
Similarity-based Relaxed Instance Queries

Andreas Eckea,∗, Rafael Peñalozaa,b, Anni-Yasmin Turhana

aInstitute for Theoretical Computer Science, Technische Universität Dresden
bCenter for Advancing Electronics Dresden

Abstract

In Description Logics (DL) knowledge bases (KBs), information is typically captured by clear-cut
concepts. For many practical applications querying the KB by crisp concepts is too restrictive;
a user might be willing to lose some precision in the query, in exchange of a larger selection of
answers. Similarity measures can offer a controlled way of gradually relaxing a query concept
within a user-specified limit.

In this paper we formalize the task of instance query answering for DL KBs using concepts
relaxed by concept similarity measures (CSMs). We investigate computation algorithms for this
task in the DL EL, their complexity and properties for the CSMs employed regarding whether
unfoldable or general TBoxes are used. For the case of general TBoxes we define a family of
CSMs that take the full TBox information into account, when assessing the similarity of concepts.

Keywords: Description Logics, instance queries, concept similarity measures

1. Introduction

Description Logics (DLs) are a family of knowledge representation formalisms that have un-
ambiguous logic-based semantics. Each particular DL is characterized by a set of concept con-
structors, which allow to build complex concepts. Intuitively, concepts characterize categories
from an application domain. In addition, binary relations on the domain of interest can be cap-
tured by roles. These in turn can be used to build more complex concepts with the help of a class
of concept constructors. The terminological knowledge of an application domain is stored in the
TBox, that expresses the relationships between concepts. Facts from the application domain and
relations between them are represented by assertions about individuals in the ABox. TBox and
ABox together form the DL knowledge base (KB).

The formal semantics of DLs allow the definition of a variety of reasoning services. The
most prominent ones are subsumption, i.e. to compute whether a sub-concept relationship holds
between two concepts and instance query answering, where for a given concept all individuals
from an ABox that are instances of the query concept are computed. These reasoning services are
implemented in highly optimized reasoning systems, see for example [1–4].

∗Corresponding author
Email addresses: ecke@tcs.inf.tu-dresden.de (Andreas Ecke), penaloza@tcs.inf.tu-dresden.de

(Rafael Peñaloza), turhan@tcs.inf.tu-dresden.de (Anni-Yasmin Turhan)

Preprint submitted to Journal of Applied Logic January 11, 2015

DLs of varying expressivity are the underlying logics for the W3C standardized ontology lan-
guage OWL 2 and its profiles [5]. This standardization has led to an increased use of DLs and DL
reasoning systems in the recent years in many application areas. By now there is a large collection
of KBs written in these languages. However, many applications need to query the knowledge base
in a more relaxed manner. For instance, in the application area of service matching OWL TBoxes
are employed to describe types of services. Here, a user request for a service specifies several
requirements for the desired service. These conditions are represented by a complex concept.
For such a concept the OWL ABox that contains the individual services is searched for a service
matching the specified request by performing instance query answering. In cases where an exact
match with the provided requirements is not possible, a ‘feasible’ alternative should be retrieved
from the ABox containing the services to be able to offer an alternative. Essentially, for a given
query concept, the system should retrieve all those individuals of the ABox that fulfill the main
requirements, while allowing a relaxation of some of the less crutial requirements.

A natural idea on how to relax the notion of instance query answering is to simply employ
fuzzy DLs and perform query answering on a fuzzy variant of the initial query concept. However,
on the one hand reasoning in fuzzy DLs easily becomes undecidable [6–8] and on the other hand
depending on the user and on the request, different ways of relaxing the query concept are needed.
For instance, for a request to a car rental company to rent a particular car model in Beijing, it might
be acceptable to get an offer for a similar car model to be rented in Beijing, instead of getting the
offer to rent the requested car model in London. Whereas for a handicapped user in a wheelchair
it might not be acceptable to relax the requested car model from a two-door one to a four-door
one. Fuzzy concepts would relax the initial concept in an unspecific and uniform way. In contrast,
relaxed instance query answering should allow to

1. choose which aspects of the query concept can be relaxed and

2. choose the degree to how much these aspects can be relaxed.

The reasoning service addressed in this paper is a relaxed notion of instance querying, such that it
allows for a given query concept the selective and gradual extension of the answer set of individ-
uals. We develop a formal definition of this reasoning service in Section 3.

The selective and gradual relaxation of the answer sets returned by instance query answering is
achieved by the use of concept similarity measures. A concept similarity measure (CSM) yields,
for a pair of concepts, a value from the interval [0, 1]—indicating how similar the concepts are.
To answer a relaxed instance query is to compute for a given concept C, a CSM ∼ and a degree t
between 0 and 1, a set of concepts such that each of these concepts is similar to C by a degree of
at least t, if measured by the CSM ∼, and then finding all their instances.

Concept similarity measures are widely used in ontology-based applications. In the bio-
medical field, for example the Gene ontology [9], they are employed to discover functional sim-
ilarities of genes (see e.g. [10, 11]). Furthermore, CSMs are used in ontology alignment algo-
rithms [12]. For DLs there exists a whole range of CSMs , which could be employed for the task
of answering relaxed instance queries [13–16]. In particular the CSMs generated by the frame-
work described in [15] allow users to specify which part of the vocabulary used in their knowledge
base is to be regarded more important when it comes to the assessment of similarity of concepts.
Thus, the measures generated by this framework naturally allow users to select important features

2

of the query concept and which aspect of the query concept to relax.
We investigate algorithms for computing answers to instance queries relaxed by CSMs for the

light-weight DL EL. Our choice for the DL EL is motivated by the fact that reasoning in EL has
good computational properties—most standard reasoning problems can be solved in polynomial
time [17]. Large, well-known bio-medical ontologies such as the Gene Ontology [9] or SNOMED
[18] are written in (polynomial extensions of) EL. Furthermore, EL is a fragment of the DL that
corresponds to the OWL 2 EL profile, which is part of the W3C standard for an ontology language
for the Semantic Web [5] and thus widely used in practice.

The contributions presented in this paper are the following: after the formal definition of the
reasoning task of interest, namely answering relaxed instance queries, we investigate reasoning
algorithms for it in two settings:

1. Computing relaxed instances w.r.t. EL-terminologies
This setting has initially been investigated by us in [19]. Terminologies are a simple kind
of TBox that allows to treat the TBox information in a preprocessing step. By far most
CSMs are defined for this kind of TBoxes. We identify formal properties of CSMs that
allow to compute relaxed instances and devise an algorithm to compute relaxed instances
for unfoldable TBoxes w.r.t. CSMs that enjoy these properties.

2. Computing relaxed instances w.r.t. general EL-TBoxes
This setting was recently explored by us in [20]. To the best of our knowledge there are
hardly any CSMs for DLs defined in the literature that take the whole information of general
TBoxes into account. In [21] a CSM in regard of general TBoxes is defined, but it uses only
the subsumption information between named concepts. We define a family of CSMs ∼c that
is founded on (a similarity measure for) the canonical interpretations of general EL-TBoxes.
We show that members of this family of CSMs have certain formal properties. We give a
computation algorithm for relaxed instances w.r.t. general TBoxes that rely on the shown
formal properties for the CSM ∼c.

The paper is structured as follows: in the next section we give the preliminaries on Descrip-
tion Logics, in particular EL, and on concept similarity measures. In Section 3 we describe our
approach for relaxed instance queries, and define this reasoning task formally. In Section 4 we
develop a computation algorithm for answering relaxed instance queries for concepts defined in
EL-terminologies and give an upper bound for its complexity. Then, in Section 5, we turn to con-
cepts defined w.r.t. general EL-TBoxes and define the CSM ∼c based on canonical interpretations
of general EL-TBoxes, show some of its formal properties. We devise a computation algorithm
for computing relaxed instances w.r.t. general EL-TBoxes, where these properties are employed.
As usual we end with some conclusions and considerations for future work. Due to their length,
the proofs for Section 5 appear in the appendix.

2. Preliminaries

In this section we first give a brief introduction to the main notions of Description Logics,
knowledge bases, and different inference problems defined for them. Afterwards, we introduce
concept similarity measures and their relevant properties.

3

2.1. The Description Logic EL
For the scope of this paper, we consider only the description logic EL, which we briefly intro-

duce next. For a broader introduction to DLs we refer the reader to [22, 23].
The DL EL is a light-weight DL, which has limited expressivity, but nice computational prop-

erties as it allows for reasoning in polynomial time [17].

Definition 2.1 (EL-concepts). Let NC and NR be countably infinite disjoint sets of concept names
and role names, respectively. The set of EL-concepts is the smallest set such that

• all concept names A ∈ NC are EL-concepts;

• the top-concept > is an EL-concept;

• if C and D are EL-concepts, then C u D is also an EL-concept;

• if C is an EL-concept and r ∈ NR, then ∃r.C is also an EL-concept.

The set of all EL-concepts is denoted by C(EL).

The semantics of this logic is defined by means of interpretations I = (∆I, ·I) consisting
of a non-empty domain ∆I and an interpretation function ·I that assigns binary relations on ∆I

to role names and subsets of ∆I to concept names. The interpretation function is recursively
extended to (complex) EL-concepts as shown in the upper part of Table 1. We denote the set of
all interpretations as I.

A pointed interpretation p = (I, d) consists of an interpretation I ∈ I, and an element d ∈ ∆I.
P is the set of all pointed interpretations, i.e., P := {(I, d) | I ∈ I, d ∈ ∆I}. Given a pointed
interpretation p = (I, d), the set of all EL-concepts that have d as an instance in I is the concept
set of a pointed interpretation C(p) = {C ∈ C(EL) | d ∈ CI}. When considering the complexity of
reasoning for concepts, the size or the role-depth of a concept are commonly taken as input size.
The size |C| of a given EL-concept C is defined as:

|C| :=

1 if C ∈ NC ∪ {>}

1 + |D| if C = ∃r.D
|C1| + |C2| if C = C1 uC2

The role-depth rd(C) of a given EL-concept C is defined as:

rd(C) :=

0 if C ∈ NC ∪ {>}

1 + rd(D) if C = ∃r.D
max{rd(C1), rd(C2)} if C = C1 uC2

In DLs, one is not only interested in expressing concepts, but in representing the knowledge
about them. This knowledge is encoded using different kinds of axioms. Concept axioms, dis-
played in the middle part of Table 1, express relationships between concepts. A concept definition
assigns a concept name to a (complex) concept and general concept axioms (GCIs) state that one
concept is implied by another. An EL-TBox T is a finite set of such concept axioms. An unfold-
able TBox, also called a terminology, is a set of concept definitions such that

4

Syntax Semantics

Concepts
concept name A AI ⊆ ∆I

top concept > >I = ∆I

conjunction C u D (C u D)I = CI ∩ DI

existential restriction ∃r.C (∃r.C)I = {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}

TBox axioms
concept definition A ≡ C AI = CI

general concept axiom C v D CI ⊆ DI

ABox assertions
concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI, bI) ∈ rI

Table 1: Concept constructors, TBox axioms and ABox assertions for EL.

• each concept name occurs at most once on the left-hand side of a concept definition and

• there are no cyclic dependencies between defined concepts, i.e., no concept name is defined
in direct or indirect reference to itself.

Note that concept inclusions of the form A v C can be incorporated into unfoldable TBoxes as a
concept definition A ≡ C u X by simply adding a new concept name X, so long as the left-hand
side is only a concept name and the resulting TBox is still acyclic. Any model of the original TBox
can then be converted into a model of the new unfoldable TBox by simply giving X an appropriate
interpretation and vice versa, so this transformation preserves all standard reasoning tasks.

TBoxes store the intensional knowledge of the categories from the application domain. In a
terminology, the (complex) concepts on the right-hand sides are abbreviated by the concept names
appearing on the left-hand side of the definition.

Example 2.2. Terminologies can be used to encode knowledge from the service matching domain
as follows:

Tex =
{

Server ≡ Computer u ∃provides.Service u

∃hasLatency.Amount u ∃hasLoad.Amount,

VideoStreamService v Service u ∃hasQuality.Amount u

∃hasFeature.VideoStreamFeature,

Seekable v VideoStreamFeature,

Low v Amount,

Medium v Amount,

High v Amount
}

Besides clients, also services can use other services. For example, one can define restricted ser-
vices that only work for registered users by relying on an external login-service. Similarly, a

5

login-service would be a special type of service that provides the credentials of the users to those
restricted services.

Tex2 = Tex ∪
{

RestrictedService ≡ Service u ∃dependsOn.LoginService,

LoginService ≡ Service u ∃providesCredentialsTo.RestrictedService
}

This TBox is no longer unfoldable, since it contains a cycle.

The semantics of interpretations is extended to TBox axioms as shown in Table 1. More
precisely, the interpretation I satisfies the concept definition A ≡ C iff AI = CI, and satisfies the
GCI C v D iff CI ⊆ DI. The interpretation I is a model of the TBox T , if it satisfies all concept
axioms in T .

Knowledge about facts is expressed using individuals and assertional axioms. We consider a
countably infinite set NI of individual names, which is disjoint with both NC and NR. The notion
of interpretation I = (∆I, ·I) is extended such that the interpretation function ·I additionally maps
each individual name a ∈ NI to an element of ∆I. A concept assertion is a statement of the form
C(a) where a ∈ NI and C is a concept. A role assertion is a statement of the form r(a, b) where
r ∈ NR and a, b ∈ NI . The semantics of these assertions are displayed at the bottom of Table 1.
Extensional knowledge about facts is collected in an ABox,which is a finite set of concept and role
assertions. An interpretation I is a model of the ABox A, if it satisfies all assertions in A. An
EL-knowledge base is a pair K = (T ,A) consisting of an EL-TBox T and an EL-ABox A. The
interpretation I is a model of a knowledge base K = (T ,A) if it is a model of both T andA.

Typical reasoning problems in DLs are to decide consistency of a KB, subsumption between
concepts, and checking whether an individual is an instance of a concept. A KB is consistent if it
has a model. Since EL is not capable of expressing contradictions, testing consistency is trivial in
this logic. Concept subsumption is the problem of deciding whether a concept C is subsumed by a
concept D w.r.t. a TBox T (denoted by C vT D), i.e. whether CI ⊆ DI holds for all models I of
T . Similarly, two concepts C and D are equivalent w.r.t. T (denoted as C ≡T D), iff C vT D and
D vT C. An individual a is an instance of a concept C w.r.t. a KB K (denoted by K |= C(a)) iff
aI ∈ CI for all models I ofK . Given a KBK = (T ,A) and a concept C, an instance query returns
all individuals from A that are instances of C. In this paper we are interested in a generalization
of instance queries. Rather than finding all instances of a given concept C, we aim to compute the
instances of all concepts D that are sufficiently similar to C; to achieve this, we relax the query
concept.

It is known that all these standard inferences can be characterized by means of simulations
between interpretations [24]. These simulations basically outline the indistinguishable elements
in the domains of two interpretations.

Definition 2.3 (simulation). Let I andJ be interpretations. A relation S ⊆ ∆I×∆J is a simulation
between I and J , if the following two conditions hold:

1. For all (d, e) ∈ S and A ∈ NC, if d ∈ AI then e ∈ AJ .

2. For all (d, e) ∈ S , r ∈ NR and (d, d′) ∈ rI, there is an (e, e′) ∈ rJ with (d′, e′) ∈ S .

Given two pointed interpretations p = (I, d) and q = (J , e), we say that
6

• p simulates q (denoted by p . q), if there exists a simulation S ⊆ ∆I × ∆J between I and
J with (d, e) ∈ S , and

• p and q are equisimilar (denoted by p ' q), if p . q and q . p.

There is a strong connection between simulations between pointed interpretations and their con-
cept sets, as described in the following theorem.

Theorem 2.4 (By Lutz and Wolter [24]). Let p, q ∈ P. Then:

1. p . q iff C(p) ⊆ C(q), and

2. p ' q iff C(p) = C(q).

For the DL EL, most reasoning procedures rely on the fact that canonical models can be
built, from which it is possible to read entailments directly. Before we can formally define these
canonical models, we need to introduce some notation. If X is a concept description, TBox, ABox,
or KB, then:

• Sig(X) denotes the signature of X; that is, the set of concept, role, and individual names
appearing in X, and

• sub(X) is the set of all sub-concepts of concepts occurring in X.

Definition 2.5. (canonical models) Let C be an EL-concept and K = (T ,A) an EL-KB. The
canonical model IC,T = (∆IC,T , ·IC,T) of C w.r.t. the TBox T is defined as follows:

• ∆IC,T = {dC} ∪ {dD | ∃r.D ∈ sub(C) ∪ sub(T)}

• AIC,T = {dD | D vT A}, for all concept names A, and

• rIC,T = {(dD, dE) | D vT ∃r.E} for all role names r.

The canonical model IK = (∆IK , ·IK) of the KB K = (T ,A) is defined as follows:

• ∆IK = {da | a ∈ Sig(A) ∩ NI} ∪ {dC | ∃r.C ∈ sub(A) ∪ sub(T)},

• AIK = {dD | D vT A} ∪ {da | K |= A(a)},

• rIK = {(dD, dE) | D vT ∃r.E} ∪ {(da, dD) | K |= ∃r.D(a)} ∪ {(da, db) | r(a, b) ∈ A}.

Note that canonical models for EL are always finite. The canonical model IC,T is in some sense a
compact representation of the most general model for C and T ; for any other model J of T with
an d ∈ CJ , (I, d) can be simulated by dC in IC,T . Similarly, for any model J of K with d = aJ

for an individual a, (J , d) is simulated by da in IK .

Theorem 2.6 (By Lutz and Wolter [24]). Let T be an EL-TBox, C and D be EL-concepts. Then:

1. for all models I of T and all elements d ∈ ∆I holds d ∈ CI iff (IC,T , dC) . (I, d); and

2. C vT D iff dC ∈ DIC,T (or equivalently: D ∈ C((IC,T , dC))) iff (ID,T , dD) . (IC,T , dC).

When testing whether a given individual is a relaxed instance, we need to compute ‘the best-
fitting EL-concept’ that has the individual as an instance. This can be realized by the task of
computing the most specific concept.

7

Definition 2.7 (most specific concept). Let K = (T ,A) be a KB and a an individual from A. A
concept C is the most specific concept (msc) of a w.r.t. K (denoted mscK (a)) if it satisfies:

1. K |= C(a), and

2. for any concept D, K |= D(a) implies C vT D.

A concept C is the role-depth bounded most specific concept (k-msc) of a w.r.t. k ∈ IN and K
(denoted k-mscK (a)) if it satisfies:

1. rd(C) ≤ k,

2. K |= C(a), and

3. for any concept D with rd(D) ≤ k, K |= D(a) implies C vT D.

In general, the msc does not need to exist [25], if the ABox or the TBox contains any cycles.
The k-msc however always exists, since the role-depth bound will cut off any cycles at the depth
k. Both the msc, if it exists, and the k-msc are unique up to equivalence in EL [26]. Algorithms
for computing the k-msc in EL, and some of its extensions, have been studied [26, 27], and
implemented [2].

2.2. Concept Similarity Measures
A concept similarity measure for concepts written in an arbitrary DL L is a function ∼ :

C(L)×C(L)→ [0, 1],1 such that C ∼ C = 1 for all concepts C ∈ C(L). A value C ∼ D = 0 means
that the concepts C and D are totally dissimilar, while a value of 1 indicates total similarity.

A set of properties for CSMs, which are well-established properties for similarity measures
collected from the literature or built on reasoning services for DLs, was presented in [15]. The
framework devised in [15] allows to construct CSMs for EL-concepts (possibly defined w.r.t.
unfoldable TBoxes) that have these formal properties by instantiating the functions used in the
framework. Such CSMs can be the basis for relaxed instance queries, if computed for concepts
defined w.r.t. a (possibly empty) unfoldable TBox.

In this paper we also investigate CSMs for EL-concepts defined w.r.t. general TBoxes. To the
best of our knowledge there is no CSM to be found in the literature that takes all information from
a general TBoxes into account. We extend the definition of the properties of CSMs from [15] to
the case where general TBoxes are used.

Definition 2.8. Let T be a TBox. Then a concept similarity measure ∼ : C(EL)×C(EL)→ [0, 1]
w.r.t. T can have the following properties:

• symmetric, iff C ∼ D = D ∼ C;

• equivalence invariant, iff for all C ≡T D and all concepts E it holds that C ∼ E = D ∼ E;

• equivalence closed, iff C ≡T D⇐⇒ C ∼ D = 1;

• bounded, iff the existence of E , > with C vT E and D vT E implies C ∼ D > 0;

1We generalize the previous notation and denote as C(L) the set of all concepts that can be built in the DL L.

8

• dissimilar closed, iff C,D , > and there is no E , > with C vT E and D vT E implies that
C ∼ D = 0;

• subsumption preserving, iff C vT D vT E implies C ∼ D ≥ C ∼ E;

• reverse subsumption preserving, iff C vT D vT E implies D ∼ E ≥ C ∼ E,

These formally defined properties make the outcome of a CSM with these properties more
predictable for ontology users. The measures described in [15, 16] fulfill most of these properties.
The parameterizable similarity measures from [15] additionally allow users to calibrate the mea-
sure to fit their expectations. In our setting of relaxed instance queries these parametrizable CSMs
enable users to specify which features of query concepts can be relaxed and which should be kept.

3. Relaxed Instance Queries

In this section we introduce the main reasoning problem that we investigate; namely, answering
instance queries which are relaxed through a CSM. We also provide a first approach for solving
this problem.

Our main goal is to generalize query answering to allow for more relaxed solutions. Intuitively,
given a concept C, we are not only interested in finding all the certain instances of C, but also those
individuals that are close to being instances of C; we call these individuals the relaxed instances
of C. Our motivation, as explained earlier, comes from the fact that users might be willing to loose
some of the properties of the query concept to obtain a larger sample of answers. However, these
answers must be as close to the original query C as possible.

Clearly, there exist many different ways in which one can define the relaxed instances of a
concept, depending on the notion of ‘closeness’ used, and on the degrees of liberty allowed for the
generalization of the query. One natural approach would be to try to decide which individuals are
similar to any of the certain instances of C. Such a method requires a similarity measure defined
over the elements of the domain, rather than on the concepts. A DL with a similarity measure over
the domain elements was introduced in [28]. However, for this DL the similarity measure (or more
precisely, a distance metric) is part of the interpretation and cannot be adjusted to different user
needs. We propose an approach based on instance similarity measures in Section 5.

A different idea that has been proposed is to simply generalize the concept C by considering
named concepts that subsume C. In other words, to find the relaxed instances of C, one simply
needs to compute the certain instances of every concept name A that subsumes C in a minimal
way. This idea is easy to implement and understand, but provides only very rough approximations
to the concept C determined by the set of concept names only. Moreover, users have no control
on the quality of the approximation provided; in fact even the direct subsumers might describe a
concept that is already very dissimilar to C.

A different idea would be to use different degrees of membership, as done for fuzzy and rough
DLs. Relaxed instances of the concept C would be those with a large membership degree to C
in the former case, and those that are indiscernible from any certain instance of C in the latter.
Query answering over fuzzy DLs has been studied (see e.g. [29–31]), although not as thoroughly
for the DL EL. On the other hand, research on rough DLs is quite scarce, and to the best of

9

CI

∆I

Figure 1: Relaxed instances w.r.t. two different CSMs, represented by continuous and dashed lines, respectively.
Darker colors represent the relaxed instances of C w.r.t. higher degrees t.

our knowledge, the development of query answering techniques for those logics is only at its
beginning [32]. The main drawback for these approaches is that that they allow

We follow a different approach, in which we ask for the instances of those concepts that are
similar to C. We can then control how inclusive the relaxed instance solutions should be, by
adjusting the degree t of similarity allowed. Obviously, the definition of this inference does not
depend on the specific DL used. Hence, we define relaxed instances in general, although we
investigate it only for EL throughout this paper.

Definition 3.1 (relaxed instance). Let L be a DL, C be an L-concept, ∼ a concept similarity
measure over L-concepts, and t ∈ [0, 1). The individual a ∈ NI is a relaxed instance of C w.r.t.
the L-knowledge base K , ∼ and the threshold t (denoted by a ∈∼t C) iff there exists a concept
X ∈ C(L) such that C ∼ X > t and K |= X(a).

For brevity, we will denote as Relax∼t (C) the set of all relaxed instances of the concept C w.r.t.
K , ∼ and t. Clearly, the elements of Relax∼t (C) depend strongly on the value of t, but also on
the similarity measure ∼ chosen; this dependency is depicted in Figure 1. For a fixed concept
similarity measure ∼, if t ≤ t′, then it holds that Relax∼t′(C) ⊆ Relax∼t (C). In the figure, the central
circle represents the interpretation of the concept C. The other lines show the interpretation of
Relax∼t (C) with darker lines gradually representing larger thresholds t. We use two different kinds
of lines (continuous and dashed, respectively) to represent two different similarity measures that
relax the concepts based on different features. As can be seen, the sets obtained can greatly differ
from each other. For example, there are relaxed instances of C w.r.t. one similarity measure and
threshold 0.99 which are not relaxed instances of C w.r.t. the other measure and threshold 0.5, and
vice versa. However, these sets must always contain all the (certain) instances of C.

As mentioned before, our main goal is to find all the instances that belong to Relax∼t (C). From
Definition 3.1, we know that

Relax∼t (C) =
⋃

C∼X≥t

{a | a is an instance of X}.

Thus, one could try to find all the relaxed instances of C by first computing all concepts X that
are similar to C with degree greater than t, and then finding all the instances of these concepts X.
However, this approach suffers from two main drawbacks. First, the set of all concepts that are
similar to C with degree greater than t might be infinite, even modulo equivalence. Thus, although
Relax∼t (C) is guaranteed to be finite, as it can contain only individual names appearing in the KB,

10

CI = M(C, a)I

mscI(a)a
mscI(b)

b

M(C, b)I

Figure 2: Two individuals, their most specific concepts (dotted), and the mimics of a concept C (continuous) w.r.t.
these individuals (dashed).

it might be necessary to perform infinitely many instance queries to compute them all. Second, it
is not known how to compute the concepts X that are similar to C with a degree greater than t. In
fact, similarity measures tell us only how similar two given concepts are, but not how to build a
concept that is similar to another with at least some given degree.

To avoid these issues, we first consider a different reasoning problem, where the task is to
compute a concept that has a given individual a as an instance, and is the most similar to C w.r.t.
the given CSM with this property. We call this concept the mimic of C w.r.t. a.

Definition 3.2 (mimic). Let L be a DL, K an L-knowledge base, a ∈ NI an individual name, C
an L-concept, and ∼ a concept similarity measure. An L-concept D is called a mimic of C w.r.t.
a, denoted with D ∈ M(C, a), iff the following two conditions hold:

• a is an instance of D, i.e., aI ∈ DI for all models I of K , and

• for all L-concepts E, if a is an instance of E, then C ∼ D ≥ C ∼ E.

Obviously, as for relaxed instances, the mimic strongly depends on the similarity measure
chosen. Intuitively, a mimic of C w.r.t. an individual a is a concept that is as similar to C as
possible, while still having a as an instance. Figure 2 depicts the idea of mimics. In the figure, a
and b are two individuals and the continuous line represents the interpretation of C. In this case,
the individual a is an instance of C, while b is not. For each of these individuals, the dotted lines
depict the interpretation of their most specific concepts. Since a is already an instance of C, C is
also a mimic of C w.r.t. a; this follows trivially from the fact that C ∼ C = 1. The dashed line
depicts the interpretation of a mimic of C w.r.t. b. Since the mimic of b must keep b as an instance,
it must subsume the msc of b. However, it is not necessarily a subsumer of C. In fact, as depicted
in Figure 2, there might be instances of C that do not belong to the mimic of C w.r.t. b.

We must point out that the mimic of C w.r.t. an individual a need not be unique, even modulo
concept equivalence. For example, let K be a knowledge base with an empty TBox and the ABox
A = {(A u B)(a)}, and let ∼ be any similarity measure such that A ∼ C = 0.5, B ∼ C = 0.5,
(A u B) ∼ C = max{A ∼ C, B ∼ C} = 0.5, and D ∼ C = 0 for all other concepts D. Then A,
B, and A u B, are all mimics of C w.r.t. a, as they all have a similarity value of 0.5 to C. In fact,
there can be infinitely many such mimics for a given concept C and individual a. For our task of
computing relaxed instances, we are not interested in finding all of them, but only one. We will use
the mimics only to decide whether an individual belongs to any concept that is similar to C with a

11

degree larger than the given threshold. Since all mimics have the exact same degree of similarity
to C, the result obtained by using them is independent of the specific mimic computed.

We can use mimics to compute the relaxed instances of a given concept. The idea is to compute,
for each individual a appearing in the knowledge base K , a mimic of C w.r.t. a. If this mimic has
similarity greater than t with C, then a must be a relaxed instance of C, and hence is given as an
answer to the relaxed query; otherwise, it cannot be a relaxed instance, as no concept can have
a greater similarity degree with C while still containing a. This is formalized in the following
proposition. The proof is a simple consequence of the arguments given above.

Proposition 3.3. Let K be a knowledge base, a an individual occurring in K , C a concept, ∼ a
concept similarity measure, and t ∈ [0, 1). Then a ∈ Relax∼t (C) iff there is a mimic D of C w.r.t. a
such that C ∼ D > t.

In the next section we study the problem of computing a mimic for a given concept C w.r.t.
an individual a. Since all mimics must have the same degree of similarity w.r.t. C, computing
the similarity between C and this mimic provides us with enough information to decide whether
a is a relaxed instance of C or not, up to degree t. However, as we will see, computing a mimic
might already be an expensive task itself. We partially alleviate this issue by a simple optimization
criterion: if a mimic D of C w.r.t. a is similar to C to degree greater than t, then all certain instances
of D must also be relaxed instances of C w.r.t. this threshold. In particular this means that we can
then avoid computing the mimics for all other individuals that are also instances of D.

4. Computing Relaxed Instances for Unfoldable EL-TBoxes

As we have seen in the previous section, in order to answer relaxed instance queries, it suffices
to compute, for every individual a, a mimic of the target concept C w.r.t. a, and then measure
the similarity between these concepts. In general, there are infinitely many concepts for which an
individual a is an instance of. Thus, we cannot expect to compute a mimic by a simple enumeration
of these concepts. On the other hand, since only one mimic is needed, it might be possible to
explore the concepts in a goal-oriented manner by increasing the similarity until a mimic is found.
In this section we show some conditions that guarantee that the computation of a mimic takes only
finite time, by exploring only a limited number of concepts.

Recall that the notion of a mimic combines a property that is based on the semantics, namely,
that it must have a as an instance, and a syntactic property, i.e., that it must be similar to C to
degree greater than t. The semantic property provides us with a strategy to initialize the search for
a mimic. Since any mimic D of C w.r.t. a must always have a as an instance, by definition of the
msc, we have that msc(a) vT D must hold. In other words, any mimic is always a generalization
of msc(a). If the concept similarity measure ∼ is equivalence invariant, then we can find such
a mimic through a syntactic manipulation of msc(a). The idea is that, by removing some of the
conjuncts in the description of the concept, we always generalize it. Hence, we need only to detect
which of these generalizations increases the similarity to C.

Definition 4.1 (generalized concept). Let C be a concept of the form

C =
�

i∈I Ai u
�

j∈J ∃r j.E j,

12

where Ai ∈ NC for all i ∈ I, and for all j ∈ J, r j ∈ NR, and E j is a concept. The concept D is a
generalized concept of C iff it has the form

D =
�

i∈I′ Ai u
�

j∈J′ ∃r j.E′j

with I′ ⊆ I, J′ ⊆ J and for each j ∈ J′, E′j is a generalized concept of E j.

Intuitively, a generalized concept is obtained simply by removing conjuncts from the descrip-
tion of C. Obviously, the result obtained through this generalization depends strongly on the
syntactic shape of the concept C; that is, two equivalent concepts C and C′ may have different
generalized concepts. Recall that our aim is to generalize the msc of a; as long as we restrict
ourselves to unfoldable TBoxes, we can simply expand the concepts to remove any ambiguity.

Definition 4.2 (fully expanded concept). Let T be an unfoldable EL-TBox. The concept C is fully
expanded w.r.t. T iff it only contains primitive concept names, i.e., concept names that only occur
on the right-hand side of the concept definitions in T .

Notice that any concept can be expanded by simply replacing all defined concept names in the
concept by their definitions. The intuition is that a fully expanded concept C contains all its (fully
expanded) subsumers explicitly as sub-concept descriptions. We can show that the mimic of C
w.r.t. a must be a generalized concept of the fully expanded most specific concept of a.

Lemma 4.3. Let K = (T ,A) be an unfoldable EL-knowledge base, a be an individual from A,
C be an EL-concept, and ∼ be an equivalence invariant concept similarity measure. Let further
E = msc(a) be the fully expanded most specific concept of a. Then there is a mimic D ∈ M(C, a)
of C w.r.t. a and K that is a generalized concept of E.

Proof sketch. We show that any concept having a as an instance is equivalent to a generalized
concept of msc(a). Let F be a concept with K |= F(a). Then E vK F by definition of the msc.
Since E is fully expanded and contains all its subsumers explicitly, any part of the concept F must
also be part of the concept E, but F may contain redundancies that can simply be removed to get
an equivalent concept. Thus F is equivalent to a generalized concept of E.

Notice that if the ABox A is cyclic, then the msc for an individual a might contain a chain
of infinitely nested existential restrictions. Thus, this msc might not be expressible as a concept
with a finite description, and in particular its fully expanded version would be infinite. In this
case, msc(a) has infinitely many generalized concepts of finite size, making it unfeasible to use
Lemma 4.3 to find a mimic.

On the other hand, the fully expanded query concept C is always finite, and hence has a finite
role-depth. Moreover, many structural CSMs used in practice, like those presented in [15, 16], are
based on a recursive computation of the similarities between concepts at the same role-depth. This
means that the computation of the similarity only recursively visits existential restrictions, until
one subconcept has no further existential restrictions. If the two concepts have a role-depth k1 and
k2, respectively, then the similarity depends only on those parts of the concepts up to role-depth
min(k1, k2) + 1, and, more importantly, to compute the maximal similarity between generalized

13

concepts of the msc(a) and C, we only need to consider concepts with a maximal role-depth up
to k = rd(C), i.e., can restrict to the k-msc(a). We generalize this property of recursive similarity
measures as follows:

Definition 4.4. A concept similarity measure ∼ is successor-closed, if it has the following proper-
ties:

1. For all concepts C and D, and all Ai ∈ NC it holds

C ∼
�

i∈I Ai ≥ C u ∃r.D ∼
�

i∈I Ai,

2. ∼ is monotone in the similarities of its successors, i.e., for all concepts A, B,C,D with A ∼
B ≤ A ∼ C, we have

(D u ∃r.A ∼ D u ∃r.B) ≤ (D u ∃r.A ∼ D u ∃r.C)

The first property expresses that the similarity between a simple conjunction of concept names
and a concept C can only decrease, if we add existential restrictions to C. If our similarity measure
∼ is successor-closed, then we can limit the computation of the msc to a given role-depth, i.e., use
the k-msc, without losing generality in our approach, which gives a result similar to Lemma 4.3.

Lemma 4.5. LetK = (T ,A) be an EL-knowledge base with an unfoldable TBox, a an individual
from A, C be an EL-concept in ∼-normal form, and ∼ an equivalence invariant and successor-
closed concept similarity measure. If k = rd(C) and E is the fully expanded role-depth bounded
most specific concept of a to role-depth k, then there is a mimic D = M(C, a) of C w.r.t. a that is a
generalized concept of E.

Proof. By Lemma 4.3 we know that there exists a mimic F of C w.r.t. a that is a generalized
concept of the (possibly infinite) fully expanded description of msc(a). Let Fk be the concept
obtained by restricting F to role-depth k; that is, by removing all existential restrictions beyond
this depth. Since E is the fully expanded k-msc of a, Fk must also be a generalized concept of E.
We show by induction on k, that there is a generalized concept F′ of E with F′ ∼ C ≥ F ∼ C.
This will imply that F′ is a mimic of C w.r.t. a, which proves the lemma.

For the case k = 0, the role-depth of both C and E is limited to 0; hence, they are of the form
C =

�
i∈I Ai and E =

�
j∈J B j where each Ai and B j is a concept name. Since F0 is a generalized

concept of E, it must be of the form F0 =
�

j∈J′ B j with J′ ⊆ J, and hence F = F0 u
�

h∈H ∃rh.Gh.
Since ∼ is successor-closed we then have that

F0 ∼ C ≥ F0 u
�

h∈H ∃rh.Gh ∼ C = F ∼ C.

For the case k > 0, C =
�

i∈I Ai u
�

h∈H ∃sh.Ch and E =
�

j∈J B j u
�

l∈L ∃rl.El are conjunctions of
concept names and existential restrictions with rd(Ch), rd(El) ≤ k−1 for all h ∈ H, l ∈ L. Once
again, since Fk is a generalized concept of E, it must be of the form Fk =

�
j∈J′ B j u

�
l∈L′ ∃rl.Gl,

where J′ ⊆ J, L′ ⊆ L and each Gl is a generalized concept of El. Moreover, F is of the form
F =

�
j∈J′ B j u

�
l∈L′ ∃rl.G′l , where Gl and G′l coincide at role-depth 0. By induction hypothesis,

we then have that Gl ∼ Ch ≥ G′l ∼ Ch holds for all h ∈ H and l ∈ L′. Since the similarity measure
∼ is structural, this implies that Fk ∼ C ≥ F ∼ C, which finishes the proof.

14

Procedure: relaxed-instance? (a,C,K ,∼, t)
Input: a: individual in K ; C: EL-concept; K : EL-KB with unfoldable TBox;
∼: equivalence-invariant and successor-closed CSM; t: threshold;

Output: true if a ∈∼t C w.r.t. K ; otherwise, false

1: k := rd(C)
2: E := k-msc(a) w.r.t. K
3: guess a generalized concept F of E
4: return F ∼ C > t

Algorithm 1: Computation algorithm for relaxed instances in EL.

This lemma provides us with restrictions on the concept similarity measure used that guarantee
that a mimic of C w.r.t. a can always be found by comparing a finite set of concepts, which
is formed by all the generalized concepts of the fully expanded role-depth bounded msc of the
individual a.

Recall that our original goal was to decide whether an individual a is a relaxed instance of C
w.r.t. a given threshold t. To achieve this, it is not necessary to compute a mimic of C w.r.t. a and
compute its similarity degree with C. Indeed, it suffices to compute any concept D that contains a
as an instance and C ∼ D > t to guarantee that a is a relaxed instance of C. Algorithm 1 describes
a non-deterministic procedure for checking relaxed instances based on this idea.

The algorithm receives as input an EL-KBK , an individual a, a concept C, a successor-closed
and equivalence invariant concept similarity measure ∼ and a specified threshold t, and decides,
non-deterministically, whether a concept D that is similar enough to C and contains a exists. In
practical terms, this algorithm behaves better than trying to compute a mimic first, since there is
no need to verify that there is no other concept that is more similar to C than the one guessed, as
long as the similarity is beyond the threshold t.

Corollary 4.6. Let K = (T ,A) be an EL-knowledge base, C an EL concept, a an individual in
K , ∼ an equivalence invariant, and successor-closed concept similarity measure, and t ∈ [0, 1).
Then relaxed-instance?(a,C,K ,∼, t) decides whether a ∈∼t C w.r.t. K .

Proof. Lemma 4.5 shows that a mimic of C w.r.t. a is a generalized concept of E = k-msc(a) for
k = rd(C). Thus, if the algorithm returns false, we know that no generalized concept F exists with
C ∼ F > t, and in particular also the mimic of C w.r.t. a must have a similarity of less than t to
C. Thus no concept that has a as an instance is similar enough to C and thus a < Relax∼t (C). If
the algorithm returns true, the guessed concept F shows a ∈ Relax∼t (C), since a is an instance of
F and F ∼ C > t.

Guessing a generalized concept F of a concept description E can be done in time linear in the
size |E| of E by recursively guessing for each concept name and each existential restriction in E
whether they should occur in F or not. However, the size of k-msc(a) can be exponential in k
although still polynomial in |K| [26]. Since k is chosen to be rd(C), it is bounded linearly by |C|.
Thus the non-deterministic algorithm runs in exponential time, assuming that∼ can be computed in

15

at most non-deterministic exponential time, too. However, the exponential blow-up depends only
on the role-depth k of C. Since C is the query concept, it is reasonable to assume that k would be
typically small, and the blow-up will play only a minor role for practical applications. Moreover,
if we consider a constant bound on the role-depth of the query concepts, then the algorithm runs
in (non-deterministic) polynomial time, assuming that the computation of ∼ is in NP.

To obtain a deterministic algorithm, a mimic of C w.r.t. a can be computed by enumerating all
generalized concepts of k-msc(a) and choosing one with the maximal similarity to C. Obviously,
there exist several optimizations that can be implemented. For example, for every instance a of C,
we can always automatically return true, since C itself is always a mimic, with similarity above
any given threshold to C. A second optimization, as described before, is to stop the search as soon
as a generalized concept F with C ∼ F > t is found; at that point, a is guaranteed to be a relaxed
instance of C. Finally, once that a concept D that guarantees that a is a relaxed instance of C has
been found, all other instances of D must also be relaxed instances of C, by definition. Hence,
they can all be added to the set of relaxed instances, without the need to compute their mimics, or
any other reasoning task.

5. Computing Relaxed Instances for General TBoxes

The approach to answer relaxed instance queries presented in the previous section cannot be
used if the KB uses a general EL-TBox. The main reason for this is that it requires the query
concept to be fully expanded. This expansion step can only be done for unfoldable terminolo-
gies, and does not terminate once cyclic definitions are involved. Indeed, most of the structural
similarity measures introduced in the literature so far also rely on expansion: Once the concepts
are expanded w.r.t. the terminological knowledge, the similarity between them can be computed
by just comparing the tree structures of the (expanded) concepts without further reference to the
TBox. While this approach is conceptually appealing, it is always limited to unfoldable TBoxes,
which is a strong restriction for modern knowledge representation applications.

On the other hand, the previous approach works for arbitrary similarity measures, that only
need to satisfy a few properties—notably, they should be equivalence-invariant and successor-
closed. The flexibility of these similarity measures might be appealing from a knowledge engi-
neering point of view; however, it makes the algorithm quite inefficient. While optimizations to
the strategy of finding the mimic in all generalized concepts of the msc are imaginable for specific
similarity measures, in the general case all possible generalized concepts need to be checked, as
described in the previous section.

This section therefore has two goals. The first is to introduce a family of similarity measures
that works w.r.t. general TBoxes. While the framework of these similarity measures is fixed, they
are still flexible enough to be useful in many situations. The second goal is to devise an algorithm
to compute relaxed instances of a knowledge base w.r.t. this new family of similarity measures.
Since this algorithm only deals with these specific, new similarity measures, it can exploit this
additional knowledge and is able to operate more efficiently than the general algorithm introduced
in the last section. In particular, we will show that, when applied to unfoldable TBoxes, this
algorithm computes relaxed instances in polynomial time in the size of the input, which greatly
improves the NEXP-time upper bound obtained for the previous algorithm.

16

Our similarity measure does not use expanded concepts w.r.t. the TBox, which may not always
be finitely expressible in EL, but instead uses canonical models. These models also expand the
concept with the knowledge from the TBox, but are always finite, although they may contain
cycles. Thus, instead of computing the similarity between two concepts C and D w.r.t. a general
EL-TBox T directly, we use the canonical models IC,T and ID,T and compute the similarity
between the elements dC and dD in these interpretations. This means that we have to define a
similarity measure on finite pointed interpretations, i.e. elements together with the interpretation
they occur in.

An interpretation similarity measure (ISM) is defined as a similarity measure on finite pointed
interpretations, i.e., a function of the type P × P → [0, 1]. It maps any pair of pointed interpre-
tations to a similarity value between 0 and 1. We denote ISMs by ∼P. The restriction of ISMs to
finite pointed interpretations is important later – in the following, whenever we mention pointed
interpretations in the context of ISMs, we indeed assume them to be finite.

There are various desirable properties that ISMs can have. We concentrate here on those that
directly transfer from similar properties of CSMs introduced before. Given suitable simulation
relations . and ' (like those in Definition 2.3 for EL), we call an interpretation similarity measure:

• symmetric, iff p ∼P q = q ∼P p for all p, q ∈ P;

• bounded, iff C(p) ∩ C(q) ⊃ {>} implies p ∼P q > 0 for all p, q ∈ P;

• dissimilar closed, iff C(p) ∩ C(q) = {>} implies p ∼P q = 0 for all p, q ∈ P with C(p) ⊃ {>}
and C(q) ⊃ {>};

• equisimulation invariant, iff p ' q implies p ∼P u = q ∼P u for all p, q, u ∈ P;

• equisimulation closed, iff p ' q⇐⇒ p ∼P q = 1 for all p, q ∈ P;

• simulation preserving, iff r . q . p implies p ∼P q ≥ p ∼P r for all p, q, r ∈ P;

• reverse simulation preserving, iff r . q . p implies q ∼P r ≥ p ∼P r for all p, q, r ∈ P.

5.1. The Interpretation Similarity Measure ∼i

We now define a parameterizable ISM ∼i, using the simulation relations defined in Defini-
tion 2.3, which correspond to concept subsumption and equivalence in EL. This is important
when lifting those properties to the CSMs ∼c.

Given a pointed interpretation p = (I, d), we denote with

CN(p) = {A ∈ NC | d ∈ AI}

SC(p) = {(r, (I, e)) ∈ NR ×P | (d, e) ∈ rI}

the set of concept names that d is an instance of in I, and the set of direct successors of d in I,
respectively.

For two pointed interpretations to be perfectly similar, they need to have the same set of concept
names and have edges labeled with the same roles going to perfectly similar successor elements.
Otherwise, the most similar concept names and the most similar direct successors are compared
and a similarity value is computed from this pair. In essence, ∼i is a feature-based similarity
measure where the concept names and successors of an interpretation element are its features.

17

Note that, compared to the interpretation similarity measure introduced in [20], we do not
rely on pairings between the concept names and successors of the two pointed interpretations, but
instead look at each concept name and successor of one pointed interpretation and find the best
concept name or successor of the other pointed interpretation. This is done both ways. The advan-
tages of this approach over pairings is that the results are more predictable, as pairings may contain
many more comparisons than necessary for successors or concept names, which can increase the
total similarity, while the approach presented here will give similar weights to all features.

The ISM ∼i extends a primitive measure that is described next. Formally, we consider a prim-
itive measure

∼prim : NC × NC ∪ NR × NR → [0, 1]

that assigns similarity values to each pair of concept names and each pair of role names. Any
primitive measure has to satisfy the property that x ∼prim x = 1 for any concept or role name x.
Additionally, for the similarity measure ∼i to be symmetric, ∼prim needs to be symmetric as well.
We give a default primitive measure, that simply assigns similarity 0 to pairs of different concept
or role names x and y:

x ∼default y =

1 if x = y
0 otherwise

However, other primitive measures are imaginable and useful. For example, one might want to
express that two amounts Medium and High are more similar than Low and High, which can be
achieved by using a primitive measure with Medium ∼prim High = 0.5 and Low ∼prim High = 0.

Additionally, one can assign weights to different concept and role names using a weighting
function

g : NC ∪ NR → R>0

to prioritize different features in the similarity measure. This function g is extended to pairs of
concept or role names as g(A, B) = max(g(A), g(B)) and g(r, s) = max(g(r), g(s)). Finally, we need
a constant w that allows for discounting of successors, and should have a value 0 < w < 1.

Any primitive measure ∼prim, weighting function g, and discounting factor w can then be ex-
tended to a similarity measure on pointed interpretations by recursively traversing the interpreta-
tion graphs, for each pair of elements looking at all features (concept names and successors), and
finding the best-matching feature of the second element.

Definition 5.1. Given a primitive measure ∼prim, a weighting function g and the discounting factor
w, the interpretation similarity measure ∼i(∼prim, g,w) : P ×P→ [0, 1] is defined as follows:

p ∼i q =
simCN(p, q) + simCN(q, p) + simSC(p, q) + simSC(q, p)

|CN(p)| + |CN(q)| + |SC(p)| + |SC(q)|
(1)

where

simCN(p, q) =
∑

A∈CN(p)

max
B∈CN(q)

A ∼prim B, and

simSC(p, q) =
∑

(r,p′)∈SC(p)

max
(s,q′)∈SC(q)

(r ∼prim s)(w + (1 − w)(p′ ∼i q′)).

18

If all of the sets CN(p), CN(q), SC(p), and SC(q) are empty for pointed interpretations p, q, we
define p ∼i q = 1. This case only happens if C(p) = C(q) = {>}.

We often write simply ∼i to denote all the different similarity measures ∼i(∼prim, g,w) for some
primitive measure ∼prim, weighting function g, and discounting factor w.

Example 5.2. We now show how the similarity measure works for the toy ontology introduced
in Example 2.2. We assume the primitive measure ∼prim, which is nearly the same as the default
primitive measure, with two exceptions: The similarity between Low and Medium as well as be-
tween Medium and High is 0.5 instead of 0. We also assume the default weighting function g that
assigns weight 1 to all concept and role names, and a discounting factor of w = 0.8.

We want to compute the similarity between the two pointed interpretations (I, d) and (J , e)
described in Figure 3. To compute the similarity between these two pointed interpretations, we
need to find for each concept name and each successor of any of the two elements the best matching
concept name or successor of the other element. For this we need the similarities of all successors
of the elements d and e. However, since the primitive similarity between different role names is
always 0, it is enough to only look at successors with the same role name:

• The hasLoad-successors have a similarity 0.667, as both elements have the concept name
Amount, but the successor of e is missing the concept name High, resulting in a similarity
value of 1+(1+0)

3 = 0.667.

• The most similar concept names for the two hasLatency-successors are (Amount,Amount)
and (Low,Medium), which yields a similarity value of (1+0.5)+(1+0.5)

4 = 0.75.

• For the two provides-successors of d and e, respectively, both are instance of Service, while
the concept names VideoStreamService and DatabaseService have no correspondence in
the other element. Similarly, the outgoing roles of these elements all have different role
names, resulting in a value of 0 for simSC in both directions. Overall, this yields a similarity
of (1+0)+(1+0)+0+0

2+2+1+2 = 0.286 for the two services.

Using this, we can finally compute the similarity between d and e by computing simCN and simSC

d
{Server,Computer}

·{Amount} · {Amount,Low}

· {Service,VideoStreamService}

·{Seekable} · {Amount,High}

provides
hasLoad hasLatency

hasFeature hasQuality

I : e
{Server,Computer}

·{Amount,High} · {Amount,Medium}

· {Service,DatabaseService}

· {SQL}

provides
hasLoad hasLatency

queryLanguage

J :

Figure 3: The pointed interpretations (I, d) and (J , e) from Example 5.2

19

for both directions (p, q) and (q, p) and dividing by the sum of all weights:

simCN(p, q) = simCN(q, p) = 1 + 1
simSC(p, q) = simSC(q, p) = (0.2 + 0.8 · 0.667) + (0.2 + 0.8 · 0.75) + (0.2 + 0.8 · 0.286)

= 1.962

(I, d) ∼i (I, e) =
2 + 2 + 1.962 + 1.962

2 + 2 + 3 + 3
= 0.792

This similarity value may not be satisfying: Even though both servers have a different latency,
the load of one server is not given, and they provide totally different services, the similarity is
quite high. The main reason is that the more general concept names like Computer, Service, and
Amount, that both interpretations have in common, contribute as much as the other concept names
that carry the actual values, like Low or DatabaseService. To rectify this, one would change
the weighting function g to decrease the weight of the more general concepts. Since the user
is probably most interested in finding a server that provides the service he needs, the weight of
the role name provides might also be increased. Additionally, it might be a good idea to also
increase the discounting factor w to further increase the influence of the actual similarity between
successors in the successors pairing, like the two services.

Before we show the formal properties of ∼i, we need to show that its recursive definition is
actually well-defined, even for cyclic interpretations.

Theorem 5.3. The similarity measure ∼i is well-defined, i.e., p ∼i q defined in Equation (1) has a
unique solution for all pointed interpretations p, q ∈ P.

Proof. If we fix the two interpretations I and J , we can view ∼i as an iterative function that
‘refines’ the similarities between any two elements (c, d) ∈ ∆I × ∆J , i.e., a function on the vector
space R|∆I×∆J |. In particular, since the value of p′ ∼i q′ in Equation 1 is always multiplied with w
(there may be other factors, which are always less than 1), all partial derivative of ∼i are at most w
and thus ∼i is Lipschitz continuous with a Lipschitz constant of at most w. As w < 1, this means
that ∼i is a contraction mapping on R|∆I×∆J |. But then, the Banach fixed-point theorem implies that
∼i has a unique fixed point in R|∆I×∆J |, and indeed the iteration of ∼i on any starting tuple (like
starting with a similarity of 0 between any pair of elements) converges to this fixed point [33]. This
unique fixed-point means that Equation (1) has a unique solution for any (I, a) ∼i (J , b) (which
corresponds exactly to the value between a and b for the fixed point) and is thus well-defined.

Note that ∼i as defined above is not necessarily equisimulation closed and equisimulation in-
variant. The reason is that the similarity between successors is always undirected, while simula-
tions are directed, which gives rise to problems for the case where one successor of an element
simulates a second successor in one pointed interpretation, but not in an equisimilar one. To re-
gain the properties equisimulation invariant and closed, one can first normalize the interpretations
I and J before applying the similarity measure.

Definition 5.4 (normal form for interpretations). An interpretation I = (∆I, ·I) is in normal form
if there are no elements a, b, c ∈ ∆I, b , c, with {(a, b), (a, c)} ⊆ rI and (I, b) . (I, c), i.e., no
node has two successor nodes for the same role name that are in a simulation relation.

20

Any interpretation I can be transformed into normal form as follows:

1. Remove all edges (a, b) ∈ rI in the interpretation graph, for which there exists an edge
(a, c) ∈ rI with (I, b) . (I, c) but not (I, b) ' (I, c).

2. For all edges (a, b0) ∈ rI, check if there are other edges (a, bi) ∈ rI, i > 0, with (I, b0) '
(I, bi) and choose one representative b j; then remove all other edges (a, bi), i , j, from rI.

Equisimilar pointed interpretations will always be normalized into a unique structural normal
form, i.e., both pointed interpretations will have the same number of pairwise equisimilar succes-
sors. This is true even though the normalization steps given above are nondeterministic. Since we
only consider finite pointed interpretations, the normalization procedure is well-defined and can
be computed in polynomial time in the size of the pointed interpretation, as simulations can also
be computed in P-time.

Now, we can finally show the properties of the ISM ∼i. For the default primitive measure, ∼i is
symmetric, bounded, dissimilar closed, equisimulation invariant, and equisimulation closed for all
normalized pointed interpretations. For other primitive measures ∼prim, ∼i will always be bounded
and equisimulation invariant, but the other properties depend on the properties of ∼prim, as given
by the following theorem.

Theorem 5.5. Let ∼i(∼prim, g,w) be instantiated with a primitive measure ∼prim, a weighting func-
tion g, and constant w ∈ (0, 1). Then ∼i has the following properties (w.r.t. to the simulation
relations . and ' given in Definition 2.3):

1. ∼i is symmetric, if the primitive measure ∼prim is symmetric;

2. ∼i is bounded;

3. ∼i is dissimilar closed, if the primitive measure ∼prim does not assign a similarity value
greater than 0 to different concept or role names.

4. ∼i is equisimulation invariant for normalized interpretations; and

5. ∼i is equisimulation closed for normalized interpretations, if the primitive measure ∼prim

does not assign the similarity value 1 to different concept or role names.

Equation (1) in the definition of ∼i cannot be used directly to compute the similarity value,
since cycles in the interpretation would lead to infinite recursion. Instead, one can view the equa-
tion as an iterative algorithm: When starting with a similarity value of 0 between all elements
of two interpretations I and J , and iteratively applying the equation to update those similarity
values between all elements, they will converge to the solution. This follows from the proof of
Theorem 5.3.

Using the ISM ∼i, we can now define a concept similarity measure ∼c (∼prim, g,w) on EL-
concepts w.r.t. a general EL-TBox T as follows:

C ∼c D = (I′C,T , dC) ∼i (I′D,T , dD),

where I′C,T and I′D,T are the normalized canonical models of the concepts C and D w.r.t. T .

21

Example 5.6. Incidentally, the interpretations I and J given in Example 5.2 correspond exactly
to the (normalized) canonical models IC,T and ID,T of the concepts

C = Server u ∃hasLatency.Low u ∃provides.(VideoStreamService u

∃hasFeature.Seekable u ∃hasQuality.High)
D = Server u ∃hasLoad.High u ∃hasLatency.Medium u

∃provides.(DatabaseService u ∃queryLanguage.SQL)

Thus C ∼c D = 0.792.

The concept similarity measure ∼c inherits the formal properties of the ISM ∼i, since the prop-
erties for interpretation similarity measures were defined to correspond exactly to the properties
for concept similarity measures given in the preliminaries.

Theorem 5.7 (Properties of ∼c). For a primitive measure ∼prim, a weighting function g, and a dis-
counting factor w, the concept similarity measure ∼c(∼prim, g,w) is symmetric, bounded, dissimilar
closed, equivalence invariant, and equivalence closed, if ∼i(∼prim, g,w) is symmetric, bounded dis-
similar closed, equisimulation invariant and equisimulation closed, respectively.

5.2. Computing Relaxed Instances w.r.t. ∼c

First we define the notion of fully expanded concepts also for the case of general EL-TBoxes:

Definition 5.8 (fully expanded concept). Let T be a general EL-TBox. A (possibly complex)
concept C is fully expanded w.r.t. T iff for all GCIs D v E ∈ T with C vT ∃r1 . . .∃rn.D we have
that ∃r1 . . .∃rn.E is a generalized concept of C.

This basically means that a fully expanded concept explicitly includes all knowledge expressed
in the TBox. Note that this definition is not constructive in the sense that it may yield concepts of
infinite size, but we will see now how to avoid this.

For the computation of relaxed instances for ∼c, recall that a ∈ Relax∼t (Q) can be computed
for terminologies by checking all generalized concepts of the k-msc(a) for k = rd(Q), if Q us fully
expanded. As soon as we have a general TBox, expanding Q may result in an infinite role-depth
by expanding cyclic definitions, so this approach does not work directly here. If the msc of a w.r.t.
K does not exist, and if any of the definitions used in Q is cyclic, we would need to compute the
limit of the maximal similarity between Q and generalized concepts of k-msc(a) for k → ∞.

However, one can use the correspondence of ∼c and ∼i, express the concept Q by its canonical
model, and express the fully expanded msc(a) in EL as the tree unraveling of IK starting from da.
Thus for any concept C we have

lim
k→∞

C ∼c k-msc(a) = (IC,T
′, dC) ∼i (IK′, da),

where IC,T
′ and IK′ are the normalized canonical models of C and A w.r.t. the TBox T . The

canonical model IK , in contrast to the fully expanded msc, is always finite.
We do not need to compute the similarity between the query concept Q and the msc(a) directly,

but find the maximal similarity between Q and generalized concepts of msc(a). Generalizing a
22

Procedure: maxsim (I,J ,∼prim, g,w)
Input: I,J : finite interpretations; ∼prim: primitive measure; g: weighting function;

w ∈ (0, 1): discounting factor
Output: maximal similarities between pointed interpretations p = (I, a) and all gener-

alizations of the pointed interpretation q = (J , b)
1: msim0(d, e)← 0 for all d ∈ ∆I and e ∈ ∆J

2: for i← 1, 2, 3, . . . do
3: for all d ∈ ∆I and e ∈ ∆J do
4: msimi(d, e)← max

S CN⊆CN(e)
S SC⊆SC(e)

similarity(d, S CN, S SC,∼prim, g,w, i)

5: end for
6: end for
7: return msimn(d, e) for all d ∈ ∆I and e ∈ ∆J

Procedure: similarity (p, S CN, S SC,∼prim, g,w, i)
1: simCN(p, q) =

∑
A∈CN(p)

max
B∈S CN

A ∼prim B

2: simCN(q, p) =
∑

B∈S CN

max
A∈CN(p)

A ∼prim B

3: simSC(p, q) =
∑

(r,p′)∈SC(p)
max

(s,q′)∈S SC
(r ∼prim s)(w + (1 − w)(p′ ∼i q′))

4: simSC(q, p) =
∑

(s,q′)∈S SC

max
(r,p′)∈SC(p)

(r ∼prim s)(w + (1 − w)(p′ ∼i q′))

5: return
simCN(p, q) + simCN(q, p) + simSC(p, q) + simSC(q, p)

|CN(p)| + |CN(q)| + |SC(p)| + |SC(q)|

Algorithm 2: Compute the maximal similarities w.r.t. ∼i between all elements of two finite inter-
pretations I and J .

concept C is possible by removing concept names or existential restriction, which corresponds on
the interpretation side to only taking subsets of the concept names S CN ⊆ CN(q) and successors
S SC ⊆ SC(q) of the pointed interpretations q = (IK′, da) and all of its successors. This results in
Algorithm 2 to iteratively compute the maximal similarity between a pointed interpretation p and
all generalizations of the pointed interpretation q.

Note however, that the algorithm does not check all generalized concepts, since the canonical
models are always finite and using the subset construction, only finitely many generalized concepts
can be created, whereas the mscK (a) may be infinite and thus can have infinitely many generalized
concepts. However, to find the maximal similarity, the above subset construction is sufficient,
since any infinite mscK (a) is at some point cyclic, and thus we can reuse the same subsets for
recurring elements (which correspond exactly to the same pair (p, q) of pointed interpretations).

23

dQ

{Server,Computer}

·{Amount,Low} · {Amount,Low}

· {Service,VideoStreamService}

·{VideoStreamFeature,Seekable} · {Amount,High}

provides
hasLoad hasLatency

hasFeature hasQuality

IQ,Tex2 :

d1

{Server,Computer}

·{Amount,High} · {Amount,Medium}

·{Service,VideoStreamService,
RestrictedService}

·{VideoStreamFeature} · {Amount,High}

provides
hasLoad hasLatency

hasFeature hasQuality

IK : d2

{Server,Computer}

·{Amount,Medium} · {Amount,Low}

· {Service,LoginService}

provides
hasLoad hasLatency

dependsOn

providesCredentialsTo

Figure 4: Canonical models of an ABox and a query concept.

Table 2: Computation steps of maxsim.

iteration i msimi(dQ, d1) msimi(dQ, d2)

0 0 0
1 0.52 0.52
2 0.856 0.877
3 0.909 0.877

Example 5.9. Consider the TBox Tex2 from Example 2.2, and the query concept

Q = Server u ∃hasLatency.Low u hasLoad.Low u

∃provides.(VideoStreamService u ∃hasQuality.High u ∃hasFeature.Seekable).

Also consider the ABoxA given in Figure 4 as the canonical model IK , and the canonical model
IQ,Tex2 of the query concept: The similarity measure used is the same as in Example 5.2, with the
default weighting function, the discounting factor w = 0.8 and the primitive measure that assigns
0.5 to Low ∼prim Medium and Medium ∼prim High and acts like the default primitive measure
otherwise. Note that the service provided by d1 is much more similar to the query concept than the
one provided by d2, while d2 has a lower load and latency. The algorithm maxsim will compute
the similarity values msimi between dQ and d1, d2 in each iteration i as shown in Table 2. Since
the query concept is not cyclic and has role-depth 2, the similarity values will not change after the
3rd iteration. For the threshold t = 0.9, d1 is a relaxed instance of Q, while d2 is not.

Using this, the algorithm to actually compute all relaxed instances of a query concept Q w.r.t.
∼c is conceptually quite easy, as it only needs to compute the maximal similarities between Q and

24

all individuals a and check whether they are larger than t. The algorithm is depicted in Algorithm 3.
The msimi values computed in the algorithm monotonically converge from below to the max-

imal similarities between generalized concepts of the most specific concept of an individual and
the query concept. Thus, for any individual a, which is a relaxed instance of Q with a threshold
strictly larger than t, there exists i ∈ N such that for all j > i we have msim j(Q, a) > t. Thus, the
algorithm is sound and complete in the following sense.

Theorem 5.10. Let ∼c be the CSM derived from ∼i(∼prim, g,w) with the primitive measure ∼prim,
the weighting function g, and the discounting factor w. Then the algorithm relaxed-instances is
sound and complete:

1. Soundness: If a ∈ relaxed-instances(Q,K , t,∼prim, g,w) for a number n of iterations, then
a ∈ Relax∼c

t (Q).

2. Completeness: If a ∈ Relax∼c
t (Q), then there exists an i ∈ N such that for all n ≥ i iterations

a ∈ relaxed-instances(Q,K , t,∼prim, g,w).

The algorithm converges quite fast: For any iteration, the difference between the actual simi-
larity and the computed value reduces by a factor of w. This is a direct consequence of the Banach
fixed-point theorem used in the proof of Theorems 5.3 and 5.10 in the Appendix. This means that,
to reduce the error tolerance of the solutions by a constant factor, e.g. one tenth, only a constant
number of iterations need to be done additionally. However, one cannot compute how many it-
erations are needed beforehand and cannot be sure if, at any given point, the algorithm already
found all relaxed instances, or if some relaxed instances with a maximal similarity very close to
the threshold t are still missing.

5.3. Complexity of Relaxed Instance Queries for General TBoxes
To show an upper bound on the complexity of relaxed instance queries for general TBoxes, the

iterative procedure from Algorithms 2 and 3 is not useful, since it only converges to the correct
solution, but may never reach it. However, we can translate the problem into a linear optimization
problem (i.e., a system of linear inequalities and a linear objective function). We first show how
this approach can be used to prove that the similarity measure ∼i can be computed for all elements
in the domains of two interpretations I and J in polynomial time.

Procedure: relaxed-instances (Q,K , t,∼prim, g,w)
Input: Q: EL-concept; K = (T ,A): EL-KB; t ∈ [0, 1]: threshold; ∼prim: primitive

measure; g: weighting function; w ∈ (0, 1): discounting factor
Output: individuals a ∈ Relax∼c

t (Q)
1: compute canonical models IQ,T and IK
2: maxsim(d, e)← maxsim(IQ,T ,IK ,∼prim, g,w)
3: return {a ∈ NI ∩ Sig(A) | maxsim(dQ, da) > t}

Algorithm 3: Computation of relaxed instances of query concept Q w.r.t. KB K and threshold t.

25

Theorem 5.11. The similarities (I, d) ∼i (J , e) for all d ∈ ∆I and e ∈ ∆J can be computed in
polynomial time in the size of the interpretations I and J .

Proof sketch. For each p = (I, d) and q = (J , e), we treat the similarity value p ∼ q as a variable
Vp,q. We further introduce variables Vs1,X and VX,s2 for the maximum similarity between s1 and one
of successors in the set X, and between one of the successors in X and s2, respectively:

Vp,q ≥
simCN(p, q) + simCN(q, p) +

∑
s1∈SC(p) Vs1,SC(q) +

∑
s2∈SC(q) VSC(p),s2

|CN(p)| + |CN(q)| + |SC(p)| + |SC(q)|
(2)

and for each variable Vs1,SC(q) or VSC(p),s2 introduced above:

Vs1,SC(q) ≥ (r1 ∼p r2)(w + (1 − w)Vp1,p2) for s1 = (r1, p1) and all (r2, p2) ∈ SC(q)
VSC(p),s2 ≥ (r1 ∼p r2)(w + (1 − w)Vp1,p2) for s2 = (r2, p2) and all (r1, p1) ∈ SC(p)

If we translate every equation (I, d) ∼ (J , e) to linear inequalities for all elements d, e of I
and J as shown above, then a linear optimization with the aim to maximize the objective function
−

∑
d∈∆I
e∈∆J

V(I,d),(J ,e) will return the exact similarities between each pair of elements of the interpre-

tations I and J .
The reason why this works is that the original equation system defined in Equation (1) has

only one unique solution (see Theorem 5.3), and thus for all solutions with at least one value
Vp,q < p ∼i q, one of the equations (and thus also one of the inequalities in the linear optimization
problem) is not satisfied. Then, the only optimal solution

−−→
Vp,q of the linear optimization problem

must be the vector of solutions p ∼i q of the original equation system (1).
The optimization problem will always have a size that is polynomial in the size of the inter-

pretations I and J . Since the linear optimization problem can be solved in polynomial time, this
finishes the proof.

Since the canonical models IQ,T and IK are always polynomial in the size ofK and Q (and can
be computed in polynomial time), and the normalization can be computed in polynomial time and
will never increase the size of the model, this implies that also ∼c can be computed in polynomial
time.

To compute the maximal similarities, we have to find the best subsets of the concept names
and successors for each element in the interpretation IK ; however, in the worst case, the number
of concept names or successors may be linear in the size of K and Q – but then the number of
subsets is exponential. Instead we can guess a subset of CN(q) and SC(q) for each pair p, q of
pointed interpretations, and use those subsets in the definition of the linear optimization problem.
In fact, we do not necessarily have to find those subsets that yield the maximum similarity value,
since we only have to check if the similarity values are larger than t or not. To verify that one guess
yields a similarity value larger than t, we can simply solve the linear optimization problem, which
is possible in polynomial time. Thus, we have the following complexity for computing relaxed
instances.

Corollary 5.12. Relaxed instances of a query concept Q w.r.t. ∼c and a general knowledge base
K is in NP.

26

6. Conclusions

In this paper we have introduced a new reasoning service for DLs that allows to relax instance
queries by means of concept similarity measures. By choosing appropriate similarity measures,
this allows for domain- and context-dependent relaxation of the query. For example, it is possible
to alter the weights, that the different features of the concept have in the final similarity value. This
allows to put more emphasis on important features, which are not to be relaxed in contrast to less
important features. Besides the choice of a suitable CSM, this method also allows to change the
degree of relaxation by specifying a threshold t.

We explored two methods for computing relaxed instances in the description logic EL. The
first method works for arbitrary CSMs, that are equivalence invariant and successor-closed. Our
method for computing relaxed instance by use of these CSMs works only for terminologies, i.e.,
unfoldable EL-TBoxes. In this case we can simply expand the query concept Q w.r.t. the TBox,
and check for each individual a in the ABox if it is a relaxed instance of Q by computing its k-msc
for k = rd(Q) and computing the similarity of all its generalized concepts to Q: if the maximal
similarity of those is larger than the threshold, a is a relaxed instance.

However, this method based on expansion does not work for general EL-TBoxes due to cyclic
concepts. By introducing a new family of CSMs ∼c for EL-concepts defined w.r.t. general TBoxes
and restricting to those, we are able to solve this problem. Moreover, this allows to avoid to
check all generalized concepts (of which there are exponentially many even in case of terminolo-
gies). Those new CSMs depend on the definition of similarity measures for pointed interpretations,
which get lifted to concept similarity via canonical models. That way, the CSM ∼c has many de-
sirable formal properties, works w.r.t. general EL-TBoxes, and can be adapted to many different
situations and domains using its parameters: a primitive similarity between concept names and
role names, a weighting function that weights the importance of each concept or role name, and a
discounting factor. To the best of our knowledge, the CSMs ∼c are the first CSMs that incorporate
all available knowledge from general TBoxes.

The computation algorithms for relaxed instances w.r.t. ∼c works iteratively by refining sim-
ilarity values, which monotonically converge to the final similarity value. This algorithm can be
easily adapted to compute relaxed instances of a query concept Q w.r.t. a knowledge base K , by
computing the maximal similarities of Q to generalized concepts of the msc(a) for all individuals
a at once. This yields an efficient solution to relaxed instance queries. When applied to unfoldable
TBoxes, it is possible for this algorithm to bound the number of iterations, after which the exact
maximal similarities are found.

There are many options for future work. On the theoretical side it would be interesting to
explore how this approach can be extended to more expressive DLs. In [34], we showed that this
is possible for the DL EL+ +, which extends EL by nominals, domain and range restrictions, and
concrete domains. Since even more expressive Horn-DLs induce finite canonical models as well,
we conjecture that our approach also works for those. How to generalize our approach and the
computation of relaxed instances to DLs that offer all Boolean operators is not obvious.

Similarly, it would be interesting to extend the query language, for example to conjunctive
queries instead of instance queries. However, the similarity measure itself is only defined for
(essentially tree-shaped and rooted) concepts and not for arbitrary query graphs. Therefore, an

27

extension to conjunctive queries would also require to extent the notion of similarity measures to
queries.

On the practical side there is plenty of room for optimizations. For instance, the use of a
concept that states necessary conditions in combination with the query concept can considerably
reduce the number of individuals to be checked in practice. Furthermore, while the complexity of
each iteration in the general case is polynomial, the need to check all subsets is certainly inefficient.
Methods to reduce the candidate subsets that need to be considered are expedient to make this work
in practice, where ABoxes are typically large.

It is also interesting to consider other applications of similarity measures, in particular, not just
using similarity to define new reasoning services, but to integrate them directly into the knowledge
base. This might be possible by introducing a new concept constructor of the form S >t p, which is
interpreted as all elements of the domain, that have a similarity of at least t to some fixed pointed
interpretation p. This approach would allow to define and reason over prototypes of concepts. The
requirements for CSMs that allow to reason over concepts and KBs written in such extended DL
is also future work.

Acknowledgements

A. Ecke is supported by the German Research Foundation (DFG) in the Graduiertenkolleg
1763 (QuantLA). R. Peñaloza is partially supported by DFG within the Cluster of Excellence
‘Center for Advancing Electronics Dresden’ (cfAED). A.-Y. Turhan is partially supported by DFG
in the Collaborative Research Center 912 ‘Highly Adaptive Energy-Efficient Computing’ (HAEC).

References

[1] B. Motik, R. Shearer, I. Horrocks, Hypertableau Reasoning for Description Logics, Journal of Artificial Intelli-
gence Research 36 (2009) 165–228.

[2] J. Mendez, A. Ecke, A.-Y. Turhan, Implementing completion-based inferences for the EL-family, in: R. Rosati,
S. Rudolph, M. Zakharyaschev (Eds.), Proceedings of the 24th International Workshop on Description Logics
(DL 2011), Vol. 745 of CEUR Workshop Proceedings, CEUR-WS.org, 2011.

[3] Y. Kazakov, M. Krötzsch, F. Simančı́k, ELK reasoner: Architecture and evaluation, in: Proceedings of the OWL
Reasoner Evaluation Workshop (ORE’12), Vol. 858 of CEUR Workshop Proceedings, CEUR-WS.org, 2012.

[4] V. Haarslev, K. Hidde, R. Möller, M. Wessel, The RacerPro knowledge representation and reasoning system,
Semantic Web Journal 3 (3) (2012) 267–277.

[5] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL 2 web ontology language profiles, W3C
Recommendation, http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/ (27 October 2009).

[6] S. Borgwardt, F. Distel, R. Peñaloza, How fuzzy is my fuzzy description logic?, in: B. Gramlich, D. Miller,
U. Sattler (Eds.), Proc. of the 6th Int. Joint Conf. on Automated Reasoning (IJCAR-12), Vol. 7364 of LNAI,
Springer-Verlag, 2012, pp. 82–96.

[7] S. Borgwardt, R. Peñaloza, Undecidability of fuzzy description logics, in: G. Brewka, T. Eiter, S. A. McIlraith
(Eds.), Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-12),
AAAI Press, 2012, pp. 232–242.
URL http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4387

[8] M. Cerami, U. Straccia, On the (un)decidability of fuzzy description logics under lukasiewicz t-norm, Inf. Sci.
227 (2013) 1–21.

[9] T. G. O. Consortium, Gene Ontology: Tool for the unification of biology, Nature Genetics 25 (2000) 25–29.

28

[10] P. W. Lord, R. D. Stevens, A. Brass, C. A. Goble, Investigating semantic similarity measures across the gene
ontology: The relationship between sequence and annotation, Bioinformatics 19 (10) (2003) 1275–1283.

[11] C. Pesquita, CESSM: collaborative evaluation of GO-based semantic similarity measures, Challenges in Bioin-
formatics (JB2009).

[12] J. Euzenat, P. Valtchev, Similarity-based ontology alignment in OWL-lite, in: Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI-04), IOS Press, 2004, pp. 333–337.

[13] A. Borgida, T. Walsh, H. Hirsh, Towards measuring similarity in description logics., in: Proc. of the 2005
Description Logic Workshop (DL 2005), Vol. 147 of CEUR Workshop Proceedings, 2005.

[14] C. d’Amato, N. Fanizzi, F. Esposito, A semantic similarity measure for expressive description logics, in: Proc.
of Convegno Italiano di Logica Computazionale, CILC05, 2005.

[15] K. Lehmann, A.-Y. Turhan, A framework for semantic-based similarity measures for ELH-concepts, in: L. F.
del Cerro, A. Herzig, J. Mengin (Eds.), Proc. of the 13th European Conf. on Logics in A.I. (JELIA 2012), LNAI,
Springer, 2012, pp. 307–319.

[16] B. Suntisrivaraporn, A similarity measure for the description logic EL with unfoldable terminologies, in: 5th
International Conference on Intelligent Networking and Collaborative Systems (INCoS), 2013, pp. 408–413.
doi:10.1109/INCoS.2013.77.

[17] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI-05), Morgan-Kaufmann Publishers, Edinburgh, UK, 2005.

[18] K. Spackman, Managing clinical terminology hierarchies using algorithmic calculation of subsumption: Expe-
rience with snomed-rt, Journal of the American Medical Informatics Assoc.Fall Symposium Special Issue.

[19] A. Ecke, R. Peñaloza, A.-Y. Turhan, Towards instance query answering for concepts relaxed by similarity mea-
sures, in: L. Godo, H. Prade, G. Qi (Eds.), Workshop on Weighted Logics for AI (in conjunction with IJCAI’13),
Beijing, China, 2013.

[20] A. Ecke, R. Peñaloza, A.-Y. Turhan, Answering instance queries relaxed by concept similarity, in: Proceedings
of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning (KR’14),
AAAI Press, Vienna, Austria, 2014.

[21] C. d’Amato, S. Staab, N. Fanizzi, On the influence of description logics ontologies on conceptual similarity, in:
A. Gangemi, J. Euzenat (Eds.), Proceedings of Knowledge Engineering: Practice and Patterns, 16th Int. Conf.
(EKAW 2008), Vol. 5268 of LNCS, Springer, 2008, pp. 48–63.

[22] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.), The Description Logic Handbook:
Theory, Implementation, and Applications, Cambridge University Press, 2003.

[23] F. Baader, Description logics, in: Proceedings of Reasoning Web: Semantic Technologies for Information Sys-
tems, Vol. 5689 of LNCS, 2009, pp. 1–39.

[24] C. Lutz, F. Wolter, Deciding inseparability and conservative extensions in the description logic EL, Journal of
Symbolic Computation 45 (2) (2010) 194–228. doi:10.1016/j.jsc.2008.10.007.

[25] F. Baader, Least common subsumers and most specific concepts in a description logic with existential restric-
tions and terminological cycles, in: G. Gottlob, T. Walsh (Eds.), Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI-03), Morgan Kaufmann, 2003, pp. 325–330.

[26] R. Peñaloza, A.-Y. Turhan, A practical approach for computing generalization inferences in EL, in: M. Gro-
belnik, E. Simperl (Eds.), Proceedings of the 8th European Semantic Web Conference (ESWC’11), LNCS,
Springer, 2011.

[27] A. Ecke, R. Peñaloza, A.-Y. Turhan, Computing role-depth bounded generalizations in the description logic
ELOR, in: I. J. Timm, M. Thimm (Eds.), Proceedings of the 36th German Conference on Artificial Intel-
ligence (KI 2013), Vol. 8077 of LNCS, Springer, Koblenz, Germany, 2013, pp. 49–60, extended version:
http://lat.inf.tu-dresden.de/research/papers/2013/EcPeTu-KI-13.long.pdf.

[28] C. Lutz, F. Wolter, M. Zakharyaschev, Reasoning about concepts and similarity, in: Proceedings of the 2003
International Workshop on Description Logics (DL2003), CEUR-WS, 2003.

[29] U. Straccia, Towards top-k query answering in description logics: The case of dl-lite, in: Proc. of the 10th
European Conf. on Logics in A.I. (JELIA 2006), Vol. 4160 of LNCS, Springer, 2006, pp. 439–451.

[30] U. Straccia, Answering vague queries in fuzzy dl-lite, in: Proc. of the 11th Int. Conf. on Information Processing
and Management of Uncertainty in Knowledge-Based Systems (IPMU-06), 2006, pp. 2238–2245.

29

[31] J. Z. Pan, G. B. Stamou, G. Stoilos, S. Taylor, E. Thomas, Scalable querying services over fuzzy ontologies, in:
Proc. of the 17th Int. Conf. on World Wide Web (WWW’08), ACM, 2008, pp. 575–584.

[32] R. Peñaloza, V. Thost, A.-Y. Turhan, Conjunctive query answering in rough EL, LTCS-Report 14-04, Chair of
Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Ger-
many, see http://lat.inf.tu-dresden.de/research/reports.html. (2014).

[33] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fundamenta
Mathematicae 3 (1) (1922) 133–181.

[34] A. Ecke, Similarity-based relaxed instance queries in EL++, in: T. Lukasiewicz, R. Peñaloza, A.-Y. Turhan
(Eds.), Proceedings of the First Workshop on Logics for Reasoning about Preferences, Uncertainty, and Vague-
ness, CEUR-WS, CEUR, 2014, to appear.

[35] B. Zarrieß, A.-Y. Turhan, Most Specific Generalizations w.r.t. General EL-TBoxes, in: F. Rossi (Ed.), Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13), 2013.

Appendix A. Proofs for Theorems from Section 5

Appendix A.1. Properties of ∼i

Before showing the formal properties for ∼i, we need to show that the result of normalization
is unique.

Lemma Appendix A.1. Let (I, a) and (J , b) be two pointed interpretations and let I′ and J ′ be
the results of normalizing I and J , respectively. Then the following holds:

1. Normalization preserves simulations, i.e., if (I, a) . (J , b) then also (I′, a) . (J ′, b).

2. If (I, a) ' (J , b), then for any successor (r, p) ∈ SC((I′, a)) there exists a unique successor
(r, q) ∈ SC((J ′, b)) with p ' q and vice versa. We denote this property by saying that (I′, a)
and (J ′, b) are structurally equivalent.

Proof.

1. Let (I, a) and (J , b) be two pointed interpretations with (I, a) . (J , b). Then for each
concept name A, we have a ∈ AI

′

⇔ a ∈ AI ⇒ b ∈ AJ ⇔ b ∈ AJ
′

. Additionally, for each
role name r, we have (a, a′) ∈ rI

′

⇒ (a, a′) ∈ rI ⇒ ∃b′ : (b, b′) ∈ rJ ∧ (I, a′) . (J , b′). If
(b, b′) ∈ rJ

′

, we are done: (I′, a) . (J ′, b) follows directly.
Otherwise, we know by the construction of J ′, that there exists an element c ∈ ∆J

′

with (b, c) ∈ rJ
′

and (J ′, b′) . (J ′, c) or (J ′, b′) ' (J ′, c). Since . is transitive and
(I′, a′) . (I, a) . (J , c), this means that (I′, a′) . (J ′, c) and the claim, (I′, a) . (J ′, b)
again follows.

2. Let (I, a) and (J , b) be two pointed interpretations with (I, a) ' (J , b). Let further (a, c) ∈
rI
′

, which also implies (a, c) ∈ rI. Since I′ is in normal form, this means that there is no
c′ ∈ ∆I with (a, c′) ∈ rI and (I, c) . (I, c′), and (I, c′) (I, c). Since (I, a) ' (J , b),
there exists an element d ∈ ∆J with (b, d) ∈ rJ and (I, c) . (J , d), but not necessarily
(b, d) ∈ rJ

′

. By the construction of J ′, we know that there is an element e ∈ ∆J
′

with
(b, e) ∈ rJ

′

and (J , d) . (J , e). Again, (I, a) ' (J , b) implies that a must have a successor
(a, f) ∈ rI with (J , e) . (I, f); however, since with (I, c) . (J , d) and (J , d) . (J , e),
this also means (I, c) . (I, f). Since we assumed that there is no c′ ∈ ∆I with (a, c′) ∈ rI

and (I, c) . (I, c′), this means that f = c and thus (I, c) ' (J , e) and by point 1. also
(I′, c) ' (J ′, e). The other direction is analogous.

30

With this, we can finally show the formal properties of ∼i.

Theorem 5.5. Let ∼i (∼prim, g,w) be instantiated with a primitive measure ∼prim, a weighting func-
tion g, and constant w ∈ (0, 1). Then ∼i has the following properties (w.r.t. to the simulation
relations . and ' given in Definition 2.3):

1. ∼i is symmetric, if the primitive measure ∼prim is symmetric;

2. ∼i is bounded;

3. ∼i is dissimilar closed, if the primitive measure ∼prim does not assign a similarity value
greater than 0 to different concept or role names.

4. ∼i is equisimulation invariant for normalized interpretations; and

5. ∼i is equisimulation closed for normalized interpretations, if the primitive measure ∼prim

does not assign the similarity value 1 to different concept or role names.

Proof.

1. symmetric: ∼i is symmetric, if the primitive measure ∼prim is symmetric, as the definition of
∼i only uses commutative operators.

2. bounded: ∼i is bounded, if C(p) ∩ C(q) ⊃ {>} implies p ∼i q > 0 for all p, q ∈ P. Assume
that there exists a concept C , > in C(p) ∩ C(q). Then, there also exists either a concept
name A or an existential restriction of the form ∃r.> in C(p)∩C(q), since for all conjunctions
C1 uC2 ∈ C(p) ∩ C(q) we also have C1,C2 ∈ C(p) ∩ C(q) and for all ∃r.C ∈ C(p) ∩ C(q) we
also have ∃r.> ∈ C(p) ∩ C(q).

However, for a concept name A ∈ C(p) ∩ C(q), we have that A ∼prim A = 1 and thus∑
A∈CN(p) maxB∈CN(q) g(A, B)(A ∼prim B) > 0. This yields p ∼i q > 0. Correspondingly, for
∃r.> ∈ C(p) ∩ C(q), we have r ∼prim r = 1 and thus g(r, s)(r ∼prim r)((1−w) + w(p′ ∼i q′)) >
1 − w > 0 and

∑
(s,q′)∈SC(p) max(p,q)∈SC(q) g(r, s)(r ∼prim s)((1−w) + w(p′ ∼n q′)) > 0. Again,

this yields p ∼i q > 0.

3. dissimilar closed: ∼i is dissimilar closed, if C(p) ∩ C(q) = {>} implies p ∼i q = 0 for all
p, q ∈ P with C(p) ⊃ {>} and C(q) ⊃ {>}; of course, ∼i can only be dissimilarity closed if
the primitive measure does not assign a similarity value greater than 0 to different concept
or role names. Hence we only show this property for the default primitive measure ∼default.

Let p, q ∈ P with C(p) ⊃ {>} and C(q) ⊃ {>}, i.e., both p and q are instance of some
concept name or have a successor. If C(p) ∩ C(q) = {>}, then A ∼default B = 0 for all
A ∈ CN(p) and B ∈ CN(q). Similarly, as there is no role name r with (r, p′) ∈ SC(p) and
(r, q′) ∈ SC(q), we have r ∼default s = 0 for all (r, p′) ∈ S (p) and (s, q′) ∈ S (q). This then
yields p ∼i q = 0.

4. equisimulation invariant: ∼i is equisimulation invariant for normalized interpretations, if
p ' q implies p ∼i u = q ∼i u for all normalized pointed interpretations p, q, u ∈ P; it
is a direct consequence of the fact that if p ' q, then the normalized pointed interpreta-
tions do not just simulate each other, but are structurally equivalent, as stated in Point 2 in
Lemma Appendix A.1. Thus the computation of p ∼i u can be modified to compute q ∼i u

31

by simply replacing the successors of p by the unique equisimilar successors of q and vice
versa; this will always yield the same similarity value.

5. equisimulation closed: The direction from left to right, i.e., p ' q implies p ∼i q = 1,
follows again by Point 2 in Lemma Appendix A.1. For the other direction, that p ∼i q = 1
also implies p ' q, we need the property that the primitive measure does not assign a
similarity value of 1 to different concept or role names. In this case, assume that p ; q for
p = (I, a) and q = (J , b). Then, w.l.o.g., we have one of the following conditions:
(a) there exists a concept name A with a ∈ AI and b < AJ , or
(b) a has a successor (a, c) ∈ rI and there is no d with (b, d) ∈ rJ , or
(c) a has a successor (a, c) ∈ rI and for all successors t = (J , d) of b with (b, d) ∈ rJ we

have that s ; t. In this case, there must be a finite chain of such successors si, ti starting
from a, b such that condition 1 or 2 holds for sn, tn.

Now, we can prove inductively that p ∼i q < 1. In the first two cases a) and b), Equation 1
directly gives a similarity value < 1, since the concept name A in case a) or the role name
r in case b) will always be matched with a different concept or role name and ∼prim never
assigns similarity 1 to different concept or role names. In the third case, we assume that
c ∼i d < 1 by induction for all successors d of b. Then Equation 1 again yields a similarity
value p ∼i q < 1. Thus ∼i must equisimulation closed.

Appendix A.2. Properties of ∼c

Theorem 5.7. For a primitive measure ∼prim, a weighting function g, and a discounting factor w,
the concept similarity measure ∼c(∼prim, g,w) is symmetric, bounded, dissimilar closed, equiva-
lence invariant, and equivalence closed, if ∼i(∼prim, g,w) is symmetric, bounded dissimilar closed,
equisimulation invariant and equisimulation closed, respectively.

Proof. We prove that the properties of ∼i transfer to ∼c:

1. symmetry: C ∼c D = (IC,T , dC) ∼i (ID,T , dD) = (ID,T , dD) ∼i (IC,T , dC) = D ∼c C follows
from the symmetry of ∼i.

2. bounded: Assume that for two EL-concept C and D, there exists a concept E , > with
C vT E and D vT E. Then Theorem 2.6 and Lemma Appendix A.1 yield E ∈ C(p) ∩ C(q)
for p = (I′C,T , dC) and q = (I′D,T , dD). Therefore boundedness of ∼i implies C ∼c D = p ∼i

q > 0.

3. dissimilar closed: Assume that for two EL-concept C,D , >, there is no concept E , >
with C vT E and D vT E. Then Theorem 2.6 and Lemma Appendix A.1 imply that
C(p) ∩ C(q) = {>} for p = (I′C,T , dC) and q = (I′D,T , dD), and thus, since we assume that ∼i

is dissimilar closed, C ∼c D = p ∼i q = 0.

4. equivalence invariant: Assume that C ≡T D. Then by Theorem 2.6 and Lemma Ap-
pendix A.1 we have (I′C,T , dC) ' (I′D,T , dD) and thus equisimulation invariance of ∼i implies
(I′C,T , dC) ∼i (J , e) = (I′D,T , dD) ∼i (J , e) for any pointed interpretation (J , e), in particular
pointed interpretations of the form (I′E,T , dE). This then yields C ∼c E = D ∼c E for any
EL-concept E.

32

5. equivalence closed: Assume that C ≡T D. Then by Theorem 2.6 and Lemma Appendix
A.1 we have (I′C,T , dC) ' (I′D,T , dD) and thus (I′C,T , dC) ∼i (I′D,T , dD) = 1 since ∼i is
equisimulation closed. But then we also have C ∼c D = 1.

Similarly, assume that C ∼c D = (I′C,T , dC) ∼i (I′D,T , dD) = 1. Then (I′C,T , dC) '
(I′D,T , dD) since ∼i is equisimulation closed, and thus Theorem 2.6 yields C ≡T D.

Appendix A.3. Correctness of Algorithm relaxed-instances from Figure 2
Theorem 5.10. Let ∼c be the CSM derived from ∼i(∼prim, g,w) with the primitive measure ∼prim,
the weighting function g, and the discounting factor w. Then the algorithm relaxed-instances is
sound and complete:

1. Soundness: If a ∈ relaxed-instances(Q,K , t,∼prim, g,w) for a number n of iterations, then
a ∈ Relax∼c

t (Q).

2. Completeness: If a ∈ Relax∼c
t (Q), then there exists an i ∈ N such that for all n ≥ i iterations

a ∈ relaxed-instances(Q,K , t,∼prim, g,w).

Proof. First, we show that the fixed-point of msimi for (I′Q,T , dQ) and (I′
K
, da) with i → ∞ corre-

sponds to the maximal similarity between Q and all concepts D that have a as an instance. This
is due to the fact that all concepts D that have a as an instance must be equivalent to generalized
concepts of the (possibly infinite) fully expanded mscK (a) (see [19]) and that the tree unraveling of
(IK , da) yields exactly the fully expanded mscK (a) [26, 35]. By choosing the subsets S CN ⊆ CN(q)
and S SC ⊆ SC(q) for each pair of pointed interpretations p = (IQ,T , d) and q = (IK , e), the al-
gorithm maximizes the similarity over those generalized concepts, and thus, always computes the
maximal similarity between Q and all concepts D that have a as an instance.

1. Soundness: relaxed-instances computes the similarities between all d ∈ IQ,T and e ∈ IK it-
eratively. Again, this mapping from old to new msim values done in each iteration (line 3–5)
is a contraction mapping, and therefore we can apply the Banach fixed-point theorem. This
yields that the similarity values computed by relaxed-instances converge to the solutions of
∼imax and thus for the pair (dQ, da) to the maximal similarity between Q and all concepts D
that have a as an instance. Furthermore, all factors used in updating the similarity values are
positive, thus the mapping is monotone, and since relaxed-instances starts with similarity
value 0 for all pairs of elements, the values for (dQ, da) converges to the solution from be-
low. This means that whenever relaxed-instances finds a value msimi(dQ, da) > t for some i,
we know that also (IQ,T , dQ)∼imax(IK , da) > t and thus a ∈ Relax∼c

t (Q). The claim follows.

2. Completeness: Let a be a relaxed instance of Q w.r.t. ∼c,K and t, i.e. (IQ,T , dQ) ∼i (IK , da)−
t = δ > 0. The convergence of the similarities computed during relaxed-instances by the
Banach fixed-point theorem means that there is an n ∈ N such that the error in the value
msimi(dQ, da) for all iterations i ≥ n is less than δ; and thus greater than t, which yields that
a ∈ relaxed-instances(Q,K , t,∼prim, g,w) when run for i ≥ n iterations.

33

