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Abstract

Ontology-based query answering augments classical query answering in databases by adopting the

open-world assumption and by including domain knowledge provided by an ontology. We investigate

temporal query answering w.r.t. ontologies formulated in DL-Lite, a family of description logics that

captures the conceptual features of relational databases and was tailored for efficient query answering.

We consider a recently proposed temporal query language that combines conjunctive queries with

the operators of propositional linear temporal logic (LTL). In particular, we consider negation in the

ontology and query language, and study both data and combined complexity of query entailment.

1 Introduction

Ontologies play a central role in various applications: by linking data from heterogeneous
sources to the concepts and relations described in an ontology, the integration and automated
processing of the data can be considerably enhanced. In particular, queries formulated in
the abstract vocabulary of the ontology can then be answered over all the linked datasets.
Well-known medical domain ontologies like GALEN1 may, for example, capture the facts that
the varicella zoster virus (VZV) is a virus, that chickenpox is a VZV infection, and that
a negative allergy test implies that no allergies are present, by so-called concept inclusions:
VZV v Virus,Chickenpox v VZVInfection,NegAllergyTest v ¬∃AllergyTo. Here, Virus is a concept
name that represents the set of all viruses, and AllergyTo is a role name, i.e., a binary relation,
which connects patients to allergies; ∃AllergyTo refers to the domain of this relation. A possible
data source storing patient data (e.g., allergy test results and findings) could look as follows:

PID Name

1 Ann
2 Bob
3 Chris

PID AllergyTest Date

1 neg 16.01.2011
2 pos 06.01.1970
3 neg 01.06.2015

PID Finding Date

1 Chickenpox 13.08.2007
2 VZV-Infection 22.01.2010
3 VZV-Infection 01.11.2011

The data is then connected to the ontology by mappings [35], which in our example may link
the tuple (1,Chickenpox, 16.01.2011) to the facts HasFinding(1, x) and Chickenpox(x).

Ontology-based query answering (OBQA) over the above knowledge can then, for example,
assist in finding appropriate participants for a clinical study, by formulating the eligibility
criteria as queries over the—usually linked and heterogeneous—patient data. The following are
examples of in- and exclusion conditions for a recently proposed clinical trial:2

• The patient should have been previously infected with VZV or previously vaccinated with
VZV vaccine.

• The patient should not be allergic to VZV vaccine.

∗Partially supported by the DFG in CRC 912 (HAEC).
1http://www.co-ode.org/ontologies/galen
2https://clinicaltrials.gov/ct2/show/NCT01953900
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Considering the first condition, OBQA would augment standard query answering (e.g., in SQL)
w.r.t. the above ontology and data in that not only Bob and Chris but also Ann would be
considered as an appropriate candidate. However, in standard OBQA, the queries neither allow
for negation nor can refer to several points in time, both of which would be needed to faithfully
represent the data and the stated example criteria. For this reason, we study temporal OBQA
and allow negation in our query language.

In particular, we focus on temporal conjunctive queries (TCQs), which were originally
proposed by [9,11]. TCQs allow to combine conjunctive queries (CQs) via the Boolean operators
and the temporal operators of propositional linear temporal logic LTL [34]. For example, the
above criteria can be specified with the following TCQ φ(x), to obtain all eligible patients x:(

3−
(
∃y.HasFinding(x, y) ∧ VZVInfection(y)

)
∨3−

(
∃y.VaccinatedWith(x, y) ∧ VZVVaccine(y)

))
∧ ¬
(
∃y.AllergyTo(x, y) ∧ VZVVaccine(y)

)
We here use the temporal operator ‘some time in the past’ (3−) and consider the symbols
AllergyTo and VZVVaccine to be rigid, which means that their interpretation does not change
over time; e.g., we thus assume someone having an allergy to VZV vaccine to have this allergy
for his whole life. TCQs are interpreted under the standard certain answer semantics, as opposed
to the epistemic semantics for embedding CQs into a temporal language considered in [29,30],
for example.

The semantics of TCQs is based on temporal knowledge bases (TKBs), which, in addition to
the domain ontology (which is assumed to hold globally, i.e., at every point in time), contain
finite sequences of fact bases. These fact bases represent the data associated to specific points
in time—from the past until the current time point n (‘now’). The problem we focus on is the
evaluation of a TCQ w.r.t. such a temporal knowledge base, at the current time point.

In our setting, the information within the ontology and the fact bases does not explicitly
refer to the temporal dimension, but is written in a classical (atemporal) description logic
(DL); only the query is temporalized. In contrast, so-called temporal DLs [3, 5, 7, 8, 27,28,32]
extend classical DLs by temporal operators, which then occur within the ontology. However, as
it is shown in [7, 8, 27, 32], most of these logics yield high reasoning complexities, even if the
underlying atemporal DL allows for tractable reasoning. For that reason, lower complexities are
only obtained by either considerably restricting the set of temporal operators or the DL.

A less expressive variant of TCQs called ALC-LTL, which combines ALC axioms via LTL
operators, has been introduced in [12]. In [11], the problem of answering TCQs over ontologies in
the rather expressive DLsALC and SHQ has been investigated (albeit without allowing transitive
roles in the queries). However, reasoning in these DLs is not tractable anymore, and applications
often need to process large quantities of data fast. Several lightweight logics, including DL-Lite,
have been considered in [14], but without negation in the TCQs; in contrast, we allow negation
to occur in the queries as well as in the ontology language (DL-Litekrom/DL-Litebool). [7] also
consider temporal variants of DL-Lite, but use less expressive formulas, similar to those of
ALC-LTL. In [16], TCQs are studied in the context of the lightweight DL EL, but it is shown
that reasoning is quite hard if rigid symbols are considered. This motivates our study of TCQs
in DLs of the DL-Lite family, which was tailored for (atemporal) query answering and allows for
very efficient reasoning [20, 26]. Of particular interest in this setting is the question if temporal
queries can be rewritten into first-order queries over a database, which can be expressed (e.g., as
SQL queries) and executed using standard database systems; as it is possible in the atemporal
case.

In this paper, we investigate the complexity of the TCQ entailment problem over temporal
knowledge bases in several members of the extended DL-Lite family. In order of expressiv-
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Table 1: Our results on the complexity of TCQ entailment compared to related work. All
complexities except those marked with ≤ are tight.

Data Complexity Combined Complexity
(i) (ii) (iii) (i) (ii) (iii)

DL-Lite
[ |H]
[core|horn]

ALogTime ALogTime ALogTime PSpace PSpace PSpace
LB: 3.6 UB: 3.8 LB: [37] UB: 3.5

EL [16] P co-NP co-NP PSpace PSpace co-NExpTime
ALC-SHQ [11] co-NP co-NP ≤ExpTime ExpTime co-NExpTime 2-ExpTime

DL-Lite[krom|bool]
co-NP co-NP ≤ExpTime ExpTime co-NExpTime 2-ExpTime
LB: [21] LB: 4.3, UB: 4.6 LB: 4.4, UB: 4.6 LB: 4.4

DL-LiteH[krom|bool]
co-NP co-NP ≤ExpTime 2-ExpTime 2-ExpTime 2-ExpTime

UB: 4.5 UB: 4.5 LB: 4.3 UB: [10]

ity, we look at DL-Litecore/DL-Litehorn, their variants allowing role inclusions (H), and their
counterparts DL-Litekrom/DL-Litebool featuring disjunctions on the right-hand side of concept
inclusions [4, 20]. In the latter, one can define negated concepts ¬A via the axioms A u ¬A v ⊥
and > v A t ¬A (see also Lemma 4.1). We regard both combined and data complexity and,
as usual, distinguish three different settings regarding the rigid symbols:3 (i) no symbols are
allowed to be rigid, (ii) only rigid concept names are allowed, and (iii) both concepts and roles
can be rigid.

Table 1 summarizes our results and shows that they are ambivalent. On the one hand, for
expressive members of the extended DL-Lite family, we obtain at least the same complexities as
for SHQ. For logics below DL-LiteHhorn, however, we have results that are considerably better
than those for EL; above all, rigid roles can often be added without affecting the complexity.
Unfortunately, our ALogTime lower bound for the data complexity of TCQ entailment in
DL-Litecore shows that it is not possible to find a (pure) first-order rewriting of TCQs, in this
setting; to see this, note that the graph of the parity function is in ALogTime and parity is not
first-order definable [2]. However, within the class ALogTime, it may still be possible to find a
practical Datalog rewriting [23], or apply the so-called combined approach [31]. The PSpace
and co-NP lower bounds directly follow from the complexity of satisfiability in propositional
LTL [37] and CQ entailment in DL-Litekrom [21], respectively. Full proofs of all results can be
found in the accompanying technical report [15].

2 Preliminaries

We first introduce the ontology languages and queries we consider.

2.1 DL-Lite Description Logics

The various description logics of the extended DL-Lite family augment the base formalism
DL-Litecore by allowing for different kinds of axioms. We focus on several of the logics presented
in [4], but do not consider number restrictions.

Definition 2.1 (Syntax of DL-Lite Logics). Let NC, NR, and NI, be non-empty, pairwise disjoint
sets of concept names, role names, and individual names, respectively. The set N−R of all roles

3Note that rigid concepts can be simulated by rigid roles [12], even in DL-Litecore.
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extends NR by inverse roles of the form P− with P ∈ NR. A basic concept is either a concept
name or an existential restriction of the form ∃R, where R is a role. An axiom is a concept
inclusion (CI) of the form B1 u . . . u Bm v Bm+1 t . . . t Bm+n (∗), where B1, . . . , Bm+n are
basic concepts; a role inclusion (RI) of the form R1 v R2, where R1, R2 ∈ N−R ; or an assertion
of the form B(a) or P (a, b), where B is a basic concept, P ∈ NR, and a, b ∈ NI.

For c ∈ {core, horn, krom, bool}, we denote by DL-Litec the logic that allows assertions and
concept inclusions (∗) satisfying the following conditions: if c = bool, then m,n are arbitrary; if
c = krom, then m+ n ≤ 2; if c = horn, then n ≤ 1; and if c = core, then m+ n ≤ 2 and n ≤ 1.
If role inclusions are allowed in addition, this is indicated by a superscript H, and we obtain the
four DLs denoted by DL-LiteHc . Regarding a specific DL L, an (L-)ontology is a finite set of
concept and (if allowed in L) role inclusions; and an ABox is a finite set of assertions. Together,
an (L-)ontology O and an ABox A form an (L-)knowledge base (KB) K = 〈O,A〉.

In our constructions, we sometimes also consider negated assertions of the form ¬B(a) or
¬P (a, b). As usual, the empty conjunction (u) is denoted by > and the empty disjunction (t)
by ⊥. We further use the abbreviations P−(a, b) := P (b, a) and (P−)− := P , for P ∈ NR and
a, b ∈ NI. We denote by NC(O) (N−R (O)) the set of concept names (roles) that occur in the
ontology O, and use the notation BC(O) for the set of all basic concepts that can be built from
NC(O) and N−R (O). The set BC¬(O) contains all elements B of BC(O) and their negations ¬B.

Definition 2.2 (Semantics of DL-Lite Logics). An interpretation I = (∆I , ·I) consists of a non-
empty set ∆I (called domain), and an interpretation function ·I that assigns to every A ∈ NC a
set AI ⊆ ∆I , to every P ∈ NR a binary relation P I ⊆ ∆I ×∆I , and to every a ∈ NI an element
aI ∈ ∆I , such that aI 6= bI for all a, b ∈ NI with a 6= b (unique name assumption (UNA)). We
further define (P−)I := {(y, x) | (x, y) ∈ P I} and (∃R)I := {x | ∃ y ∈ ∆I : (x, y) ∈ RI}. The
interpretation I satisfies (or is a model of)

• a CI B1 u . . . uBm v Bm+1 t . . . tBm+n if BI1 ∩ . . . ∩BIm ⊆ BIm+1 ∪ . . . ∪BIm+n;

• an RI R1 v R2 if RI1 ⊆ RI2 ;

• a (negated) assertion (¬)B(a) if aI ∈ BI (aI 6∈ BI);

• a (negated) assertion (¬)P (a, b) if (aI , bI) ∈ P I ((aI , bI) /∈ P I);

• a knowledge base if it satisfies all axioms contained in it.

We denote this by I |= α, where α is either an axiom or a KB. A KB K is consistent if it has a
model, and K entails an axiom α (written K |= α) if all models of K satisfy α.

2.2 Temporal Conjunctive Queries

The temporal query language we focus on has originally been proposed in [9] for querying
knowledge bases in ALC. The queries are propositional LTL formulas in which the propositions
have been replaced by CQs. They are answered over temporal KBs, according to a semantics
that is suitably lifted from propositional worlds to interpretations.

As it is common [11,12], we assume that a subset of the concept and role names is designated
as being rigid, which means that their interpretation is not allowed to change over time. The
individual names are implicitly assumed to be rigid. We denote by NRC ⊆ NC the rigid concept
names, and by NRR ⊆ NR the rigid role names. Names that are not rigid are called flexible. We
denote by BCR(O) the restriction of BC(O) to basic concepts involving only rigid names, and
similarly use BC¬R(O).
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Definition 2.3 (Temporal Knowledge Base). An ontology O and a finite sequence of ABoxes
Ai, 0 ≤ i ≤ n, form a temporal knowledge base (TKB) K = 〈O, (Ai)0≤i≤n〉. Let I = (Ii)i≥0 be
an infinite sequence of interpretations Ii = (∆, ·Ii) over a fixed domain ∆ (constant domain
assumption). I is a model of K (written I |= K) if

• for all i ≥ 0, we have Ii |= O;

• for all i, 0 ≤ i ≤ n, we have Ii |= Ai; and

• I respects rigid names; i.e., sIi = sIj for all symbols s ∈ NI ∪ NRC ∪ NRR and i, j ≥ 0.

We use the notation NI(K) for the set of all individual names occurring in the TKB K.

Definition 2.4 (Syntax of TCQs). Let NV be a set of variables. A conjunctive query (CQ) is of
the form φ = ∃x1, . . . , xm.ψ, where x1, . . . , xm ∈ NV and ψ is a finite conjunction of atoms of the
form A(t) ( concept atom) or P (t, t′) ( role atom), for A ∈ NC, P ∈ NR and t, t′ ∈ NI ∪NV. The
empty conjunction is denoted by true, and we write α ∈ φ if the atom α occurs in φ. Temporal
conjunctive queries (TCQs) are defined inductively, given a CQ ψ and TCQs φ1 and φ2:

φ := ψ | ¬φ1 (negation) | φ1 ∧ φ2 (conjunction) |
# φ1 (next) | #−φ1 (previous) | φ1 Uφ2 (until) | φ1 Sφ2 (since).

We denote the set of individual names occurring in a TCQ φ by NI(φ), the set of variables
occurring in φ by NV(φ), and the set of free variables of φ by NFV(φ). A TCQ φ with NFV(φ) = ∅
is a Boolean TCQ. As usual, we use the following abbreviations: false for ¬true, φ1 ∨ φ2
(disjunction) for ¬(¬φ1 ∧ φ2), 3φ1 (eventually) for trueUφ1, 2φ1 (always) for ¬3¬φ1, and
analogously for the past: 3−φ1 for true Sφ1, and 2−φ1 for ¬3−¬φ1. A CQ-literal is either a
CQ or a negated CQ, and a union of CQs (UCQ) is a disjunction of CQs.

The semantics of Boolean CQs and TCQs is the standard one [1, 11].

Definition 2.5 (Semantics of TCQs). Let I = (∆I , ·I) be an interpretation and ψ be a Boolean
CQ. A mapping π : NV(ψ)∪NI(ψ)→ ∆I is a homomorphism of ψ into I if it satisfies π(a) = aI ,
for all a ∈ NI(ψ); π(t) ∈ AI , for all A(t) ∈ ψ; and (π(t), π(t′)) ∈ P I , for all P (t, t′) ∈ ψ. We
say that I is a model of ψ (written I |= ψ) if there is such a homomorphism.

Let now φ be a Boolean TCQ and I = (Ii)i≥0 be an infinite sequence of interpretations. We
define the satisfaction relation I, i |= φ, where i ≥ 0, by induction on the structure of φ:

I, i |= ψ iff Ii |= ψ (if ψ is a CQ)
I, i |= ¬φ1 iff I, i 6|= φ1
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= #φ1 iff I, i+ 1 |= φ1
I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1
I, i |= φ1 Uφ2 iff there is k ≥ i with I, k |= φ2 and I, j |= φ1, for all j, i ≤ j < k
I, i |= φ1 Sφ2 iff there is k, 0 ≤ k ≤ i, with I, k |= φ2 and I, j |= φ1, for all j, k < j ≤ i

Given a TKB K = 〈O, (Ai)0≤i≤n〉, I is a model of φ w.r.t. K if I |= K and I, n |= φ; and φ is
satisfiable w.r.t. K if it has a model w.r.t. K. Furthermore, φ is entailed by K (written K |= φ)
if every model of K is also a model of φ.

Especially note that models of TCQs satisfy them at the current time point n. We often
consider conjunctions of CQ-literals φ that contain no temporal operators. Then, the satisfaction
of φ by an infinite sequence of interpretations I = (Ii)i≥0 at time point i only depends on Ii.
For simplicity, we then may write Ii |= φ instead of I, i |= φ, and use this notation also for
UCQs. In this context, it is sufficient to deal with classical knowledge bases K = 〈O,A〉, which
can be seen as TKBs with only one ABox. We now define the semantics of non-Boolean TCQs.
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Definition 2.6 (Certain Answer). Let φ be a TCQ and K = 〈O, (Ai)0≤i≤n〉, be a TKB. The
mapping a : NFV(φ)→ NI(K) is a certain answer to φ w.r.t. K if K |= a(φ), where a(φ) denotes
the Boolean TCQ that is obtained from φ by replacing the free variables according to a.

As usual, the question of finding all certain answers to a TCQ can be reduced to the
entailment problem for Boolean TCQs. The latter, being a decision problem, can be studied
from the point of view of computational complexity theory. We determine the complexity of
entailment via the satisfiability problem, which has the same complexity as the complement
of the entailment problem [11]. We consider two kinds of complexity measures: combined and
data complexity. For combined complexity, all parts of the input, meaning the TCQ and the
entire TKB, are taken into account. In contrast, for data complexity, the TCQ and the global
ontology are assumed to be constant, such that the complexity is measured only w.r.t. the data,
the sequence of ABoxes. As described in the introduction, we further distinguish the three
cases where (i) no rigid names are available (NRC = NRR = ∅); (ii) only rigid concept names are
allowed (NRR = ∅, but NRC 6= ∅); and (iii) also rigid role names can be used (NRR 6= ∅).

2.3 On Upper Bounds

In this section, we recall a general approach to solve the TCQ satisfiability problem [11, 12],
which we apply in this paper. In the following, let K = 〈O, (Ai)0≤i≤n〉 be a TKB and φ be a
Boolean TCQ. For ease of presentation, we assume w.l.o.g. that all concept and role names
occurring in (Ai)0≤i≤n or φ also occur in O, and that the individual names in φ also occur
in (Ai)0≤i≤n. These assumptions do not affect the complexity results.

The main idea is to consider two separate satisfiability problems—one in LTL and the
other in DL-Lite—that together imply satisfiability of φ w.r.t. K. The LTL part analyzes
the propositional abstraction φp of φ, which contains the propositional variables p1, . . . , pm in
place of the CQs α1, . . . , αm from φ (where each αi was replaced by pi). The formula φp is a
propositional LTL-formula [34]. The semantics of propositional LTL is defined analogously to
Definition 2.5, based on LTL-structures J = (wi)i≥0, which consist of worlds wi ⊆ {p1, . . . , pm}
that describe which propositional variables are true at a given time point i ≥ 0.

We additionally consider a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm}, which restricts the worlds
that are allowed to occur in an LTL-structure satisfying φp at time point n, and a mapping
ι : {0, . . . , n} → {1, . . . , k}, which assigns a world Xι(i) to each of the input ABoxes Ai.

Definition 2.7 (t-satisfiability). The LTL-formula φp is t-satisfiable w.r.t. S and ι if there is
an LTL-structure J = (wi)i≥0 such that J, n |= φp, wi ∈ S for all i ≥ 0, and wi = Xι(i) for all i,
0 ≤ i ≤ n.

However, finding S and ι and then testing t-satisfiability is not sufficient. We must also
ensure that S can indeed be induced by a model of K, in the following sense.

Definition 2.8 (r-satisfiability). The set S is r-satisfiable w.r.t. ι and K if there are interpreta-
tions J1, . . . ,Jk, I0, . . . , In, which share the same domain, respect rigid names,4 and are models
of O; additionally, each Ji, 1 ≤ i ≤ k, is a model of χi :=

∧
pj∈Xi αj ∧

∧
pj∈Xi ¬αj (where

Xi := {p1, . . . , pm} \Xi), and each Ii, 0 ≤ i ≤ n, is a model of Ai and χι(i).

The following was shown in [11] for SHQ, and the proof remains valid in our setting.

Lemma 2.9. φ is satisfiable w.r.t. K iff there are S and ι as above such that S is r-satisfiable
w.r.t. ι and K, and φp is t-satisfiable w.r.t. S and ι.

4This is defined as for infinite sequences of interpretations (see Definition 2.3).
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3 Temporal Query Entailment in DL-LiteHhorn

For DLs below DL-LiteHhorn, we first show that we can separate the r-satisfiability condition
into independent tests (i.e., tests for each time point), similar to a construction in [16]. For
simplicity, we restrict the presentation here to the case that all queries are r-simple, i.e., they
do not contain role atoms R(t, t′) for which there are a flexible role S and a rigid role S′ (or
their inverses) such that O |= S v S′ v R. In the technical report, we describe an intricate
construction that also covers the case when queries may not be r-simple [15]. Note that without
role inclusions or rigid roles all queries are r-simple.

3.1 Characterizing r-satisfiability

We first introduce the auxiliary notions of consequences and witness queries w.r.t. an ontology O.

Definition 3.1 (Consequences). For a CQ α, let α′ denote the CQ obtained by instantiating
all variables x in α with fresh individual names ax. The set of consequences of α is defined as

CO(α) := {C(a) | C ∈ BC¬R(O), a ∈ NI(α
′), O |=

l
BC−(a, α′) v C} ∪

{R(a, b) | R ∈ N−RR(O), S(a, b) ∈ α′, O |= S v R},

where BC−(a, α′) := {A ∈ NC | A(a) ∈ α′} ∪ {∃R | R ∈ N−R , R(a, b) ∈ α′}.

We collect all the new individual names ax in the set Naux
I . Intuitively, the consequences of α

describe those structures that, if α is satisfied at one time point, have to exist at all other time
points, because of the rigid names.

Second, we consider so-called witness queries for a CQ α (w.r.t. O), which are CQs using
only rigid names and whose satisfaction implies the satisfaction of α. Hence, if such a witness
query is satisfied at some time point, α must be satisfied at every time point. Due to space
constraints, we cannot include the full definition of witness queries here, but only state an
important lemma (see [15] for details).

Lemma 3.2. Let ψ be a witness query for a CQ α and I |= O. Then, I |= ψ implies I |= α.

Let now φ be an r-simple Boolean TCQ and K = 〈O, (Ai)0≤i≤n〉 be a DL-LiteHhorn-TKB. We
further assume that S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and ι : {0, . . . , n} → {1, . . . , k} are given.
We later describe how to actually obtain S and ι to show the claimed upper bounds. We denote
by Qφ the set of CQs occurring in φ, and assume w.l.o.g. that they use disjoint variables. We
denote by Qi the set {αj | pj ∈ Xi}, and by AQi the ABox obtained from Qi by instantiating
all variables x in CQs α ∈ Qi with the corresponding individual names ax from Naux

I . For ease of
presentation, for all i, 1 ≤ i ≤ k, we define the set An+i = ∅ and extend ι such that ι(n+ i) := i.

We now formalize the additional information we guess, in order to be able to split the
r-satisfiability test.

Definition 3.3 (r-complete). An ABox type is a set AR of rigid (negated) assertions (¬)α over
NI(K), B ∈ BCR(O), and R ∈ N−RR(O), such that α ∈ AR iff ¬α /∈ AR. For a triple (AR, QR, Q

¬
R),

where AR is an ABox type, and QR, Q
¬
R ⊆ Qφ, we define KiR := 〈O,AR ∪ AQR

∪ AQι(i) ∪ Ai〉,
where AQR

:=
⋃
α∈QR

CO(α). We call this triple r-complete (w.r.t. S and ι) if the following hold:

(R1) For all i ∈ {0, . . . , n+ k}, KiR is consistent.

(R2) For all i ∈ {0, . . . , n+ k} and pj ∈ Xι(i), we have KiR 6|= αj.
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(R3) If there is an X ∈ S such that pj ∈ X, then αj ∈ QR.

(R4) If there is an X ∈ S such that pj ∈ X, then αj ∈ Q¬R .

(R5) For all i ∈ {0, . . . , n+ k}, all CQs α ∈ Q¬R , and all witnesses queries ψ of α w.r.t. O, we
have KiR 6|= ψ.

The idea thus is to fix the interpretation of the rigid names on all named individuals (AR)
and to specify the CQs that have to be satisfied at least once (QR), and those that are allowed to
occur negatively (Q¬R). Condition (R1) ensures that each KiR has a model, and, in particular, the
canonical model [17]. Because of the ABox AQι(i) , this implies that the CQs αj with pj ∈ Xι(i)

are satisfied. Condition (R2) implies the dual fact, that the CQs αj with pj ∈ Xι(i) are not
satisfied by the canonical model of KiR; hence, this model satisfies all conjuncts of χι(i) (see
Definition 2.8). With (R3) and the ABox AQR

, we ensure that the rigid structures CO(αj)
implied by the satisfaction of some αj are present at every time point. Conversely, by (R4)
and (R5), for each αj occurring negatively at some time point, there cannot be a witness
query ψ of αj that is satisfied at any other time point, since this would yield a contradiction, by
Lemma 3.2. We can show that the r-satisfiability of S is characterized by the existence of such
an r-complete tuple.

Lemma 3.4. S is r-satisfiable w.r.t. ι and O iff there is an r-complete tuple w.r.t. S and ι.

3.2 Combined Complexity

From the above characterization, we obtain a PSpace decision procedure by adapting the Turing
machine (TM) for LTL satisfiability from [37]. This TM successively guesses propositional
worlds and checks whether they can be used to construct an LTL-structure that satisfies φp. The
key insight of the previous section is that this TM does not need to store the exponentially large
set S in order to check the conditions of Definition 3.3. Our adapted TM simply guesses a tuple
(AR, QR, Q

¬
R) as described above and then proceeds as before, but, for each guessed world X, it

additionally checks whether KR := 〈O,AR ∪AQR
∪AQX ∪Ai〉 satisfies the conditions (R1)–(R5).

Here, Ai is only relevant for the first n + 1 time points, after which it is empty; and AQX is
the ABox obtained by instantiating all CQs αj with pj ∈ X. The KB KR, particularly AQR

, is
of polynomial size and can be constructed with the help of polynomially many P-tests for the
entailment of certain assertions [4] (see Definition 3.1). The consistency test for (R1) can also
be done in polynomial time [4]. Moreover, the non-entailment tests in (R2) and (R5) can be
done in co-NP (and thus also in PSpace) using the non-deterministic version of the algorithm
in [17]. Although there may be exponentially many witness queries, we can enumerate all of
them within PSpace. Finally, the conditions (R3) and (R4) can be verified easily.

The set S required for Lemma 2.9 can then be defined as the set of all worlds X encountered
during a run of this Turing machine, while ι is obtained by collecting the worlds guessed for the
first n+ 1 time points. Given these definitions of S and ι, it is easy to see that the above checks
are actually equivalent to (R1)–(R5) from Definition 3.3. By Lemmas 2.9 and 3.4, the described
Turing machine accepts the input K and φ iff φ has a model w.r.t. K. Since we do not have to
store S explicitly and all checks can be done with a nondeterministic TM using only polynomial
space, according to [36], TCQ entailment can be decided in PSpace. We show this result in
more detail in [15], even for TCQs that are not r-simple. The corresponding lower bound follows
from the satisfiability problem for propositional LTL [37].

Theorem 3.5. TCQ entailment in DL-LiteHhorn is in PSpace w.r.t. combined complexity.
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3.3 Data Complexity

Regarding data complexity, we first prove that TCQ entailment is not FO-rewritable, not even
for DL-Litecore, by adapting a proof from [5,6].

Theorem 3.6. TCQ entailment in DL-Litecore is ALogTime-hard w.r.t. data complexity, even
if NRC = ∅ and NRR = ∅.

Proof. There are regular languages that are hard for DLogTime-uniform NC1 (under constant-
depth reductions) [13, Theorem 7], which is equal to ALogTime [33, Lemma 7.2]. Furthermore,
for any regular language, there is an NFA recognizing it. We hence can establish ALogTime-
hardness by considering an arbitrary NFA A and reducing its word problem to TCQ entailment.
We consider concept names Aa and Qq for characters a of the input alphabet and states q,
respectively, and define the TCQ

φ := 2−
( ∧
q→aq′

(
Qq(a) ∧Aa(a)

)
→ #Qq′(a)

)
→ Qq1(a),

where q1 is the accepting state of A. Given an input word w = a0 . . . an−1, we define the
sequence of ABoxes Aw = (Ai)0≤i<n such that A0 := {Qq0(a)} and Ai := {Aai(a)}, for all
0 ≤ i < n, with q0 being the initial state of A. Thus, A accepts w iff all models of 〈∅,Aw〉 that
satisfy the antecedent of φ (which means that they simulate all runs of A on w), also satisfy the
consequent Qq1(a), which is equivalent to the entailment 〈∅,Aw〉 |= φ.

We now apply the approach of Lemma 3.4 to show a matching ALogTime upper bound.
All details of the construction, which again works also for TCQs that are not r-simple, can be
found in [15]. Note that we cannot guess the whole tuple (AR, QR, Q

¬
R) in ALogTime. Instead,

we show that we only have to consider a single tuple that is uniquely determined by the choice
of S. Since S is constant under data complexity assumptions (it depends only on φ), we can
enumerate all possible sets S and all its elements X. We then provide a first-order rewriting
rsatS,X(i) of the conditions in Definition 3.3 as follows.

Lemma 3.7. There is an r-complete tuple w.r.t. S and ι iff DB |= rsatS,X(−1), and, for all i,
0 ≤ i ≤ n, we have DB |= rsatS,Xι(i)(i).

Here, DB is the interpretation obtained from viewing the input ABoxes (Ai)0≤i≤n under the
closed-world assumption, i.e., it makes exactly the assertions in Ai true and all others false.
The value −1 refers to a special ABox “A−1” (which is empty) to model the satisfiability tests
for χi without any ABox (see Definition 2.8).

In order to find ι and check t-satisfiability, we then define an alternating TM for the TCQ
satisfiability problem. An important step is to decouple the satisfaction of the future and past
operators in φp according to the separation theorem of [24]. Everything that concerns only the
future does not depend on the ABoxes, and hence can be checked in constant time. It then
only remains to check the satisfaction of those parts of φp that refer to the past, over the input
ABoxes A0, . . . ,An. For this purpose, we proceed as for the PSpace TM above, but, instead
of guessing the worlds X one after the other and in a linear fashion, we follow the approach
sketched in Figure 1 and build a computation tree of depth log(n+ 1), where each branching
represents a universal state. Each copy of the TM is responsible for checking the existence of an
LTL-structure on the subsequence of 0, . . . , n represented by the current subtree; e.g., after the
first branching there are two copies of the TM, responsible for the time points 0, . . . , n+1

2 , and
n+1
2 + 1, . . . , n, respectively. Before a branching, the current copy of the TM guesses two worlds
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...

A0 A1

...
...

...
...

...
...

...

An−1 An

log(n+ 1)

...

2

1

0

· · ·

Figure 1: The computation tree of the ALogTime Turing machine for Theorem 3.8

Table 2: The rules of our transformation

CI TCQ

A1 v ∀R.A2 ¬∃x, y.A1(x) ∧R(x, y) ∧A2(y)
A1 u · · · uAm v Am+1 t · · · tAm+n ¬∃x.A1(x) ∧ · · · ∧Am(x) ∧Am+1(x) ∧ · · · ∧Am+n(x)

Xι(i) and Xι(i+1), for the adjacent time points i and i+1 between which the next split will occur;
it then checks a local condition ensuring that one can build an LTL-structure satisfying φp from
them. Subsequently, Xι(i) is given to the “left” copy of the TM, and the “right” copy receives
Xι(i+1). In this way, each copy knows the two worlds belonging to the left-most and right-most
time point it is responsible for. In the end, the copy for time point i knows Xι(i), and checks the

condition DB |= rsatS,Xι(i)(i), for Lemma 3.7. This can be done in DLogTime-uniform AC0 [1],
which is a subclass of ALogTime. The remaining conditions DB |= rsatS,X(−1) can be checked
in constant time since they do not depend on the ABoxes. In this way, each of the parallel
computations of our TM only uses time logarithmic in the size of the input ABoxes. The result
now follows from the fact that ALogTime is closed under complement [22].

Theorem 3.8. TCQ entailment in DL-LiteHhorn is in ALogTime w.r.t. data complexity.

4 Beyond DL-LiteHhorn
For the krom and bool variants of DL-Lite, we first observe that we do not need to distinguish
between them since all CIs of DL-Litebool can be simulated by appropriate (negated) CQs. We
can even simulate qualified existential restrictions on the left-hand side of CIs (or, equivalently,
value restrictions on the right-hand side). For this, we use fresh concept names Ai to denote the
complements of Ai ∈ NC, which can be expressed in DL-Litekrom as follows.

Lemma 4.1. Let (C v D,φ) be one of the pairs of a CI and a TCQ given in Table 2, and let
I be a model of > v Ai tAi and Ai uAi v ⊥, for all concept names Ai occurring in D. Then,
we have I |= C v D iff I |= φ.

We thus have 〈O, (Ai)0≤i≤n〉 |= φ iff 〈O′, (Ai)0≤i≤n〉 |= ((22−ψ)→ φ); where O′ is obtained
by removing all CIs of the forms listed in Table 2 from O and adding the necessary CIs to express

10



Temporal Query Answering in DL-Lite with Negation S. Borgwardt, V. Thost

the complements Ai; and ψ is the conjunction of the negated CQs simulating the removed CIs.
We will use this result to prove some of the lower bounds later on. An immediate consequence
is the following reduction.

Corollary 4.2. TCQ entailment in DL-Litebool can be polynomially reduced to TCQ entailment
in DL-Litekrom.

Hence, we can prove our lower bounds for DL-Litebool, and the upper bounds for DL-Litekrom.

4.1 What Makes it Hard

We directly obtain two rather strong lower bounds, even without considering rigid symbols, from
ExpTime-hardness of UCQ entailment in DL-Litebool [19, Corollary 2] and 2-ExpTime-hardness
of UCQ entailment in DL-LiteHbool [18, Theorem 12], by Corollary 4.2.

Theorem 4.3. Under combined complexity, TCQ entailment is ExpTime-hard in DL-Litekrom,
and 2-ExpTime-hard in DL-LiteHkrom, even if NRC = ∅ and NRR = ∅.

For DL-Litekrom—without role inclusions—, we show two other lower bounds, depending
on whether rigid role names are allowed next to rigid concept names. We show that these
bounds are the same as in ALC [11, 12]. We obtain them by modifying the hardness proofs
for the satisfiability problem in EL⊥-LTL with rigid concept names [16] (which, in turn, is an
adaptation of a proof in [12]) and in ALC-LTL with rigid role names [12]. The latter adaptation
involves many changes due to the fact that we cannot express qualified existential restrictions
on the right-hand side of DL-Litekrom-CIs. The needed value restrictions on the right-hand side
of CIs can be simulated using Lemma 4.1.

Theorem 4.4. Under combined complexity assumptions, TCQ entailment in DL-Litekrom is
co-NExpTime-hard if NRR = ∅, and 2-ExpTime-hard in general.

For data complexity, the lower bound of co-NP follows from co-NP-hardness of CQ
entailment in DL-Litekrom [20, Theorem 48].

4.2 Upper Bounds

The upper bounds regarding data complexity are obtained by the following reduction to TCQ
entailment in ALCH. Let φ be a TCQ and K a DL-LiteHbool-TKB. The idea is to view all inverse
roles R− as role names, and introduce the CI ∃R.(¬∃R−.>) v ⊥, for each R ∈ N−R (O); and
the RI R− v S− for each R v S ∈ O. We call the resulting ALCH-TKB K′. The TCQ φ′ is
obtained from φ by replacing each CQ ψ ∈ φ by the disjunction of all its variants, in which
some role atoms R(t, t′) may be replaced by R−(t′, t). We then have K′ |= φ′ iff K |= φ. Since
the ABoxes remain essentially unchanged, the following bounds follow from [11].

Theorem 4.5. Under data complexity assumptions, TCQ entailment in DL-LiteHbool is in co-NP
if NRR = ∅, and in ExpTime in general.

Note that, for ALCH, a tight upper bound for the case NRR 6= ∅ w.r.t. data complexity is
still open. Hence, we also have the same gap between co-NP and ExpTime here.

For combined complexity, the 2-ExpTime upper bound for TCQ entailment in SHIQ [10],
which includes DL-LiteHbool, is inherited. The two remaining upper bounds, without role inclusions,
can be shown as in [11], taking into account Corollary 4.2 and the fact that UCQ entailment for
frontier-one disjunctive inclusion dependencies, and hence in DL-Litekrom, can be decided in
ExpTime [18, Theorem 8].
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Theorem 4.6. Under combined complexity assumptions, TCQ entailment in DL-Litebool is in
ExpTime if NRC = ∅ and NRR = ∅, and in co-NExpTime if NRR = ∅.

Proof Sketch. Recall that we show the complementary results by regarding TCQ satisfiability.
Let K = 〈O, (Ai)0≤i≤n〉 be a TKB and φ be a Boolean TCQ. Observe first that in the absence
of rigid names the satisfiability tests of Definition 2.8 are largely independent of each other.
Hence, it suffices to define S as the set of all sets Xj for which χj is satisfiable w.r.t. O. As
in [11], these exponentially many satisfiability tests can be reduced to entailment tests for UCQs
of polynomial size, and hence we only have to consider exponentially many ExpTime-tests [18]
to construct S. We can further enumerate all possible mappings ι in exponential time and,
for each, check the consistency of the conjunction χι(i) ∧

∧
α∈Ai α in ExpTime, by the same

arguments. For each ι that passes these tests, the t-satisfiability can be checked in ExpTime,
by [11, Lemma 4.12]. According to Lemma 2.9, we can thus decide the satisfiability problem in
ExpTime, which implies the same complexity for the entailment problem.

For the case where we have rigid concept names, we can guess S and ι as required for
Lemma 2.9 in NExpTime, and the t-satisfiability can again be checked in exponential time.
We can further reduce the r-satisfiability problem as in [11, Lemma 6.2] to exponentially many
UCQ non-entailment problems (of polynomial size) with an additional side condition: Given
a set D ⊆ 2NRC(O), which may be of exponential size, we need the interpretations witnessing
these non-entailments to respect D; in the sense that every domain element satisfies exactly
the rigid concept names given by an element of D, and that, conversely, every element of D is
represented in this way by at least one domain element. This condition ensures that we can
later join the independent interpretations into a temporal model of the TCQ that respects the
rigid names. These non-entailment problems w.r.t. D can also be decided in ExpTime, by an
adaptation of the procedure in [18, Theorem 8], which yields a NExpTime upper bound for
TCQ satisfiability.

5 Summary and Outlook

We have analyzed the computational complexity of TCQ entailment in several members of
the extended DL-Lite family of Description Logics. As it can be seen in Table 1, many of
these fragments turned out to be very complex. Nevertheless, for several others, we obtained
encouraging results, which are even better than those for EL. Especially the data complexity of
ALogTime implies that it might be possible to solve the entailment problem by applying the
combined approach of [31] or by rewriting the TCQ into a Datalog query to be evaluated over a
database [23].

We further showed that the combined complexity of PSpace inherited from LTL does not
increase—even if rigid role names are considered. If we make the reasonable assumption that
all relevant information about these names (e.g., which patients have no allergy and thus do
not belong to the rigid concept ∃AllergyTo) is available before query answering, then we do not
need to guess the ABox type AR. It remains to be seen whether existing PSpace-algorithms for
LTL [25] can be efficiently combined with reasoning procedures for DL-Lite [31].

In future work, it would be worth to study other variants of DL-Lite [4] since it might be
possible to go beyond DL-LiteHhorn while keeping its complexity. We could also combine our
approach with other temporal query formalisms based on DL-Lite [5–7], and investigate how
to transfer and combine existing constructions and results. On the practical side, it would be
interesting to see how TCQs perform in applications; some prototype implementations have
already been described [38].
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