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Abstract. In the presence of an ever growing amount of information,
organizations and human users need to be able to focus on certain key
pieces of information and to intentionally ignore all other possibly rel-
evant parts. Knowledge about complex systems that is represented in
ontologies yields collections of axioms that are too large for human users
to browse, let alone to comprehend or reason about it. We introduce the
notion of an ontology excerpt as being a fixed-size subset of an ontology,
consisting of the most relevant axioms for a given set of terms. These
axioms preserve as much as possible the knowledge about the consid-
ered terms described in the ontology. We consider different extraction
techniques for ontology excerpts based on methods from the area of in-
formation retrieval. To evaluate these techniques, we propose to measure
the degree of incompleteness of the resulting excerpts using the notion
of logical difference.

1 Introduction

Ontologies based on Description Logics (DL) [2] have become a well-established
paradigm used in the Web Ontology Language OWL [11] and by several biomed-
ical ontologies like CPO, FMA, GALEN, SNOMED CT, etc. An increasing num-
ber of ontologies of large sizes have been developed and made available in repos-
itories such as the NCBO Bioportal.1 Ensuring efficient access to the knowledge
contained in such ontologies has become an import concern.

The sheer size of some real-world ontologies is too large for human users
to browse, let alone to comprehend or reason about it. Also, for automated
reasoning systems these tasks could be challenging to accomplish within certain
resource bounds. To facilitate the reuse of the knowledge contained in ontologies,
module extraction [4] and approximate reasoning techniques [10], among others,
have been suggested.

Partially supported by German Research Foundation (DFG) within the Cluster of
Excellence ‘cfAED’.

1 http://bioportal.bioontology.org/



A moduleM of an ontology O for a signature Σ, i.e. a set of concept and role
names, is a subset of O that preserves the knowledge of the terms in Σ. The idea
is thatM can serve as a substitute for O regarding the terms in Σ. The smaller
the module compared to the size of the ontology, the better it can be understood
by a human user, and the more efficiently it can be distributed and reasoned
with. Typically, entailment-based modularity notions are considered [4]. The
meaning of the terms in Σ is preserved whenM and O give the same answers to
queries about the Σ-terms. However, this module notion allows for little control
over the number of axioms that are included in a module. Even minimal modules
can be as large as the entire ontology. To influence the size of a module, our only
option is to adapt the signature for which the module is extracted and the query
language underlying the module notion. Generally, we have that the smaller the
signature and the weaker the expressivity of the query language, the smaller the
modules of an ontology are. But no strict upper bound on the module size can
be guaranteed this way.

In this paper, we introduce the notion of an ontology excerpt as a fixed-size
subset of an ontology that captures as much as possible of the “meaning” of
the terms in a given signature. Ontology excerpts facilitate comprehension by
human users by aiding them to focus on a relatively small part of an ontology
that is relevant for a considered signature.

To evaluate the quality of ontology excerpts, we define a semantics-based
measure Gain, using Logical Difference [5], to quantify how much semantic mean-
ing is preserved in an excerpt w.r.t. the original ontology. The logical difference
is taken to be the set of queries relevant to an application domain that produce
different answers when evaluated over ontologies that are to be compared. In
this paper we are only interested in concept subsumption queries.

Using an exhaustive search to find the excerpts of an ontology that best
preserve the semantic information w.r.t. the ontology is futile as it involves com-
puting all (i.e. exponentially many) subsets of the ontology. We therefore want to
investigate the feasibility of using, among others, excerpt extraction techniques
stemming from the area of information retrieval (IR) [9], i.e. a research area
which is generally concerned with developing techniques to extract the “most
relevant” documents for a query from large data sources.

2 Preliminaries

We briefly recall basic notions related to the description logic ELH [1], modu-
larity of ontologies [4,6] and the logical difference between ontologies [5,7].

2.1 The Description Logic ELH
Let NC and NR be mutually disjoint and countably infinite sets of concept names
and role names. In the following we use A, B, X, Y , Z to denote concept names,
and r, s stand for role names. The set of EL-concepts C and the sets of ELH-
inclusions α are built according to the following grammar rules:

C ::= > | A | C u C | ∃r.C



α ::= C v C | C ≡ C | r v s

where A ∈ NC and r, s ∈ NR. ELH-inclusions that are not of the form r v s
are called EL-concept inclusions. An ELH-ontology O is a finite set of ELH-
inclusions, which are also referred to as axioms.

The semantics is defined using interpretations I = (∆I , ·I), where the do-
main ∆I is a non-empty set, and ·I is a function mapping each concept name A
to a subset AI of ∆I and every role name r to a binary relation rI over ∆I . The
extension CI of a possibly complex concept C is defined inductively as: (>)I :=
∆I , (C uD)I := CI ∩DI , and (∃r.C)I := {x ∈ ∆I | ∃y ∈ CI : (x, y) ∈ rI}.

An interpretation I satisfies a concept C, an axiom C v D, C ≡ D, or r v s
if CI 6= ∅, CI ⊆ DI , CI = DI , or rI ⊆ sI , respectively. We write I |= α if I
satisfies the axiom α. Note that every EL-concept is satisfiable. An interpreta-
tion I is a model of O iff I satisfies all axioms in O. An axiom α follows from
an ontology O, written O |= α, iff for all models I of O, we have that I |= α.

An ELH-terminology O is an ELH-ontology consisting of axioms α of the
form A v C, A ≡ C, or r v s, where A is a concept name, C an EL-concept
and no concept name A occurs more than once on the left-hand side of an
axiom. A terminology is said to be acyclic iff it can be unfolded (i.e., the process
of substituting concept names by the right-hand sides of their defining axioms
terminates).

We denote the number of axioms in an ontology O with |O|. A signature Σ
is a finite subset of NC ∪ NR. For a syntactic object X, the signature sig(X) is
the set of concept and role names occurring in X.

2.2 Logical Concept Difference

We now recall basic notions related to the logical difference [5,7] between two
EL-ontologies for EL-inclusions as query language.

Definition 1 (Concept Inclusion Difference). Let O1 and O2 be two ELH-
ontologies, and let Σ be a signature. The EL-concept inclusion difference between
O1 and O2 w.r.t. Σ is the set DiffΣ(O1,O2) of all EL-inclusions α of the form
C v D for EL-concepts C and D such that sig(α) ⊆ Σ, O1 |= α, and O2 6|= α.

In case two ontologies are logically different, the set DiffΣ(O1,O2) consists
of infinitely many concept inclusions. The primitive witnesses theorems from [5]
allow us to consider only certain inclusions of a simpler syntactic form.

Theorem 1. Let O1 and O2 be ELH-terminologies and let Σ be a signature. If
α ∈ DiffΣ(O1,O2), then either A v C or D v A is a member of DiffΣ(O1,O2),
where A ∈ sig(α) is a concept name, and C, D are EL-concepts occurring in α.

Definition 2 (Primitive Witnesses). Let O1 and O2 be ELH-terminologies
and let Σ be a signature. We say that EL-concept inclusion difference witnesses
in Σ w.r.t. O1 and O2 are concept names contained in Σ that occur on the
left-hand side of inclusions of the form A v C in DiffΣ(O1,O2) or on the right-
hand side of inclusions of the form D v A in DiffΣ(O1,O2). The set of all such
witnesses will be denoted by WtnΣ(O1,O2).



Observe that the set WtnΣ(O1,O2) is finite as Σ is finite. Consequently, it
can be seen as a succinct representation of the set DiffΣ(O1,O2) in the sense
that: DiffΣ(O1,O2) = ∅ iff WtnΣ(O1,O2) = ∅ [5]. In the remainder of this
paper, we use the size of the set WtnΣ(O1,O2) as a measure for the concept
inclusion difference between O1 and O2 w.r.t. Σ. We leave investigating alter-
native measures which allow for a possibly more faithful representation of the
logical difference for future work.

Example 1. Let O consist of the following four axioms:

α1 : A v B u ∃r.X α2 : B v A
α3 : X ≡ A uB α4 : Y ≡ B u ∃r.(X u ∃s.A)

For Σ = {A,B}, it holds that WtnΣ(O, {α1, α2}) = DiffΣ(O, {α1, α2}) = ∅ and
WtnΣ(O, ∅) = Σ as A v B,B v A ∈ DiffΣ(O, ∅). If Σ = {A, r}, we have that
WtnΣ(O,O \ {α1}) = {A} as A v ∃r.> ∈ DiffΣ(O,O \ {α1}).

Algorithms for computing the witness sets, and hence for deciding whether a
logical difference w.r.t. a signature exists, have been implemented in the CEX2.5
tool.2 Given two acyclic EL-terminologies and a signature Σ as input, CEX2.5
can compute and output the set Wtn(O1,O2) in a fully automatic way.

We still note that a new approach for computing logical differences that can
also handle large cyclic terminologies has recently been introduced [3,8].

3 Ontology Excerpts

Ontologies appear to exhibit a strong dependency between the size of a sig-
nature Σ and the size of a module for the symbols in Σ. This dependency is a
natural consequence of the structure of the ontology. We are interested in gaining
more control over the size of a module in order to be able to reuse the knowledge
contained in an ontology in a scenario where resources are restricted in terms
of cognitive ability in human users, and time and space available in technical
systems.

Definition 3 (Ontology Excerpt). Let O be an ontology and let k > 0 be a
natural number. A k-excerpt of O is a subset E ⊆ O consisting of k axioms, i.e.
|E| = k.

An ontology excerpt is a subset of the ontology of a certain size. However, we
are interested in those excerpts that preserve (as much as possible) the meaning
of the symbols in a signature of interest. To quantify the meaning of an excerpt,
we need some metric µ. We assume that the lower the value of µ for an excerpt
is, the more meaning is preserved by the excerpt. This is made precise as follows.

2 The tool is available under an open-source license from http://lat.inf.

tu-dresden.de/~michel/software/cex2/



Definition 4 (Incompleteness Measure). Let O be an ontology. An incom-
pleteness measure µ is a function that maps every triple (O, Σ, E) consisting of
an ontology O, a signature Σ, and an excerpt E ⊆ O to a non-negative natural
number.

In this paper we use as incompleteness measure µ the number ldiff(O, Σ, E) of
EL-concept inclusion difference witnesses in Σ w.r.t. O and E , which is formally
defined as ldiff(O, Σ, E) = |WtnΣ(O, E)|. In the remainder of this paper we only
consider this incompleteness measure. We leave investigating and comparing
alternative notions of incompleteness measures for future work.

Definition 5 (Best k-Excerpt). Let O be an ontology, let Σ be a signature,
and let k > 0 be a natural number. Additionally, let µ be an incompleteness
measure. A best k-excerpt of O w.r.t. Σ under µ is a k-excerpt E of O such that

µ(O, Σ, E) = min{µ(O, Σ, E ′) | E ′ is a k-excerpt of O}.

Example 2 (Ex. 1 contd.). The values ldiff(O, Σ, E) for all 2-excerpts E of O are
given in the second row of the table below.

{α1, α2} {α1, α3} {α1, α4} {α2, α3} {α2, α4} {α3, α4}
0 2 2 2 2 2

One can thus see that {α1, α2} is the best 2-excerpt of O w.r.t. Σ under ldiff.

To preserve the largest possible amount of semantic information in a k-
excerpt, it would be preferable to extract k-excerpts that have the lowest ldiff-
value among all the subsets of size k. However, it is difficult in general to compute
all such excerpts in an exhaustive way as all the

(|O|
k

)
subsets of size k would have

to be enumerated. In the next section, we give introduce two excerpt extraction
techniques and evaluate them subsequently.

4 Extraction Techniques

In this section, we introduce two different k-excerpt extraction approaches. One
is based on the simple intuition that axioms comprising more elements from Σ
should be preferred to be included in an excerpt for Σ. The other approach is
inspired by ideas from the area of information retrieval [9]: we view each axiom
in O as a document, and the input signature Σ as the set of keywords from a
query. The top-k retrieved documents for the given keywords then correspond
to a k-excerpt. These two approaches share a common methodology in the sense
that they define a “similarity” between each axiom w.r.t. a given signature such
that selecting the k axioms closest to the given signature results in a k-excerpt.
We make this idea more precise in the following definition.



Definition 6. Let O be an ontology and let Σ ⊆ sig(O). Additionally, let s be
a function that maps every pair (α,Σ) consisting of an EL-axiom α and of a
signature to a real number. We can then define a ranking of axioms w.r.t. Σ
that is induced by s as follows: α B β if and only if s(α,Σ) > s(β,Σ). Given an
integer k, we define a k-excerpt of an ontology O for a signature Σ under s as
the set {α ∈ O | |{β ∈ O | s(β,Σ) > s(α,Σ) }| ≤ k }, named a similarity based
excerpt.

A k-excerpt consists of those axioms α in O for which there are at most k−1
axioms β in O that precede α w.r.t. B. Note that such a definition leaves the
possibility that such k-excerpts of O for Σ under s can contain more than k
axioms due to an equivalent distance of several axioms w.r.t. Σ. In real-world
applications there would exist different remedies to such a situation. Since we
aim to compare different excerpt extraction techniques in this paper, we choose
to apply a random cut whenever there are more than k axioms contained in a
k-excerpt.

4.1 Common Signature based k-Excerpts

A näıve extraction method for k-excerpts w.r.t. a signature Σ simply consists in
a random selection of k axioms from the considered ontology. As a first improve-
ment of the random selection, it is possible to guide the selection of the axioms
by considering the number of concept and role names shared by an axiom and Σ,
defined formally as follows:

Definition 7. Given an axiom α and a signature Σ, the COM-similarity be-
tween α and Σ is defined as scom(α,Σ) = |sig(α) ∩ sig(Σ)|.

Example 3 (Ex. 2 contd.). Let α1, α2, α3, α4 be four axioms defined as in Ex-
ample 1 and let Σ = {A,B, r}. Then we have scom(α1, Σ) = 3, scom(α2, Σ) = 2,
scom(α3, Σ) = 2, and scom(α4, Σ) = 3. Therefore, the ranking of the axioms will
be: α1, α4 B α2, α3. The first and the last axiom are ranked higher than the
other two, but no preference between α1 and α4 (or between α2 and α3) exists.

4.2 Information Retrieval based k-Excerpts

In IR vector representations of documents and queries are a fundamental tool
to model problems, based on which different retrieval strategies can be applied.
We first define the vector representation for axioms and signatures.

In the remainder, we assume that every ontology O is associated with a strict
total order ≺ on the elements of sig(O). Whenever we want to access the i-th
signature element of O we refer to the i-element w.r.t. the assumed order ≺,
starting from the smallest element. For a signature Σ ⊆ sig(O) or axiom α ∈ O,
we can define the signature vector of Σ and the axiom vector of α as follows:

Definition 8 (Signature and Axiom Vector). For a signature Σ ⊆ sig(O),

the signature vector of Σ, written
−→
Σ = [v1, v2, · · · ], is a vector of length |sig(O)|



such that vi = 1 if the i-th element of sig(O) appears in Σ, otherwise vi = 0.

Similarly, for an axiom α ∈ O we define −→α =
−−−→
sig(α).

Example 4 (Ex. 2 contd.). Let O be the ontology defined as in Example 1, and
let Σ = {A,B, r}. We assume the strict total order ≺ ⊆ sig(O) × sig(O) given
by A ≺ B ≺ X ≺ Y ≺ r ≺ s. Then we obtain the following signature vector
for Σ and axiom vectors for each axiom of O:

−→
Σ = [1, 1, 0, 0, 1, 0] −→α1 = [1, 1, 1, 0, 1, 0] −→α2 = [1, 1, 0, 0, 0, 0]

−→α3 = [1, 1, 1, 0, 0, 0] −→α4 = [1, 1, 1, 1, 1, 1]

Then we can define the distance of an axiom and a set of signature by the
distances measures between the axiom and signature vectors. A first measure is
the cosine value, resulting in the COS-k-module.

Definition 9 (COS-distance between Axiom and Signature). Given an
axiom α and a signature set Σ, the COS-distance between α and Σ is defined as
follows:

dcos(α,Σ) = cos(−→α ,
−→
Σ ) =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

,

where −→α = [x1, x2, ..., xn] and
−→
Σ = [y1, y2, ..., yn].

Example 5 (Ex. 4 contd.). Let O be the ontology defined as in Example 1, let
≺ be the total order on sig(O) as defined in Example 4, and let Σ = {A,B, r}.
Then we have that:

dcos(α1, Σ) = 3/(
√

4
√

3) ≈ 0.8660 dcos(α2, Σ) = 2/(
√

2
√

3) ≈ 0.8164

dcos(α3, Σ) = 2/(
√

3
√

3) ≈ 0.6667 dcos(α4, Σ) = 3/(
√

6
√

3) ≈ 0.707

Therefore, the ranking of the axioms will be α1 B α2 B α4 B α3.

5 Evaluation

In this section, we present a first evaluation of the proposed excerpt extraction
techniques. To this end, we implemented the previously introduced excerpt ex-
traction methods, and we compared them on the following real-world biomedical
ontologies with the help of a normalized evaluation metric based on ldiff.

We consider four prominent biomedical ontologies: SNOMED CT (SM) from
IHTSDO3 (first release of 2012), MESH4, NCBI5 and NCI6 (version 10.02d).
Table 1 presents the metrics of these ontologies, including the number of logical
axioms as well as the number of concept names and role names.

3 http://www.ihtsdo.org/snomed-ct/
4 http://bioportal.bioontology.org/ontologies/MESH
5 http://bioportal.bioontology.org/ontologies/NCBITAXON
6 http://evs.nci.nih.gov/ftp1/NCI_Thesaurus/



SM MESH NCBI NCI SM-f MESH-f NCBI-f

Nr. of logical axioms 291156 403210 847755 75239 50034 49991 51879
Nr. of concepts 291145 286380 847760 76708 50520 50888 82778
Nr. of roles 62 0 0 124 62 0 0

Table 1: Metrics of the Considered Ontologies

5.1 Experimental Setup

In our experiments, for the four considered biomedical ontologies SNOMED CT,
MESH, NCBI, and NCI, we first removed non-EL axioms from them to be able
to use the CEX2.5 tool to compute ldiff values. Note that, however, the proposed
extraction techniques can operate on ontologies formulated in any DL. To speed
up the experiments, we then selected fragments of SM, MESH, and NCBI, which
will be denoted using a ‘-f’ suffix as given in Table 1.

As baseline, we use a random choice strategy which randomly selects k ax-
ioms from an input ontology to extract a k-excerpt. To estimate the quality of
excerpts E , we made use of the following metric, named Gain (G), which is based
on the ldiff measure:

GO(E , Σ) = 1− ldiff(O, Σ, E)

|Σ ∩ sig(O) ∩ NC|
.

That is, Gain is inverse to ldiff normalized by the total number of possible witness
concept names. Intuitively, the higher the Gain value of an excerpt E for a
signature Σ is, the more semantic information is preserved by E .

5.2 Results

The four charts in Figure 1 report on the results for the different excerpt ex-
traction techniques on the considered ontologies. The values along the x-axis in
each chart represent the parameter k, i.e. the excerpt size, whereas the Gain
value of the corresponding k-excerpts is shown along the y-axis. The excerpts
were generated for each ontology w.r.t. one randomly generated signature, con-
taining 100 concept names and 30–50 role names in the case of SM and NCI,
and 1 000 concept names and no role names for the remaining two ontologies.
The vertical line in each chart represents the size of the locality-based module
for the signatures.

From the charts 1(a)–1(d) one can see that the Gain values for IR-based
excerpts are higher than or equal to the values for other excerpt extraction
strategies. In the case of the NCBI and MESH ontologies, one can observe that
the ComSig- and IR-based excerpts result in the same Gain values. Indeed, these
two strategies yield the same axiom ranking if the signature of all the axioms
contains the same number of signature elements, which is the case for NCBI and
MESH (each axiom is of the form A v B for concept names A and B). In all, we
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Fig. 1: Gain-Measure for k-Excerpts of Various Ontologies
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Fig. 2: Distribution of 93170 Random Excerpts over Respective ldiff-Values

can conclude that the excerpts produced by the IR-technique consistently have
higher Gain values than excerpts obtain by using the other two methods on the
tested ontologies and signatures.

To better understand the distribution of Gain values that we have observed
for the ontology MESH (cf. Chart 1(c)), we performed an experiment in which
we randomly extracted excerpts and computed their ldiff-value w.r.t. a consid-
ered signature containing 5 000 concept names and no role names such that the
corresponding locality-based module contained 1610 axioms. To limit the search
space, we selected a subset of MESH containing 2 491 axioms, from which we
randomly extracted 93 170 many k-excerpts, for k = 100. Indeed, for an ontol-
ogy of that size and a k-value of 100, there exist around 6.2× 10180 k-excerpts,
which renders an exhaustive search through all the excerpts impossible. The re-
sults that we obtained are summarized in Table 2. The total number of possible



Nr. of
Excerpts

ldiff-Value Intervals

[1 419, 1 420] [1 421, 1 425] [1 426, 1 430] [1 431, 1 435] [1 436, 1 440] [1 441, 1 448]

6.2× 10180 2.14× 10−5 0.16 3.45 19.26 56.03 21.10

Table 2: Percentage of k-Excerpts Falling into Various ldiff-Value Intervals

k
Nr. of
Excerpts

ldiff-Value Intervals

[0, 2] [3, 5] [6, 8] [9, 11] [12, 14] [15, 17] [18, 20] [21, 23]

1 19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
2 171 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
3 969 0.00 0.00 0.00 0.00 0.00 0.00 0.10 99.90
4 3 876 0.00 0.00 0.00 0.00 0.00 0.00 0.52 99.48
5 11 628 0.00 0.00 0.00 0.00 0.00 0.02 1.52 98.46
6 27 132 0.00 0.00 0.00 0.00 0.00 0.10 3.46 96.44
7 50 388 0.00 0.00 0.00 0.00 0.03 0.34 6.67 92.97
8 75 582 0.00 0.00 0.00 0.00 0.10 0.87 11.45 87.58
9 92 378 0.00 0.00 0.00 0.00 0.31 1.94 17.89 79.87

10 92 378 0.00 0.00 0.00 0.00 0.78 3.96 25.58 69.68
11 75 582 0.00 0.00 0.00 0.00 1.78 7.63 33.31 57.28
12 50 388 0.00 0.00 0.00 0.05 3.83 13.79 38.80 43.52
13 27 132 0.00 0.00 0.00 0.35 8.10 22.56 39.18 29.81
14 11 628 0.00 0.00 0.01 1.94 16.10 31.49 32.68 17.78
15 3 876 0.00 0.00 0.70 7.22 27.73 34.73 20.92 8.69
16 969 0.00 0.00 4.75 19.09 37.36 26.73 8.98 3.10
17 171 0.00 2.34 18.71 34.50 31.58 10.53 1.75 0.58
18 19 0.00 36.84 31.58 26.32 5.26 0.00 0.00 0.00
19 1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Percentage of k-Excerpts Falling into Various ldiff-Value Intervals

k-excerpts is given in the first column, and the ldiff-values that we observed,
except for the value 1 416, were regrouped into several intervals that are shown
in the 6 right-most columns of the table. The percentage of k-excerpts whose
ldiff-value fell into the respective intervals is shown in the second row of these
columns.

Figure 2 shows the distribution of the Gain value over the 93 170 excerpts
of the MESH fragment, i.e. each bar in the chart shows the number of excerpts
that have the ldiff-value shown on the x-axis that is associated with the bar
(no excerpts having an ldiff-value of 1435 or 1445 were found). We note that
the excerpt extracted using the IR-technique had a Gain value (lowest ldiff-value
of 1 416) that was higher than the values of all the random excerpts we extracted.

Judging from the experimental results that we obtained so far, one could draw
the conclusion that excerpts produced by the IR-technique appear to result in



high Gain values (i.e. low ldiff-values) in general. To test this hypothesis, we
conducted another experiment in which we limited the size of the ontology in
such a way that an exhaustive enumeration of all its excerpts is feasible.

We performed an exhaustive computation of all the k-excerpts, with 1 ≤
k ≤ 19, together with the ldiff-values of a fragment Of of SNOMED CT that
contains 19 axioms, using Σ = sig(Of ) as signature. For every 1 ≤ k ≤ 19
we also computed the excerpt returned by the IR method for Σ. The results
that we obtained are shown in Table 3. The first column indicates the value
of k and the total number of possible k-excerpts is given in the second column.
The 24 ldiff-values that we observed were then regrouped into 8 intervals of
three elements, and the percentage of k-excerpts whose ldiff-value fell into the
respective intervals is shown in the last 8 columns. The interval that contained
the ldiff-value for the excerpt computed by the IR-method is indicated using a
background coloured in gray. One can see that in none of the cases for k < 19,
the k-excerpt obtained using the IR-based technique had the lowest ldiff-value. In
other words, the IR-based technique fails to extract the best excerpt for k < 19.

The previous experiment has thus established that our hypothesis was wrong,
i.e. the IR-based technique cannot guarantee to find the best excerpts in every
case. Moreover, we can derive an ever stronger conclusion using the following
example.

Example 6. Let O consist of the following three axioms:

α1 : A1 v B1 u ∃r.X, α2 : A3 v A2 uB3, α3 : A2 v B2

Let Σ = sig(O). Then the ldiff-values for all 1- and 2-excerpts of O are respec-
tively shown in the left- and right-hand side of the table below.

{α1} {α2} {α3}
ldiff 4 5 6

{α1, α2} {α1, α3} {α2, α3}
3 4 2

The COS-distance between each of the three axioms αi and Σ is as fol-
lows (using an implicit order on the signature elements): dcos(α1, Σ) ≈ 0.707,
dcos(α2, Σ) ≈ 0.612, dcos(α3, Σ) = 0.5. Thus, we obtain the following IR-ranking
for the axioms: α1 B α2 B α3. Although the best 1-excerpt is {α1}, the best
2-excerpt is given by {α2, α3} without having the highest ranked axiom α1.

As the example shows, an extraction technique that is based on assigning
a unique and static (i.e. independent of the excerpt size k) ranking to all the
axioms contained in the input ontology cannot be used to extract the best k-
excerpts for every value of k. We conjecture that the size parameter k has to be
an input parameter to any algorithm that aims at extracting best excerpts for
a given signature.

6 Conclusion

We have introduced the notion of ontology excerpts as a fixed-size subset of an
input ontology w.r.t. a signature of interest. We have presented several strategies



for excerpt extraction and we evaluated them based on how well the resulting ex-
cerpts capture the knowledge about the input signature. The extraction strategy
based on IR-techniques clearly outperformed the others in our experiments in-
volving large ontologies. However, this work is a first application of IR-techniques
to excerpt extraction. A more extensive evaluation is needed to investigate the
advantages of IR-techniques.

We also showed, however, that a static axiom ranking technique (assigning
unique rankings) cannot be used in general to obtain best excerpts for every
excerpt size. We leave finding an algorithm for computing best excerpts as future
work, for which we want to investigate the use of simulation-based techniques
that are capable of identifying logical differences [3,8].
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