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Abstract

The unification type of an equational theory is defined using a preorder on substitutions, called

the instantiation preorder, whose scope is either restricted to the variables occurring in the unification

problem, or unrestricted such that all variables are considered. It is known that the unification type

of an equational theory may vary, depending on which instantiation preorder is used. More precisely,

it was shown that the theory ACUI of an associative, commutative, and idempotent binary function

symbol with a unit is unitary w.r.t. the restricted instantiation preorder, but not unitary w.r.t. the

unrestricted one. Here, we improve on this result, by showing that, w.r.t. the unrestricted instantiation

preorder, ACUI is not even finitary.

Introduction

The first preorder introduced to deal with unification [Rob65] was in fact the unrestricted
instantiation preorder. It was designed for syntactic unification and it worked pretty well
considering that it gave a unitary unification type. Yet, when it comes to equational unification,
researchers usually employ the restricted instantiation preorder, though the reason for this
change was not explained in early papers.

We use the following notation to distinguish between these two preorders:

σ ≤XE τ iff ∃λ∀x ∈ X. λ(σ(x)) =E τ(x) and σ ≤∞E τ iff ∃λ∀x ∈ V. λ(σ(x)) =E τ(x)

Here, V is the countably infinite set of all variables, whereas X is a (usually finite) subset of it.

From now on, we will use ≤E to denote the restricted preorder ≤Var(Γ)
E when the unification

problem Γ is clear from the context.
Note that ≤∞E ⊆ ≤E , which has as an easy consequence that the unification type in the

restricted case can never be worse than the type in the unrestricted case. In particular, syntactic
unification is also unitary w.r.t. ≤E . Hence, for the empty theory it makes no difference which
instantiation preorder is used. For this reason, the distinction between these two orders was
not always rigorously made clear, though it was known that the unrestricted preorder could
lead to unpleasant results in weak unification [Ede85].

It took until 1991 before the first example of an equational theory for which the unrestricted
and restricted unification types are different was published. That particular theory is ACUI,
the theory of idempotent abelian monoids:

ACUI := {x+ 0 = x, x+ (y + z) = (x+ y) + z, x+ y = y + x, x+ x = x}

From [BB88] it was known that ACUI is unitary in the restricted case; in [Baa91], it was
shown that its unrestricted type is not unitary. This paper thus showed that the choice of the
instantiation preorder makes a difference for equational unification. However, it did not show
how big that difference actually is: the unrestricted type of ACUI might be finitary, which is
still a quite pleasant type from the application point of view. Here we show that this is not the
case: ACUI is at least infinitary. However, the precise unrestricted unification type of ACUI is
still an open problem: it is either infinitary or of type zero.
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Auxiliary Results

In the following, Var(s) denotes the set of variables occurring in the term s, Dom(σ) = {x ∈
V | σ(x) 6= x} the domain of the substitution σ, and VRan(σ) =

⋃
x∈Dom(σ) Var(σ(x)) the

variable range of σ.
The proof of our main result (Theorem 2) is based on the fact that ACUI is a theory in

which no variable is going to pop – in or out – of a term, i.e. the set of variables of a term is
stable under equality modulo the theory. As a matter of fact, this property is called regularity
in unification theory.

Definition 1. An identity s = t is regular if Var(s) = Var(t). A set of identities E is regular
if all elements of E are regular.

Regularity of the defining set of identities of an equational theory implies regularity of the
whole theory.

Lemma 1 ([Yel85]). E is regular iff =E is regular.

Obviously, all the identities of ACUI are regular, which by the above lemma yields that
s =ACUI t implies Var(s) = Var(t). Thus, the following lemma applies to ACUI.

Lemma 2. Let E be a regular theory and Γ = 〈s = t〉 an E-unification problem s.t. Var(s) ∩
Var(t) = ∅. Then the set U of all unifiers σ of Γ satisfying

∀y ∈ VRan(σ).∃x, x′ ∈ V s.t. x 6= x′ and y ∈ Var(σ(x)) ∩Var(σ(x′))

is complete w.r.t. ≤∞E .

Proof. Let σ be a unifier of Γ that does not belong to U , i.e., there is y0 ∈ VRan(σ) s.t. there
exists a unique x0 verifying y0 ∈ Var(σ(x0)) (note that x0 = y0 is possible). Let τ = {x0 7→
y0, y0 7→ x0} be the substitution that exchanges x0 with y0 (and is the identity if x0 = y0).
Then define the new substitution σ′ as σ′(x) := τ(σ(x)) for x ∈ V \ {x0} and σ′(x0) := x0.
Note that VRan(σ′) ( VRan(σ): in fact, if x0 ∈ VRan(σ), then x0 6∈ VRan(σ′); otherwise,
y0 6∈ VRan(σ′). Using the fact that, in any case, x0 6∈ VRan(σ′), we can show that σ is an
(unrestricted) instance of σ′:

∀x ∈ V \ {x0} : (τ ◦ {x0 7→ τ ◦ σ(x0)} ◦ σ′)(x) = (τ ◦ {x0 7→ τ ◦ σ(x0)})(σ′(x))

= τ(σ′(x)) = τ ◦ τ ◦ σ(x) = σ(x)

Additionally, we have for the variable x0:

(τ ◦ {x0 7→ τ ◦ σ(x0)} ◦ σ′)(x0) = (τ ◦ {x0 7→ τ ◦ σ(x0)})(x0)

= τ(τ ◦ σ(x0)) = σ(x0)

This shows σ′ ≤∞E σ. However, we need to show that σ′ is a unifier of Γ in order to make the
comparison useful. Because E is a regular theory, σ(s) =E σ(t) implies Var(σ(s)) = Var(σ(t)).
Then, if x0 occurs in one of the terms s, t, it also has to occur in the other one since it is the
unique producer of y0. This contradicts our assumption on Γ. Since, on the variables different
from x0, σ′ is an instance of σ, we thus know that σ′ is a unifier of Γ.

Consequently, we can replace σ with σ′ and so shrink VRan(σ). Since VRan(σ) is finite,
repeating this process will end with a unifier σ∗ that satisfies the required condition and is more
general w.r.t. ≤∞E than the original unifier σ.
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A second auxiliary result that will be employed in the proof of our main theorem follows
easily from the order-theoretic point of view on unification types [Baa89, BS01]. Given any
preorder � on the set U of E-unifiers of Γ, we denote with ∼ its induced equivalence relation,
i.e., σ ∼ τ iff σ � τ and τ � σ. We denote the ∼-equivalence class of a unifier σ as [σ] and the
set of all equivalence classes of unifiers as [U ]. The partial order induced by � on equivalence
classes is defined as usual, i.e., [σ] ≤ [τ ] iff σ � τ . We say that M ⊆ [U ] is complete w.r.t. ≤ if
every element of [U ] is above (w.r.t. ≤) some element of M .

Theorem 1 ([BS01]). Let M be the set of ≤-minimal elements of [U ]. If C is a minimal
complete set of E-unifiers of Γ w.r.t. �, then M = {[σ] | σ ∈ C}. Conversely, if M is complete
in U , then any set of representatives of M is a minimal complete set of E-unifiers of Γ.

The following easy consequence of this result holds w.r.t. any preorder on unifiers, and thus
in particular both for the restricted and the unrestricted instantiation preorder.

Lemma 3. Let C be a complete set of E-unifiers of an E-unification problem Γ. Then Γ has
a minimal complete set of E-unifiers iff C contains a minimal complete set of E-unifiers of Γ.

The Unrestricted Type of ACUI is at Least Infinitary

We will more generally show the result for regular theories satisfying certain properties, and
then show that ACUI satisfies these properties. From now on we assume that

• E is a regular theory,

• Γ = 〈s = t〉 is an E-unification problem s.t. Var(s) ∩Var(t) = ∅,
• there is a ≤∞E -minimal unifier σ of Γ that uses fresh variables, i.e., VRan(σ)\X 6= ∅ where
X = Var(s) ∪Var(t), and

• this unifier σ belongs to the set U defined in the formulation of Lemma 2.

We will prove that in such a configuration, Γ, and so E, is at least infinitary w.r.t. unrestricted
instantiation.

Let x0 ∈ VRan(σ) \X and consider the following construction of substitutions:

σz := σ ◦ (x0z) where (x0z) := {x0 7→ z, z 7→ x0} and z ∈ V.

We will show that, under certain conditions on z, such substitutions σz are ≤∞E -minimal unifiers
that are incomparable to each other w.r.t. ≤∞E . By Theorem 1, this implies that Γ cannot have
a finite minimal complete set of unifiers w.r.t. ≤∞E since there are infinitely many variables z
satisfying these conditions.

Lemma 4. For any z 6∈ X, σz is a minimal unifier of Γ w.r.t. ≤∞E .

Proof. Note that σz is a unifier of Γ because x0, z 6∈ X. Moreover, let θ be a unifier of Γ s.t.
θ ≤∞E σz, i.e., there is a substitution λ s.t.

∀x ∈ V. σz(x) =E λ ◦ θ(x)

Consequently, if we “multiply” from the right with (x0z), we obtain

∀x ∈ V. σ(x) =E λ ◦ (θ ◦ (x0z))(x).

Because (θ◦(x0z)) is a unifier of Γ with (θ◦(x0z)) ≤∞E σ, minimality of σ yields σ ≤∞E (θ◦(x0z)),
i.e., there exists µ s.t.

∀x ∈ V. (θ ◦ (x0z))(x) =E µ ◦ σ(x).
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Consequently, “multiplying” again from the right with (x0z) yields

∀x ∈ V. θ(x) =E µ ◦ σz(x).

Thus, we have shown that θ ≤∞E σz for a unifier θ of Γ implies σz ≤∞E θ, which proves that σz
is a minimal unifier of Γ w.r.t. ≤∞E .

Lemma 5. For any two different variables z, z′ 6∈ Dom(σ) ∪ VRan(σ), σz and σz′ are incom-
parable w.r.t. ≤∞E .

Proof. Assume there exists λ s.t. ∀x ∈ V. σz′(x) =E λ ◦ σz(x), and let t0 := σ(x0).

Case 1: Var(t0) = ∅
Then σz′(z) =E λ ◦ σz(z) implies z =E λ(t0). This definitely contradicts the existence of λ
since it cannot create a variable from a ground term.

Case 2: Var(t0) 6= ∅
Then there exists y0 ∈ Var(t0). Note that, independent of whether y0 = x0 or y0 6= x0, we
have y0 ∈ VRan(σ). Since σ ∈ U by our assumptions on σ, there is x1 ∈ V different from x0

s.t. σ(x1) =E t1 and y0 ∈ Var(t1). Again, σz′(z) =E λ ◦ σz(z) implies z =E λ(t0). Because E
is regular, this implies Var(λ(y0)) ⊆ {z}.

Since z, z′ 6∈ Dom(σ) ∪ VRan(σ), x1 6= z and x1 6= z′; so σz′(x1) =E λ ◦ σz(x1) implies
t1 =E λ(t1) Again, regularity yields Var(λ(y0)) ⊆ Var(t1).

Then Var(λ(y0)) = ∅ as z 6∈ VRan(σ) and Var(t1) ⊆ VRan(σ). In fact, if x1 ∈ Dom(σ),
then Var(t1) is contained in VRan(σ) by the definition of VRan. Otherwise, we must have
x1 = σ(x1) =E t1. Since y0 ∈ Var(t1), regularity of E yields y0 = x1 and Var(t1) = {y0}.
Thus, y0 ∈ VRan(σ) yields Var(t1) ⊆ VRan(σ).

However, since z =E λ(t0), the variable z is produced by λ from at least one variable y
that occurs in t0, i.e., there is a variable y ∈ Var(t0) \ {y0} such that Var(λ(y)) = {z}.1
Since y ∈ VRan(σ) and σ ∈ U , there exists x 6= x0 s.t. y ∈ Var(σ(x)). Yet again, as
z, z′ 6∈ Dom(σ) ∪ VRan(σ), we know x 6= z and x 6= z′, and thus σz′(x) =E λ ◦ σz(x) im-
plies σ(x) =E λ ◦ σ(x). Since we know that z ∈ Var(λ ◦ σ(x)), regularity yields z ∈ Var(σ(x)).
However, this is absurd since x 6= z and z 6∈ VRan(σ).

To sum up, we have shown that σz ≤∞E σz′ does not hold. A symmetric argument yields
that σz′ ≤∞E σz also does not hold.

Since the complement of the finite set X ∪Dom(σ) ∪VRan(σ) in the countably infinite set
V of all variables is infinite, the set of unifiers of Γ must have infinitely many minimal elements.
By Theorem 1, this shows that Γ cannot have a finite minimal complete set of unifiers.

Lemma 6. The unification problem Γ does not have a finite minimal complete set of E-unifiers
w.r.t unrestricted instantiation, and thus E is at least infinitary w.r.t. ≤∞E .

We are now ready to apply this result to ACUI.

Theorem 2. ACUI is at least infinitary w.r.t. ≤∞ACUI.

Proof. Since ACUI is regular, it is sufficient to show that there is an ACUI-unification problem
Γ and a minimal unifier σ of Γ satisfying the conditions stated at the beginning of this section.

1Note that, if there is no such additional variable in t0, then this already contradicts the existence of λ,
making the point.
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According to Corollary 3.6 in [BB88], any most general unifier (w.r.t. restricted instantia-
tion) of the ACUI-unification problem Γ = 〈x+ y + z = u+ v〉 must use a fresh variable. Let θ
be such an mgu.

If Γ does not have a minimal complete set of ACUI-unifiers w.r.t. unrestricted instantiation,
then we are done. Thus, assume that Γ has a minimal complete set M w.r.t. unrestricted
instantiation. By Lemma 2 and Lemma 3, we can assume without loss of generality that
M ⊆ U , and by Theorem 1 we know that the elements of M are ≤∞ACUI-minimal. Since θ is an
ACUI-unifier of Γ, there is a σ ∈M such that σ ≤∞ACUI θ. Since ≤∞ACUI ⊆ ≤XACUI, this implies that
σ is also an mgu of Γ w.r.t. restricted instantiation, and thus it introduces a fresh variable.

Consequently, we have shown that all prerequisites for applying Lemma 6 are satisfied, which
proves the theorem.

Conclusion

In this paper we have shown that the gap between the unification types of equational theories
w.r.t restricted and unrestricted instantiation is wider than previously known. In fact, for
ACUI, which is unitary w.r.t. restricted instantiation, it was only known that the unrestricted
type is at least finitary [Baa91]. Now we know that it is at least infinitary, which makes using
unrestricted instantiation in this setting even less desirable.

Regarding future work, it would of course be good if we could determine the exact unification
type of ACUI w.r.t. unrestricted instantiation (infinitary or type zero), but we have not been
able to achieve this yet.
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