
Preferential Query Answering in the
Semantic Web with Possibilistic Networks

(Extended Abstract)

Stefan Borgwardt1, Bettina Fazzinga2, Thomas Lukasiewicz3,
Akanksha Shrivastava3, and Oana Tifrea-Marciuska3

1 Faculty of Computer Science, Technische Universität Dresden, Germany
stefan.borgwardt@tu-dresden.de

2 ICAR, National Research Council (CNR), Italy
fazzinga@icar.cnr.it

3 Department of Computer Science, University of Oxford, UK
akanksha.shrivstv@gmail.com, {thomas.lukasiewicz, oana.tifrea}@cs.ox.ac.uk

Abstract. In this paper, we explore how ontological knowledge ex-
pressed via existential rules can be combined with possibilistic networks
(i) to represent qualitative preferences along with domain knowledge, and
(ii) to realize preference-based answering of conjunctive queries (CQs).
We call these combinations ontological possibilistic networks (OP-nets).
We define skyline and k-rank answers to CQs under preferences and
provide complexity (including data tractability) results for deciding con-
sistency and CQ skyline membership for OP-nets. We show that our
formalism has a lower complexity than a similar existing formalism.

Introduction

The abundance of information on the Web requires new personalized filtering
techniques to retrieve resources that best fit users’ interests and preferences.
Moreover, the Web is evolving at an increasing pace towards the so-called Social
Semantic Web (or Web 3.0), where classical linked information lives together
with ontological knowledge and social interactions of users. While the former
may allow for more precise and rich results in search and query answering tasks,
the latter can be used to enrich the user profile, and it paves the way to more
sophisticated personalized access to information. This requires new techniques
for ranking search results, fully exploiting ontological and user-centered data,
i.e., user preferences.

Conditional preferences are statements of the form “in the context of c, a is
preferred over b”, denoted c : a � b [1,7,13]. Two preference formalisms that can
represent such preferences are possibilistic networks and CP-nets.

Example 1. Bob wants to rent a car and (i) he prefers a new car over an old
one, (ii) given he has a new car, he prefers it to be black over not black, and (iii)
if he has an old car, he prefers it to be colorful over being black. We have two
variables for car type (new (n) or old (o)) and car color (black (b) or colorful (c)),



id color feature type
t1 s1 b f1 o
t2 s2 c f2 n
t3 s3 c f2 o

specs

id name
t7 f1 ac
t8 f2 map
t9 f3 cd
feature

vendor price specs
t4 v1 30 s1
t5 v1 40 s2
t6 v2 50 s3

offer

id review
t10 v1 p
t11 v2 n

vendor

Fig. 1. Database D

T and C, respectively, such that Dom(T ) = {n, o} and Dom(C) = {b, c}. Bob’s
preferences can be encoded as > : n � o, n : b � c, and o : c � b. In CP-nets [7],
we have the following ordering of outcomes: nb � nc � oc � ob. That is, a new
and colorful car is preferred over an old and colorful one, which is not a realistic
representation of the given preferences. A more desirable order of outcomes for
Bob would be nb � oc � nc � ob, which can be induced in possibilistic networks
with an appropriate preference weighting in the possibility distribution.

We propose a novel language for expressing preferences over the Web 3.0 us-
ing possibilistic networks. It has lower complexity compared to a similar existing
formalism called OCP-theories [9], which are an integration of Datalog+/− with
CP-theories [13]. This is because deciding dominance in possibilistic networks
can be done in polynomial time, while it is pspace-complete in CP-theories. Ev-
ery possibilistic network encodes a unique (numerical) ranking on the outcomes,
while CP-theories encode a set of (qualitative) total orders on the outcomes. Our
framework also allows to specify the relative importance of preferences [1]. Pos-
sibilistic networks are also a simple and natural way of representing conditional
preferences and obtaining rankings on outcomes, and can be easily learned from
data [5]. We choose existential rules in Datalog+/− as ontology language for
their intuitive nature, expressive power for rule-based knowledge bases, and the
capability of performing query answering.

All details can be found in the full paper [6].

Ontological Possibilistic Networks (OP-nets)

See [3,8] for the basic notions regarding possibilistic networks and Datalog+/–.
Let O= (D,Σ) be a Datalog+/– ontology, where D is a database and Σ a finite
set of tuple-generating dependencies (TGDs) and negative constraints (NCs).

Example 2. Consider the database D in Fig. 1, modeling the domain of an online
car booking system. Moreover, the dependencies

Σ = {offer(V, P, S)→ ∃C,F, T specs(S,C, F, T ),

offer(V, P, S)→ ∃R vendor(V,R),

specs(S,C, F, T )→ color(C) ∧ type(T ),

specs(S,C, F, T )→ ∃N feature(F,N),

offer(V, P1, S) ∧ offer(V, P2, S)→ P1 = P2 }



FO

π(FO|ROCO)

CO

π(CO)

RO

π(RO)

π(specs(t1)) π(specs(t2)) π(specs(t3))

1 0.5 0.4

π(vendor(t10)) π(vendor(t11))

1 0.4

π(·|·) t1t10 t1t11 t2t10 t2t11 t3t10 t3t11
feature(t7) 1 0.3 0.2 0.2 0.2 0.2

feature(t8) 0.7 0.5 0.7 1 0.4 0.3

feature(t9) 0.5 0.3 0.5 0.3 1 0.2

Fig. 2. Graph and possibility distribution for Example 3.

say that every offer must have a specification and a vendor and that there cannot
be two equivalent offers from the same company with different prices. We denote
by t1 the term specs(s1, b, f1, o) and by t1 the tuple (s1, b, f1, o).

Let now XO be a finite set of variables, where each X ∈XO corresponds to a
predicate from O, denoted pred(X). The domain Dom(X) consists of at least two
ground atoms p(c1, . . . ck) with p= pred(X). An outcome o ∈ Dom(XO) assigns
to each variable an element of its domain, and can be seen as a conjunction of
ground atoms. An OP-net is of the form (O,Γ), where Γ is a possibilistic network
over XO, i.e., a collection of conditional possibility distributions π(Xi|pa(Xi)),
where pa(Xi) are the parents of Xi. Taken altogether, they define a joint possi-
bility distribution over Dom(XO). An outcome o dominates another outcome o′
(written o � o′) if π(o) > π(o′). This relation can be decided in polynomial time.

Example 3. Consider the OP-net (O,Γ) given by the ontology O of Example 2
and the dependency graph and the conditional possibility distribution in Fig. 2.
Here, we have XO = {CO, RO, FO} with the domains

Dom(CO) = {specs(t1), specs(t2), specs(t3)},
Dom(FO) = {feature(t7), feature(t8), feature(t9)},
Dom(RO) = {vendor(t10), vendor(t11)}.

The parents of FO are {CO, RO}, which in turn do not depend on other variables.
The distribution could either be learned or derived from explicit preferences; see
Example 4 below. The possibilities of outcomes are then computed as

π(COROFO) = π(FO|CORO)⊗ π(CO)⊗ π(RO).

The outcome o with o(CO) = specs(t1), o(RO) = vendor(t10), o(FO) = feature(t7)
represents the conjunction t1 ∧ t10 ∧ t7 and has the possibility 1.

Since outcomes are conjunctions of ground atoms, they may be inconsistent
or equivalent w.r.t. Σ. An outcome o of (O,Γ) is consistent if the ontology
Oo = O ∪ {o(X) | X ∈ XO} is consistent. Two outcomes o and o′ are equivalent,
denoted o ∼ o′, if Oo and Oo′ have the same models. An interpretation I for



(O,Γ) is a total preorder over the consistent outcomes in Dom(XO). It satisfies
(or is a model of) (O,Γ) if it is compatible with the dominance and equivalence
relations, i.e., for all consistent outcomes o and o′, (i) if o ≺ o′, then (o, o′) ∈ I
and (o′, o) /∈ I, and (ii) if o ∼ o′, then (o, o′), (o′, o) ∈ I. An OP-net is consistent
if it has at least one consistent outcome and it has a model.

Encoding Preferences with OP-Nets

In [9], conditional preferences were generalized to Datalog+/– as follows. Let
Dom+(X) be the set of all (possibly non-ground) atoms p(t1, . . . , tk) with p =
pred(X). An ontological conditional preference ϕ is of the form v : ξ � ξ′, where
– v ∈ Dom+(Uϕ) for some Uϕ ⊆ XO is the context, and
– ξ, ξ′ ∈ Dom+(Xϕ) for some Xϕ ∈ XO − Uϕ.

A ground instance vθ : ξθ � ξ′θ of ϕ is obtained via a substitution θ such that
vθ ∈ Dom(Uϕ) and ξθ, ξ′θ ∈ Dom(Xϕ). Under suitable acyclicity conditions,
one can construct an OP-net (O,Γ) that respects all ground instances of some
given ontological conditional preferences.

Example 4. Consider the ontological conditional preference specs(I, C, F, o) :
vendor(V1, p)� vendor(V2, n), i.e., for an old car, it is preferable to have a ven-
dor with positive feedback. One ground instance for this preference is specs(t1) :
vendor(t10)� vendor(t11). We could choose π(vendor(t10)|specs(t1)) = 1 and
π(vendor(t11)| specs(t1)) = α < 1 to encode this in an OP-net

Although possibilistic networks are less expressive than conditional preference
theories (CP-theories) [3, 13], they allow for a more compact encoding of condi-
tional preferences over ground atoms and have lower complexity.

Query Answering under OP-Nets

The notions of skyline and k-rank answers are defined in the same way as for
OCP-theories [9]. In a conjunctive query (CQ), a variable X of the OP-net may
be used to annotate an atom over the predicate pred(X). Hence, an answer
(tuple) a to a CQ q w.r.t. an outcome o is an assignment of the distinguished
variables that can be used to satisfy q in such a way that the marked atoms
of q evaluate to the ones given by o. A skyline answer is an answer w.r.t. an
undominated outcome of the OP-net. CQ skyline membership is the problem
of deciding whether a given tuple is a skyline answer. Similarly, one can define
k-rank answers as the k “most preferred” answers, i.e., those resulting from the
outcomes with the highest possibilities.

Example 5. Consider the consistent OP-net (O,Γ) of Example 3 and the CQ
q(C,F, T,N) =∃I specs(I, C, F, T ) ∧ feature(F,N). Then, 〈b, f1, o, ac〉 is the
skyline answer under the consistent outcome t1∧t10∧t7. The skyline answer for
q′(C, T ) = ∃N q(C, f2, T,N) is 〈c, n〉 with possibility π(t2t10t8) = 0.5 · 1 · 0.7 =
0.35, while the 2-rank answer is 〈〈c, n〉, 〈c, o〉〉. Hence, if feature f2 is mandatory,
the offered new and colorful car is preferred over the old and colorful one, mainly
due to positive feedback about vendor v1.



Table 1. Complexity of deciding consistency of OP-nets

Class Comb. ba-comb. fp-comb. Data
L, LF, AF pspace dp

2 dp in ac0

G 2exp exp dp p
WG 2exp exp exp exp
S, SF exp dp

2 dp in ac0

F, GF exp dp
2 dp p

WS, WA 2exp 2exp dp p

Computational Complexity

We now analyze the computational complexity of the consistency and CQ skyline
membership problems for OP-nets. We assume familiarity with the complexity
classes ac0, p, np, co-np, ∆p

2, Σp
2, Πp

2, ∆p
3, pspace, exp, and 2exp. The class

dp = np ∧ co-np (resp., dp
2 = Σp

2 ∧ Πp
2) is the class of all problems that are the

intersection of a problem in np (resp., Σp
2) and a problem in co-np (resp., Πp

2).
Following Vardi’s taxonomy [12], the combined complexity is calculated by

considering all the components, i.e., the database, the set of dependencies, and
the query, as part of the input. The bounded-arity combined (ba-combined) com-
plexity assumes that the arity of the underlying schema is bounded by a constant.
For example, in description logics (DLs) [4], the arity is always bounded by 2.
The fixed-program combined (fp-combined) complexity is calculated by consider-
ing the set of TGDs and NCs as fixed. Finally, for data complexity, we take only
the size of the database into account.

Although CQ answering in Datalog+/– is undecidable in general, there exist
many syntactic conditions that guarantee decidability. We refer the reader to [6]
for a short overview of the classes of acyclic (A), guarded (G), and sticky (S)
sets of TGDs, their “weak” counterparts WA, WG, and WS, linear TGDs (L), full
TGDs (F), and the combinations AF, GF, SF, and LF.

Our complexity results for the consistency and the CQ skyline membership
problems for OP-nets are compactly summarized in Tables 1 and 2, respectively.
Compared to OCP-theories [9], we obtain lower complexities for L, LF, AF, G, S,
F, GF, SF, WS, and WA in the fp-combined complexity (completeness for dp and
∆p

2, respectively, rather than pspace), and for L, LF, AF, S, F, GF, and SF in the
ba-complexity (completeness for dp

2 and ∆p
3, respectively, rather than pspace).

Theorem 6. Let T be a class of OP-nets (O,Γ). If checking non-emptiness of
the answer set of a CQ w.r.t. O is in a complexity class C, then consistency in T
is in npC ∧ co-npC and CQ skyline membership in T is in pnpC

. If C= np and
we consider the fp-combined complexity, then consistency in T is in dp and CQ
skyline membership in T is in ∆p

2.

In particular, for C= pspace, we obtain inclusion in pspace for both prob-
lems, and the same for any deterministic complexity class above pspace. For
C= np, we get the classes dp

2 and ∆p
3. The lower bounds pspace and above



Table 2. Complexity of deciding CQ skyline membership for OP-nets

Class Comb. ba-comb. fp-comb. Data
L, LF, AF pspace ∆p

3 ∆p
2 in ac0

G 2exp exp ∆p
2 p

WG 2exp exp exp exp
S, SF exp ∆p

3 ∆p
2 in ac0

F, GF exp ∆p
3 ∆p

2 p
WS, WA 2exp 2exp ∆p

2 p

follow from consistency and equivalence of outcomes being as powerful as check-
ing entailment of arbitrary ground CQs. The remaining lower bounds for the
(fp-/ba-)combined complexity hold already if only NCs are allowed, and are
shown by reductions from variants of the validity problem for QBFs. For exam-
ple, the problem of deciding, given a valid formula ∃X∀Yϕ(X,Y) where ϕ(X,Y)
is a propositional 3-DNF formula, whether the lexicographically maximal satis-
fying truth assignment forX= {x1, . . . , xn}maps xn to true is ∆p

3-complete [11].
Finally, we can show that tractability in data complexity for deciding con-

sistency and CQ skyline membership for OP-nets carries over from classical CQ
answering. Here, data complexity means that Σ and the variables and possibility
distributions of Γ are both fixed, while D is part of the input.

Theorem 7. Let T be a class of OP-nets (O,Γ) for which CQ answering in O
is possible in polynomial time (resp., in ac0) in the data complexity. Then,
deciding consistency and CQ skyline membership in T is possible in polynomial
time (resp., in ac0) in the data complexity.

The listed p-hardness results hold due to a standard reduction of proposi-
tional logic programming to guarded full TGDs. These results do not apply to
WG, where CQ answering is data complete for exp, and data hardness holds
even for ground atomic CQs; however, data completeness for exp can be proved
similarly to the results for combined complexity above.

We want to emphasize that our complexity results are generic, applying also
to Datalog+/– languages beyond the ones listed. Even more, they are valid for
arbitrary preference formalisms for which dominance between two outcomes can
be decided in polynomial time, e.g., combinations of Datalog+/– with rankings
computed by information retrieval methods [10].

Interesting topics of ongoing and future research include the implementation
and experimental evaluation of the presented approach, as well as a general-
ization based on possibilistic logic [3] to gain more expressivity and some new
features towards non-monotonic reasoning [1]; moreover, an apparent relation
between possibilistic logic and quantitative choice logic [2] may be exploited.
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