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Abstract. For reasoning over streams of data ontology-based data ac-
cess is a common approach. The method for answering conjunctive queries
(CQs) over DL-Lite ontologies in this setting is by rewritings of the query
and evaluation of the resulting query by a data base engine. For stream-
based applications the classical expressivity of DL-Lite lacks means to
handle fuzzy and temporal information. In this paper we report on a com-
bination of a recently proposed pragmatic approach for answering CQs
over fuzzy DL-Lite ontologies with answering of CQs over sequences of
ABoxes, resulting in a system that supplies rewritings for query answer-
ing over temporal fuzzy DL-Lite-ontologies.

1 Introduction

We report in this paper on work in progress regarding answering queries for
extensions of the lightweight ontology language DL-Lite by fuzzy and also by
temporal information, which are tailored towards the use in ontology-based sit-
uation recognition.

The main task in context-aware or self-adaptive systems it to recognize sit-
uations that might invoke an adaptation of the system to new conditions in its
surrounding. To this end data is collected from multiple sources, often times sen-
sors and stored in a data bases system. A description of situations that might
invoke an adaptation is matched against the data to detect the occurence of
a critical situation in the data. The ontology-based approach to such situation
recognition enriches the observations made by sensors semantically and thus of-
fers a higher-level view on the data collected. In the ontology-based approach
the critical situations are captured by queries that are evaluated over the data
enriched by the background knowledge captured in the ontology. Now, since po-
tentially a huge amount of such preprocessed data has to be queried, efficient
algorithms are expedient. In our case we employ the ontology language DL-Lite
and answering of conjunctive queries (CQs), which are a simple form of first
order queries, to recognize critical situations. It is well-known that DL-Lite-
family of allows for answering of conjunctive queries in LogSpace [2, 7, 6], which
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is the same complexity as answering database queries. This good complexity is
achieved by the so-called rewriting approach, where the conjunctive query is first
’́ enriched by the (relevant) information from the TBox and then this rewritten
query is evaluated over a data base. The rewriting approach for answering CQs is
implemented in optimized systems as QuOnto2 [1, 11], Ontop [13], Owlgres [14],
and IQAROS [19] which perform well in practice.

Now, in context-aware systems that employ streams of sensor data, the ex-
pressivity of standard ontology languages often might be too limited. For in-
stance, the numerical values obtained from the sensors are mapped to coarser
logical categories such as high, medium or low. For such categories the concept
membership of a particular measurement is rather vague calling for the use of
fuzzy ontology languages that allow for membership degrees expressing that a
particular measurement belongs to a category only to a certain extent. Another
short-coming of standard ontology languages is the lack of modeling temporal
information. Now, each of these two extensions are known to make reasoning
in ontology languages undecidable, if allowed for modeling concepts. Thus, we
chose combinations that allow for fuzzy or temporal information only in the data
and in the query.

In our pragmatic approach to answering of (fuzzy) conjunctive queries, a
crisp DL-Lite reasoner is used as a black box to obtain an initial rewriting of the
conjunctive query (without the fuzzy degrees). The obtained query gets extended
in a second rewriting step by (1) fuzzy atoms, (2) degree variables that capture
numerical membership degrees, and (3) numerical predicates that realize the
fuzzy operators. The resulting query can then be evaluated by a SQL engine.

A similar extension of the rewriting approach has recently been employed
for the temporal setting [5] and implemented [17]. In this setting the incoming
information is modeled as a sequence of fact bases, one for each moment in time
in which the system has been observed. To recognize situations, operators of
the temporal logic LTL are admited. Such temporal operators can express for
a property that it is true at the next point in time or to be satisfied at some
point in future. In this rewriting approach the temporal information queried
for is treated by an additional rewriting step of the temporal query and the
information is also retrieved by a query over the temporal database. Now, as it
turns out both two-step rewiting methods can be combined in a straightforward,
but elegant way. Yielding a method that is capable to answer conjunctive queries
over temporal sequences that model data in a fuzzy way.

The rest of the paper is structured as follows: While in the next section we
give the prelimiaries on fuzzy DL-Lite and fuzzy ontologies, we describe the
extension of the classical rewriting procedure to fuzzy information in Section 3
and its implementation in the FLite system. Section 4 gives results on a per-
formance evaluation of FLite on a situation recognition use-case. Conclusions
and future work end the paper in Section 6.



2 Preliminaries

We start with the concept language of DL-LiteR and then introduce our fuzzy
variant of ABoxes. The information in a DL-knowledge base is described by
means of the following atomic types: concept names form the set NC, role names
from the set NR, individual names from the set NI and for the queries also from
the set of variables NV. From these elements the complex DL-LiteR-concepts,
-roles and -queries are constructed. DL-LiteR-concepts and -roles are defined
according to the following grammar:

B →A | ∃Q C →> | B | ¬B Q→P | P− R→Q | ¬Q,

where > is the top concept, A ∈ NC, P ∈ NR. Based on these kinds of complex
concepts and roles, a DL-LiteR TBox T is a finite set of axioms of the form:
B v C, Q v R or funct(Q). Let a, b ∈ NI and d ∈ [0, 1] a fuzzy degree. A fuzzy
assertion is of the form: 〈B(a),> d〉 or 〈P (a, b),> d〉. An ABox A is a finite
set of fuzzy assertions. A fuzzy DL-Lite-ontology O = (T ,A) consists of a TBox
T and an ABox A. Please note that the TBoxes are crisp in our setting. Crisp
DL-LiteR-ontologies are a special case of fuzzy ones, where only degrees 1 and
0 are admitted.

The reasoning problem we address here is answering of (unions of) conjunc-
tive queries. Let t1, t2 ∈ NI ∪NV be terms, an atom is an expression of the form:
C(t1) or P (t1, t2). Let x and y be vectors over NV, then φ(x,y) is a conjunc-
tion of atoms of the forms A(t1) and P (t1, t2). A conjunctive query (CQ) q(x)
over an ontology O is a first-order formula ∃y.φ(x,y), where x are the answer
variables, y are existentially quantified variables and the concepts and roles in
φ(x,y) appear in O. Observe, that the atoms in a CQ do not contain degrees.
Now, a union of conjunctive queries (UCQ) is simply a finite set of conjunctive
queries that have the same number of answer variables.

The semantics of fuzzy DL-LiteR is provided an interpretation with an in-
terpretation domain ∆ and a mapping function that assigns values from the
unit interval, instead of just 0 and 1 as in the classical case. More precisely, an
interpretation for fuzzy DL-LiteR is a pair I = (∆I , ·I), where ∆I is as usual,
but ·I is an interpretation function mapping every

– a ∈ NI to some element aI ∈ ∆I ,
– A ∈ NC to a concept membership function AI : ∆I → [0, 1],
– P ∈ NR to a role membership function P I : ∆I ×∆I → [0, 1].

The semantics of the complex concepts in fuzzy DL-LiteR is provided via the
different families of fuzzy logic operators depicted in Table 1 and interpretations.
Let δ, δ′ denote elements of ∆I and 	 denote fuzzy negation (Table 1), then the
semantics of concepts and roles are inductively defined as follows:

(∃Q)I(δ) = supδ′∈∆IQI(δ, δ′) (¬B)I(δ) = 	BI(δ) >I(δ) = 1

P−I(δ, δ′) = P I(δ′, δ) (¬Q)I(δ, δ′) = 	QI(δ, δ′)



Table 1. Families of fuzzy logic operators.

Family t-norm a⊗b negation 	a implication α⇒ b

Gödel min(a, b)

{
1, a = 0

0, a > 0

{
1, a 6 b

b, a > b

 Lukasiewicz max(a+ b− 1, 0) 1− a min(1− a+ b, 1)

Product a× b

{
1, a = 0

0, a > 0

{
1, a 6 b

b/a, a > b

An interpretation I satisfies B v C iff BI(δ) 6 CI(δ) for every δ ∈ ∆I , Q v R
iff QI(δ, δ′) 6 RI(δ, δ′) for every δ, δ′ ∈ ∆I , and func(Q) iff for every δ ∈ ∆I

there is a unique δ′ ∈ ∆I such that QI(δ, δ′) > 0. An interpretation I is a model
of a TBox T , i.e. I |= T , iff it satisfies all axioms in T . I satisfies 〈B(a),> d〉
iff BI(aI) > d, and 〈P (a, b),> d〉 iff P I(aI , bI) > d. I is a model of an ABox
A, i.e. I |= A, iff it satisfies all assertions in A. Finally an interpretation I is a
model of an ontology O = (T ,A) iff it is a model of A and T .

Given a CQ q(x) = ∃y.φ(x,y), an interpretation I, a vector of individuals α
with the same arity as x, we define the mapping π that maps: i) each individual
a to aI , ii) each variable in x to an element of αI , and iii) each variable in y
to an element δ ∈ ∆I . Suppose that for an interpretation I, Π is the set of
mappings that comply to these three conditions. Computing the t-norm ⊗ of
all atoms: AI(π(t1)) and P I(π(t1), π(t2)) yields the degree of φI(αI , π(y)). A
tuple of individuals α is a certain answer to q(x), over O, with a degree greater
or equal than d (denoted O |= q(α) > d), if for every model I of O:

qI(αI) = supπ∈Π{φI(α, π(y))} > d.

We denote the set of certain answers along with degrees, to a query q(x) w.r.t.
an ontology O with ans(q(x),O):

ans(q(x),O) = {(α, d) | O |= q(α) > d ∧ 6 ∃d′.d′ > d ∧ O |= q(α) > d′}.

To illustrate the use of the fuzzy DL-LiteR language and queries, we provide
an example from our application domain.

Example 1. The ontology Oex for our running example consists of:

Tex := {Server v ∃hasCPU, ∃hasCPU− v CPU, func(hasCPU−)}
Aex := {〈Server(server1),> 1〉, 〈hasCPU(server1, cpu1),> 1〉,

〈OverUsed(cpu1),> 0.6〉, 〈hasCPU(server1, cpu2),> 1〉,
〈OverUsed(cpu2),> 0.8〉 }

The first two axioms in Tex state that each server has a part that is a CPU. The
third one states that no CPU can belong to more than one server. Aex provides



information about the connections between servers and CPUs and each CPU’s
degree of overuse. To query the ontology Oex we can formulate the queries:

q1(x, y) = hasCPU(x, y) ∧OverUsed(y)

q2(x) = ∃y hasCPU(x, y) ∧OverUsed(y)

The query q1 asks for pairs of Servers and CPUs with an overused CPU. The
query q2 asks for Servers, where the Server’s CPU is overused. If conjunction and
negation are interpreted as the Gödel family of operators, the certain answers
w.r.t. Oex are:

ans(q1(x, y),Oex) = {(server1, cpu1, 0.6), (server2, cpu2, 0.8)}
ans(q2(x),Oex) = {(server1, 0.8)}.

3 Fuzzy Query Answering by Extended Crisp Rewritings

In the following we are interesed in answering the CQ q(x), which is formulated
over the vocabulary of the DL-LiteR ontology O = (T ,A). The main idea un-
derlying the classic DL-LiteR query answering algorithm is to rewrite the query
q(x) with the information from the TBox T into a UCQ qT (x) and then apply
this UCQ to the ABox A alone [7, 2]. For fuzzy DLs we extend this approach to
handle degrees of ABox assertions. The main idea is depicted in Figure 1.

To explain the algorithm we need the predicates Af , Pf , and Φ⊗. Intuitively,
each binary predicate Af is an extension of the concept A such that the fuzzy
concept assertion 〈A(a),> d〉 is equivalent to the predicate assertion Af (a, d)
(similarly for Pf ). The n-ary predicate Φ⊗ is needed to realize the semantics
of the fuzzy conjunction within a CQ. More precisely, it ’combines’ the mem-
bership degrees obtained for the conjuncts to yield the membership degree of
the conjunction. Thus, for each tuple of degrees d1, . . . , dn ∈ [0, 1] such that
d1 = ⊗(d2, . . . , dn), we have that (d1, . . . , dn) ∈ Φ⊗. For the CQ q(x) to be
answered, the two-step rewriting algorithm proceeds as follows:

1. The crisp DL-LiteR algorithm rewrites q(x) to qT (x) using the information
from the TBox.

FLITE Reasoner 

Fig. 1. The process flow diagram of the FLite rewriting procedure.



2. The fuzzy query qT ,f (x, xd) is computed from qT (x) by replacing atoms
of the form A(t1) and P (t1, t2) by Af (t1, yd) and Pf (t1, t2, yd), where the
variable yd is a degree variable. Its purpose is to retrieve the degree of an
assertion. The degree value for fuzzy conjunction is retrieved by the predi-
cate Φ⊗ and (to be) stored in the additional degree variable xd. Thus, the
conjunction degree of a new atom qT ,f (x, xd) is obtained by the predicate
Φ⊗(xd, y1, . . . , yn), where yi is a degree variable in the ith atom of the CQ.

3. The query is evaluated over the ABox and the actual computation of the
degree values takes place. Now, for a tuple of individuals α and degrees
d1, d2 ∈ [0, 1], if (α, d1) and (α, d2) are both answers to the query, only the
answer with the higher degree is returned.

Note that this description abstracts from the ABox A being implemented by a
relational database D and a mappingM. We see in Section 3.1 how this mapping
is extended to incorporate fuzzy information. For a detailed presentation of the
algorithms, the reader may refer to [9].

Example 2. We return to Example 1 and illustrate the application of the algo-
rithm to the queries. Initially, q1 and q2 are rewritten to the following UCQs:

q1Tex(x, y) ={hasCPU(x, y) ∧OverUsed(y)}
q2Tex(x) ={∃y.hasCPU(x, y) ∧OverUsed(y)}

In the next step, the algorithm extends the queries with degree variables and
atoms, so that the corresponding degrees can be returned:

q1
f
Tex(x, y, xd) ={hasCPU(x, y, yd1) ∧OverUsed(y, yd2) ∧ Φ⊗(xd, yd1 , yd2)}

q2
f
Tex(x, xd) ={∃y.hasCPU(x, y, yd1) ∧OverUsed(y, yd2) ∧ Φ⊗(xd, yd1 , yd2)}

For the ABox Aex the following set of answers to each of the queries are returned:

ans(q1
f
Tex(x, xd),Aex) ={(server1, cpu1, 0.6), (server1, cpu2, 0.8)}

ans(q2
f
Tex(x, xd),Aex) ={(server1, 0.8)}.

The limitations of our pragmatic approach are explained in [9]. To sum up,
this pragmatic approach yields sound and complete results for fuzzy semantics
based on idempotent operators such as the Gödel family of operators. Non-
idempotent operators may be simplified by highly optimized implementations
such as Ontop. Consider qT (x) := A(x) ∧ A(x) is simplified to qT (x) := A(x),
which is correct for crisp, but not for every fuzzy semantics. The correctness for
the case of the Gödel family of operators can be derived from the crisp DL-LiteR

proof along with the following points: (1) only crisp TBox axioms are allowed,
(2) conjunctions only appear in conjunctive query expressions, (3) Ontop opti-
mizations do not affect the correctness of the algorithm due to the properties
of the min operator. The latter does not apply for all other t-norms. The pro-
posed methodology is complete but not sound for the  Lukasiewicz and Gödel
families of operators. Nevertheless, in [9], we devised a method by which each
unsound answer can be identified and its correct degree estimated by an interval
of membership values.



3.1 The FLite Reasoner Implementation

FLite3 (Fuzzy DL-LiteR query engine) implements the above query answering
algorithm and builds on the Ontop framework [13]. Implementation-wise, the
rewriting procedure is a little more involved if a reasoner such as Ontop is
deployed, since it operates on relational databases directly. Thus the queries
qT (x) and qT ,f (x, xd) in Figure 1 are SQL queries, while the ABox A is only
virtual and implemented by a partial mapping:

M : SQL SELECT Statements→ ABox assertions.

In order to embed fuzzy information into mappings we adopt a reification ap-
proach sketched in the following example.

Example 3. We consider a fuzzy mapping described in the Quest syntax [12].
In this mapping, for the concept popularVideo each id of the table videos is
annotated with a popularity, i.e. a fuzzy degree:

t a r g e t haec : v ideo { p o p u l a r i t y d e g r e e } a haec : PopularVideo .
source SELECT fuzzy ( id , popu la r i ty )

AS p o p u l a r i t y d e g r e e
FROM v ideos

Now, a video with an id of 12 and a popularity of 0.8 in the database corresponds
to 〈PopularVideo(videos12),> 0.8〉 stated in the ontology.

The function fuzzy(column, degree) is a marker for the FLite parser to recognize
such fuzzy statements. It indicates that each element of the particular column
(or SQL expression) is associated with a membership degree. Such a degree is
either a column with values from [0, 1], or an SQL expression corresponding to a
fuzzy membership function. SQL expressions that contain the fuzzy marker func-
tion appear in the initial mapping M and in qT (x) queries, while in qT ,f (x, xd)
queries these markers are converted to SQL expressions that return the mem-
bership degrees.

4 Performance test of FLite

A Situation Recognition Application: ??? The project “Highly Adaptive Energy-
efficient Computing” (HAEC) investigates complex computing environments
that are highly energy-efficient while compromising utility of services as little
as possible. In order to be adaptive, the system needs to trigger adaptations
(of hard- or software components), if the quality of the requested services or
their number changes. To provide such a trigger mechanism we investigate an
ontology-based situation recognition. The situations to be recognized are mod-
elled as conjunctive queries. The background information on the system is cap-
tured in the TBox and the current system’s state is captured by an ABox. Such

3 The FLite reasoner is available from the following Git: https://iccl-share.inf.tu-
dresden.de/flite-developer/flite.git
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Fig. 2. Ontop is compared to optimized FLite versions SR, PD, and SR+PD. All
setups were executed over a CQ with 13 atoms.

ABoxes are automatically generated from sensor data and other systems infor-
mation and the conjunctive queries for the situations are evaluated. In such a
setting the numerical sensor data need to be mapped to coarser, symbolic cate-
gories and membership degrees. Similarly, the query needs to be able to retrieve
individuals that fulfill the conditions of the query to a degree. We have built a
TBox and a collection of ABoxes and queries for this application.

We took this application to conduct a study of the performance of FLite.
The backgroung knowledge on hard- and software components of the HAEC
system is modeled in a TBox which consists of 197 GCIs, 168 named classes and
38 roles (415 axioms in total). Each state of the HAEC system is stored in tables
of a relational database, which store the information on the soft- and hardware
of the HAEC system. The tables contain numerical values for boards, processes,
requests, etc.4 Our test compares the run-time to answer (fuzzy) conjunctive
queries over TBox and ABox by Ontop and FLite. In contrast to Ontop
which requires a crisp mapping, FLite is using a partially fuzzy mapping.

FLite was evaluated over a series of databases of increaing size, i.e., scaled
by a factor k. The initial database with a size of 768.0 KiB was scaled by k
in the range of 100 to 105 to about 13 GiB by the Virtual Instance Generator
(VIG) [8]. For each of these scaled databases, a query with 13 atoms (2 crisp
concepts, 7 fuzzy concepts, 4 crisp roles) in total was evaluated. The system
on which the benchmark was performed on is powered by an Intel Core i7 2.6
GHz processor and was equipped with 8 GB DDR 1600 main memory. ABox
information was stored in a MySQL 5.6.23 database. FLite and Ontop are
executed on Oracle the JVM 1.7.

Figure 2 shows the query execution time for increasing database size of On-
top with a crisp mapping compared to three variants of FLite (with Gödel
t-norms and with fuzzy mapping): naive, optimization SR and optimization PD.
Where SR means self join removal from the SQL statement and PD the pre-
computation of membership degrees in the database.

Optimization SR shows run-time reduction up to a linear factor of about
thousand, afterwards it converges with the naive FLite implementation. Thus,

4 The files necessary to perform this benchmark can be found here: https://iccl-
share.inf.tu-dresden.de/erikzenker/flite-benchmark.git



optimizations for larger databases are necessary. Optimization PD in Figure 2
shows opposite behavior, resulting in a run-time reduction from a scale factor of
thousand. Finally, a combination of both reduces the run-time on all scale factors
and is even on the same level with Ontop up to a scale factor of thousand.
Thus, a query execution time with a flat linear run-time overhead with respect
to Ontop is possible when the fuzzy rewriting is optimized and fuzzy translation
functions are replaced by fuzzy computed columns.

Instead of comparing FLite with Ontop, a comparison with other fuzzy
DL reasoners would have been desirable. However, reasoners such as LiFR [18],
FuzzyDL [4], FiRE [15], and DeLorean [3] support only instance queries instead
of conjunctive queries. Others such as the DL-Lite reasoner Ontosearch2 [10] or
SoftFacts [16] could either not be obtained or installed.

5 Towards Temporal Fuzzy Query Answering on Streams

In temporal OBDA, one is not restricted to the knowledge about a single moment
in time in a single ABox, but a sequence of ABoxes A0, . . . ,An. A stream of data
can be transformed into such a sequence by sampling the stream periodically and
storing data together with a timestamp in a database. Such a complex entry in
the database corresponds to an assertion in the ABox Ai.

In a scenario of a complex compute system each compute entity generates a
continous stream of data. This data can be used to recognize global contexts,
through temporal fuzzy conjunctive queries (TFCQs), which refer to several point
in time as well as to fuzzy information. A management system is able to subscribe
and to transform data streams into a sequence of ABoxes and to evaluate a set
of TFCQs periodically.

5.1 Introducing Temporal Query Answering

To accommodate the new information, we extend the notions of knowledge base,
interpretation, and CQ to the temporal case. A temporal knowledge base (TKB)
K = 〈O, (Ai)0≤i≤n〉 consists of an ontologyO and a finite sequence of ABoxesAi.
Let I = (Ii)i≥0 be an infinite sequence of interpretations Ii = (∆, ·Ii) over a
non-empty domain ∆ that is fixed (constant domain assumption). Then, I is a
model of K (written I |= K) if

– for all i ≥ 0, we have Ii |= O; and
– for all i, 0 ≤ i ≤ n, we have Ii |= Ai.

We next describe our query language, which combines conjunctive queries via
LTL operators. A conjunctive query (CQ) is of the form ψ(x) = ∃y.ψ′(x,y),
where x and y are tuples of (pairwise distinct) variables, and ψ′(x,y) is a (pos-
sibly empty) finite conjunction of atoms of the form

– A(t) (concept atom), for a concept name A, or
– Q(t, t′) (role atom), for a basic role Q,



φ (a(φ))I,i

A CQ ψ (a(ψ))Ii

φ1 ∧ φ2 (aφ1(φ1))I,i⊗(aφ2(φ2))I,i

φ1 ∨ φ2 (aφ1(φ1))I,i⊕(aφ2(φ2))I,i

#φ1 If i < n, then (a(φ1))I,i+1, else 0.

#−φ1 If i > 0, then (a(φ1))I,i−1, else 0.

2φ1 ⊗{(a(φ1))I,k | i ≤ k ≤ n}
2−φ1 ⊗{(a(φ1))I,k | 0 ≤ k ≤ i}
φ1 Uφ2 supk,i≤k≤n⊗{(aφ2(φ2))I,k, (aφ1(φ1))I,j | i ≤ j < k}
φ1 Sφ2 supk,0≤k≤i⊗{(aφ2(φ2))I,k, (aφ1(φ1))I,j | k < j ≤ i}

Table 2. The semantics of TCQs.

where t, t′ are either individual names or variables that occur in ψ. The empty
conjunction is denoted by true. Temporal conjunctive queries (TCQs) are built
from CQs as follows: (1) Every CQ is a TCQ and (2) If φ1 and φ2 are TCQs,
then the following are also TCQs:

– φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunction),

– #φ1 (next), #−φ1 (previous),

– φ1 U
< φ2 (until), φ1 Sφ2(since),

– 2φ1 (always), and 2−φ1 (always in the past).

As usual, we use the abbreviation 3φ1 (eventually) for trueUφ1; and, analo-
gously for the past, 3−φ1, for true Sφ1.

Given an interpretation, we next describe the answers to TCQs as mappings
from the variables and individual names occurring in the query to elements of
the domain of the interpretation. We start by defining the semantics of CQs for
Boolean queries as usual, through the notion of homomorphisms.

Let ψ(x) = ∃y.ψ′(x,y) be a CQ, a = (a1, . . . , am) be a tuple of individual
names, of same arity as the tuple x, and I = (∆I , ·I) be an interpretation.
A mapping π from the variables and individual names that occur in ψ to the
elements of ∆I is a homomorphism of ψ(a1, . . . , am) into I if

– π(xi) = π(ai), for all 1 ≤ i ≤ m;

– π(a) = aI , for all individual names a occurring in ψ;

– π(t) ∈ AI , for all concept atoms A(t) in ψ; and

– (π(t1), π(t2)) ∈ RI , for all role atoms R(t1, t2) in ψ.

Let now φ be a TCQ, a be a mapping from the distinguished variables in φ
to individual names, and I = (Ii)i≥0 be an infinite sequence of interpretations.
We define the satisfaction relation I, i |= a(φ) by induction on the structure
of φ based on Table 5.1; that is, I, i models〈a(φ), d〉 iff (a(φ))I,i ≥ d. Given a
TKB K, we say that a is a certain answer to φ w.r.t. K at time point i, written
K, i |= a(φ), if we have I, i |= a(φ), for all models I of K.



5.2 The Algorithm

The algorithm to answer a TFCQ on fuzzy and temporal data is based on a mod-
ified OBDA approach, which rewrites the given query into a standard database
query (e.g., in SQL) that encodes the relevant ontological knowledge, the tempo-
ral conditions, and the membership variables but addresses a general database.
The algorithm to rewrite TFCQs is based on the following rewriting approach:

Assume, a TCQ φt in TSPARQL is given, then sql(φt) rewrites φt into a
SQL query (See Algorithm 1). The algorithm processes φt recursively until no
further temporal operators are present (i.e. when the considered subquery is a
plain CQ). The then considered query ψ is first extended by the ontology and
afterwards fuzzified to add the membership degrees (e.g, if ψ asks for instances
of Overutilized, then the above described function fuzzifyOverutilized) is included
into the SQL to generate the corresponding membership degree from the data.
Subsequently, the extended and fuzzified CQs are recombined by the given tem-
poral operators.

Algorithm 1 FTCQ to SQL rewriting

1: function sql(φt, T )
2: φ′ ← ∅
3: t′ ← operators(φt) . Retrieve list of temporal operators
4: for all CQs φ in TCQ φt do
5: if φ contains temporal operator then
6: φ′ ← append(φ′, SQL(φ, T )) . Append a TCQ to φ′

7: else
8: φT ← extend(φ, T ) . Extends φ by information of T
9: φfT ← fuzzify(φT ) . Annotate φT with fuzzy information

10: φ′ ← append(φ′, φfT )) . Append the fuzzyfied CQ to φ′

11: end if
12: end for
13: φt,fT ← temporalize(φ′, t′) . Connects a list of queries by temporal operators
14: return φt,fT
15: end function

Recall that the function sql separates the temporal operators and thus splits
the given query. As an example, we regard the rewriting sql(#− ψ1). Since ψ1

is a plain CQ, it is extended and fuzzified as outlined above. The SQL state-
ment in Listing 1.1 shows the result of sql(#− ψ1, T ), assuming T to be our
corresponding ontology. This SQL is then combined with the SQL generated for
the other subqueries. The final rewriting sql(φt, T ) can then be evaluated over
a common relational database, and the obtained answers represent the answers
to the query φt w.r.t. T , with the consideration of fuzzy data.

5.3 Towards an Implementation

The idea for an implementation is to reuse existing tools for the above discussed
approach to provide fast and efficient query answering, the possibility to evaluate



large datasets. Techniques developed in FLite for fast query answering on fuzzy
ontologies and in QuAnTOn [17] for temporal OBDA need to be combined
in a single application, which allows for OBDA over fuzzy data. Furthermore,
an ABox generator needs to transform streaming data into ABoxes with fuzzy
and temporal information. An overview of the idea of such a system is given
in Figure 3. The system input consists of (i) (possibly fuzzy) data referencing
different time points, (ii) a pair (φt, d) containing a TFCQ φt and a degree d, and
(iii) an ontology. The system then rewrites the query as described in the previous

section and evaluates the rewritten query, φf,tT , over the MySQL database. This
evaluation yields a set of answers with corresponding degrees. The system then
returns those of these answers whose degree is ≥ d.

Sequence of ABoxes

Ontology

TCQ 
+

Degree

QuAnTOn

Reintroduce 
Temporal Operators 

by

SQL Engine

Add 
Membership
Degrees by

FLite

Separate Temporal
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Query

Answers

SQL Query

...

...

...

...

Query Rewriting to
SQL by

0
 1

 0
 0

 1
 0

 1
 1

 0

1
 1

 0
 1

 0
 0

 1
 1

 1

1
 0

 0
 1

 0
 0

 1
 1

 0

0
 0

 1
 0

 1
 1

 1
 0

 0
 ABox generator

Streams Timestamp

Fig. 3. Schema of the implementation for fuzzy temporal query answering.

6 Conclusions

We presented a pragmatic approach for answering fuzzy conjunctive queries over
DL-LiteR-ontologies with fuzzy ABoxes. Our approach uses rewritings obtained
by the algorithm for answering crisp queries as an intermediate step and thus
allows to make use of standard query rewriting engines. Although described



here for DL-LiteR, our approach can be extended to other DLs that enjoy FOL
rewritability. We implemented our approach in the FLite system and evaluated
it against the Ontop reasoner for ABoxes of varying size. Our evaluation gave
evidence that there is a substantial increase of run-time for large ABoxes, when
fuzzy information is queried. Furthermore, we presented an approach for tempo-
ral fuzzy query answering, which combines two rewriting-based query answering
algorithms. A through investigation of this subject remains future work

References

1. A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M. Palmieri,
and R. Rosati. QUONTO: Querying Ontologies. In AAAI, pages 1670–1671, 2005.

2. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite
Family and Relations. Journal of artificial intelligence research, 36(1):1–69, 2009.
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