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Abstract. Within formal concept analysis, attribute exploration is a
powerful tool to semi-automatically check data for completeness with re-
spect to a given domain. However, the classical formulation of attribute
exploration does not take into account possible errors which are present
in the initial data. To remedy this, we present in this work a generalization
of attribute exploration based on the notion of confidence, that will allow
for the exploration of implications which are not necessarily valid in the
initial data, but instead enjoy a minimal confidence therein.

1 Introduction

Attribute exploration is one of the most important algorithms in the area of formal
concept analysis [9], a branch of mathematical order theory with applications in
artificial intelligence, machine learning and data mining. The main purpose of
this algorithm is to check a given set of initial data for completeness, in the sense
that this algorithm assists a domain expert in checking whether this initial data
completely represents the particular domain the expert is interested in. In doing
so, the algorithm presents implications to the expert, who has to either validate
them or has to provide a counterexample from the domain of discourse. When
the algorithm has finished, the initial data has been extended to a complete set of
examples whose valid implications are exactly all implications valid in the domain.

However, this approach requires the initial data to be free of errors in the sense
that all the data really stems from the domain. In practical applications, thismay not
be reasonable to assume, as it may likewise not be reasonable to check the data for
correctness. However, the data itself may still be of “high quality” and could thus still
be useful, yet only directly applying attribute exploration is not possible anymore.

One way to consider a data set to be of “high quality” is to say that errors occur
only “rarely.” To handle a scenario like this, an approach is proposed that is based
on the notion of confidence from data mining [1]. The idea of this approach is not
only to explore the implications which are valid in the initial data set, but also
to explore those that satisfy a certain lower bound on their confidence. Of course,
this will only provide us with a heuristic algorithm, but in a setting like this, where
errors can occur randomly, this is the best we can expect to get. Moreover, an
exploration by confidence has to be thought of as a first step in a completion process,
where the resulting set of implications and set of data should be used further on. As
an example, the implications obtained from the exploration by confidence could be



used as a background knowledge for a classical attribute exploration which starts
out with an empty data set.

Of course, this work is not the first to consider implications together with
their confidence. The most notable previous work here is from Luxenburger [10],
who considered implications together with their confidence and support in formal
contexts. However, while he also considered bases of implications with confidence
and support, he did not consider an attribute exploration of them.

On the other hand, there has also been previous research on making attribute
exploration more suitable for practical applications. Notable works here are ex-
ploration with incomplete knowledge by Burmeister and Holzer [5], and attribute
exploration with background implications and exceptions by Stumme [11]. The for-
mer extends attribute exploration to the setting of incomplete data, i.e., where the
data-set in question may have unspecified entries. However, those entries specified
must still be correct. The latter work allows exceptions in the exploration, by simply
removing unwanted corner cases from the domain of discourse. But again, the data
that is used for exploration must be free of errors. In this sense, the problem we want
to consider in this paper, an exploration of data that may contain errors, is funda-
mentally different from previously considered extensions of attribute exploration.

Themain contribution of this work is an algorithm for exploration by confidence,
which shall be discussed in Section 5. This algorithm arises as an instance of a gener-
alized formulation of attribute exploration, which shall be introduced in Section 4.
A naive and direct application of this generalized algorithm will yield a first version
of exploration by confidence, which however is only “approximative,” in a sense that
will be discussed in Section 5.1. A slight modification of this approximative version
presented in Section 5.2 will then yield the desired algorithm for exploration by
confidence.

The results of this work are taken from [4], which not only contains the proofs
of the claims in this paper (which we omit due to space restrictions), but also an
adaptation of exploration by confidence which also works with general concept
inclusions, logical objects akin to implications used in the field of description logics.
We shall give a very brief outlook about this adaptation results in Section 6.

2 Implications and Confidence

We assume the reader has some familiarity with the basic notions of formal concept
analysis, as we will not repeat them here. However, we shall repeat some notions
and fix some notations about implications that are crucial for the understanding
of this paper.

Denote with Impp𝑀q the set of all implications on a set 𝑀 . Recall that an
implication p𝐴Ñ𝐵qP Impp𝑀q is valid in a formal contextK“p𝐺,𝑀,𝐼q if and only if

𝐴1Ď𝐵1.

We shall denote withThpKq the set of all valid implications on𝑀 that are valid inK.
Let ℒĎ Impp𝑀q be a set of implications, and let p𝐴Ñ𝐵q P Impp𝑀q. Recall

that the set ℒ entails p𝐴Ñ𝐵q if and only if in all formal contexts L with attribute



set 𝑀 , it is true that if all implications from ℒ are valid in L, then p𝐴Ñ𝐵q is valid
in L as well. In other words,

L(ℒùñ L(p𝐴Ñ𝐵q,

where we write L(ℒ to mean that all implications in ℒ are valid in L. If ℒ entails
p𝐴Ñ𝐵q we shall also write ℒ(p𝐴Ñ𝐵q. The subset of Impp𝑀q of all implications
on 𝑀 which is entailed by ℒ is denoted by Cn𝑀 pℒq. We shall drop the subscript
if the set 𝑀 is clear from the context.

Entailment between implications can be characterized in a different manner.
For this we introduce the notion of closure operators induced by sets of implications.
More precisely, we define for 𝐴Ď𝑀 the operators

ℒ1p𝐴q :“𝐴Y
ď

t𝑌 | p𝑋Ñ𝑌 qPℒ,𝑋Ď𝐴u,

ℒ𝑖`1p𝐴q :“ℒ1pℒ𝑖p𝐴qq p𝑖PNą0q,

ℒp𝐴q :“
ď

𝑖PNą0

ℒ𝑖p𝐴q.

We shall call the mapping𝐴 ÞÑℒp𝐴q the closure operator induced byℒ, and we shall
call the set 𝐴 to be closed under ℒ if and only if 𝐴“ℒp𝐴q. The closure operator
induced by ℒ can now be used to characterize entailment of implications as follows:

ℒ(p𝐴Ñ𝐵q ðñ𝐵Ďℒp𝐴q.

Let 𝒦Ď Impp𝑀q be another set of implications. We shall call ℒ a base of 𝒦 if
and only if Cnpℒq“Cnp𝒦q. In other words, all implications in 𝒦 are entailed by
ℒ and vice versa. If 𝒦“ThpKq, then we shall call ℒ a base of K. Note that a base
of 𝒦 is always a base of Cnp𝒦q, and vice versa.

Bases allow us to represent sets 𝒦 of implications in different ways, without
changing their behavior with respect to entailment. This fact is mostly exploited
by searching for bases of 𝒦 which are of considerably smaller size than 𝒦 itself.
Those bases are preferably non-redundant or even minimal. More precisely, if ℒ
is a base of 𝒦, then ℒ is called non-redundant if no proper subset of ℒ is a base
of 𝒦 as well. Furthermore, ℒ is called minimal if and only if there does not exist
another base ℒ1 of 𝒦 satisfying |ℒ1|ă |ℒ|.

If we search for bases of 𝒦, it might be the case that we do not want to include
a certain set ℒback of implications which we already “know.” We can think of these
implications as given a-priori, or as background knowledge. If we are given such
background knowledge, to find a base of 𝒦 it only remains to find a base of all
those implications in 𝒦zCnpℒbackq. We thus shall call a set ℒĎ Impp𝑀q a base of
𝒦 relative to ℒback (or a base of 𝒦 with background knowledge ℒback) if and only if
ℒYℒback is a base of𝒦. The notions of non-redundancy and minimality for relative
bases are the same as in the case of bases. Note that if the background knowledge
is empty, then relative bases are just bases.

A particular relative base that is known to have minimal cardinality is the
canonical base Canp𝒦,ℒbackq. To define this base, we need to introduce the notion
of ℒback-pseudo-closed sets of 𝒦 [11]. Let 𝑃 Ď𝑀 . Then 𝑃 is called an ℒback-pseudo-
closed set of 𝒦 if and only if the following conditions hold.



i. 𝑃 “ℒbackp𝑃 q;
ii. 𝑃 ‰𝒦p𝑃 q;
iii. for all 𝑄Ĺ𝑃 which are ℒback-pseudo-closed sets of 𝒦 it is true that 𝒦p𝑄qĎ𝑃 .

Then

Canp𝒦,ℒbackq :“t𝑃Ñ𝒦p𝑃 q |𝑃 Ď𝑀 an ℒback-pseudo-closed set of 𝒦u.

It is well-known that Canp𝒦,ℒbackq is a base of 𝒦 with background-knowledge
ℒback of minimal cardinality; see [6, 9] for a proof on this.1

Let K“p𝐺,𝑀,𝐼q be a formal context, and let p𝐴Ñ𝐵qP Impp𝑀q. A counterex-
ample (negative example) for p𝐴Ñ𝐵q in K is an object 𝑔P𝐴1z𝐵1. It is obvious that
𝐴Ñ𝐵 is valid inK if and only ifK does not contain counterexample for𝐴Ñ𝐵. Con-
versely, we call 𝑔 a model (positive example) of 𝐴Ñ𝐵 if and only if 𝑔R𝐴1 or 𝑔P𝐵1.

Related to the notion of counterexamples we define the confidence of 𝐴Ñ𝐵
in K as

confKp𝐴Ñ𝐵q :“

#

1 if 𝐴1“H,
|p𝐴Y𝐵q1|

|𝐴1| otherwise .

In other words, confKp𝐴Ñ𝐵q is the conditional probability that a randomly chosen
object 𝑔P𝐺 (in a uniform way), that has all the attributes from𝐴 also has all the at-
tributes from𝐵. It is clear that𝐴Ñ𝐵 holds inK if and only if its confidence inK is 1.

Let 𝑐Pr0,1s. We shall denote with Th𝑐pKq the set of all implications in Impp𝑀q
whose confidence is at least 𝑐. If 𝑐 is chosen properly, we may think of Th𝑐pKq as the
set of implications which are “almost valid” in K; finding a base ℒ for this set might
therefore be desirable. However, the set Th𝑐pKq is not closed under entailment, and
thus ℒĎTh𝑐pKq may not necessarily be true. However, a base of Th𝑐pKq might be
of more use if the element of the base are also “almost valid,” i. e., have a confidence
inK which is at least 𝑐. We shall therefore call ℒ a confident base of Th𝑐pKq (or just
K, if 𝑐 is clear from the context) if and only if ℒ is a base of Th𝑐pKq and ℒĎTh𝑐pKq.

3 Classical Attribute Exploration

It is the purpose of this section to introduce attribute exploration as it is needed in
the exposition of this paper. This includes a description of the classical attribute
exploration algorithm, which we shall give now. Thereafter, we shall discuss a
generalized form of attribute exploration in Section 4, which uses similar ideas as
but is different from the one given in [3].

We have already mentioned that attribute exploration is an algorithm which
assists experts in completing implicational knowledge about a certain domain of in-
terest. More specifically, let us suppose that we have fixed a finite set𝑀 of attributes
which are relevant for our considerations. We then can understand the domain of in-
terest as a collection 𝒟 of objects where each object possesses some attributes from
𝑀 . In other words, a domain𝒟 on a set𝑀 can be viewed as a formal context. Let us
1 This proof is only for the special case 𝒦“ThpKq, which however is easily generalized

to our general case.



furthermore suppose that we are given a set 𝒦 of implications from which we defini-
tively know that they are valid in our domain𝒟. Finally, we assume that we have an
initial collection of some examples from our domain, given again as a formal context.

We are now interested in finding all implications that hold in our domain 𝒟,
i. e., to find all implications which are not invalidated by objects from the domain
𝒟. The difficulty of this problems stems from the fact that enumerating all these
objects may be algorithmically infeasible. What we can assume, however, is that
we are given an expert which is able to provide us with the information whether
there exists, for a given implication p𝐴Ñ𝐵qP Impp𝑀q, an object in our domain
𝒟 which is a counterexample for (i. e., not a model of) 𝐴Ñ𝐵, and in that case,
also provides such a counterexample.

Abstractly, attribute exploration now proceeds as follows. From all implications
in Cnp𝒦q we already known that they are valid in our domain 𝒟. Furthermore, for
all implications which are invalidated by objects from K, we known that they are
not valid in 𝒟. For all other implications we do not know whether they hold in 𝒟
or not, i. e., all implications in

𝑈pK,𝒦q :“ThpKqzCnp𝒦q

are undecided in the sense that they could be valid in 𝒟 or not. Then, for the
implications in 𝑈pK,𝒦q we have to consult the expert. Attribute exploration now
does this in a systematic and somehow efficient way, provided that 𝑀 is finite.

To make this more precise, we shall proceed by describing attribute exploration
in a formal way. This description shall be much more formal than usual, to provide
the necessary notions we need for our generalized attribute exploration. To this
end, we shall first provide some necessary definitions. After that, we give a formal
description of the algorithm. Finally, we shall note some well-known properties
of attribute exploration.

We shall start by formalizing our initial, subjective notion of a domain expert.
Intuitively, a domain expert for a domain 𝒟 is just a “function” 𝑝 that, given an
implication 𝐴Ñ𝐵, returns “true” if 𝐴Ñ𝐵 is not invalidated in𝒟, or returns an ob-
ject from 𝒟 which is a counterexample for 𝐴Ñ𝐵. We shall take this understanding
as the motivation for the following definition. See also [3].

Definition 1. Let 𝑀 be a set. A domain expert on 𝑀 is a function

𝑝 : Impp𝑀qÑtJuYPp𝑀q,

where JRPp𝑀q, such that the following conditions hold:

i. If p𝑋Ñ𝑌 q P Impp𝑀q such that 𝑝p𝑋Ñ𝑌 q“𝐶‰J, then 𝐶*p𝑋Ñ𝑌 q, i. e.,
𝑋Ď𝐶,𝑌 Ę𝐶. (𝑝 gives counterexamples for false implications)

ii. If p𝐴Ñ𝐵q,p𝑋Ñ𝑌 q P Impp𝑀q such that 𝑝p𝐴Ñ𝐵q“J,𝑝p𝑋Ñ𝑌 q“𝐶 ‰J,
then 𝐶(p𝐴Ñ𝐵q. (counterexamples do not invalidate correct implications)

We say that 𝑝 confirms an implication 𝐴Ñ𝐵 if and only if 𝑝p𝐴Ñ𝐵q“J. Otherwise,
we say that 𝑝 rejects 𝐴Ñ𝐵 with counterexample 𝑝p𝐴Ñ𝐵q. The theory Thp𝑝q of
𝑝 is the set of all implications on 𝑀 confirmed by 𝑝.



It is easy to see that every domain gives rise to a domain expert.

Lemma 1. Let 𝒟 be a domain (formal context) on a set 𝑀 . For each p𝐴 Ñ
𝐵q P Impp𝑀q for which there exists a counterexample in 𝒟, let 𝐶𝐴Ñ𝐵 such a
counterexample. Then the mapping

𝑝𝒟p𝑋Ñ𝑌 q :“

#

𝐶𝑋Ñ𝑌 if 𝐶𝑋Ñ𝑌 exists
J otherwise

is a domain expert on 𝑀 .

Note that the definition of 𝑝𝒟 depends on the particular choice of the coun-
terexamples, therefore 𝒟 may give rise to more than one domain expert.

Let 𝑝 be a domain expert on a set 𝑀 , and define

𝒟𝑝 :“pt𝑝p𝐴Ñ𝐵q | p𝐴Ñ𝐵qP Impp𝑀quztJu,𝑀,Qq.

Then clearly 𝒟𝑝 is a domain, and it is easy to see that each domain expert 𝑝 on
𝑀 can be obtained as a domain expert of the form 𝑝𝒟𝑝

, and that for each domain
𝒟 on 𝑀 it is true that 𝒟“𝒟𝑝𝒟 .

The crucial observation is now that domain experts can answer the question
of validity in the domains they represent.

Lemma 2. Let 𝑀 be a set and let 𝑝 be a domain expert on 𝑀 . Then for each
p𝐴Ñ𝐵qP Impp𝑀q it is true that

p𝐴Ñ𝐵q is valid in 𝒟𝑝ðñ 𝑝p𝐴Ñ𝐵q“J.

We have now formally captured the notion of an expert, and we are ready to
describe the algorithm of attribute exploration in a formal way, as presented in
Algorithm 1. In this exposition, we assume that the set 𝑀 is equipped with a strict
linear order, which then gives rise to a lectic order as it is needed for applying the
Next-Closure algorithm [8]. Furthermore, for better readability, we denote a formal
context that arises from another formal context K by adding a new object with
attributes from 𝐶 by K`𝐶.

Note that the computation of the set 𝑃𝑖`1 from 𝑃𝑖, 𝒦𝑖 and K𝑖 and ℒ𝑖 can be
done using the Next-Closure algorithm. As the details are not relevant for our
further discussion, we refer the interested reader to the literature [4].

The following results are well known properties of Algorithm 1, and correspond-
ing proofs can be found in [6, 7, 9, 11].

Theorem 1. Let 𝑝, 𝒦 and K be valid input for Algorithm 1. Then Algorithm 1
terminates with input 𝑝, 𝒦 and K. If 𝒦1 and K1 are the corresponding values returned
by the algorithm, then the following statements are true:

i. 𝒦Ď𝒦1ĎThpK1qĎThpKq.
ii. Thp𝑝q“ThpK1q“Cnp𝒦1q.
iii. The cardinality of 𝒦1z𝒦 is the smallest possible with respect to Thp𝑝q“Cnp𝒦1q.

More specifically, 𝒦1z𝒦“CanpK1,𝒦q.



Algorithm 1.

Input A domain expert 𝑝 on a finite set 𝑀 , a set 𝒦Ď Impp𝑀q and a formal context
K with attribute set 𝑀 such that 𝒦ĎThp𝑝qĎThpKq.

Procedure
i. Initialize 𝑖 :“0,𝑃𝑖 :“𝒦pHq,𝒦𝑖 :“𝒦,K𝑖 :“K.
ii. Let 𝑃𝑖`1 be the smallest 𝒦𝑖-closed set lectically larger or equal to 𝑃𝑖, which is

not an intent of K𝑖. If no such set exists, terminate.
iii. If 𝑝 confirms 𝑃Ñ𝑃 2, then

– 𝒦𝑖`1 :“𝒦𝑖Yt𝑃Ñ𝑃 2u,
– K𝑖`1 :“K𝑖.

iv. If 𝑝 provides a counterexample 𝐶 for 𝑃Ñ𝑃 2, then
– 𝒦𝑖`1 :“𝒦𝑖,
– K𝑖`1 :“K𝑖`𝐶.

v. Set 𝑖 :“ 𝑖`1 and go to ii.
Output Return 𝒦𝑖 and K𝑖.

4 Exploring Sets of Implications

We are given a precise formulation of attribute exploration in the previous section.
However, this formulation is not applicable to our setting of exploring implications
with a certain minimal confidence. To address this issue, we shall develop in this
section a more general formulation of attribute exploration which goes beyond the
classical one.

In the classical case, we are given a formal context K and a set of implications
𝒦ĎThpKq, as well as a domain expert 𝑝, who confirms all implications in 𝒦 and
where all implications confirmed by 𝑝 are contained in ThpKq. The task attribute
exploration then solves is to provide a method to guide the expert 𝑝 through all
implications in ThpKqzCnp𝒦q for deciding whether these implications are valid
in the domain or not. At the end, attribute exploration both provides a a relative
base of all valid implications of the domain 𝑝 represents, and a set of objects from
the domain such that an implication is valid in the domain if and only if all these
objects are models of this implication. This set of objects forms itself a domain,
and it can be thought of as a sufficient excerpt of the domain represented by 𝑝.

We want to try to lift this description of attribute exploration to the case of
exploration by confidence. There, our setting is a bit more involved. As in the case
of classical attribute exploration, we are given a domain expert 𝑝, a formal context
K and a set of implications 𝒦. Additionally, we are given a 𝑐Pr0,1s, the confidence
threshold for our exploration. Then, in contrast to the classical setting, exploration
by confidence considers not only the implications ThpKqzCnp𝒦q, but also those
in Th𝑐pKqzCnp𝒦q. We assume that 𝒦 is a set of implications with confidence at
least 𝑐 and that all implications in 𝒦 are confirmed by 𝑝; in other words, 𝒦ĎThp𝑝q
and 𝒦ĎTh𝑐pKq. While the first condition is rather clear, the second is not strictly
necessary, but adopted for simplicity.

An attribute exploration algorithm which then works in this setting should
guide the expert through the implications in Th𝑐pKqzCnp𝒦q, asking whether some



implications are correct or not. The counterexamples provided by the expert are
then used to falsify certain implications in Th𝑐pKq. They are not used, however,
for computing the confidence; this is solely done in the initial context K, because
we want to find a base of Th𝑐pKq. At the end, the attribute exploration algorithm
should both compute a set ℒ of implications and a formal context L such that each
implication in Th𝑐pKq is either not valid in L or follows from ℒY𝒦.

What we now want to describe is a more general formulation of attribute
exploration that is applicable to our setting of exploration by confidence. For this,
we shall develop in the remainder of this section a general formulation of attribute
exploration that works with a set of certain implications and a set of interesting
implications and provides a method to guide an expert through the set of undecided
implications, until no more are left. The properties this algorithm should have
should be the same as in the classical case, as far as this is possible. Then later on,
we shall apply this algorithm to our setting of exploration of confidence.

To this end, let us recapitulate our setting for the exploration algorithm, this
time a bit more general: we are given a finite set 𝑀 , a domain expert 𝑝 on 𝑀 ,
and two sets 𝒦,ℒ of implications. In our classical case, ℒ“ThpKq for some formal
context K; in our setting of exploration by confidence, we would have ℒ“Th𝑐pKq,
again for some formal context K and some 𝑐Pr0,1s. We assume that 𝒦ĎThp𝑝q and
𝒦Ďℒ. We then consider the set𝒦 as the (initial) set of certain implications. During
our exploration we only consider implications in ℒ, wherefore we shall call this set
the set of interesting implications. Finally, for each implication in ℒzCnp𝒦q it is
not clear yet whether 𝑝 confirms it or not. Therefore, we call this set the (current)
set of undecided implications.

An exploration for this abstract setting now should compute a relative base
of ℒXThp𝑝q with background knowledge 𝒦 by interacting with the expert 𝑝. At
best, this interaction is kept at a minimum (i. e., the number of times the expert is
invoked is as small as possible), as expert interaction is assumed to be expensive.

Considering the classical attribute exploration algorithm, it is not very difficult
to come up with a reformulation which is reasonably applicable to this general
setting. To this end, let us fix a finite set 𝑀 and a lectic order ĺ on Pp𝑀q. Then
such a reformulation is given in Algorithm 2.

The problem this algorithm has is that it does not ensure that the implications
asked to the expert are elements of ℒ𝑖, the current set of all interesting implications.
Because of this, we cannot expect this algorithm to actually compute a relative
base of ℒXThp𝑝q. However, what this algorithm achieves is to compute an “ap-
proximation” of a relative base of ℒXThp𝑝q in the sense that if 𝑛 is the index of
the last iteration of the algorithm, then 𝒦𝑛 is such that

Thp𝑝qXCnpℒqĚCnp𝒦𝑛qĚCnpThp𝑝qXℒq.

So what this algorithm does is not computing a relative base 𝒦𝑛 of CnpThp𝑝qXℒq,
but a complete superset of it. However, this set 𝒦𝑛 is not too far away from being
sound for CnpThp𝑝qXℒq, as Cnp𝒦𝑛qĎThp𝑝qXCnpℒq. On the other hand, the set
𝒦𝑛 is as small as possible for being sound and complete for itself.

We shall not prove the following result due to space restrictions, but instead
refer the interested reader to [4].



Algorithm 2 (General Attribute Exploration).

Input A domain expert 𝑝 on a finite set 𝑀 and sets 𝒦,ℒĎ Impp𝑀q such that 𝒦ĎThp𝑝q
and 𝒦Ďℒ.

Procedure
i. Initialize 𝑖 :“0,𝑃𝑖 :“𝒦pHq,𝒦𝑖 :“𝒦,ℒ𝑖 :“ℒ,L𝑖 :“pH,𝑀,Hq.
ii. Let 𝑃𝑖`1 be the smallest 𝒦𝑖-closed set lectically larger or equal to 𝑃𝑖, which is

not ℒ𝑖-closed. If no such set exists, terminate.
iii. If 𝑝 confirms 𝑃𝑖`1Ñℒ𝑖p𝑃𝑖`1q, then

– 𝒦𝑖`1 :“𝒦𝑖Yt𝑃𝑖`1Ñℒ𝑖p𝑃𝑖`1qu,
– ℒ𝑖`1 :“ℒ𝑖,
– L𝑖`1 :“L𝑖.

iv. If 𝑝 provides a counterexample 𝐶 for 𝑃𝑖`1Ñℒ𝑖p𝑃𝑖`1q, then
– 𝒦𝑖`1 :“𝒦𝑖,
– ℒ𝑖`1 :“tp𝐴Ñ𝐵qPℒ𝑖 |𝐶(p𝐴Ñ𝐵qu,
– L𝑖`1 :“L𝑖`𝐶.

v. Set 𝑖 :“ 𝑖`1 and go to ii.
Output Return 𝒦𝑖 and L𝑖.

Theorem 2. Let 𝑝,𝒦,ℒ be valid input for Algorithm 2. Then the algorithm with
this input terminates after finitely many steps. Let 𝑛 be the last iteration of the
algorithm. Then

1. Thp𝑝qXℒĚCnp𝒦𝑛qĚCnpThp𝑝qXℒq,
2. for each p𝐴Ñ𝐵qPℒ, either p𝐴Ñ𝐵qPCnp𝒦𝑛q or p𝐴Ñ𝐵qRThpL𝑛q,
3. 𝒦𝑛z𝒦“Canp𝒦𝑛,𝒦q.

Since we do not have any control about whether the implications asked by
Algorithm 2 are in the set ℒ of interesting implications, we cannot expect that
instantiating this algorithm with ℒ“Th𝑐pKq will indeed yield an algorithm for
exploration by confidence. We shall therefore discuss another, even further gener-
alized version of attribute exploration, which will allow for more freedom in which
implications are asked to the expert. This generalization arises from Algorithm 2 by
observing that instead of asking implications of the form 𝑃𝑖`1Ñℒ𝑖p𝑃𝑖`1q, it would
be sufficient for the correctness of the algorithm to just ask implications of the form
𝑃𝑖`1Ñ𝑄𝑖`1, where 𝑄𝑖`1 is such that 𝑃𝑖`1Ĺ𝑄𝑖`1Ďℒ𝑖p𝑃𝑖`1q, 𝑄𝑖`1Ę𝒦𝑖p𝑃𝑖`1q.

Applying this idea to Algorithm 2 yields Algorithm 3. The latter algorithm
retains all properties of the former, except for the fact that it does not necessarily
compute a minimal base anymore.

Theorem 3. Let 𝑝,𝒦,ℒ be valid input for Algorithm 3. Then the algorithm applied
to this input terminates after finitely many steps. Let 𝑛 be the last iteration of the
algorithm. Then

1. Thp𝑝qXℒĚCnp𝒦𝑛qĚCnpThp𝑝qXℒq,
2. for each p𝐴Ñ𝐵qPℒ, either p𝐴Ñ𝐵qPCnp𝒦𝑛q or p𝐴Ñ𝐵qRThpL𝑛q.

However, as we shall see in Section 5.2, we can use Algorithm 3 to devise an
algorithm for exploration by confidence, by choosing the sets 𝑄𝑖`1 appropriately.



Algorithm 3 (General Attribute Exploration, Weaker Version).

Input A domain expert 𝑝 on a finite set 𝑀 and sets 𝒦,ℒĎ Impp𝑀q such that 𝒦ĎThp𝑝q
and 𝒦Ďℒ.

Procedure
i. Initialize 𝑖 :“0,𝑃𝑖 :“𝒦pHq,𝒦𝑖 :“𝒦,ℒ𝑖 :“ℒ,L𝑖 :“pH,𝑀,Hq.
ii. Let 𝑃𝑖`1 be the smallest 𝒦𝑖-closed set lectically larger or equal to 𝑃𝑖, which is

not ℒ𝑖-closed. If no such set exists, terminate.
iii. Choose 𝑄𝑖`1Ď𝑀 such that 𝑃𝑖`1Ĺ𝑄𝑖`1Ďℒp𝑃𝑖`1q, 𝑄𝑖`1Ę𝒦𝑖p𝑃𝑖`1q.
iv. If 𝑝 confirms 𝑃𝑖`1Ñ𝑄𝑖`1, then

– 𝒦𝑖`1 :“𝒦𝑖Yt𝑃𝑖`1Ñ𝑄𝑖`1u,
– ℒ𝑖`1 :“ℒ𝑖,
– L𝑖`1 :“L𝑖.

v. If 𝑝 provides a counterexample 𝐶 for 𝑃𝑖`1Ñ𝑄𝑖`1, then
– 𝒦𝑖`1 :“𝒦𝑖,
– ℒ𝑖`1 :“tp𝐴Ñ𝐵qPℒ𝑖 |𝐶(p𝐴Ñ𝐵qu,
– L𝑖`1 :“L𝑖`𝐶.

vi. Set 𝑖 :“ 𝑖`1 and go to ii.
Output Return 𝒦𝑖 and L𝑖.

5 Exploration by Confidence

Based on the generalizations we have discussed in the previous section, we shall
now turn our attention to our original question, namely to devise an algorithm for
exploration by confidence. Recall that for this we are given a finite set 𝑀 , a formal
contextKwith attribute set𝑀 , an expert 𝑝 on𝑀 , some background knowledge𝒦Ď
Thp𝑝q, and some number 𝑐Pr0,1s. What an algorithm for exploration by confidence
now should achieve is to compute a base of Thp𝑝q XTh𝑐pKq with background
knowledge 𝒦. Ideally, for this it should invoke the expert 𝑝 as few times as possible.

We shall start this section by presenting a first algorithm that is not precisely
an algorithm for exploration by confidence, but instead is an approximative algo-
rithm in the sense as discussed in the previous section. This first algorithm will
be obtained by instantiating the generalized attribute exploration algorithm from
Section 4. We shall do this in Section 5.1. A proper algorithm for exploration by
confidence will then be discussed in Section 5.2, where we shall instantiate the
weaker generalization of attribute exploration from Section 4.

5.1 An Approximative Exploration by Confidence

Our first idea is as simple as straightforward: we use Algorithm 2 and instantiate it
with our setting of exploration by confidence, i. e., we set ℒ“Th𝑐pKq. The resulting
algorithm is shown as Algorithm 4. The properties of Algorithm 2, as given in
Theorem 2, immediately yield the following result.

Corollary 1. Let K“p𝐺,𝑀,𝐼q be a finite and non-empty formal context, 𝑐Pr0,1s,
𝑝 be a domain expert on 𝑀 and 𝒦ĎTh𝑐pKqXThp𝑝q. Then Algorithm 4 terminates
with input 𝑝, 𝑐 and 𝒦. Let 𝑛 be the last iteration of this run of the algorithm. Then



Algorithm 4 (Approximative Exploration by Confidence).

Input A domain expert 𝑝 on a finite set 𝑀 , a formal context K, 𝑐 P r0,1s and a set
𝒦ĎTh𝑐pKq such that 𝒦ĎThp𝑝q.

Procedure
i. Initialize 𝑖 :“0,𝑃𝑖 :“𝒦pHq,𝒦𝑖 :“𝒦,ℒ𝑖 :“Th𝑐pKq,L𝑖 :“pH,𝑀,Hq.
ii. Let 𝑃𝑖`1 be the smallest 𝒦𝑖-closed set lectically larger or equal to 𝑃𝑖, which is

not ℒ𝑖-closed. If no such set exists, terminate.
iii. If 𝑝 confirms 𝑃𝑖`1Ñℒ𝑖p𝑃𝑖`1q, then

– 𝒦𝑖`1 :“𝒦𝑖Yt𝑃𝑖`1Ñℒ𝑖p𝑃𝑖`1qu,
– ℒ𝑖`1 :“ℒ𝑖,
– L𝑖`1 :“L𝑖.

iv. If 𝑝 provides a counterexample 𝐶 for 𝑃𝑖`1Ñℒ𝑖p𝑃𝑖`1q, then
– 𝒦𝑖`1 :“𝒦𝑖,
– ℒ𝑖`1 :“tp𝐴Ñ𝐵qPℒ𝑖 |𝐶(p𝐴Ñ𝐵qu,
– L𝑖`1 :“L𝑖`𝐶.

v. Set 𝑖 :“ 𝑖`1 and go to ii.
Output Return 𝒦𝑖 and L𝑖.

i. Thp𝑝qXCnpTh𝑐pKqqĚCnp𝒦𝑛qĚCnpThp𝑝qXTh𝑐pKqq,
ii. Canp𝒦𝑛,𝒦q“𝒦𝑛z𝒦.

Evidently, Algorithm 4 does not guarantee that the implications asked are
actually elements of ℒ“Th𝑐pKq, i. e., those implications do not need to have a
confidence of at least 𝑐 in K. This may or may not be an issue, depending on the
application one is currently dealing with.

What is also important for Algorithm 4 to be practical is to be able to compute
closures under ℒ𝑖“Th𝑐pKqXThpL𝑖q. However, it is by far obvious how to compute
closures under these sets of implications. Of course, one does not want to compute
these sets explicitly, and indeed it is true that

ℒ𝑖p𝐴q“𝐴2L𝑖
XTh𝑐pKqp𝐴q,

for each 𝐴Ď𝑀 , where 𝐴2L𝑖
denotes double derivation in L𝑖. Thus, to make Algo-

rithm 4 practicably applicable, one only needs a way to compute closures of sets
𝐴 under Th𝑐pKq.

While it is possible to compute these closures effectively without computing the
set Th𝑐pKq explicitly [4], the computational overhead might be unwelcomed. One
may be tempted to think that we can eliminate the problem of computing closures
under Th𝑐pKq by using the following approach: instead of asking implications of
the form

𝑃𝑖`1Ñℒ𝑖p𝑃𝑖`1q, (1)

where ℒ𝑖p𝑃𝑖`1q“Th𝑐pKqp𝑃𝑖`1qXp𝑃𝑖`1q
2
L𝑖
, in Algorithm 4 we could just as well

ask implications of the form

𝑃𝑖`1Ñt𝑚P𝑀 |confKp𝑃𝑖`1Ñt𝑚uqě𝑐u. (2)



K a b c

1 ˆ ˆ

2 ˆ ˆ

3 ˆ ˆ

4 ˆ ˆ ˆ

5 ˆ ˆ ˆ

6 ˆ ˆ

7 ˆ ˆ

8
9
10

Fig. 1. Context which shows that a simple approach to exploration by confidence does
not work

This would have the evident advantage that the right-hand side of the implication
is easy to compute. However, it turns out that with this modification the algorithm
is not correct anymore, in the sense that the set of implications accepted by the
expert is not complete for Th𝑐pKq.

Example 1 (Example 6.2.2 from [4]).
Consider the formal context K as given in Figure 1, let 𝒦“ttauÑtbuu, and

choose 𝑐“ 1
2 . Suppose that we apply exploration by confidence in the simplified

version as described before, i. e., we ask implications of the form of (2) instead of
those in (1). Then since all sets 𝑃𝑖 are closed under 𝒦, the implication tauÑtcu
is never asked to the expert, because tau is not closed under 𝒦. On the other hand,

confKptauÑtcuq“
4

7
ą

1

2
,

i. e. ptauÑtcuqPTh𝑐pKq, and is thus an interesting implication. Furthermore, the
implication tauÑ tcu also does not follow from other implications asked to the
expert, as the implications tbuÑtcu, ta,buÑtcu, and HÑtcu will also not be
asked to the expert, because

confKptbuÑtcuq“
2

5
ă

1

2

confKpta,buÑtcuq“
2

5
ă

1

2

confKpHÑtcuq“
4

10
ă

1

2

Thus, if we assume that the expert 𝑝 confirms all proposed implications, and if we
denote the set of confirmed implications by 𝒦𝑛, then

𝒦𝑛ptauq“ta,bu.

But Th𝑐pKqXThp𝑝q“Th𝑐pKq, and

Th𝑐pKqptauq“ta,b,cu.



Thus, the set 𝒦𝑛 is not complete for Th𝑐pKqXThp𝑝q.

5.2 An Exact Exploration by Confidence

The previous example shows that our simple idea of avoiding the computational
overhead of computing closures under Th𝑐pKq did not work. In this section we shall
show how we can make this idea work nonetheless, by further suitably modifying
the algorithm. For this we shall use the weaker generalization of Algorithm 3. As
a pleasant side-effect, by this we will obtain a proper algorithm for exploration by
confidence, i. e., the new algorithm will indeed compute a base of Thp𝑝qXTh𝑐pKq.
On the downside, since this algorithm is based on the weaker generalization of
attribute exploration, we cannot expect it to compute a base of minimal cardinality.

The main idea for this adaption is as follows: the weaker generalization of
Algorithm 3 instantiated for our setting of exploration by confidence does not
require us to compute closures under Th𝑐pKq. Instead, all we need to check is
whether a given set of attributes is closed under Th𝑐pKq. The main problem with
the latter is that in general we need to consider all subsets of𝐵Ď𝐴 and all elements
𝑚P𝑀z𝐴 checking whether they satisfy

confKp𝐵Ñt𝑚uqě𝑐.

This is because

𝐴“Th𝑐pKqp𝐴q ðñ p@𝐵Ď𝐴@𝑚P𝑀 : confKp𝐵Ñt𝑚uqě𝑐ùñ𝑚P𝐴q.

On the other hand, if 𝐴 would have the property that for each 𝑚P𝑀 and every
𝐵Ĺ𝐴 with confKp𝐵Ñt𝑚uqě𝑐 it is true that 𝑚P𝐴, then checking whether 𝐴 is
closed under Th𝑐pKq would be easy, as in this case

𝐴“Th𝑐pKqp𝐴q ðñ p@𝑚P𝑀 : confKp𝐴Ñt𝑚uqě𝑐ùñ𝑚P𝐴q.

Let’s make this more precise. In what follows, we shall write the context subposition
of two contexts K1“p𝐺1,𝑀,𝐼1q,K2“p𝐺2,𝑀,𝐼2q as K1˜K2, i. e.,

K1˜K2 :“p𝐺1Y𝐺2,𝑀,𝐼1Y𝐼2q.

Here we assume that 𝐺1 and 𝐺2 are disjoint. In the following proposition, we have
K1“K and K2“L𝑖, and we can think of the former as the initial formal context
of our exploration process, while the latter contains all counterexamples collected
up to iteration 𝑖. Then K˜L𝑖 is the currently known context of iteration 𝑖.

Proposition 1 (Proposition 6.2.5 from [4]). Let K “ p𝐺,𝑀,𝐼q be a finite
formal context, and let 𝑐Pr0,1s. Let L𝑖“p𝐺𝑖,𝑀,𝐼q be another finite formal context
such that 𝐺𝑖 and 𝐺 are disjoint, and define ℒ𝑖“Th𝑐pKqXThpL𝑖q. Let 𝐴Ď𝑀 be
such that for every intent 𝑋Ĺ𝐴 of K˜L𝑖 it is true that

@𝑚P𝑋2
L𝑖
: confKp𝑋Ñt𝑚uqě𝑐ùñ𝑚P𝒦𝑖p𝑋q. (3)

In addition, let 𝐴 be 𝒦𝑖-closed. Then it is true that 𝐴 is ℒ𝑖-closed if and only if

𝐴“𝐴2K˜L𝑖
and @𝑚P𝐴2L𝑖

z𝐴 : confKp𝐴Ñt𝑚uqă𝑐. (4)



Algorithm 5 (Exploration by Confidence).

Input A domain expert 𝑝 on a finite set 𝑀 , a formal context K, 𝑐 P r0,1s and a set
𝒦ĎTh𝑐pKq such that 𝒦ĎThp𝑝q.

Procedure
i. Initialize 𝑖 :“0,𝑃𝑖 :“𝒦pHq,𝒦𝑖 :“𝒦,ℒ𝑖 :“Th𝑐pKq,L𝑖 :“pH,𝑀,Hq.
ii. Let 𝑃𝑖`1 :“minĺp𝑃

1
𝑖`1,𝑃

2
𝑖`1q, where

– 𝑃 1
𝑖`1 is the lectically smallest intent 𝑃 of K˜L𝑖 such that 𝑃𝑖 ĺ𝑃 , and there

exists some 𝑚P𝑃 2L𝑖
z𝒦𝑖p𝑃 q with confKp𝑃Ñt𝑚uqě𝑐.

– 𝑃 2
𝑖`1 is the lectically smallest set 𝑃 such that 𝑃𝑖 ĺ𝑃 , that is closed under

𝒦𝑖, but is not an intent of K˜L𝑖.
iii. If 𝑃𝑖`1“𝑃 1

𝑖`1, then set 𝑄𝑖`1 :“𝑃𝑖`1Yt𝑚u, otherwise set 𝑄𝑖`1 :“p𝑃𝑖`1q
2
K˜L𝑖

.
iv. If 𝑝 confirms 𝑃𝑖`1Ñ𝑄𝑖`1, then

– 𝒦𝑖`1 :“𝒦𝑖Yt𝑃𝑖`1Ñ𝑄𝑖`1u,
– ℒ𝑖`1 :“ℒ𝑖,
– L𝑖`1 :“L𝑖.

v. If 𝑝 provides a counterexample 𝐶 for 𝑃𝑖`1Ñ𝑄𝑖`1, then
– 𝒦𝑖`1 :“𝒦𝑖,
– ℒ𝑖`1 :“tp𝐴Ñ𝐵qPℒ𝑖 |𝐶(p𝐴Ñ𝐵qu,
– L𝑖`1 :“L𝑖`𝐶.

vi. Set 𝑖 :“ 𝑖`1 and go to ii.
Output Return 𝒦𝑖 and L𝑖.

Based on this result, we shall now adapt our exploration algorithm to ensure
that all sets of which we need to check closedness under Th𝑐pKq satisfy (3). We
can do this as follows: as usual, we consider subsets 𝑋 of 𝑀 in lectic order, and
for each such set 𝑋 that is closed under the set 𝒦𝑖 of currently known implications
but is not an intent of K˜L𝑖, we ask the expert the implication

𝑋Ñ𝑋2
K˜L𝑖

.

Additionally, in accordance with Proposition 1, for each 𝑋 that is an intent of
K˜L𝑖 we ask the implication

𝑋Ñt𝑚P𝑀 |confKp𝑋Ñt𝑚uqě𝑐u.

The resulting algorithm is shown in Algorithm 5. It is not hard to see that
this algorithm is indeed an instance of Algorithm 3. Therefore, from the general
results of Theorem 3 about Algorithm 3, we immediately obtain the following
result. Moreover, the algorithm only asks implications with confidence at least 𝑐,
wherefore Algorithm 5 is a proper algorithm for exploration by confidence.

Corollary 2. Let K“p𝐺,𝑀,𝐼q be a finite formal context, 𝑝 a domain expert on
𝑀 , 𝑐 P r0,1s, and 𝒦 Ď Thp𝑝qXTh𝑐pKq. Then Algorithm 5 applied to this input
terminates after finitely many steps. Let 𝑛 be the last iteration of the algorithm.
Then K𝑛 is a confident base of Thp𝑝qXTh𝑐pKq, i. e., 𝒦𝑛ĎTh𝑐pKq and

Cnp𝒦𝑛q“CnpThp𝑝qXTh𝑐pKqq.

Moreover, for each p𝐴Ñ𝐵qPℒ, either p𝐴Ñ𝐵qPCnp𝒦𝑛q or p𝐴Ñ𝐵qRThpL𝑛q.



6 Outlook and Further Results

In this paper we have addressed the issue of applying attribute exploration to faulty
data. We did this by extending the classical attribute exploration algorithm to not
only ask implications that are valid in the data, but to ask also those implications
that enjoy a high confidence therein. The motivation behind this approach was to
assume that data which is only slightly faulty will invalidate important implications
only with few counterexamples, compared to the number of examples where this
implication does apply. Of course, this approach is purely heuristic, and should
be treated as such.

In our discussion about how to design an exploration algorithm that takes
the confidence of implications into account, we first formalized the notion of an
expert. After that, we discussed how classical attribute exploration can be seen
as an exploration of sets of interesting implications. For this more abstract view,
we discussed a straight-forward generalization of the classical algorithm, as well
as a weaker generalization which allowed for more freedom in the choice of the
implications asked to the experts. Based on these generalization, we developed an
approximative as well as an exact algorithm for exploration by confidence.

This paper deliberately avoids giving proofs for the statements it presents.
Those proofs can be found in [4]. There we also discuss a generalization of the
present results to general concept inclusions (GCIs). GCIs are logical formulas
which provide a generalization of implications to the realm of description logics [2].
It is not hard to generalize the notion of confidence to GCIs, and one can then build
upon the results presented in this paper and devise an algorithm for exploring
general concept inclusions with high confidence. The immediate advantage of this
would be the increase in expressivity provided by the use of description logics.

To generalize exploration by confidence to general concept inclusions, one has
to extend the algorithm to also be able to work with growing sets of attributes.
More precisely, during the exploration, the attribute set𝑀 , which is supposed to be
fixed in this paper, may grow in a consistent way. Exploration by confidence can be
adapted to this setting as well, much like [6] adapts classical attribute exploration
to this setting.

A main motivation for considering the case of faulty data is that in real appli-
cations data is never free of errors. With respect to this, one could argue that the
results of this paper contribute to making attribute exploration more usable in
practice. However, this argumentation would be much more convincing if we could
provide real-world use cases of exploration by confidence. Finding and evaluating
such use cases is a main task for future research.

Another interesting application not discussed so far is the following. As soon as
the expert accepts an implication with confidence not equal to 1, all counterexam-
ples of this implication are false. Our algorithm could be adapted to propose these
faulty objects to the expert for correction, thereby increasing the quality of the
data-set during the course of the exploration. This form of error correction could
be more efficient than walking through the whole data-set and correcting all errors.
This is because an error-correcting exploration by confidence would only propose
errors for correction that are relevant for the exploration process.
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