only on the problem of local consis-
tency, which is a generalization of the classical concept sat-
isfiability problem. We follow a more practical approach
that combines the automata-based construction from [Borg-
wardt et al., 2014] with reduction techniques developed for
finitely valued FDLs [Straccia, 2004; Bobillo et al., 2009;
Bobillo and Straccia, 2013]. We exploit the forest model
property of classical ALCQ [Kazakov, 2004] to encode or-
der relationships between concepts in a fuzzy interpretation
in a manner similar to the Hintikka trees from [Borgwardt
et al., 2014]. However, instead of using automata to deter-
mine the existence of such trees, we reduce the fuzzy on-
tology directly into a classical ALCQ ontology whose lo-
cal consistency is equivalent to that of the original ontol-
ogy. This enables us to use optimized reasoners for clas-
sical DLs. In addition to the cut-concepts of the form
C > q for a fuzzy concept C and a value q, which are used
in the reductions for finitely valued DLs [Straccia, 2004;
Bobillo et al., 2009; Bobillo and Straccia, 2013], we em-
ploy order concepts C 6 D expressing relationships between
fuzzy concepts. Contrary to the reductions for finitely valued
Gödel FDLs presented by Bobillo et al. [2009; 2012], our re-
duction produces a classical ontology whose size is polyno-
mial in the size of the input fuzzy ontology. Thus, we obtain
tight complexity bounds for reasoning in this FDL [Tobies,
2001]. An extended version of this paper appears in [Borg-
wardt and Peñaloza, 2015].

2 Preliminaries
For the rest of this paper, we focus solely on vague statements
that take truth degrees from the infinite interval [0, 1], where
the Gödel t-norm, defined by min{x, y}, is used to interpret
logical conjunction. The semantics of implications is given
by the residuum of this t-norm; that is,

x⇒ y :=

{
1 if x 6 y,
y otherwise.

We use both the residual negation 	x := x ⇒ 0 and the
involutive negation ∼x := 1− x in the rest of this paper.

We first recall some basic definitions from [Borgwardt
et al., 2014], which will be used extensively in the proofs
throughout this work. An order structure S is a finite set con-
taining at least the numbers 0, 0.5, and 1, together with an in-
volutive unary operation inv : S → S such that inv(x) = 1−x
for all x ∈ S ∩ [0, 1]. A total preorder over S is a transitive

and total binary relation 4 ⊆ S × S. For x, y ∈ S, we write
x ≡ y if x 4 y and y 4 x. Notice that≡ is an equivalence re-
lation on S. The total preorders considered in [Borgwardt et
al., 2014] have to satisfy additional properties; for instance,
that 0 and 1 are always the least and greatest elements, re-
spectively. These properties can be found in our reduction in
the axioms of red(U) (see Section 3 for more details).

The syntax of the FDL G-IALCQ is the same as that of
classical ALCQ, with the addition of the implication con-
structor (denoted by the use of I at the beginning of the
name). This constructor is often added to FDLs, as the
residuum cannot, in general, be expressed using only the
t-norm and negation operators, in contrast to the classical se-
mantics. In particular, this holds for the Gödel t-norm and its
residuum, which is the focus of this work. Let now NC, NR,
and NI be mutually disjoint sets of concept, role, and indi-
vidual names, respectively. Concepts of G-IALCQ are built
using the syntax rule
C,D ::= > | A | ¬C | C uD | C → D | ∀r.C | >n r.C,

where A ∈ NC, r ∈ NR, C,D are concepts, and n ∈ N. We
use the abbreviations

⊥ := ¬>,
C tD := ¬(¬C u ¬D),

∃r.C := >1 r.C, and
6n r.C := ¬(>(n+ 1) r.C)

Notice that Bobillo et al. consider a different definition of at-
most restrictions, which uses the residual negation; that is,
they define 6n r.C := (>(n + 1) r.C) → ⊥ [2012]. This
has the strange side effect that the value of 6n r.C is always
either 0 or 1 (see the semantics below). However, this dis-
crepancy in definitions is not an issue since our algorithm can
handle both cases.

The semantics of this logic is based on interpretations. A
G-interpretation is a pair I = (∆I , ·I), where ∆I is a non-
empty set called the domain, and ·I is the interpretation func-
tion that assigns to each individual name a ∈ NI an ele-
ment aI ∈ ∆I , to each concept name A ∈ NC a fuzzy
set AI : ∆I → [0, 1], and to each role name r ∈ NR a
fuzzy binary relation rI : ∆I × ∆I → [0, 1]. The inter-
pretation of complex concepts is obtained from the seman-
tics of first-order fuzzy logics via the well-known transla-
tion from DL concepts to first-order logic [Straccia, 2001;
Bobillo et al., 2012], i.e. for all d ∈ ∆I ,

>I(d) := 1

(¬C)I(d) := 1− CI(d)

(C uD)I(d) := min{CI(d), DI(d)}
(C → D)I(d) := CI(d)⇒ DI(d)

(∀r.C)I(d) := inf
e∈∆I

rI(d, e)⇒ CI(e)

(>n r.C)I(d) := sup
e1,...,en∈∆I

pairwise different

n
min
i=1

min{rI(d, ei), C
I(ei)}

Recall that the usual duality between existential and value
restrictions that appears in classical DLs does not hold in
G-IALCQ.



A classical interpretation is defined similarly, with the set
of truth values restricted to 0 and 1. In this case, the semantics
of a conceptC is commonly viewed as a setCI ⊆ ∆I instead
of the characteristic function CI : ∆I → {0, 1}.

In the following, we restrict all reasoning problems to so-
called witnessed G-interpretations [Hájek, 2005], which in-
tuitively require the suprema and infima in the semantics to
be maxima and minima, respectively. More formally, the
G-interpretation I is witnessed if, for every d ∈ ∆I , n > 0,
r ∈ NR, and concept C, there exist e, e1, . . . , en ∈ ∆I

(where e1, . . . , en are pairwise different) such that

(∀r.C)I(d) = rI(d, e)⇒ CI(e) and

(>n r.C)I(d) =
n

min
i=1

min{rI(d, ei), C
I(ei)}.

The axioms of G-IALCQ extend classical axioms by al-
lowing to compare degrees of arbitrary assertions in so-called
ordered ABoxes [Borgwardt et al., 2014], and to state inclu-
sions relationships between fuzzy concepts that hold to a cer-
tain degree, instead of only 1. A classical assertion is an
expression of the form a:C or (a, b):r for a, b ∈ NI, r ∈ NR,
and a concept C. An order assertion is of the form 〈α ./ q〉
or 〈α ./ β〉 where ./ ∈ {<,6,=,>, >}, α, β are classical
assertions, and q ∈ [0, 1]. A (fuzzy) general concept inclu-
sion axiom (GCI) is of the form 〈C v D > q〉 for concepts
C,D and q ∈ [0, 1]. An ordered ABox is a finite set of or-
der assertions, a TBox is a finite set of GCIs, and an ontology
O = (A, T ) consists of an ordered ABox A and a TBox T .
A G-interpretation I satisfies (or is a model of) an order as-
sertion 〈α ./ β〉 if αI ./ βI (where (a:C)I := CI(aI),
((a, b):r)I := rI(aI , bI), and qI := q); it satisfies a GCI
〈C v D > q〉 if CI(d)⇒ DI(d) > q holds for all d ∈ ∆I ;
and it satisfies an ordered ABox, TBox, or ontology if it sat-
isfies all its axioms. An ontology is consistent if it has a (wit-
nessed) model.

Given an ontology O, we denote by rol(O) the set of all
role names occurring in O and by sub(O) the closure under
negation of the set of all subconcepts occurring in O. We
consider the concepts ¬¬C and C to be equal, and thus the
latter set is of quadratic size in the size of O. Moreover, we
denote by VO the closure under the involutive negation x 7→
1 − x of the set of all truth degrees appearing in O, together
with 0, 0.5, and 1. This set is of size linear on the size of O.
We sometimes denote the elements of VO ⊆ [0, 1] as 0 =
q0 < q1 < · · · < qk−1 < qk = 1.

We stress that we do not consider the general consistency
problem in this paper, but only a restricted version that uses
only one individual name. An ordered ABox A is local if it
contains no role assertions (a, b):r and there is a single indi-
vidual name a ∈ NI such that all order assertions in A only
use a. The local consistency problem, i.e. deciding whether
an ontology (A, T ) with a local ordered ABox A is consis-
tent, can be seen as a generalization of the classical concept
satisfiability problem [Borgwardt and Peñaloza, 2013].

Other common reasoning problems for FDLs, such as con-
cept satisfiability and subsumption can be reduced to local
consistency [Borgwardt et al., 2014]: the subsumption be-
tween C and D to degree q w.r.t. a TBox T is equivalent to
the (local) inconsistency of ({〈a:C → D < q〉}, T ), and

the satisfiability of C to degree q w.r.t. T is equivalent to the
(local) consistency of ({〈a:C > q〉}, T ).

In the following section we show how to decide local con-
sistency of a G-IALCQ ontology through a reduction to clas-
sical ontology consistency.

3 Deciding Local Consistency
Let O = (A, T ) be a G-IALCQ ontology where A is a lo-
cal ordered ABox that uses only the individual name a. The
main ideas behind the reduction to classical ALCQ are that
it suffices to consider tree-shaped interpretations, where each
domain element has a unique role predecessor, and that we
only have to consider the order between values of concepts,
instead of their precise values. This insight allows us to con-
sider only finitely many different cases [Borgwardt et al.,
2014].

To compare the values of the elements of sub(O) at differ-
ent domain elements, we use the order structure

U := VO ∪ sub(O) ∪ sub↑(O) ∪ {λ,¬λ},
where sub↑(O) := {〈C〉↑ | C ∈ sub(O)}, inv(λ) := ¬λ,
inv(C) := ¬C, and inv(〈C〉↑) := 〈¬C〉↑, for all concepts
C ∈ sub(O). The idea is that total preorders over U describe
the relationships between the values of sub(O) and VO at a
single domain element. The elements of sub↑(O) allow us
to additionally refer to the relevant values at the unique role
predecessor of the current domain element (in a tree-shaped
interpretation). The value λ represents the value of the role
connection from this predecessor. For convenience, we define
〈q〉↑ := q for all q ∈ VO.

In order to describe such total preorders in a classical
ALCQ ontology, we employ special concept names of the
form α 6 β for α, β ∈ U . This differs from previous re-
ductions for finitely valued FDLs [Straccia, 2004; Bobillo
and Straccia, 2011; Bobillo et al., 2012] in that we not only
consider cut-concepts of the form q 6 α with q ∈ VO, but
also relationships between different concepts.4 For conve-
nience, we introduce the abbreviations α > β := β 6 α ,
α < β := ¬α > β , and similarly for = and >. Furthermore,
we define the complex expressions
• α > min{β, γ} := α > β t α > γ ,

• α 6 min{β, γ} := α 6 β u α 6 γ ,

• α > β ⇒ γ := (β 6 γ → α > 1 )u(β > γ → α > γ ),

• α 6 β ⇒ γ := β 6 γ t α 6 γ ,

and extend these notions to the expressions α ./ β ⇒ γ etc.,
for ./ ∈ {<,=, >}, analogously.

For each concept C ∈ sub(O), we now define the classical
ALCQ TBox red(C), depending on the form ofC, as follows.

red(>) := {> v > > 1}
red(¬C) := ∅

red(C uD) := {> v C uD = min{C,D}}
red(C → D) := {> v C → D = C ⇒ D }

4For the rest of this paper, expressions of the form α 6 β denote
(classical) concept names.



red(∀r.C) := {> v ∃r. 〈∀r.C〉↑ > λ⇒ C u
∀r. 〈∀r.C〉↑ 6 λ⇒ C }

red(>n r.C) := {> v >n r. 〈>n r.C〉↑ 6 min{λ,C} u
¬>n r. 〈>n r.C〉↑ < min{λ,C}}

Intuitively, red(C) describes the semantics of C in terms of
its order relationships to other elements of U . Note that the
semantics of the involutive negation ¬C = inv(C) is already
handled by the operator inv (see also the last line of the defi-
nition of red(U) below).

The reduced classical ALCQ ontology red(O) is defined
as follows:
red(O) := (red(A), red(U) ∪ red(↑) ∪ red(T )),

red(A) := {a:C ./ q | 〈a:C ./ q〉 ∈ A} ∪
{a:C ./ D | 〈a:C ./ a:D〉 ∈ A},

red(U) := {α 6 β u β 6 γ v α 6 γ | α, β, γ ∈ U} ∪
{> v α 6 β t β 6 α | α, β ∈ U} ∪
{> v 0 6 α u α 6 1 | α ∈ U} ∪
{> v α ./ β | α, β ∈ VO, α ./ β} ∪
{α 6 β v inv(β) 6 inv(α) | α, β ∈ U},

red(↑) := {α ./ β v ∀r. 〈α〉↑ ./ 〈β〉↑ |
α, β ∈ VO ∪ sub(O), r ∈ rol(O)},

red(T ) := {> v q 6 C ⇒ D | 〈C v D > q〉 ∈ T } ∪⋃
C∈sub(O)

red(C).

We briefly explain this construction. The reductions of the
order assertions and fuzzy GCIs inO are straightforward; the
former expresses that the individual a must belong to the cor-
responding order concept C ./ q or C ./ D, while the latter
expresses that every element of the domain must satisfy the
restriction provided by the fuzzy GCI. The axioms of red(U)
intuitively ensure that the relation “6” forms a total preorder
that is compatible with all the values in VO, and that inv is an
antitone operator. Finally, the TBox red(↑) expresses a con-
nection between the orders of a domain element and those of
its role successors.

The following lemmata show that this reduction is correct;
i.e., that it preserves local consistency.
Lemma 1. If red(O) has a classical model, then O has a
G-model.

Proof. By [Kazakov, 2004], red(O) must have a tree
model I, i.e. we can assume that ∆I is a prefix-closed sub-
set of N∗, aI = ε, for all n1, . . . , nk ∈ N, k > 1, with
u := n1 . . . nk ∈ ∆I , the element u↑ := n1 . . . nk−1 ∈ ∆I

is an r-predecessor of u for some r ∈ rol(O), and there are
no other role connections. For any u ∈ ∆I , we denote by
4u the corresponding total preorder on U , that is, we define
α 4u β iff u ∈ α 6 β

I , and by ≡u the induced equivalence
relation.

As a first step in the construction of a G-model of O, we
define the auxiliary function v : U×∆I → [0, 1] that satisfies
the following conditions for all u ∈ ∆I :

(P1) for all q ∈ VO, we have v(q, u) = q,

(P2) for all α, β ∈ U , we have v(α, u) 6 v(β, u) iff α 4u β,

(P3) for all α ∈ U , we have v(inv(α), u) = 1− v(α, u),

(P4) if u 6= ε, then for all C ∈ sub(O) it holds that
v(C, u↑) = v(〈C〉↑, u).

We define v by induction on the structure of ∆I starting
with ε. Let U/≡ε be the set of all equivalence classes of ≡ε.
Then 4ε yields a total order 6ε on U/≡ε. Since I satisfies
red(U), we have

[0]ε <ε [q1]ε <ε · · · <ε [qk−1]ε <ε [1]ε

w.r.t. this order. For every [α]ε ∈ U/≡ε, we now set
inv([α]ε) := [inv(α)]ε. This function is well-defined by the
axioms in red(U). On all α ∈ [q]ε for q ∈ VO, we now
define v(α, ε) := q, which ensures that (P1) holds. For the
equivalence classes that do not contain a value from VO, note
that by red(U), every such class must be strictly between [qi]ε
and [qi+1]ε for qi, qi+1 ∈ VO. We denote the ni equivalence
classes between [qi]ε and [qi+1]ε as follows:

[qi]ε <ε E
i
1 <ε · · · <ε E

i
ni
<ε [qi+1]ε.

For every α ∈ Ei
j , we set v(α, ε) := qi + j

ni+1 (qi+1 − qi),
which ensures that (P2) is also satisfied. Furthermore, ob-
serve that 1− qi+1 and 1− qi are also adjacent in VO and we
have

[1− qi+1]ε <ε inv(Ei
ni

) <ε · · · <ε inv(Ei
1) <ε [1− qi]ε

by the axioms in red(U). Hence, it follows from the definition
of v(α, ε) that (P3) holds.

Let now u ∈ ∆I be such that the function v, satisfying
the properties (P1)–(P4), has already been defined for u↑.
Since I is a tree model, there must be an r ∈ NR such
that (u↑, u) ∈ rI . We again consider the set of equiva-
lence classes U/≡u and set v(α, u) := q for all q ∈ VO
and α ∈ [q]u, and v(α, u) := v(C, u↑) for all C ∈ sub(O)
and α ∈ [〈C〉↑]u. To see that this is well-defined, consider
the case that [〈C〉↑]u = [〈D〉↑]u, i.e. u ∈ 〈C〉↑ = 〈D〉↑

I .
From the axioms in red(↑) and the fact that (u↑, u) ∈ rI ,
it follows that u↑ ∈ C = D

I , and thus [C]u↑ = [D]u↑ .
Since (P2) is satisfied for u↑, we get v(C, u↑) = v(D,u↑).
The same argument shows that [q]u = [〈q〉↑]u = [〈C〉↑]u
implies v(q, u↑) = v(C, u↑). For the remaining equiva-
lence classes, we can use a construction analogous to the case
for ε by considering the two unique neighboring equivalence
classes that contain an element of VO ∪ sub(O) (for which
v has already been defined). This construction ensures that
(P1)–(P4) hold for u.

Based on the function v, we define the G-interpretation If
over the domain ∆If := ∆I , where aIf := aI = ε;

AIf (u) :=

{
v(A, u) if A ∈ sub(O),
0 otherwise; and

rIf (u,w) :=

{
v(λ,w) if (u,w) ∈ rI ,
0 otherwise.



We show by induction on the structure of C that

CIf (u) = v(C, u) for all C ∈ sub(O) and u ∈ ∆I . (1)

For concept names, this holds by the definition of If . For >,
we know that >If (u) = 1 = v(>, u) by the definition of
red(>) and (P2). For ¬C, we have

(¬C)If (u) = 1− CIf (u) = 1− v(C, u) = v(¬C, u)

by the induction hypothesis and (P3). For conjunctionsCuD,
we know that

(C uD)If (u) = min{CIf (u), DIf (u)}
= min{v(C, u), v(D,u)}
= v(C uD,u)

by the definition of red(C uD) and (P2). Implications can be
treated similarly.

Consider a value restriction ∀r.C ∈ sub(O). For every
w ∈ ∆I with (u,w) ∈ rI , we have w ∈ 〈∀r.C〉↑ 6 λ⇒ C

I

since I satisfies red(∀r.C). By the induction hypothesis,
the fact that w↑ = u, (P2), and (P4), this implies that
v(∀r.C, u) 6 v(λ,w) ⇒ v(C,w) = rIf (u,w) ⇒ CIf (w),
and thus

(∀r.C)If (u) = inf
w∈∆I , (u,w)∈rI

rIf (u,w)⇒ CIf (w)

> v(∀r.C, u).

Furthermore, by the existential restriction introduced in
red(∀r.C), we know that there exists a w0 ∈ ∆I such that
(u,w0) ∈ rI and w0 ∈ 〈∀r.C〉↑ > λ⇒ C

I . By the same
arguments as above, we get

v(∀r.C, u) > rIf (u,w0)⇒ CIf (w0)

> (∀r.C)If (u),

which concludes the proof of (1) for ∀r.C. As a by-product,
we have found in the element w0 the witness required for
satisfying the concept ∀r.C at u.

Consider now >n r.C ∈ sub(O). For any n-tuple
(w1, . . . , wn) of different domain elements with
(u,w1), . . . , (u,wn) ∈ rI , by red(>n r.C) there must be an
index i, 1 6 i 6 n, such that wi /∈ 〈>n r.C〉↑ < min{λ,C} I .
Using arguments similar to those introduced above, we
obtain that

v(>n r.C, u) > min{rIf (u,wi), C
If (wi)

>
n

min
j=1

min{rIf (u,wj), C
If (wj)}.

On the other hand, we know that there are n different el-
ements w0

1, . . . , w
0
n ∈ ∆I such that (u,w0

j ) ∈ rI and

wj ∈ 〈>n r.C〉↑ 6 min{λ,C} I for all j, 1 6 j 6 n. As
in the case of ∀r.C above, we conclude that

v(>n r.C, u) 6
n

min
j=1

min{rIf (u,w0
j ), CIf (w0

j )}

6 (>n r.C)If (u) 6 v(>n r.C, u),

as required. Furthermore, w0
1, . . . , w

0
n are the required wit-

nesses for >n r.C at u. This concludes the proof of (1).
It remains to be shown that If is a model of O. For every

〈a:C ./ q〉 ∈ A, we have aI = ε ∈ [C ./ q]I , and thus
CIf (aIf ) = v(C, ε) ./ v(q, ε) = q by (1), (P1), and (P2). A
similar argument works for handling order assertions of the
form 〈a:C ./ a:D〉. To conclude, consider an arbitrary GCI
〈C v D > q〉 ∈ T and u ∈ ∆I . By the definition of red(T )
and (P1), we have v(q, u) 6 v(C, u) ⇒ v(D,u). Thus, (1)
and (P2) yield CIf (u) ⇒ DIf (u) > q. Thus, If satisfies all
the axioms in O, which concludes the proof.

For the converse direction, we now show that it is possible
to unravel every G-model of O into a classical tree model of
red(O).
Lemma 2. If O has a G-model, then red(O) has a classical
model.

Proof. Given a G-model I of O, we define a classical in-
terpretation Ic over the domain ∆Ic of all paths of the form
% = r1d1 . . . rmdm with ri ∈ NR, di ∈ ∆I , m > 0. We set
aIc := ε and

rIc := {(%, %rd) | % ∈ ∆Ic , d ∈ ∆I}
for all r ∈ NR. We denote by tail(r1d1 . . . rmdm) the el-
ement dm if m > 0, and aI if m = 0. Similarly, we set
prev(r1d1 . . . rmdm) to dm−1 if m > 1, and to aI if m = 1.
Finally, role(r1d1 . . . rmdm) denotes rm whenever m > 0.
For any α ∈ U and % ∈ ∆Ic , we define αI(%) as

CI(tail(%)) if α = C ∈ sub(O);

CI(prev(%)) if α = 〈C〉↑, C ∈ sub(O);
q if α = q ∈ VO;

role(%)I(prev(%), tail(%)) if α = λ;

1− role(%)I(prev(%), tail(%)) if α = ¬λ.

Note that for % = ε this expression is only defined for
α ∈ VO ∪ sub(O). We fix the value of αI(ε) for all other α
arbitrarily, in such a way that for all α, β ∈ U we have
αI(ε) 6 βI(ε) iff inv(β)I(ε) 6 inv(α)I(ε). We can now
define the interpretation of all concept names α 6 β with
α, β ∈ U as

α 6 β
Ic := {% | αI(%) 6 βI(%)}.

It is easy to see that we have % ∈ α ./ β
Ic iff αI(%) ./ βI(%)

also for all other order expressions ./, and that Ic satisfies
red(U). We now show that Ic satisfies the remaining parts of
red(O).

For any order assertion 〈a:C ./ a:D〉 ∈ A we have
CI(aI) ./ DI(aI). This implies that CI(ε) ./ DI(ε),
and thus aI = ε ∈ C ./ D

Ic , as required. A similar ar-
gument works for assertions of the form 〈a:C ./ q〉. Con-
sider now a GCI 〈C v D > q〉 ∈ T and any % ∈ ∆Ic .
We know that CI(tail(%)) ⇒ DI(tail(%)) > q, and thus
% ∈ q 6 C ⇒ D

Ic .
For red(↑), consider any α, β ∈ VO ∪ sub(O), r ∈ rol(O),

and % ∈ α ./ β
Ic . Thus, it holds that αI(%) ./ βI(%). Ev-

ery r-successor of % in Ic must be of the form %rd. Since



〈α〉I↑ (%rd) = αI(%) ./ βI(%) = 〈β〉I↑ (%rd), we know that
all r-successors of % satisfy 〈α〉↑ ./ 〈β〉↑ .

It remains to be shown that Ic satisfies red(C) for all con-
cepts C ∈ sub(O). For C = >, the claim follows from the
fact that >I(%) = >I(tail(%)) = 1. For ¬C, the result is
trivial, and for conjunctions and implications, it follows from
the semantics of u and→ and the properties of min and⇒,
respectively.

Consider the case of ∀r.C and an arbitrary domain element
% ∈ ∆Ic , and set d := tail(%). Since I is witnessed, there
must be an e ∈ ∆I such that

〈∀r.C〉I↑ (%re) = (∀r.C)I(d)

= rI(d, e)⇒ CI(e)

= λI(%re)⇒ CI(%re).

Since (%, %re) ∈ rIc , this shows that ∃r. 〈∀r.C〉↑ > λ⇒ C is
satisfied by % in Ic. Additionally, for any r-successor %re of %
we have

〈∀r.C〉I↑ (%re) = (∀r.C)I(d)

6 rI(d, e)⇒ CI(e)

= λI(%re)⇒ CI(%re),

and thus ∀r. 〈∀r.C〉↑ 6 λ⇒ C is also satisfied.
For at-least restrictions >n r.C, we similarly know that

there are n different elements e1, . . . , en such that, for all i,
1 6 i 6 n,

〈>n r.C〉I↑ (%rei) = (>n r.C)I(d)

=
n

min
j=1

min{rI(d, ej), C
I(ej)}

6 min{rI(d, ei), C
I(ei)}

= min{λI(%rei), C
I(%rei)}.

Since also the elements %re1, . . . , %ren are dif-
ferent, this shows that the at-least restriction
>n r. 〈>n r.C〉↑ 6 min{λ,C} is satisfied by Ic at %.
On the other hand, for all n-tuples (%re1, . . . , %ren) of
different r-successors of % and all i, 1 6 i 6 n, we must
have

〈>n r.C〉I↑ (%rei) = (>n r.C)I(d)

>
n

min
j=1

min{rI(d, ej), C
I(ej)}

=
n

min
j=1

min{λI(%rej), C
I(%rej)},

and thus there must be at least one j, 1 6 j 6 n, such that

%rej ∈ 〈>n r.C〉↑ > min{λ,C} Ic .

In other words, there can be no n different elements of the
form %re that satisfy %re ∈ 〈>n r.C〉↑ < min{λ,C} Ic , i.e.

% /∈ >n r. 〈>n r.C〉↑ < min{λ,C} Ic .

In contrast to the reductions for finitely valued Gödel
FDLs [Bobillo et al., 2009; 2012], the size of red(O) is al-
ways polynomial in the size of O. The reason is that we

do not translate the concepts occurring in the ontology recur-
sively, but rather introduce a polynomial-sized subontology
red(C) for each relevant subconcept C. Moreover, we do not
need to introduce role hierarchies for our reduction, since the
value of role connections is expressed using the special ele-
ment λ. EXPTIME-completeness of concept satisfiability in
classical ALCQ [Schild, 1991; Tobies, 2001] now yields the
following result.
Theorem 3. Local consistency in G-IALCQ is EXPTIME-
complete.

4 Conclusions
Using a combination of techniques developed for infinitely
valued Gödel extensions of ALC [Borgwardt et al., 2014]
and for finitely valued Gödel extensions of SROIQ [Bobillo
et al., 2009; 2012], we have shown that local consistency in
infinitely valued G-IALCQ is EXPTIME-complete. Our re-
duction is more practical than the automata-based approach
proposed by Borgwardt et al. [2014] and does not exhibit the
exponential blowup of the reductions developed by Bobillo
et al. [2009; 2012]. Beyond the complexity results, an impor-
tant benefit of our approach is that it does not need the devel-
opment of a specialized fuzzy DL reasoner, but can use any
state-of-the-art reasoner for classical ALCQ without modifi-
cations. For that reason, this new reduction aids to shorten
the gap between efficient classical and fuzzy DL reasoners.

In future work, we want to extend this result to full con-
sistency, possibly using the notion of a pre-completion as in-
troduced in [Borgwardt et al., 2014]. Our ultimate goal is
to provide methods for reasoning efficiently in infinitely val-
ued Gödel extensions of the very expressive DL SROIQ,
underlying OWL 2 DL. We believe that it is possible to treat
transitive roles, inverse roles, role hierarchies, and nominals
using the extensions of the automata-based approach devel-
oped originally for finitely valued FDLs in [Borgwardt and
Peñaloza, 2013; 2014; Borgwardt, 2014].

As done previously in [Bobillo et al., 2012], we can also
combine our reduction with the one for infinitely-valued
Zadeh semantics. Although Zadeh semantics is not based on
t-norms, it nevertheless is important to handle it correctly, as
it is one of the most widely used semantics for fuzzy appli-
cations. It also has some properties that make it closer to the
classical semantics, and hence become a natural choice for
simple applications.

A different direction for future research would be to in-
tegrate our reduction directly into a classical tableaux rea-
soner. Observe that the definition of red(C) is already
very close to the rules employed in (classical and fuzzy)
tableaux algorithms (see, e.g. [Baader and Sattler, 2001;
Bobillo and Straccia, 2009]). However, the tableaux proce-
dure would need to deal with total preorders in each node,
possibly using an external solver.
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