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Abstract. BEL is a probabilistic description logic (DL) that extends the
light-weight DL EL with a joint probability distribution over the axioms,
expressed with the help of a Bayesian network (BN). In recent work it
has been shown that the complexity of standard logical reasoning in BEL
is the same as performing probabilistic inferences over the BN.
In this paper we consider conjunctive query answering in BEL. We study
the complexity of the three main problems associated to this setting:
computing the probability of a query entailment, computing the most
probable answers to a query, and computing the most probable context in
which a query is entailed. In particular, we show that all these problems
are tractable w.r.t. data and ontology complexity.

1 Introduction

Description Logics (DLs) [3] are a family of knowledge representation formalisms
that have been successfully employed for modeling the knowledge of many appli-
cation domains. Its success has been specially clear in the bio-medical sciences,
with the development and use of very large ontologies [29]. Very briefly, an ontol-
ogy is simply a collection of axioms that provide some explicit knowledge of the
application domain; different reasoning tasks are then used to extract additional
knowledge that is implicit within this ontology.

As with most logic-based formalisms, one of the issues that limit the appli-
cability of DLs to real-world ontologies is their incapability to model and handle
uncertainty in their statements. To address this limitation, many extensions of
DLs for reasoning with uncertainty have been proposed over the last two decades;
see e.g. [24] for a thorough, although slightly outdated, survey. A very relevant
modeling choice that needs to be made is how to represent and handle the joint
probability of axioms. Most probabilistic extensions of DLs avoid this problem
by implicitly assuming that all axioms are (probabilistically) independent from
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developed while R. Peñaloza was still affiliated with TU Dresden and the Center for
Advancing Electronics Dresden, Germany.



each other. Unfortunately, this is a very strong assumption that cannot be guar-
anteed to hold in general. Very recently, it was proposed to represent the logical
and probabilistic dependencies of the axioms in an ontology through a Bayesian
network (BN) ranging over a class of sub-ontologies, called contexts. This idea
gave rise to the family of Bayesian DLs [9].

To understand the properties of Bayesian DLs, the complexity of standard
reasoning on BEL, the Bayesian extension of the light-weight DL EL [2, 6], was
studied in detail. In particular, it was shown that standard reasoning in this logic
remains tractable w.r.t. the size of the logical component of the input, although
intractable w.r.t. the BN [11, 12]. These analysis have also shown their impact
in practice, we refer the reader to the recent prototypical reasoner BORN [8] for
such details (available at http://lat.inf.tu-dresden.de/systems/born).

In this paper we build on top of previous work [7], and study the complexity
of answering conjunctive queries over a probabilistic knowledge base expressed in
BEL. Given the probabilistic knowledge, we focus on computing the probability
of entailing a given query. Moreover, we study the problem of finding the most
probable answers to a query, and the most probable contexts that entail a query.
As is standard in query answering, we parameterize the complexity measures
according to different input parameters. Among our results, we show that all the
reasoning problems that we study remain tractable w.r.t. the size of the ontology.
This means that it is possible to handle large ontologies efficiently, assuming that
the probabilistic component and the query remain relatively small.

2 Preliminaries

We first briefly introduce the basic notions for query answering in the light-weight
DL EL and its Bayesian extension BEL, and the complexity measures that we
will study throughout this paper.

As with all DLs, the main components of EL are concepts, that are built
from concept- and role-names using a set of constructors. Let NI, NC and NR

be mutually disjoint sets of individual-, concept- and role-names, respectively.
EL concepts are built by the grammar rule C ::= A | > | C u C | ∃r.C, where
A ∈ NC and r ∈ NR. The semantics of EL is given by interpretations. An
interpretation is a tuple I = (∆I , ·I) where ∆I is a non-empty domain and ·I
is an interpretation function that maps every individual name a to an element
aI ∈ ∆I , every concept name A to a set AI ⊆ ∆I , and every role name r to a
binary relation rI ⊆ ∆I ×∆I . The interpretation function ·I is extended to EL
concepts as shown in the upper part of Table 1.

The domain knowledge is encoded through a set of axioms that restrict the
class of interpretations considered. A TBox T is a finite set of general concept
inclusions (GCIs) of the form C v D, where C, D are concepts. An ABox is a
finite set of concept assertions C(a) and role assertions r(a, b), where a, b ∈ NI,
C is a concept, and r ∈ NR. An ontology is a pair O = (T ,A) where T is a TBox
and A an ABox. We use the term axiom as a general expression for GCIs and
assertions. The interpretation I satisfies an axiom λ iff it satisfies the conditions



Table 1: Syntax and Semantics of EL
Name Syntax Semantics

Top > ∆I

Conjunction C uD CI ∩DI

Exist. Rest. ∃r.C {d | ∃e ∈ ∆I : (d, e) ∈ rI , e ∈ CI}

GCI C v D CI ⊆ DI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

on the lower part of Table 1. It is a model of the ontology O = (T ,A) iff it
satisfies all the axioms in T and A. For the rest of this paper we will denote as
NI(A) the set of all individual names that appear in the ABox A.

In the presence of an ontology, one is often interested in deciding entailment
and finding answers to a (conjunctive) query. Let NV be a set of variables, which
is disjoint from NC, NR, and NI. An atom is an expression of the form A(χ) or
r(χ, ψ), where A ∈ NC, r ∈ NR, and χ, ψ ∈ NI ∪ NV. A conjunctive query (CQ)
q is a non-empty set of atoms associated to a set DV(q) ⊆ NV of distinguished
variables. If DV(q) = ∅, then q is called a Boolean CQ. A special case of a CQ is
an instance query, which consists of only one atom A(χ) with A ∈ NC.

Let q be a Boolean CQ and IV(q) be the set of all individual names and
variables appearing in q. The interpretation I satisfies q if there exists a function
π : IV(q) → ∆I such that (i) π(a) = aI for all a ∈ NI∩IV(q), (ii) π(χ) ∈ AI for all
A(χ) ∈ q, and (iii) (π(χ), π(ψ)) ∈ rI for all r(χ, ψ) ∈ q. In this case, we call π a
match for I and q. The ontologyO entails q (O |= q) iff every model ofO satisfies
q. For an arbitrary CQ q, a function a : DV(q) → NI(A) is an answer to q w.r.t.
O iff O entails the Boolean CQ a(q) obtained by replacing every distinguished
variable χ ∈ DV(q) with a(χ). Conjunctive query answering (CQA) is the task
of finding all answers of a CQ, and query entailment is the problem of deciding
whether an ontology entails a given Boolean CQ.

It is known that in EL query entailment is tractable if the query is fixed,
but NP-complete if the query is considered as part of the input [27]. EL does
not enjoy the so-called full first order rewritability which has been considered as
a key feature for CQA, since it allows one to reduce the problem to standard
tasks in relational database management systems. However, other methods like
the combined approach [26] have been successfully used in this setting.

The Bayesian DL BEL [11] has been introduced as a probabilistic extension of
EL. In BEL probabilities are encoded through a Bayesian network (BN) [17]; that
is, a pair B = (G,Φ), where G = (V,E) is a finite directed acyclic graph (DAG)
whose nodes represent Boolean random variables, and Φ contains, for every node
x ∈ V , a conditional probability distribution PB(x | π(x)) of x given its parents
pa(x). If V is the set of nodes in G, we say that B is a BN over V . In a
BN, every variable x ∈ V is considered to be conditionally independent of its
non-descendants given its parents. Thus, every BN B defines a unique joint
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Fig. 1: The BN BABC over the variables {x, y, z}

probability distribution over V given by the so-called chain rule, defined as

PB(V ) =
∏
x∈V

PB(x | π(x)).

In BEL concepts are constructed as for EL. The difference appears in encoding
the domain knowledge through axioms. BEL generalizes classical ontologies by
annotating the axioms with a context, defined by a set of literals from a BN.

Let V be a finite set of Boolean variables. A V -context is a conjunction
of literals from V . A (V -GCI)(resp. V -assertion) is an expression of the form
〈λ : κ〉 where λ is a GCI (resp. an assertion) and κ is a V -context. A V -TBox
(resp. V -ABox) is a finite set of V -GCIs (resp. V -assertions). A BEL knowledge
base (KB) is a tuple K = (B, T ,A) where B is a BN over V , T is a V -TBox and
A is a V -ABox.

Example 1. The tuple K = (TABC,AABC,BABC) where

TABC := { 〈A v ∃r.B : {y}〉 , 〈B v C : {x}〉}
AABC := { 〈A(a) : {x}〉 , 〈r(a, b) : {z}〉 , 〈C(b) : {x, z}〉 , 〈A(c) : {y}〉}

and BABC is the BN given in Figure 1 represents a BEL KB.

Intuitively, a BEL KB provides a propositional abstraction over an EL KB.
More formally, given a BEL KB K = (B, T ,A) and a context κ, we define the
restriction of K w.r.t. κ as an EL ontology Kκ = (Tκ,Aκ) by setting

Tκ := {C v D | 〈C v D : µ〉 ∈ T , κ |= µ},
Aκ := {C(a) | 〈C(a) : µ〉 ∈ A, κ |= µ} ∪ {r(a, b) | 〈r(a, b) : µ〉 ∈ A, κ |= µ}.

We will usually speak of contextual axioms, or V -axioms to address both
V -GCIs and V -assertions; if it is clear from the context, we will also drop the
prefix V . The intuition behind the contextual axioms is to enforce an axiom
to hold within a given context, but not necessarily in others. To formalize this
intuition, we extend the notion of an interpretation, to also consider the context
variables. A V -interpretation is a tuple I = (∆I , ·I ,VI) where (∆I , ·I) is a
classical EL interpretation, and VI is a valuation of the variables in V . The
V -interpretation I satisfies the axiom 〈λ : κ〉 (I |= 〈λ : κ〉) iff either (i) VI 6|= κ,
or (ii) (∆I , ·I) |= λ. It is a model of the TBox T (resp. ABox A) iff it satisfies
all the axioms in T (resp. A).



There is a strong link between the restrictions and the contextual interpreta-
tions. For any valuationW of the variables in V , KW represents all the EL axioms
that must be satisfied by any contextual interpretation of the form (∆I , ·I ,W).

In BEL, uncertainty is represented through a BN that describes a joint prob-
ability distribution over the context variables. BEL is linked to this distribution
using multiple world semantics: a probabilistic interpretation defines a proba-
bility distribution over a set of (contextual) interpretations; this distribution is
required to be consistent with the joint probability distribution provided by the
BN. Formally, a probabilistic interpretation is a pair P = (I, PI), where I is
a set of V -interpretations and PI is a probability distribution over I such that
PI(I) > 0 only for finitely many interpretations I ∈ I. P is a model of the TBox
T (resp. ABox A) if every I ∈ I is a model of T (resp. A). P is consistent with
the BN B if for every valuation W of the variables in V it holds that∑

I∈I,VI=W

PI(I) = PB(W).

The probabilistic interpretation P is a model of the KB (B, T ,A) iff it is a
probabilistic model of T , A and consistent with B.

In previous work, the standard reasoning problems for EL have been extended
to their probabilistic variant in BEL, leading to tight complexity bounds for
several problems [11,12]. Particularly, it has been shown that the complexity of
these tasks is bounded by the complexity of reasoning in EL and in the BN.

In the next sections we will study the complexity of different query-related
reasoning tasks in BEL. As is customary in the context of conjunctive queries,
we will consider the complexity w.r.t. different parameters. The measures we
consider here are: (i) data complexity, where only the ABox is considered as part
of the input; (ii) ontology complexity, which considers both, the ABox and the
TBox; (iii) network complexity, w.r.t. the size of the BN; (iv) KB complexity,
which uses the whole KB as input; and (v) combined complexity in which the
input is measured in terms of the KB and the query.

3 Probabilistic Query Entailment

The problem of deciding whether a Boolean CQ is entailed by a BEL KB is
not interesting, since it ignores the probabilistic information encoded in the BN.
Recall that a BEL KB describes a probability distribution over different worlds,
in which some conditions must hold. In this setting, we are interested in finding
the probability of observing a world in which the query is entailed.

Definition 2 (probabilistic entailment). Let K be a BEL KB, P = (I, P ) a
probabilistic interpretation and q a Boolean CQ. The probability of q w.r.t. P is

PP(q) :=
∑

I∈I, (∆I ,·I)|=q

P (I).

The probability of q w.r.t. K is PK(q) := infP|=K PP(q). The query q is entailed
with probability p ∈ (0, 1] iff PK(q) ≥ p.



Recall that for a given EL KB K and a valuation W, KW defines an EL
ontology that contains all the axioms that must be satisfied by any contextual
interpretation using the valuation W. We show that considering the restrictions
KW over valuations W is enough to decide probabilistic query entailment.

Theorem 3. For every BEL KB K = (B, T ,A) and Boolean CQ q it holds that
PK(q) =

∑
KW |=q PB(W).

Proof. We define the probabilistic interpretation R = (JR, PJR) where

i) JR =
⋃2n−1

i=0 Ii = (∆Ii , ·Ii ,VIi)
ii) PJR(Ii) = PB(Wi) with Wi = VIi for all 0 ≤ i ≤ 2n − 1
iii) (∆Ii , ·Ii) |= KWi

for all 0 ≤ i ≤ 2n − 1
iv) (∆Ii , ·Ii) |= q iff KWi

|= q for all 0 ≤ i ≤ 2n − 1

Notice that, we can ensure iii) by the fact that every EL ontology has a model.
It follows from the construction that R |= (T ,A) and R is consistent with

B. Hence, R is a model of K. We show the probability of q w.r.t. R to be

PR(q) :=
∑

Ii∈JR
(∆Ii ,·Ii )|=q

PJR(Ii) =
∑

KWi
|=q

PB(Wi),

which concludes PK(q) ≤
∑

KW |=q PB(W).
Assume now that the inequality is strict. This implies the existence of a model
S = (JS , PJS ) such that

PS(q) =
∑
I∈JS

(∆I ,·I)|=q

PJS (I) <
∑

KW |=q

PB(W).

This holds iff for some W where KW |= q and PB(W) > 0 it holds that∑
(∆I ,·I ,W)∈JS

(∆I ,·I)|=q

PJS (I) < PB(W).

Since
∑

I∈JS ,VI=W PJS (I) = PB(W) by the definition of a model, there exists a

contextual interpretation (∆I′
, ·I′

,VI′
) ∈ JS where VI′

= W and (∆I′
, ·I′

) 6|= q
while KW′ |= q. It follows that (∆I′

, ·I′
) 6|= KW and (∆I′

, ·I′
,VI′

) 6|= (T ,A),
which contradicts with the assumption that S is a model. ut

Theorem 3 provides a simple method for computing the probability of a query
q w.r.t. a BEL KB: one needs only to compute, for each valuation W, the EL
ontology KW and decide whether this ontology entails q, adding the probabil-
ities (w.r.t. B) of all the worlds for which this test is positive. We illustrate
probabilistic query entailment on our running example.

Example 4. Consider the BEL KB provided in Example 1 and the Boolean
CQ q = {A(χ), r(χ, ψ), C(ψ)}. Clearly, KW |= q only for worlds W such that
W |= (x ∧ y) ∨ (x ∧ z). Hence, we get PK(q) = PBABC((x ∧ y) ∨ (x ∧ z)) = 0.511.



Since there are 2|V | valuations, EL query entailment is decidable in polyno-
mial time in ontology complexity, and computing the probability of a valuation
is polynomial in |V |, we obtain the following result.

Theorem 5. Probabilistic query entailment is polynomial w.r.t. data and ontol-
ogy complexity and in ExpTime w.r.t. network, KB, and combined complexity.

Notice that the algorithm sketched above iterates over all the possible scenarios
described by the BN and performs an entailment test in each of them. The
positive complexity results w.r.t. data and ontology complexity arise from the
fact that in these settings the size of the BN is assumed to be constant. In order
to obtain a better upper bound w.r.t. network complexity, we can dualize this
idea; i.e., iterate over all the sub-ontologies performing standard probabilistic
inferences at each iteration.

Theorem 6. Probabilistic query entailment is PP-complete w.r.t. network com-
plexity.

Proof. The lower complexity bound follows from the complexity of standard
reasoning in BEL [12]. To show membership, we define a sub-ontology of a given
BEL KB K = (B, T ,A) as a pair O = (T ′,A′) such that T ′ ⊆ T and A′ ⊆ A.
Each sub-ontology O = (T ′,A′) defines a context

con(O) =
∧

〈λ:κ〉∈T ′

κ ∧
∧

〈λ:κ〉∈A′

κ,

and an EL ontology OEL = (T ′
EL,A′

EL)

T ′
EL := {C v D | 〈C v D : κ〉 ∈ T ′ for some context κ},

A′
EL := {C(a) | 〈C(a) : κ〉 ∈ A′ for some context κ}} ∪

{r(a, b) | 〈r(a, b) : κ〉 ∈ A′ for some context κ}}.

For every contextual interpretation I = (∆I , ·I ,VI) with I |= (T ,A), we observe
that if VI |= con(O), then (∆I , ·I) |= OEL. For a given Boolean CQ q, we define

conK(q) :=
∨

OEL|=q

con(O).

From Theorem 3, we know that PK(q) = PB(con(q)). Thus, it suffices to
compute the probability of the DNF formula con(q) to obtain the probability of
the query q. Since Bayesian network inferences are PP-complete [28], and the
class PP is closed under intersection and complementation [4], it follows that
probabilistic query entailment is also in PP w.r.t. network complexity . ut

We consider now the case of combined complexity, in which the ontology, the
BN, and the query are all considered as part of the input. We show that in this
case, the complexity of probabilistic query entailment is at most PSpace.



Theorem 7. Probabilistic query entailment is in PSpace w.r.t. combined com-
plexity.

Proof. Theorem 3 ensures that to compute PK(q) it suffices to check for every
valuation W, whether KW |= q, and in case it does, compute PB(W). KW can
be constructed by adding all axioms λ to KW where 〈λ : κ〉 ∈ K and W |= κ.
This requires only linear time on both |K| and |V |. Deciding whether KW |= q
is an NP-complete problem w.r.t. the sizes of K and q. Finally, PB(W) can be
computed in time polynomial on the size of B, using the chain rule for BNs. A
PSpace algorithm avoids storing exponentially many valuations of the variables
in V simultaneously; instead iterates for each valuation independently. ut

Obviously, this result also yields a PSpace upper bound for this problem w.r.t.
KB complexity. In terms of lower bounds, Theorem 6 shows that probabilistic
query entailment is also PP-hard w.r.t. KB and combined complexity. Unfortu-
nately, we were unable to obtain tight complexity bounds for these measures.

4 Probabilistic Query Answering

In query answering we do not restrict to Boolean CQs anymore, but consider
queries that may contain distinguished variables. As described before, in this case
we are interested in finding the possible substitutions of these distinguished vari-
ables into individuals appearing in the ontology such that the resulting Boolean
CQ is entailed; these substitutions are called answers. To find all these answers,
one could simply perform a query entailment test for each of the possible sub-
stitutions. There are exponentially many such substitutions, measured on the
number of individuals in the ontology, and potentially all of them can be answer
to a given query, and receiving so many results might be uninformative to a user.
Rather than providing all possible answers to a query, we are interested in finding
a limited number of them having the highest probability of being entailed.

Let q be a query with the distinguished variables DV(q), and K = (B, T ,A)
a BEL KB. Recall that every function a : DV(q) → NI(A) defines a Boolean CQ
obtained by replacing every χ ∈ DV(q) in q with a(χ). Abusing of the notation,
we call this query a(q). We call any function a : DV(q) → NI(A) an answer to
q w.r.t. K, and define its probability as PK(a) := PK(a(q)). Clearly, since an
answer defines a Boolean CQ, computing the probability of such an answer is
exactly as hard as probabilistic query entailment in all measures considered. We
use this probability as a means to identify the most relevant answers, returning
only those that are most likely to be observed.

Definition 8 (top-k answer). Let q be a query, K be a BEL KB, and k ∈ N.
A top-k answer to q w.r.t. K is a tuple (a1, . . . , ak) of different answers to q
w.r.t. K such that (i) for all i, 1 ≤ i < k, PK(ai) ≥ PK(ai+1), and (ii) for every
other answer a, PK(ak) ≥ PK(a).

In other words, a top-k answer is an ordered tuple of the k answers that have the
highest probability. We assume that k is a constant that is fixed a priori. Thus,



it is not considered part of the input of the problem. Obviously, since different
answers may have the same degree, top-k answers are not unique. Here we are
only interested in finding one of these tuples. Stating it as a decision problem,
we want to verify whether a given tuple is a top-k answer.

Example 9. Consider the BEL KB K = (TABC,AABC,BABC) provided in Example 1
and the query q = {A(χ)} with χ ∈ DV. We are interested in identifying the top-1
answer to q w.r.t. K. Notice that both a0 : χ 7→ a and a1 : χ 7→ c are answers to q
with positive probability. Clearly, a0 is the top-1 answer since PK(a0) > PK(a1).

Assuming that the size of q and the BN B are fixed, then there are polynomi-
ally many answers to q w.r.t. K, and for each answer a, we can compute PB(a)
performing constantly many EL query entailment tests. Thus, it is possible to
verify whether (a1, . . . , ak) is a top-k answer in polynomial time w.r.t. ontology
complexity. Likewise, if the ontology and the query are constant, then we can
compute PB(a) through constantly many probabilistic inferences in the BN, as
described in the previous section. Overall, we obtain the following result.

Corollary 10. Deciding top-k answers is in PTime w.r.t. data and ontology
complexity and PP-complete w.r.t. network complexity.

We consider now the case of the combined complexity, in which all the elements
are considered as part of the input and show that our problem is at least hard
to the level coNPPP; that is a class known to be between PH (the limit of the
polynomial hierarchy) and PSpace [30]

Theorem 11. Deciding whether a tuple A is a top-k answer is coNPPP-hard
w.r.t. KB complexity.

Proof. We provide a reduction from the decision version of the maximum a-
posteriori (D-MAP) problem for BNs [17]. Formally, given a BN B over V , a
set Q ⊆ V , a context κ, and p > 0, the D-MAP problem consists of deciding
whether there exists a valuation µ of the variables in Q such that PB(κ ∧ µ) >
p. Consider an arbitrary but fixed instance of D-MAP described by the BN
B = ((V,E), Φ), the context κ, Q ⊆ V , and p > 0. We introduce a new Boolean
random variable z not appearing in V . Using this variable, we construct a
new DAG (V ′, E) with V ′ = V ∪ {z} and a new BN B′ = ((V ′, E), Φ′), where
PB′(v | pa(v)) = PB(v | pa(x)) for all v ∈ V , and PB′(z) = p. Consider the BEL
KB K = (B′, ∅,A) where

A := {〈Ax(ax) : x〉 , 〈Ax(bx) : ¬x〉 , 〈Ax(c) : z〉 | x ∈ Q}∪{〈B(a) : κ〉 , 〈B(c) : z〉},

and query q := {Ax(χx) | x ∈ Q} ∪ {B(χ)}, where all the variables are
distinguished; i.e., DV(q) = {χx | x ∈ Q} ∪ {χ}. It is easy to see that the
mapping a0 : DV(q) → {c} that maps all the distinguished variables to the
individual name c ∈ NI(A) is an answer to this query and PK(a0) = p. Moreover,
any other answer that maps any variable to c will have probability at most p,
since it can only be entailed in contexts satisfying z. Suppose that there is an



answer a such that PK(a) > p. This answer must map every variable χx to either
ax or bx and χ to a. Let µa :=

∧
a(χx)=ax

x ∧
∧

a(χx)=bx
¬x. By construction, µa

is a valuation of the variables in Q, PB(κ∧ µa) > p, and a(q) is only entailed by
valuations satisfying the context κ∧µa. Overall this means that a0 is not a top-1
answer iff there is a valuation µ of the variables in Q such that PB(κ∧µ) > p. ut

In the previous section we have shown that probabilistic query entailment
is decidable in PSpace w.r.t. combined complexity. Since PSpace is a deter-
ministic complexity class, we can in fact compute the precise probability of an
entailment using only polynomial space. To show that a tuple is not a top-k an-
swer, we can guess a new answer and show that its probability is strictly larger
than some answer in the tuple. Overall, this means that top-k query answering
remains in PSpace w.r.t. combined complexity.

Obtaining most probable answers for a query is a crucial task for the domains,
where imprecise characterizations of knowledge is necessary. The next section is
dedicated to another reasoning task that can be seen dual to top-k answers,
namely top-k contexts.

5 Most Likely Contexts for a Query

Dually to finding the most likely answers to a query, we are also interested in
finding the k most likely contexts that entail a given Boolean query q. More
precisely, suppose that we have already observed that the query q holds; then,
we are interested in finding out which is the current context. As in the previous
section, we do not consider one, but search for a fixed number of contexts that
are the most likely to hold.

As explained before, Kκ specifies the minimal conditions that must be sat-
isfied in any contextual interpretation that satisfies the context κ. If Kκ entails
the Boolean query q, then we say that q holds in context κ. We are interested
in finding out the most likely contexts in which a given query holds.

Definition 12 (top-k mlc). Let q be a CQ, K a BEL KB, and k ∈ N. κ1, . . . , κk
are top-k most likely contexts (top-k mlc) for q w.r.t. K if Kκi

entails q for all
i, 1 ≤ i ≤ k; PB(κi) ≥ PB(κi+1) for all i, 1 ≤ i ≤ k; and there is no other context
κ such that Kκ |= q and PB(κ) > PB(κk).

We illustrate top-k mlc with our continuing example. In this case, we are
interested in finding out the 2 most likely context that entail the query.

Example 13. Consider the BEL KB K and query q provided in Example 1.
Clearly all contexts κ that entail q are such that κ |= {x, y} ∨ {x, z}. The top-2
contexts are then 〈{x, y}, {x, z}〉 since PBABC({x, y}) > PBABC({x, z}) > PBABC(κ)
for any other context κ.

We show that deciding top-k mlc is tractable w.r.t. ontology complexity.
Furthermore, we obtain a coNPPP lower bound for the combined complexity
as an analogous result to top-k answer. Differently from top-k answer; for this
reasoning problem, we are able to show that this complexity bound is tight.



Theorem 14. Top-k mlc is polynomial w.r.t. data, and ontology complexity,
and coNPPP-complete w.r.t. KB and combined complexity.

Proof. If the BN is fixed, then the number of contexts is constant, and they can
be ordered w.r.t. their complexity in constant time. The top-k mlc problem is
then solved by applying a constant number of EL CQ entailment tests, yielding
a polynomial upper bound w.r.t. ontology complexity.

For the combined complexity, coNPPP-hardness is immediate since deciding
one most likely context for simple queries is already coNPPP-hard w.r.t. KB
complexity [12]. We prove that top-k mlc is in coNPPP : If a tuple is not a top-k
mlc, then guess a new context κ and show using a PP oracle that Kκ |= q and
PB(κ) > PB(κk). ut

In terms of network complexity, a PP-hardness follows easily from the com-
plexity of probabilistic entailment in BNs. The upper bound w.r.t. network com-
plexity requires polynomially many calls to a PP oracle.

Theorem 15. Top-k mlc is PP-hard and in PPP w.r.t. network complexity.

Proof. We show that top-k mlc is in PPP w.r.t. networks complexity. Recall that
if T , A and q are fixed, then there is a constant number of contexts that entail
the consequence, using only the Boolean variables that appear in T and A; call
this number `. However, the BN B may also contain other variables. If ` < k,
then we need to expand the previously found contexts with new literals from
B until enough contexts have been found. In the worst case, this would require
a polynomial number (in the size of B) of probabilistic entailments. Thus, this
algorithm only yields a PPP upper bound w.r.t. network complexity. ut

To reduce the complexity of finding the most likely contexts, we consider a
special case of the problem in which we are interested in full valuations of all the
variables in the BN B. We call this problem top-k worlds. In this case, deciding
PB(W) > PB(Wk) requires only polynomial time w.r.t. network complexity, since
the chain rule of BNs yields the probability of a valuation in polynomial time.
The problem is also easier than the top-k mlc w.r.t. the combined complexity:
simply check whether PK(W) > PK(Wk) and decide KW |= q, where the former
can be done in time polynomial and the latter is complete for the class NP.

Notice that, top-k contexts and top-k answers are dual to each other, but
they do not necessarily overlap. Consider for instance the case, where all top-k
answers to a query q are retrieved from the same context κ. In this case, top-k
contexts for q will contain other contexts than κ with the assumption that k > 1.
Top-k contexts is particularly informative where the diversity of knowledge is
important.

6 Related Work

Probabilistic query answering is an important reasoning task that has been
widely studied in different domains such as relational databases [15,18,20], RDF



Table 2: BEL reasoning problems and their complexity

Problem data ont. network KB combined

probabilistic entailment P P PP-c PP-h in PSpace

probability of an answer P P PP-c PP-h in PSpace

top-k answer P P PP-c PP-h coNPPP/PSpace

top-k mlc P P PP/PPP coNPPP-c coNPPP-c

top-k worlds P P P coNP-c coNP/Πp
2

graphs [21] and XML databases [1, 22]. As mentioned before, there are many
DL-based probabilistic ontology languages [24]. Surprisingly, only few of them
concentrate on query answering.

In the probabilistic extension of Datalog+/- [19] authors are interested in
retrieving the answers that are above a threshold value that is set a priori. In
contrast to BEL, in probabilistic Datalog+/- the underlying semantics is based
on Markov logic networks. The Prob-DL family [25] extends classical DLs with
subjective probabilities, also known as Type II probabilities [23]. The main dif-
ference with our logic is that Prob-EL introduces probabilities as a concept
constructor, whereas we allow only probabilities over axioms.

More closely related to BEL is BDL-Lite [16]. As is in BEL, BDL-Lite only
allows probabilities over axioms and conditional dependencies are represented
faithfully. However, as it has been pointed before [12], the authors use a closed
world assumption, which easily leads to inconsistencies.

7 Conclusions

In this paper we continued the analysis of the complexity of reasoning in the
Bayesian DL BEL, and considered tasks associated to conjunctive queries. Specif-
ically, we have studied the complexity of deciding probabilistic entailment of a
Boolean CQ, and of verifying that a tuple of answers to a CQ are those with
the highest probability of being entailed. Dually, we consider also the problem of
finding the most likely contexts that entail a Boolean query. All these complexity
results are summarized in Table 2.

As it can be seen from the table, if one considers only the purely logical com-
ponents of the problem (ontology complexity), then reasoning is tractable, which
is consistent with the complexity of reasoning in classical EL. The network com-
plexity is also typically the same as performing standard probabilistic inferences
over a BN. However, the complexity tends to increase if we combine these factors
and consider also the query. Unfortunately, to the best of our efforts, we were
unable to close all the gaps in the complexity results. Our conjecture is that the
KB and the combined complexity coincide in all the problems considered here;



in particular, we expect all the problems described in Table 2, with the exception
of top-k worlds, to be (co)NPPP-complete w.r.t. these two complexity measures.

The algorithm for deciding query entailment through the computation of
con(q) provides a tight upper bound for this problem w.r.t. network complexity.
However, it would be impractical to implement as it iterates over all possible
sub-ontologies. Arguably, techniques such as weighted model counting [14] would
lead towards more practical algorithms for this problem. We will explore the
possibility of extending the Bayesian ontology reasoner BORN with an efficient
query entailment service using such techniques.

The proof of hardness for top-k query answering w.r.t. combined complexity
uses a very simple query which is in fact acyclic. Thus, contrary to classical
EL [5], restricting to acyclic queries does not suffice for reducing the complexity
of reasoning. On the other hand, for simple instance queries the combined com-
plexity should not be higher than the network complexity. This claim can be
shown by adapting the proof structures from [10] to the completion-based algo-
rithm for ELO as pointed in [7]. It would be interesting to find other meaningful
restrictions that reduce the complexity of these reasoning tasks.

One important open issue is the use of partial information in our reasoning
problems, through conditioning. For example, one could be interested in finding
the context κ with the highest probability of occurring, given that a query q
holds. Notice that this problem is different from finding the most likely context
since in this case, we do not require that Kκ entails the query q.

Another future direction id to extend the framework to consider also temporal
queries over dynamic ontologies in which the probabilistic knowledge evolves over
time as described in [13].

Most of the notions and ideas presented here are independent of the logical
formalism used. Indeed, although the specific complexity bounds found are spe-
cific to the properties of the DL EL, the reasoning algorithms presented usually
require only classical query entailment tests, and hence can be adapted to other
ontological languages where these tests are decidable, without major trouble.
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12. Ceylan, İ.İ., Peñaloza, R.: Tight Complexity Bounds for Reasoning in the Descrip-
tion Logic BEL. In: Proc. of JELIA’14. LNCS, vol. 8761. Springer Verlag (2014)
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