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Description logic knowledge bases can be used to represent knowledge about a particular
domain in a formal and unambiguous manner. Their practical relevance has been shown
in many research areas, especially in biology and the Semantic Web. However, the tasks of
constructing knowledge bases itself, often performed by human experts, is difficult, time-
consuming and expensive. In particular the synthesis of terminological knowledge is a chal-
lenge every expert has to face. Because human experts cannot be omitted completely from
the construction of knowledge bases, it would therefore be desirable to at least get some
support from machines during this process. To this end, we shall investigate in this work
an approach which shall allow us to extract terminological knowledge in the form of general
concept inclusions from factual data, where the data is given in the form of vertex and edge
labeled graphs. As such graphs appear naturally within the scope of the Semantic Web in
the form of sets of RDF triples, the presented approach opens up another possibility to
extract terminological knowledge from the Linked Open Data Cloud.

Keywords: Description Logics, Formal Concept Analysis, Terminological Knowledge,
Ontology Learning

1. Introduction

One of the main applications of logic in computer science today is to represent knowledge
of application domains. Within the scope of this application, description logics (Baader
et al., 2003) play an important role as a family of decidable logics that allow for varying
expressivity and reasoning complexity. The practical relevance of description logics as
knowledge representation formalisms is reflected by the fact that major bio-medical
knowledge bases are formulated in or can easily be translated to description logics
knowledge bases (Whetzel et al., 2011), and by the fact that the languages used within
the Web Ontology Language standard are based of description logics (Patel-Schneider
et al., 2004; Horrocks et al., 2003).

The core notion of description logics is the one of a knowledge base (or simply ontology).
Typically, such knowledge bases consist of two parts: a set of assertional axioms, called
an ABox , and a set of terminological axioms, called a TBox . An example of an ontology
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is

KMGM = ({Cat(Tom),Mouse(Jerry) }, {Cat v ∃hunts.Mouse }). (1)

While we provide the formal semantics of a knowledge base later, we can still grasp the
meaning of this example on an informal level. The first part of K denotes the ABox.
Intuitively, it states that an individual called Tom is an instance of the concept Cat,
and that Jerry is an instance of Mouse. In other words, we could read this ABox as
stating that Tom is a cat, and that Jerry is a mouse. Thus, the ABox provides factual
information about our domain.

The second part of KMGM denotes the TBox. In contrast to the knowledge represented
in the ABox, the TBox contains terminological information. In this specific example,
the TBox contains the knowledge that every individual which is an instance of Cat is
connected to another individual via a role named hunts, and that the latter individual is
an instance of Mouse. In other words, the TBox states that every cat hunts some mouse.

While this example is not realistic, it still gives a feeling of the expressive power
description logic ontologies can provide. This expressivity can even be increased if the
underlying logic provides additional features not present in the above example. Studying
the interplay between the power of expressiveness of the underlying description logic
and the complexity of reasoning within such ontologies has been one of the main driving
forces behind description logic research for the past 20 years.

However, this interplay is not within the focus of this work. Instead we are interested in
the question of how to obtain such ontologies. This question is of high practical relevance,
as constructing ontologies is a major undertaking normally requiring a lot of human
expertise and time. Providing methods that aid during this process would improve the
practicability and applicability of knowledge bases for real-world use cases.

In this work we want to focus on learning terminological knowledge. More specifically,
we want to extract axioms of the form C v D from description logic interpretations.
Axioms of the form C v D are called general concept inclusions (GCIs), and we have
already seen an example of a GCI in (1). Interpretations are structures that serve to
define semantics of description logics, and they can be best thought of as vertex and
edge-labeled graphs. They are thus not very different from linked data (Bizer et al.,
2009), which can also be considered as such a graph. Therefore, what we want to consider
in this work can be described as developing methods to obtain terminological knowledge
from linked data.

To obtain such methods we consider connections between description logics and the
theory of formal concept analysis (Ganter & Wille, 1999). Originally, formal concept
analysis emerged as part of mathematical order theory, aiming at understanding ordered
structures, and in particular lattices, as hierarchies of concepts of certain contexts.
However, since its early days, formal concept analysis has developed into a rich theory
connecting otherwise independent areas such as order theory, data mining and logic in a
fruitful way.

Two of the most basic notions of formal concept analysis are the one of a formal
context and that of an implication. While formal contexts can be roughly thought of as
data tables, implications can be thought of as dependencies between attributes in those
data tables. Then, formal concept analysis provides effective methods to extract bases of
implications that are valid in a given formal context, optionally also with the constraint
that the base is of minimal cardinality.

The principal approach of our methods to learn GCIs from interpretations is now to
connect description logics and formal concept analysis such that learning GCIs from
interpretations corresponds to extracting implications from formal contexts. Indeed, this
idea is not far-fetched, as there are many similarities between interpretations and formal
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contexts, as well as between GCIs and implications. We shall discuss these similarities
as soon as we have introduced all the necessary definitions.

A first approach following this idea is the one of Baader and Distel (Baader & Distel,
2008; Distel, 2011). It investigates the idea of extracting bases of valid GCIs of such
interpretations: as interpretations serve to define the semantics of description logics, we
can define the notion of a GCI being valid in such an interpretation. Then a natural
starting point for learning GCIs from finite interpretations would be to simply consider
the set of all valid GCIs of a finite interpretation. Unfortunately, it can be seen easily
that this set is infinite in general, and to make this approach practically relevant we shall
resort to finding a finite base of all valid GCIs, i.e., a finite set of valid GCIs that already
entails every other valid GCI of our given interpretation. In particular, the approach
aims at completely representing all valid GCIs of a finite interpretation in a finite way.

This approach however has some theoretical as well as practical drawbacks: for the
development of the method the description logic EL⊥ has to be extend with cyclic concept
descriptions as well as greatest fixpoint semantics, making the already involved method
even more difficult to understand. Moreover, the extracted GCIs have to be validated by
an external source of information to ensure their correctness. Such an external source is
likely to be a domain expert, and GCIs formulated in a fixpoint logic are notoriously
hard to comprehend. This severely impacts the practicability of this approach. Indeed,
this problem has in a certain sense already been addressed by the approach by Baader
and Distel: they provide an unravelling a method to convert the GCIs containing cyclic
concept descriptions into the description logic EL. However, while this removes the need
for the fixpoint logic, the resulting concept descriptions are very huge and thus still hard
to grasp for domain experts.

The main goal of this work is to present a simplification of the approach of Baader
and Distel that tries to be both easier to understand as well as to be able to produce
more comprehensive results. For this we shall restrict our attention to GCIs which obey
a certain role-depth bound , i.e., whose depth of nested quantifiers does not exceed a
predefined limit. Provided that this bound is not too large, the resulting GCIs will have
a much higher chance of being understandable to domain experts. Additionally, the
presentation of this approach allows to avoid logics with fixpoint semantics, and is thus
not only much easier to understand, but also easier to implement.

We shall see that it is always possible to compute finite bases of GCIs whose quantifiers
do not nest below a predefined limit, provided that the initial interpretation is finite.
But we shall even go further by utilizing an algorithm from formal concept analysis that
allows for the computation of minimal bases of valid implications of formal contexts.
Here, a base is minimal if and only if the number of implications contained in this base is
as small as possible. Using this algorithm we shall show that we can devise an algorithm
that allows to compute a minimal base of all valid GCIs of a finite interpretation whose
quantifiers depth is bounded by a given threshold.

This paper is structured as follows. At first, we shall review some existing related work
in Section 2. Thereafter we shall introduce the necessary notions from description logics
and formal concept analysis that are essential for our discussion. This will be done in
Section 3. Then we shall introduce in Section 4 our approach of learning finite bases of
GCIs with role-depth bound from finite interpretations. This approach is then applied to
some real-world data-sets in Section 5. We conclude with an outlook on further results
in Section 6.
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2. Related Work

The results we present in this article fall within the realm of ontology learning (Lehmann
& Völker, 2014). The main focus of this research area is to extract formal representations
of knowledge from various forms of data, most notably from text and linked data, using
methods and ideas from a multitude of fields, e.g., machine learning, inductive logical
programming, or statistics. Additionally, the notion of an ontology is not fixed, but
ranges from describing lightweight collections of facts up to denoting completely formal
description logics knowledge bases. Because of this, ontology learning itself is a diverse
field consisting of many different lines of research.

In particular, there is plenty of prior work aiming at learning parts of description
logic knowledge bases. One step in learning description logics knowledge bases is concept
learning (Lehmann et al., 2014). The problem here is to find a suitable concept description
D in a given knowledge base such that all individuals of a set of positive examples satisfy
D, and all individuals of a set of negative examples do not satisfyD. To find such a concept
description D, methods from machine learning are employed, most notably inductive
logic programming . In this approach, certain refinement operators are considered. Then,
starting with a concept description D′ that is not necessarily satisfied by all positive
examples, or is satisfied by some negative examples, a suitable refinement operator ρ
(depending on the target description logic) is applied to D′ to obtain new candidates
for the concept description D. Provided that the refinement operator ρ satisfies certain
convergence properties, iterating this process and applying certain heuristics to choose
among the candidates returned by ρ finally yields such a desired concept description D,
if it exists. Later this logic based learning technique has been extended with methods of
NLP and statistics in (Bühmann et al., 2014), and thus allowing for text corpora used
as input data.

A related approach is the one of bottom-up construction of description logics knowledge
bases (Baader et al., 1999). A natural top-down approach to constructing description
logics knowledge bases is to first specify the ontology completely, and then use it to
describe properties of individuals of the domain of interest. This approach, however,
may not always be possible, as finding appropriate descriptions for all relevant concept
descriptions of the application domain may be infeasible. Instead, in a bottom-up
approach, the domain expert first specifies “typical” examples of a certain concept
description to be defined, and from these examples a first concept description is inferred.
This is done by first computing the most specific concept description of each of the
given examples. Thereafter, the least common subsumer of these most specific concept
descriptions is computed. This least common subsumer C is then considered as a first
proposal to describe all the examples given by the expert, and the expert can then refine
and adapt C as necessary.

For ontology learning algorithms based on expert interaction, methods based on formal
concept analysis have been particularly popular (Sertkaya, 2010). Here the main interest
lies in adapting the algorithm of attribute exploration to the setting of description logics.
In formal concept analysis, attribute exploration is a knowledge completion algorithm
that uses expert interaction to decide newly found knowledge whose validity cannot be
decided from the given data alone. A main obstacle in using formal concept analysis
for ontology construction is that a closed world is always assumed, i.e., at any time all
properties of the known individuals are completely available. Furthermore, the knowledge
covered by attribute exploration can be expressed using definite Horn formulas, which is
too inexpressive for description logics. Because of this, various approaches have been
developed to extend the expressivity of attribute exploration. One of them is relational
exploration (Rudolph, 2006), which provides a method to extract information from finite
data-sets that allows to decide all subsumptions between FLE-concept descriptions.
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However, the method itself does not directly yield terminological knowledge required to
construct a knowledge base from the given data-set. The methods from (Distel, 2011)
on which our argumentation is built are similar, but differ in the aspect that they
directly yield terminological knowledge suitable for knowledge base construction. There
also exists an extension of the latter methods to ABox-exploration (Distel, 2010) that
allows the expert to provide counterexamples in an open-world fashion. Finally, attribute
exploration has also been used to devise methods for ontology completion (Baader et al.,
2007), in which expert interaction is used to ensure that the ontology at hand completely
describes the application domain.

The authors of (Alam et al., 2015b,a) also utilize methods from formal concept analysis,
or merely its generalization towards so-called pattern structures (Ganter & Kuznetsov,
2001), to axiomatize data-sets derived from DBpedia. In their method they considered
pairs of properties and instances as attributes in formal contexts, and furthermore
generalized their setting to pattern structures by considering intervals as patterns for
numeric properties.

Learning ontological knowledge from text or web documents has been another promi-
nent line of research in ontology learning (Suchanek, 2014). Here the focus is usually not
to construct fully formalized knowledge bases, but merely extract taxonomies of concept
names or even only facts from textually represented data. However, there have been
some approaches to also learn concept definitions from text (Distel & Ma, 2013). Those
concept definitions can be seen as a special form of terminological knowledge, and can
be used in description logics knowledge bases.

Some approaches exist that allow for learning of OWL axioms from textual input
data, e.g., (Völker et al., 2007) defines a mapping from syntax trees created by NLP
techniques to OWL axioms. In order to enhance the resulting OWL axioms by expert
interaction, their approach has been connected with relational exploration (Rudolph,
2006), cf. (Rudolph et al., 2007; Völker & Rudolph, 2008a,b). A full overview can be
found in (Völker, 2009). These techniques for the supervised generation of OWL axioms
(on classes) has been adapted towards the generation of OWL axioms on properties in
(Fleischhacker et al., 2012), which allowed to detect whether properties in the data-set
are symmetric, reflexive, or functional, among others.

Learning knowledge from linked data is also a prominent approach. The method of
(Rabatel et al., 2014) extracts so-called contextual frequent patterns from the RDF triples
of DBpedia. In (Mirylenka et al., 2015), the authors propose a way to axiomatize the
category network of Wikipedia. Their technique consists in selecting a set of Wikipedia
categories, determining the classes and individuals, and then classifying the relations
valid between them such as subClassOf , instanceOf , partOf , and relatedTo.

A work that is very closely related to our approach in the following sections, and
indeed has been initiating it, is (Baader & Distel, 2008; Distel, 2011), where the authors
developed a method for automatically learning all valid GCIs of finite interpretations
that are formulated in the description logic EL⊥. To this end, from a given interpretation
I a so-called induced context is created. Induced contexts have first been defined and
utilized in (Prediger, 2000; Rudolph, 2004; Ferré & Ridoux, 2000; Baader et al., 2007;
Prediger & Stumme, 1999; Prediger, 1997; Rudolph, 2006). It can be shown that there is
a strong correspondence between the implications being valid in the induced context and
the GCIs valid in the interpretation I. This fact then leads to a method that achieves
completeness, in the sense that every valid GCI of the original interpretation is learned.
For this, finite bases of all valid GCIs are computed that are complete, in the sense that
every valid GCI logically follows from such a base.

The actual computation is based on the notion of so-called model-based most-specific
concept descriptions. Unfortunately, some technical problems arise when considering
model-based most-specific concept descriptions in EL⊥. In particular, these concept
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descriptions may not always exist due to the fact that the input interpretation may
contain cycles that cannot be expressed in EL⊥. A solution to this is the incorporation of
greatest fixpoint semantics in EL⊥, resulting in the more expressive description logic EL⊥gfp.
Those concept descriptions allow for the expression of cycles, and it follows that all model-
based most-specific concept descriptions exist for arbitrary finite interpretations. On the
other hand, the computed base of GCIs then also involves EL⊥gfp-concept descriptions.
Those concept descriptions are usually hard to read for humans, and only a few reasoners
are available for reasoning with respect to greatest fixpoint semantics. This problem has
been somehow adressed in (Baader & Distel, 2008; Distel, 2011) using a method called
unravelling : it has been shown that there is a certain depth up to which the EL⊥gfp-concept

descriptions can be unraveled into EL⊥-concept descriptions such that the resulting base
is still complete. Unfortunately, this depth may be quite large, and in fact may reach
2|∆

I | · |∆I |+ 1 in certain cases. Hence, the unraveled base of GCIs could contain concept
descriptions of exponential size. Of course, this base is then suitable for reasoning with
existing reasoners, but the GCIs are still highly unreadable, and reasoning performance
may suffer considerably.

3. Preliminaries

In the introduction we have already encountered some notions which are relevant for the
purpose of this work. Up to now, we have used these notions rather intuitively, without
proper formal foundations. It is the purpose of this section to remedy this deficiency,
and to provide formal definitions as far as they are needed here.

To this end, we shall introduce in Section 3.1 the necessary notions of description
logics (Baader et al., 2003) crucial for this work. In particular, we shall introduce the
description logic EL⊥, i.e., its syntax and semantics, as well as the notion of general
concept inclusions. Moreover, as we shall make use of results from the field of formal
concept analysis (Ganter & Wille, 1999), we shall introduce in Section 3.2 basic notions
from this area, including formal contexts, implications, and the canonical base.

3.1 The Description Logic EL⊥

The description logic EL⊥ is one of the least expressive description logics considered in
the literature (Baader et al., 2008; Baader et al., 2005), and yet this logic has practical
relevance for representing knowledge. In particular, some large ontologies from the
domain of medicine and bio-medicine can be represented in EL⊥ or slight extensions
thereof, examples being SNOMED-CT (Price & Spackman, 2000), GALEN (Rector et al.,
1994) and the Gene Ontology (Ashburner et al., 2000).

As a logic, EL⊥ consists of syntax and semantics. To this end, we need to fix a
signature which consists of two disjoint sets NC and NR of concept names and role
names, respectively. Then an EL-concept description C (over NC and NR) is defined
according to the rule

C ::= A | C u C | ∃r.C | >,

where A ∈ NC is a concept name and r ∈ NR a role name. An EL⊥-concept description
(over NC and NR) is then either an EL-concept description or the special constructor ⊥.
We shall occasionally denote the set of all EL⊥-concept descriptions for the signature
NC and NR by EL⊥(NC , NR). The role-depth rd(C) of an EL⊥-concept description C
is defined as the maximal number of nested existential quantifiers in C. The set of all
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EL⊥-concept descriptions (over NC and NR) with a role-depth at most d is denoted by
EL⊥(NC , NR)d.

To give semantics to EL⊥-concept descriptions the notion of an interpretation I (over
the signature NC and NR) is necessary. Those are structures I = (∆I , ·I) such that ∆I

is a non-empty set. Moreover, ·I is a mapping from NC ∪NR to P(∆I) ∪P(∆I ×∆I)
satisfying

AI ⊆ ∆I and rI ⊆ ∆I ×∆I

for A ∈ NC and r ∈ NR. The mapping ·I can be extended easily to the set EL⊥(NC , NR)
of all EL⊥-concept descriptions over NC and NR:

>I := ∆I

⊥I := ∅

(C uD)I := CI ∩DI

(∃r.C)I := {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI and y ∈ CI }

where C,D ∈ EL⊥(NC , NR) and r ∈ NR. If C is an EL⊥-concept description, then we
shall call CI the extension of C in I.

Let us consider a small example interpretation over the signature NC =
{Cat,Mouse }, NR = { hunts }. Define IMGM = ({Tom, Jerry }, ·IMGM) by

CatIMGM := {Tom },

MouseIMGM := { Jerry },

huntsIMGM := { (Tom, Jerry), (Jerry ,Tom) }.

It is not hard to see that IMGM can also be represented as a graph, which may give more
insight into its structure:

Cat

Tom

Mouse

Jerry

hunts

hunts

For this interpretation, we can compute extensions of certain concept descriptions:

∃hunts.MouseIMGM = {Tom } = CatIMGM ,

(Cat uMouse)IMGM = ∅ = ⊥IMGM .

As already indicated in the introduction, it is possible for some interpretation I and
two EL⊥-concept descriptions C,D that whenever an individual satisfies C in I then it
also satisfies D in I, i.e.,

CI ⊆ DI . (2)

This implication-like dependency between concept descriptions can be lifted to the logical
level by considering general concept inclusions (GCIs). These are expressions of the
form C v D, where C and D are EL⊥-concept descriptions over NC and NR. Such a
GCI is then said to hold in I if and only if (2) holds true, i.e., CI ⊆ DI . We write
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I |= (C v D) in this case. If C v D is valid in every interpretation, then we say that C
is subsumed by D, and simply write C v D. The set of GCIs valid in I will be denoted
by ThEL⊥(NC ,NR)(I). If the underlying logic and signature are clear from the context, we

shall omit the subscript and write Th(I) instead. Analogously, the set of all EL⊥-GCIs
C v D (over NC and NR) that hold in I and satisfy rd(C), rd(D) ≤ d is denoted by
ThEL⊥(NC ,NR)d(I). We may abbreviate this set by Thd(I).

As an example, let us consider the GCI from (1) again, namely

Cat v ∃hunts.Mouse.

Then since CatIMGM = ∃hunts.MouseIMGM , this GCI is valid in IMGM.
General concept inclusions allow us to express terminological knowledge, i.e., knowledge

about dependencies between concept descriptions. However, as we have already indicated
in the introduction, it is also possible to express assertional knowledge, i.e., facts about
individuals, using concept descriptions. For this we extend the signature by a set NI

of individual names which is disjoint to both NC and NR. Then a complex concept
assertion is of the form C(a), where C is an EL⊥-concept description over NC and NR,
and a ∈ NI is an individual name. A role assertion is of the form r(a, b) for r ∈ NR and
a, b ∈ NI , and a concept assertion is of the form A(a) for A ∈ NC and a ∈ NI .

To give semantics to concept assertions we shall extend the notion of interpretations
I = (∆I , ·I) to include an interpretation for the individual names. To this end, we simply
demand that the mapping ·I injectively assigns to individual names a ∈ NI individuals
in ∆I , i.e., aI ∈ ∆I for each a ∈ NI and aI = bI implies a = b. Using this extension we
can now say that the assertions C(a) and r(a, b) hold in I if and only if aI ∈ CI and
(aI , bI) ∈ rI are true, respectively.

Assertional and terminological knowledge can be combined into a knowledge base.
Formally, this is a pair K = (A, T ) of an ABox A and a TBox T . Here an ABox
(for “assertional box”) is a collection of concept and role assertions, and a TBox (for
“terminological box”) is a collection of GCIs. An interpretation I is then a model for K
if and only if all assertions in A and all GCIs in T are valid in I.

An example of such a knowledge base KMGM has been given in (1), and IMGM is model
of K.

Knowledge bases allow for a variety of reasoning tasks , based on their semantics. These
tasks include consistency , satisfiability , subsumption, equivalence and instance checking :

Consistency Given a knowledge base K, does there exist a model for K? (Is K consis-
tent? )

Satisfiability Given a knowledge base K and a concept description C, does there exist
a model I for K such that CI 6= ∅? (Is C satisfiable with respect to K? )

Subsumption Given a knowledge base K and two concept descriptions C,D, is it true
for all models I of K that CI ⊆ DI? (Does K entail C v D? )

Equivalence Given a knowledge base K and two concept descriptions C,D, is it true
for all models I of K that CI = DI? (Does K entail C ≡ D? )

Instance Checking Given a knowledge base K, a concept description C, and an
individual name a ∈ NI , is it true for all models I of K that aI ∈ CI? (Does K
entail C(a)? )

When considering different description logics, one of the first questions is how complex
these reasoning tasks are. One of the many advantages of EL⊥ is that all of these
reasoning tasks can be decided in polynomial time.
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Cat Mouse Dog hunts-a-cat hunts-a-mouse

Tom × ×
Jerry × ×
Spike × × ×
Butch × ×
Tuffy × ×

Figure 1. An example formal context

3.2 Formal Concept Analysis

Formal concept analysis started in the 1980s as a branch of mathematical order theory,
and has since evolved into a wide theory, with applications in data mining, knowledge
representation, and even psychology. The original concern of formal concept analysis
was to study a mathematical connection between complete lattices, a particular form
of ordered sets, on the one hand, and formal contexts on the other. More precisely,
formal concept analysis allowed to understand arbitrary complete lattices as conceptual
hierarchies, with the notion of a concept defined in a corresponding formal context.

This original line of research is not immediately relevant for our course of argumentation.
Instead, we shall exploit another connection which formal concept analysis makes explicit.
This connection is concerned with closure systems on finite sets, which in turn are always
finite complete lattices. Such closure systems can be described in terms of implications
in a suitable formal context, and formal concept analysis provides well-established means
to study and extract implications from formal contexts. We shall see in the course of this
paper that we can exploit those means to our advantage when learning valid GCIs from
a given data set. It is the purpose of this section to introduce the necessary definitions
to argue how this can be done.

We start with introducing formal contexts. To this end, let G and M be two sets, and
let I ⊆ G×M . Then a formal context K is just a triple K = (G,M, I). When talking
about formal contexts, we shall call the set G the set of objects, the set M the set of
attributes, and we shall say that an object g ∈ G has an attribute m ∈M if and only if
(g,m) ∈ I. In this case, we shall also write g I m instead of (g,m) ∈ I.

For a set A ⊆ G of objects, we can form the set A′ of all attributes that all objects in
A have in common. More precisely, we shall define the derivation

A′ = {m ∈M | ∀g ∈ A : g I m }.

Likewise, for a set B ⊆M , the set of objects sharing all attributes in B is defined as

B′ = { g ∈ G | ∀m ∈ B : g I m }.

We sometimes also write A′K and B′K to emphasize that the derivation is done in K.
As an example, let us consider the context KMGM = (G,M, I) defined as follows. As

set G of objects and as set M of attributes we choose the following

G := {Tom, Jerry ,Spike,Butch,Tuffy }

M := {Cat,Mouse,Dog, hunts-a-cat, hunts-a-mouse }.

The incidence relation of our context contains the expected pairs. We can illustrate this
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by means of a cross table as shown in Figure 1. Then, as an example, we have

{Spike, Jerry }′ = { hunts-a-cat },

{ hunts-a-cat }′ = {Spike, Jerry ,Tuffy }.

Because of their correspondence to cross tables, formal contexts can be thought of as
databases: objects correspond to rows in the database, and attributes to columns. The
incidence relation then represents the actual content of the database. From this point of
view it is natural to ask whether certain combinations of attributes imply certain other
combinations of attributes. In our above example this is the case: every object that has
the attribute Cat also has the attribute hunts-a-mouse.

We can state this question more formally: given two sets X,Y ⊆ M , is it true that
every object that has all attributes from X also has all attributes from Y , i.e.,

∀g ∈ G : g ∈ X ′ =⇒ g ∈ Y ′ ?

In formal concept analysis this notion is formalized with the notion of an implication.
More precisely, an implication over some set M is an expression X → Y with X,Y ⊆M .
We say that an implication X → Y over some set M holds in some formal context with
attribute set M if and only if every object that has all attribute from X also has all
attributes from Y , i.e.,

X ′ ⊆ Y ′.

It can be shown that this condition is equivalent to X ⊆ Y ′′. An implication which holds
in a formal context K is also said to be a valid implication of K. The set of all valid
implications of K is denoted with Th(K). If L is a set of valid implications of K then we
shall also call K a model of L.

In our above example of Figure 1 we have that {Cat } → { hunts-a-mouse } and
{Mouse } → { hunts-a-cat } are valid implications. Indeed we find

{Cat }′ = {Tom,Butch } = { hunts-a-mouse }′

{Mouse }′ = { Jerry ,Tuffy } ⊆ { hunts-a-cat }′.

For a set B ⊆M of attributes and a set L of implications over M we can ask which
other attributes follow from X and L. We shall denote with L(B) ⊆ M the set of all
attributes that follow from B and L, and define it as follows

• L1(B) = X ∪
⋃
{Y | (X → Y ) ∈ L, X ⊆ B },

• Li+1(B) = Li(L1(B)),
• L(B) =

⋃
i∈N\{ 0 } Li(B).

We say that B is closed under L if and only if B = L(B).
Indeed, it is not hard to see that implications on a set M of attributes together

with this notion of entailment corresponds to the notion of definite propositional Horn
formulas with their usual model-based semantics.

A formal context K = (G,M, I) has an exponential number of different valid impli-
cations, where the size of K is defined to be |G| · |M |: for each A ⊆M the implication
A → A′′ is valid. For practical purposes, it is desirable to find smaller sets of valid
implications which nevertheless contain all information of the whole set of all implications
that hold in K. Such sets are called bases. Formally, a set B ⊆ Th(K) is called a base
of K if for all implications (X → Y ) ∈ Th(K) we have that B entails X → Y . Here, B

10
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entails X → Y if and only if for each formal context L with attribute set M such that
B ⊆ Th(L) it is also true that (X → Y ) ∈ Th(L). We shall write B |= (X → Y ) in this
case. The base B is called non-redundant (or irredundant) if no proper subset of B is a
base of K. B is called minimal , if it has minimal cardinality among all bases of K, i.e., if
there does not exists a base of K with fewer elements than B.

Indeed, if we consider the valid implications of our small running example above, we
find that all such implications already follow from

{Cat } → { hunts-a-mouse }

{ hunts-a-cat, hunts-a-mouse } → {Dog }

{Dog } → { hunts-a-cat, hunts-a-mouse }

{Dog, hunts-a-cat,Cat, hunts-a-mouse } → {Mouse }

{Mouse } → { hunts-a-cat }

{Mouse,Dog, hunts-a-cat, hunts-a-mouse } → {Cat }


(3)

These implications therefore form a base of our example context KMGM. It should be
noted that the fourth and last implication are due to the fact that the premises of these
implications express combinations that are not satisfiable by objects in the underlying
context. They therefore express that the attributes in the corresponding premises cannot
occur together in KMGM.

A base can be considered with respect to some background knowledge S ⊆ Th(K).
More precisely, a base with background knowledge S is a set B ⊆ Th(K) such that B ∪ S
is a base of K. Such a base B is called non-redundant (irredundant) if no proper subset
of B is a base of K with background knowledge S. B is called minimal if the cardinality
of B is minimal among all bases of K with background knowledge S.

A main line of research of formal concept analysis is concerned with developing fast
algorithms for computing bases of given formal contexts, possibly with some back-
ground knowledge. Particular interest has been generated by the so-called canonical base
Can(K,S) of K with background knowledge S (Stumme, 1996; Guigues & Duquenne,
1986). This base is a minimal base with background knowledge S, and for whose compu-
tation practical algorithms are available. To describe Can(K,S) we need to introduce
the notion of S-pseudo-intents of K. These are sets P ⊆M such that

• P 6= P ′′,
• P = S(P ), and
• for all S-pseudo-intents Q ( P it is true that Q′′ ⊆ P .

With this we have

Can(K,S) := {P → P ′′ | P an S-pseudo-intent of K }.

The notion of pseudo-intents may be confusing at first, in particular due to their
recursive definition. However, discussing in more depth the rationales behind their
definition requires notions from formal concept analysis not required for our purposes.
We thus do not include such a discussion here, but refer the interested reader to (Ganter
& Wille, 1999).

As an example for the canonical base, we note the base we have given in Equation (3) is
indeed the canonical base of KMGM. We can see that the premises of the implications given
there fulfill the requirements of the definition of a pseudo-intent: for each implication
P → Q from Equation (3) we have P 6= P ′′ = Q and for every other implication S → T
in Equation (3) we have S ⊆ P implies T ⊆ P .

11
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The base of Equation (3) does not make use of background knowledge. If we choose as
background knowledge the set { {Dog } → { hunts-a-mouse } }, then the canonical base
of KMGM with background knowledge S is

{Cat } → { hunts-a-mouse }

{ hunts-a-cat, hunts-a-mouse } → {Dog }

{Dog, hunts-a-mouse } → { hunts-a-cat }

{Dog, hunts-a-cat,Cat, hunts-a-mouse } → {Mouse }

{Mouse } → { hunts-a-cat }

{Mouse,Dog, hunts-a-cat, hunts-a-mouse } → {Cat }

Although the number of implications does not change, the premises of some of the
implications are now different. In particular, every premise is now closed under S.

Of course, if we choose implications of the original canonical base as background
knowledge, they will simply not appear anymore in the resulting base. As an example,
if we choose S = { {Cat } → { hunts-a-mouse } }, then the canonical base is as in
Equation (3) with the first implication omitted.

Note that formal concept analysis provides some efficient algorithms to compute the
canonical base. The classical algorithm is based on the NextClosure algorithm (Ganter,
1984), but there are also other approaches that allow for an incremental computa-
tion (Obiedkov & Duquenne, 2007). For the classical algorithm there is also a parallel
version available (Kriegel & Borchmann, 2015).

4. Exact Mining of General Concept Inclusions

With all necessary definitions at hand we are now ready to discuss our method of learning
terminological knowledge from a finite data set. For this purpose we assume the data set
to be represented as a finite interpretation I, i.e., as an interpretation whose set ∆I of
individuals is finite. What we then want is to compute a finite base of all EL⊥-GCIs that
are valid in I, and whose quantifiers do not nest deeper than a chosen depth d ∈ N. In
other words, we want to compute a finite set B of valid GCIs of I such that every other
valid EL⊥-GCI of I follows from B, and such that all concept descriptions occurring in
B are EL⊥-concept descriptions with quantifier depth at most d.

The choice of representing data sets as finite interpretations does not impose a severe
restriction on the applicability of our approach. In fact, as we have already sketched in
the introduction, every finite interpretation can be seen as a vertex- and edge-labeled
graph, and data sets representable as graphs can be obtained easily, for example from
RDFS graphs (Borchmann & Distel, 2011). Thus our approach allows us, at least in
principle, to automatically construct EL⊥-TBoxes from the linked open data cloud.

Our argumentation to obtain bases of valid EL⊥-GCIs of finite interpretations makes
use of ideas from formal concept analysis. More precisely, as we shall see shortly, we can
exploit similarities between formal concept analysis and description logics to reformulate
methods of constructing bases of finite formal contexts as methods to compute finite bases
of valid GCIs. We shall even show that we can associate to every finite interpretation I
a finite formal context KI such that all finite bases of KI can easily be transformed into
finite bases of I. In this way we can, without further modifications, utilize algorithms
from formal concept analysis for computing implicational bases to compute finite bases
of finite interpretations.

A major obstacle in finding a finite base of a finite interpretation I is the fact that
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the number of valid EL⊥-GCIs of I is infinite in general. This is because if C v D holds
in I, and if r ∈ NR, then ∃r.C v ∃r.D holds in I as well.

This section is structured as follows. In Section 4.1 we shall introduce model-based
most-specific concept-descriptions, which we shall employ in Section 4.2 to compute
finite bases of valid GCIs of finite interpretations. As model-based most-specific concept
descriptions turn out to be crucial for our purposes, we shall discuss in Section 4.3
efficient ways for their computation. Finally, we shall describe in Section 4.4 a base of
valid GCIs with minimal cardinality.

The argumentation described in this section is an extension of (Distel, 2011), but we
shall restrict our attention to EL⊥-GCIs with bounded quantifier depth. This restriction
has the advantage of being easier to follow, as it requires less theoretical particularities.
To give an impression of the original argumentation we refer the reader to (Baader &
Distel, 2008).

4.1 Model-Based Most-Specific Concept Descriptions

There are astonishing similarities between formal concept analysis and description logics.
For example, an interpretation I is “similar” to a formal context K = (G,M, I) in the
sense that elements in I can satisfy certain properties (concept descriptions) in the same
spirit as objects in K satisfy certain properties (attributes). Likewise, the extension
function ·I maps every concept description CI to the elements in I that satisfy C, much
like the derivation operator ·′ in K maps every subset A ⊆M to the set of objects in K
that satisfy all attributes in M .

In description logics there is, however, a missing counterpart to the other derivation
operator from formal concept analysis that maps a set A of objects to the set A′ of all
attributes that all objects in A have. To transfer ideas from formal concept analysis to
descriptions logics an analogue to this mapping is necessary, and such an analogue should
map a set X of elements of I to a concept description that contains all properties shared
by all elements of X. We introduce this kind of concept descriptions as model-based
most-specific concept descriptions.

Definition 4.1 (Model-Based Most-Specific Concept Description). Let I = (∆I , ·I) be
a finite interpretation over the signature (NC , NR), and let d ∈ N. Then for X ⊆ ∆I

an EL⊥-concept description C over NC and NR is a (role-depth-bounded) model-based
most-specific concept description of X in I with role-depth at most d if and only if

(i) rd(C) ≤ d,
(ii) X ⊆ CI , and
(iii) for all EL⊥-concept descriptions D over NC and NR with rd(D) ≤ d and X ⊆ DI ,

it is true that C v D.

Note that role-depth-bounded model-based most-specific concept descriptions always
exist. This is because the set EL⊥(NC , NR)d of all EL⊥-concept descriptions over NC and
NR with role-depth at most d is finite up to equivalence, and is closed under u. In other
words, if T is a set of representatives of EL⊥(NC , NR)d with respect to the equivalence
relation ≡, then T is finite, and a model-based most-specific concept description of
X ⊆ ∆I can be obtained as

l
{C ∈ T | X ⊆ CI }.

Of course, this way of computing model-based most-specific concept descriptions is not
efficient. We shall discuss a more practical method in Section 4.3.

Note that by their very definition, model-based most-specific concept descriptions

13
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MaleI = {Paul ,Tom,Martin,Thomas, Jean }

FemaleI = { Jana,Kathrin,Clarissa,Elisabeth,Andrea }

MotherI = { Jana,Kathrin,Elisabeth }

FatherI = {Paul ,Martin, Jean }

Figure 2. Example Interpretation

are unique up to equivalence among all concept descriptions with role-depth at most d,
and it is therefore safe to talk about the model-based most-specific concept description
of X. We shall denote this concept description by XId , to stress the similarity to the
corresponding derivation operator from formal concept analysis.

Example 4.2. Let us illustrate the notion of model-based most-specific concept descrip-
tions by means of a small example. For this we shall use the interpretation as given in
Figure 2.

Let X = {Martin,Paul }. Then the model-based most-specific concept description of
X in I with role-depth bound at most 1 is, up to equivalence, the concept description

XI1 = Male u Father u ∃hasChild.Male.

Intuitively, XI1 describes all properties expressible in EL⊥ the individuals in X have in
common. Note that XI1 is unique only up to equivalence: the concept description

Male u Father u ∃hasChild.> u ∃hasChild.Male

is also a model-based most-specific concept description for X in I with role-depth bound
at most 1, which indeed is equivalent to the above one.

Clearly, if we change the role-depth bound then the model-based most-specific concept
description of X in I will change. For example, for role-depth bound 0 we obtain

XI0 = Male u Father.

One of the most important structural properties of the mappings (·)I and (·)Id is that
they satisfy the main property of an isotone Galois connection.

Lemma 4.3. For all EL⊥-concept descriptions D with rd(D) ≤ d, and all X ⊆ ∆I , it
is true that

XId v D ⇐⇒ X ⊆ DI . (4)

Proof. Let X ⊆ DI . Then by definition of the model-based most-specific concept
descriptions, XId v D, because rd(D) ≤ d.

If XId v D, then because of X ⊆ XIdI we obtain X ⊆ DI as required.
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With (·)I and (·)Id satisfying (4), we immediately obtain some useful statements about
the interplay of these two mappings, some of which are obvious on their own.

Lemma 4.4. For all EL⊥-concept descriptions C,D with rd(C), rd(D) ≤ d, and all
X,Y ⊆ ∆I it is true that

(i) X ⊆ Y =⇒ XId v Y Id
(ii) C v D =⇒ CI ⊆ DI

(iii) X ⊆ XIdI

(iv) CIId v C
(v) XIdIId ≡ XId

(vi) CIIdI = CI

Proof. To see (i), we obtain with (4) from Y Id v Y Id that Y ⊆ Y IdI (which already
shows (iii)). Since X ⊆ Y , X ⊆ Y IdI , and another application of (4) yields XId v Y Id ,
as desired.

Statement (ii) is clear from the definition of I. Applying (4) to CI ⊆ CI immediately
yields CIId v C, which shows (iv).

For (v) we observe that X ⊆ XIdI implies XId v XIdIId by (i). On the other hand,
Statement (iv) with C := XId shows XIdIId v XId .

Finally, Statement (vi) can be shown by first observing that with X := CI , State-
ment (iii) yields CI ⊆ CIIdI . On the other hand, CIId v C entails CIIdI ⊆ CI

by (ii).

4.2 Bases of GCIs

In this section we shall show how we can use model-based most-specific concept descrip-
tions to adapt the argumentation from formal concept analysis to obtain finite bases of
finite interpretations.

Definition 4.5 (Base). Let I = (∆I , ·I) be a finite interpretation over NC and NR,
and let d ∈ N. A base of all GCIs of role-depth at most d is a finite set B of GCIs with
role-depth at most d such that

(i) all (C v D) ∈ B are valid in I, i.e., CI ⊆ DI , and
(ii) for all GCIs E v F that are valid in I and satisfy rd(E), rd(F ) ≤ d it is true that

E v F follows from B, i.e., B |= (E v F ).

Of course, the set

{C v D | C,D ∈ EL⊥(NC , NR)d, C
I ⊆ DI } (5)

is a base of I that is, up to equivalence, even a finite set. Regrettably, this base can
be quite large, as the number of concept descriptions grows non-elementary with the
role-depth d. More precisely, for role-depth 0 there are 2|NC | + 1 different EL⊥-concept
descriptions over the signature (NC , NR), since such a concept description is either
⊥ or may contain at most |NC | concept names as conjuncts. For a role-depth d > 0
every EL⊥-concept description may furthermore contain at most |NR| · |EL⊥(NC , NR)d−1|
existential restrictions as conjuncts, i.e.,

|EL⊥(NC , NR)d| =
(
2|NC | + 1

)
· 2|NR|·|EL⊥(NC ,NR)d−1|

holds. It follows that the number of EL⊥-concept descriptions with role-depth ≤ d is
d-exponential in the size of the signature, i.e.,

|EL⊥(NC , NR)d| = O
(
22...|NC |·|NR|)

.

Therefore, for practical purposes, the base (5) is useless, and finding a smaller base is
desirable.
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A first idea in this direction is to use the following fact from formal concept analysis
and transfer it into the realm of description logics: if K is a formal context and X → Y
is a valid implication of K, then

{X → X ′′ } |= (X → Y ).

An analogous result also holds in the case of GCIs.

Lemma 4.6. If I |= (C v D), rd(C), rd(D) ≤ d, then C v CIId holds in I, and

{C v CIId } |= C v D.

Proof. By Lemma 4.4 we know that CI = CIIdI , and in particular CI ⊆ (CIId)I , i.e.,
C v CIId holds in I.

Let J be an interpretation such that J |= (C v CIId). Then CJ ⊆ (CIId)J , and
by (4)

CJJd v CIId . (6)

Since C v D holds in I, we have CI ⊆ DI and, using (4) again, CIId v D. Together
with (6) we therefore obtain CJJd v D, and, using (4) once again,

CJ ⊆ DJ ,

which shows that J |= (C v D). Since J had been chosen arbitrarily, we have shown
(C v CIId) |= (C v D) as desired.

From this lemma we easily obtain our first base.

Corollary 4.7. Let I be a finite interpretation over (NC , NR), and let d ∈ N. Then the
set

B0 := {C v CIId | C ∈ EL⊥(NC , NR), C 6= ⊥, rd(C) ≤ d }

is sound and complete for Thd(I).

Proof. Let (E v F ) ∈ Thd(I). Then rd(E), rd(F ) ≤ d, and therefore

(E v EIId) ∈ B0.

By Lemma 4.6 we obtain

(E v EIId) |= (E v F ),

and therefore B0 |= (E v F ) as required.

Example 4.8. The concept description CIId may look confusing at first. Let us illustrate
this by a small example. Consider the interpretation from Figure 2 again and choose
d = 1. Let C = Male u ∃hasChild.>. To determine CIId we first compute the extension
of C in I:

CI = {Paul ,Martin, Jean }.
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Then CI is a set of individuals, and we can compute the model-based most-specific
concept description of it. Indeed we find, again up to equivalence,

CIId = Male u Father u ∃hasChild.>.

In particular we see that CIId v C. Moreover, the GCI C v CIId is valid in I.

The base B0 is still too large, as we need to consider all concept descriptions in
EL⊥(NC , NR)d. To further reduce the size of the base we shall make use of a par-
ticular choice of concept descriptions we shall show later to be sufficient for our purposes.
More precisely, we set

MI,d := NC ∪ {⊥} ∪ {∃r.XId−1 | X ⊆ ∆I , X 6= ∅ }.

Then the first thing we note is that every model-based most-specific concept description
is expressible in terms of MI,d, i.e., for each such concept description C there exists
N ⊆MI,d such that C ≡

d
N , where

l
N :=

{d
D∈N D if N 6= ∅, and

> otherwise.

Using this fact we are now able to describe a finite base of I which is “only” exponential
in the size of MI,d, which in turn can be exponential in the size of I. Compared to the
base in (5) this is still a huge improvement. However, we shall see later in Section 4.4 a
base of I that has even minimal cardinality.

Theorem 4.9. Let I be a finite interpretation over the signature (NC , NR), and let
d ∈ N. Then the set

B2 := {
l
U v (

l
U)IId | U ⊆MI,d }

is a finite base of I w.r.t. role-depth d.

Due to its technicality, we shall not discuss the proof here but refer the interested reader
to Appendix A.1.

Example 4.10. Let us consider the interpretation of Figure 2 again. Choose d = 1.
Then we find

Female,∃hasChild.> ∈MI,d.

We can therefore choose U = {Female, ∃hasChild.>}. Then we can compute as before

l
U = Female u ∃hasChild.>

(
l
U)II1 = Female uMother u ∃hasChild.>.

Therefore, up to equivalence, the base B2 contains the GCI Female u ∃hasChild.> v
Mother.

Note that for the computation of the set MI,d we in particular need to compute all
model-based most-specific concept descriptions of role-depth d− 1. A naive approach
would be to simply compute those role-depth-bounded model-based most-specific concept
descriptions for all subsets of the interpretation’s domain. A faster solution uses the
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NextClosure algorithm (Ganter, 1984), which is able to compute closures of a closure
operator c on a set M . This algorithm is applicable in our setting as the mapping

X 7→ XIdI

is a closure operator by Lemma 4.4. We shall not discuss the details of the NextClosure
algorithm here, and refer the interested reader to the given literature.

4.3 Computation of Model-Based Most-Specific Concept Descriptions

In Section 4.1 we have introduced the notion of model-based most-specific concept
descriptions in an abstract way, and have shown that it can be used to obtain finite
bases of finite interpretations. Back then we have not discussed how to actually compute
model-based most-specific concept descriptions, and hence the results of Section 4.2 were
rather ineffective.

The purpose of this section is to remedy this ineffectiveness by providing methods
to compute model-based most-specific concept descriptions. To this end we shall use
the notions of description graphs and least common subsumers as they have been used
in (Baader et al., 1999; Baader, 2003b,a). We shall see how we can combine these
notions to obtain an effective algorithm to compute model-based most-specific concept
descriptions. The argumentation of this section follows the corresponding argumentation
in (Distel, 2011).

We start by introducing description graphs. These graphs provide a representation
of both EL-concept descriptions and interpretations by means of directed, edge- and
vertex-labeled graphs. As we shall see later we then can use the structure of these graphs
to decide subsumption of concept descriptions as well as the question whether an element
belongs to the extension of a concept description in a given finite interpretation.

Definition 4.11 (Description Graphs). An EL-description graph over NC and NR is
a tuple G = (V,E,L, v) consisting of a set V , a set E ⊆ V × NR × V , a function
L : V → P(NC), and some v ∈ V . V is called the set of vertices of G, E is called the set
of (labeled) edges of G, L is called the labeling function of G, and v is called the root of G.

Let C be an EL-concept description over NC and NR. Then the description graph
G(C) = (VC , EC , LC , vC) of C is inductively defined as follows. Let

C = P1 u · · · u Pk u ∃r1.D1 u · · · u ∃r`.D`,

where {P1, . . . , Pk } ⊆ NC , { r1, . . . , r` } ⊆ NR and D1, . . . , D` are EL-concept descrip-
tions over NC and NR. Assume inductively that G(Di) = (VDi

, EDi
, LDi

, vDi
) is the

EL-description graph of Di, where without loss of generality all the VDi
are disjoint. Let

vC be some element not in any VDi
. Then the description graph of C is defined via

VC := { vC } ∪
⋃̀
i=1

VDi
,

EC :=
{

(vC , ri, vDi
)
∣∣ 1 ≤ i ≤ `

}
∪
⋃̀
i=1

Ei,

LC :=
{

(vC , {P1, . . . , Pk })
}
∪
⋃̀
i=1

LDi
.

Let I be an interpretation over NC and NR, and let x ∈ ∆I . Then the description
graph G(I, x) of I rooted at x is defined as G(I, x) := (VI , EI , LI , x), where

VI := ∆I ,
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EI :=
{

(x, r, y)
∣∣ (x, y) ∈ rI , r ∈ NR

}
,

LI(x) := {A ∈ NC | x ∈ AI } (x ∈ ∆I).

If a description graph G is a directed tree with root v, then we say that G is a description
tree.

It is quite easy to see that a description tree G = (V,E, L, v) corresponds canonically to
an EL-concept description. For this denote for w ∈ V with Gw the directed subtree of G
with root w. In other words, Gw = (W,F,H,w) contains all vertices W from V which
are reachable in G via a directed path that starts in w, and F and H arise from the
restriction of E and L to W , respectively.

Let (v, r1, w1), . . . , (v, r`, w`) be all edges from E originating at v. Assuming inductively
that the EL-concept descriptions C(Gw1

), . . . , C(Gw`
) correspond to the description graphs

Gw1
, . . . ,Gw`

, we define

C(G) := P1 u . . . Pk u ∃r1.C(Gw1
) u . . . ∃r`.C(Gw`

),

where L(v) = {P1, . . . , Pk }. With this definition we have for all EL-concept descriptions C

C ≡ C(G(C)),

which is why we can say the description graph G corresponds canonically to the EL-
concept description C(G). Note that G = G(C(G)) holds for all EL-description graphs
G.

Example 4.12. Consider the concept description

C = Male u Father u ∃hasChild.>.

Then the description graph G(C) of C is just

Male, Father

hasChild

Indeed, if we translate this description graph back into a concept description then we
obtain the description Male u Father from the upper node as well as ∃hasChild.> from
the edge to the lower node. Thus, up to reordering of conjuncts, we obtain the original
concept description C again.

Analogously, there is a one-to-one correspondence between interpretations and EL-
description graphs. Assume that G = (V,E, L, v) is an EL-description graph over NC

and NR. Then the interpretation I(G) (over NC and NR) is defined as follows:

∆I(G) := V,

AI(G) := { v ∈ V | A ∈ L(v) } (A ∈ NC),

rI(G) := { (v, w) ∈ V × V | (v, r, w) ∈ E } (r ∈ NR).

It can be readily verified that I = IG(I,x) is true for all interpretations I where x ∈ ∆I

is an arbitrary individual, and G = G(I(G), v) is true for all EL-description graphs
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G = (V,E, L, v).
As already mentioned above, description graphs can be used to decide the reasoning

tasks of subsumption and elementhood. To achieve this we shall introduce the notion of
a homomorphism between description trees.

Definition 4.13 (Homomorphism). Let G1 = (V1, E1, L1, v1) and G2 = (V2, E2, L2, v2)
be two EL-description graphs. A mapping ϕ : G1 → G2 is called a homomorphism from
G1 to G2 if and only if the following conditions are satisfied:

(i) ϕ(v1) = v2,
(ii) L1(v) ⊆ L2(ϕ(v)) for all v ∈ V1, and
(iii) (ϕ(v), r, ϕ(w)) ∈ E2 for all (v, r, w) ∈ E1.

The class of homomorphisms is closed under composition, i.e., whenever ϕ is a homo-
morphism to G and ψ is a homomorphism from G, then ψ ◦ ϕ is a homomorphism as
well.

Homomorphy can be used, among others, to decide membership of elements of inter-
pretations in extensions of concept descriptions. We provide a proof of this result in
Appendix A.2.

Corollary 4.14. Let I be an interpretation over NC and NR, C be an EL-concept
description over NC and NR, and x ∈ ∆I . Then x ∈ CI if and only if there exists a
homomorphism ϕ : G(C)→ G(I, x).

The following characterization of subsumption by means of homomorphisms was intro-
duced in (Baader et al., 1999). The proof of this statement is an adaption of the proof
of (Franz Baader, 2002, Theorem 19). An analogous result is also known in the realm of
conceptual graphs (Chein & Mugnier, 1992).

Proposition 4.15. Let C,D be two EL-concept descriptions. Then C v D if and only
if there exists a homomorphism ϕ : G(D)→ G(C).

Proof. First assume that there is a homomorphism ϕ : G(D) → G(C). Let I be an
interpretation and let x ∈ CI . We need to show that x ∈ DI . By Corollary 4.14, x ∈ CI
implies that there is an homomorphism ψ : G(C) → G(I, x). But then ψ ◦ ϕ : G(D) →
G(I, x) is a homomorphism, and therefore x ∈ DI , again by Corollary 4.14.

Conversely assume C v D. Consider the description graph G(C) as an interpretation
I(G(C)). Then since id : G(C)→ G(C) is a homomorphism, Corollary 4.14 yields vC ∈
CI(G(C)), where vC is again the root of G(C). But then vC ∈ DI(G(C)), and therefore
there exists a homomorphism ϕ : G(D)→ G(I(G(C))). Since G(I(G(C))) is the same as
G(C), ϕ : G(D)→ G(C) is a homomorphism as required.

A model-based most-specific concept description of a single individual can be obtained
from the description graph of the underlying finite interpretation by unravelling this
interpretation starting from the given individual. The following definition makes precise
what an unravelling of a description graph is, and the following theorem then shows how
this unravelling can be used to compute model-based most-specific concept descriptions
of singleton sets.

For the definition of unravellings we first introduce the notion of a path w in a
description graph G = (V,E,L, x). This is a sequence w = v0r1v1r2 . . . rnvn where
v0, . . . , vn ∈ V , r1, . . . , rn ∈ NR, and (vi−1, ri, vi) ∈ E for all i ∈ { 1, . . . , n }. We say that
w has length n, that w starts at v0, and denote the last element vn by δ(w).

Definition 4.16 (Unravelling). Let G = (V,E,L, x) be a description graph, and let d ∈
N. Then the unravelling of G up to depth d is the description graph Gd = (Vd, Ed, Ld, x)
defined as follows. The set Vd is the set of all paths in G starting at x having length at
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most d. The set Ed is defined as

Ed := { (w, r, wrv) | w ∈ Vd, r ∈ NR, v ∈ V,wrv ∈ Vd },

i.e., two paths are connected in Gd via an r-edge if and only if the second arises from the
first by appending an r-edge from G. Finally, Ld is defined via Ld(w) = L(δ(w)).

Theorem 4.17. Let I be an interpretation, d ∈ N, and x ∈ ∆I . Then C(G(I, x)d) is the
model-based most-specific concept description of depth d of {x } in I (up to equivalence).

Proof. Let C := C(G(I, x)d). Obviously, C has a role-depth of at most d. Furthermore,
we have to show two claims:

(i) x ∈ CI , and
(ii) for each EL-concept description D with rd(D) ≤ d and x ∈ DI , it is true that

C v D.

For the first claim let G(C) = (VC , EC , LC , vC) and G(I, x) = (VI , EI , LI , x). Then
G(C) is canonically isomorphic to G(I, x)d, thus we assume that they are the same. The
function δ that maps a path to its last vertex is clearly a homomorphism from G(C) to
G(I, x). By Corollary 4.14 we obtain x ∈ CI as required.

For the second claim let D be an EL-concept description such that x ∈ DI and
rd(D) ≤ d. By Corollary 4.14, there exists a homomorphism ϕ : G(D)→ G(I, x). Then
we define the mapping ϕ̂ : G(D)→ G(I, x)d as follows: let v ∈ VI and let vCr1v1r2 . . . rnv
be the unique path in G(D) from vD to v. Note that n ≤ d since rd(D) ≤ d. We set

ϕ̂(v) := ϕ(vD)r1ϕ(v1)r2 . . . rnϕ(v).

It is easily seen that ϕ̂ is a homomorphism. Since G(I, x)d is the description graph of C,
Proposition 4.15 yields C v D.

Example 4.18. We consider again our interpretation from Figure 2 as well as d = 1.
Let x = Paul . Then the description graph G(I, x) containing the node Paul is

Jana Paul

Tom

hasC
hild ha

sC
hi
ld

marriedTo

marriedTo

Male, FatherFemale, Mother

Male

Unravelling this graph up to depth 1 gives

Jana Paul

Tom

ha
sC
hi
ld

marriedTo
Male, FatherFemale, Mother

Male

The concept description associated with this description graph is, up to equivalence,

Male u Father u ∃marriedTo.(Female uMother) u ∃hasChild.Male
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and this is, again up to equivalence, the model-based most-specific concept description
of {Paul } in I with role-depth bound 1.

Computing model-based most-specific concept descriptions for arbitrary, non-empty sets
X ⊆ ∆I of individuals is achieved by computing the least common subsumer of the
model-based most-specific concept descriptions of all {x }, x ∈ X.

Definition 4.19 (Least Common Subsumer). Let C1, . . . , Cn be EL-concept descriptions.
Then an EL-concept description C is a least common subsumer of C1, . . . , Cn (in EL) if
the following conditions are satisfied:

(i) Ci v C for all i ∈ { 1, . . . , n }, and
(ii) every EL-concept description D satisfying Ci v D for all i ∈ { 1, . . . , n } also

satisfies C v D.

We write C = lcs{C1, . . . , Cn } if C is the least common subsumer of C1, . . . , Cn.

Note that the least common subsumer is unique up to equivalence, so using the notation
lcs{C1, . . . , Cn } does not cause any problems.

It can be shown that least common subsumers always exist in EL, and that they can
effectively be computed by means of products of description trees. For the following
definition recall for a description tree G = (V,E, L, v) and v′ ∈ V that Gv′ denotes the
subtree of G with root v′.

Definition 4.20 (Product of Description Trees). Let G1 = (V1, E1, L1, v1), G2 =
(V2, E2, L2, v2) be two EL-description trees. Then the product G1×G2 = (V,E, L, (v1, v2))
is a description tree which is inductively defined as follows. The root of G1 × G2 is
the pair (v1, v2), which is labeled via L by L1(v1) ∩ L2(v2). Then for each r ∈ NR,
(v1, r, v

′
1) ∈ E1 and (v2, r, v

′
2) ∈ E2, it is true that ((v1, v2), r, (v′1, v

′
2)) ∈ E, and

(G1 × G2)(v′1,v
′
2) = (G1)v′1 × (G2)v′2 .

Theorem 4.21 (Theorem 2 of (Baader et al., 1999)). Let C, D be two EL-concept
descriptions, and G(C), G(D) their EL-description trees. Then C(G(C) × G(D)) is the
least common subsumer of C and D.

The definition of the product of description trees can be extended to an arbitrary number
of description trees in the obvious way. In analogy to Theorem 4.21, it can be proven that
C(
∏n

i=1 G(Ci)) is the least common subsumer of the EL-concept descriptions C1, . . . , Cn.

Corollary 4.22. Let X ⊆ ∆I , X 6= ∅, and let d ∈ N. Then

XId ≡ lcs{ {x }Id | x ∈ X }.

Proof. Let C := lcs
{
{x }Id

∣∣ x ∈ X }. By Theorem 4.21 we know that C exists and that

C ≡ C(G(X)),

where G(X) :=
∏

x∈X G({x }Id) is the product of all description graphs of the concept

descriptions {x }Id , x ∈ X. To show that C ≡ XId , we need to show that

(i) X ⊆ CI ,
(ii) rd(C) ≤ d, and
(iii) for all EL-concept descriptions D with rd(D) ≤ d and X ⊆ DI , it is true that

C v D.

By definition, {x }Id v C, and by Lemma 4.3 it is true that x ∈ CI for all x ∈ X.
Therefore, X ⊆ CI , which shows the first claim.

The second claim is also immediately clear: the description graphs of all {x }Id , x ∈ X
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have depth at most d, and thus the product G(X) of these description graphs has also
depth at most d. Thus, rd(C) ≤ d.

For the last claim let D as described. Then since X ⊆ DI , it is true that {x } ⊆ DI
for all x ∈ X. Using Lemma 4.3 again we obtain {x }Id v D. By definition of the least
common subsumer

C = lcs
{
{x }Id

∣∣ x ∈ X } v D,
as required.

Example 4.23. Let us compute the model-based most-specific concept description of
{Paul , Jana } in the interpretation I from Figure 2 with role-depth bound 1. We find
by the previous approach

PaulI1 = Male u Father u ∃marriedTo.(Female uMother) u ∃hasChild.Male

JanaI1 = Female uMother u ∃marriedTo.(Male u Father) u ∃hasChild.Male

The product of the description graphs of these two concept descriptions is then given by
the following diagram:

Male

ha
sC
hi
ld

m
arriedT

o

Therefore,

{Paul , Jana }I1 = ∃hasChild.Male u ∃marriedTo.>.

4.4 Reducing the Size of the Base

We have seen in Theorem 4.9 how to obtain a finite base of all GCIs with bounded
role-depth. Our motivation for this theorem was to find a smaller base than the set of
all possible GCIs with role-depth not exceeding a given bound. However, this theorem
does not really satisfy this motivation, as it does not tell anything about whether the
size of the base is “small” or not.

We shall remedy this deficit of Section 4.2 by discussing in this section means to reduce
the size of the base. Indeed, we shall even show that it is possible to obtain a base of
minimal cardinality, again using methods from formal concept analysis.

We shall start by introducing induced contexts, which provide a means to associate a
formal context to a given set of concept descriptions and a given interpretation.

Definition 4.24 (Induced Context). Let I be an interpretation over the signature
(NC , NR) and let M ⊆ EL⊥(NC , NR). Then the induced context KM,I of M and I is
defined as

KM,I := (∆I ,M,∇),

where (x,C) ∈ ∇ iff x ∈ CI .
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⊥ Male Female ∃marriedTo.Male

Jana × ×
Paul ×
Tom ×

Martin ×
Kathrin ×
Thomas ×
Clarissa ×

Jean ×
Elisabeth × ×

Andrea ×

Figure 3. Induced Context of Example 4.25

Example 4.25. Let us choose a set of concept description, say

M = {⊥,Male,Female,∃marriedTo.Male }.

Then the induced context of this set of concept descriptions and the interpretation I
from Figure 2 is given in Figure 3.

Induced contexts allow us to express the similarities between description logics and
formal concept analysis in a clear and formal way. The following two statements are
contained in (Distel, 2011), and are given here without proof.

The first statement relates one of the derivation operators in the induced context to
the extension function in the original interpretation. This statement can be seen as a
formalization of our previous remark about the similarities between interpretations and
formal contexts.

Proposition 4.26 (Lemma 4.10 of (Distel, 2011)). Let M be a set of EL⊥-concept
descriptions. Then for each U ⊆M it is true that

U ′KM,I
= (

l
U)I .

The next statement can be seen as the dual to the previous one, as it relates the
extension function of the given interpretation to the corresponding derivation operator
in the induced context. For this we need to introduce another notion. For M being a set
of EL⊥-concept descriptions and C being another EL⊥-concept description, let us define
the projection prM (C) of C on M as

prM (C) := {D ∈M | C v D }.

Then the following statement holds.

Proposition 4.27 (Lemma 4.11 of (Distel, 2011)). Let M be a set of EL⊥-concept
descriptions, and let C be an EL⊥-concept description that is expressible in terms of M .
Then

CI = (prM (C))′KM,I
.

So far we have only considered one of the derivation operators in the induced context
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KM,I . The following assertion is concerned with the other derivation operator, and it
should come with no surprise that it relates this operator to model-based most-specific
concept descriptions.

Proposition 4.28. Let M be a set of EL⊥-concept descriptions of role-depth at most
d. Then every set O ⊆ ∆I satisfies

prM (OId) = O′KM,I
.

Proof. Let KM,I = (∆I ,M,∇), and consider D ∈M . Then it is true that

D ∈ O′ ⇐⇒ ∀x ∈ O : x ∇ D

⇐⇒ ∀x ∈ O : x ∈ DI

⇐⇒ O ⊆ DI .

By Lemma 4.3 we obtain

O ⊆ DI ⇐⇒ OId v D

⇐⇒ D ∈ prM (OId).

Thus O′ = prM (OId) as it has been claimed.

Putting the previous statements together we immediately obtain the following observa-
tion.

Proposition 4.29. Let M be a set of EL⊥-concept descriptions with role-depth at most
d. Then for every set U ⊆M it is true that

prM
(
(
l
U)IId

)
= U ′′KM,I

.

Proof. Proposition 4.26 yields (
d
U)I = U ′, and thus

prM

((
(
l
U)I

)Id) = prM
(
(U ′)Id

)
.

Then U ′ ⊆ ∆I , and thus Proposition 4.28 yields

prM
(
(U ′)Id

)
= U ′′,

i.e., prM
(
(
d
U)IId

)
= U ′′ as required.

Let us now come back to our original problem of reducing the size of the base from
Theorem 4.9. The main idea behind our further considerations is the following. To
obtain “small” bases of the finite interpretation I we first consider the induced context
KI,d := KMI,d,I , and from this context its canonical base Can(KI,d). As this base is of
minimal cardinality we can hope that by transferring it to a base of GCIs it will at least
be a “small” base of I. Indeed, with some further adaption we shall even be able to
show that we can obtain a base of minimal cardinality of I.

The adaption we have to make is concerned with the following problem. When we
consider the set MI,d of concept descriptions as the set of attributes of KI,d, we lose the
ability to automatically detect subsumption relationships between concept descriptions
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in MI,d. More precisely, if C,D ∈ MI,d such that C v D, then the GCI C v D is
trivial, but the implication {C } → {D }, which is valid in KI,d, is not necessarily
trivial. Therefore, if we compute the canonical base of KI,d, we will certainly obtain
some implications in Can(KI,d) that correspond to trivial GCIs. Those trivial GCIs will
increase the size of our desired base unnecessarily.

To remedy this we shall make use of bases of KI,d with background knowledge. More
precisely, let us define

SI,d :=
{
{C } → {D }

∣∣ C,D ∈MI,d, C v D }.
Then SI,d contains all implications which correspond to trivial GCIs as mentioned above.
Using SI,d as background knowledge when computing bases of KI,d will then eliminate
these redundancies. As we shall see shortly, this even allows us to retain the property of
the canonical base of being of minimal cardinality.

Theorem 4.30. Let I = (∆I , ·I) be a finite interpretation, and let d ∈ N. Let L be a
base of KI,d with background knowledge SI,d. Then

B3 :=
{l

U v
(l

U
)IId ∣∣∣ (U → V ) ∈ L

}
is a finite base of all valid GCIs of I with role-depth at most d.

The proof of this result is given in Appendix A.3.

Example 4.31. For a last time let us consider the interpretation from Figure 2, and let
again d = 1. Then

MI,1 = {⊥,Father,Mother,Male,Female,∃hasChild.(Mother u Female),

∃marriedTo.(Mother u Female),∃hasChild.(Father uMale),

∃marriedTo.(Father uMale),∃hasChild.Male,∃marriedTo.Male,

∃hasChild.Female,∃marriedTo.Female,∃hasChild.>, ∃marriedTo.>}

The set SI,1 contains implications like

{⊥} → {∃hasChild.>},

{ ∃marriedTo.(Mother u Female) } → {∃marriedTo.>},

{ ∃hasChild.(Mother u Female) } → {∃hasChild.Female },

. . .

The canonical base of KI,1 with background knowledge SI,1 then consists of 13 implica-
tions, some of them being

{Mother } → {∃HasChild.>,Female })

{ ∃hasChild.>,Female } → {Mother }

{ ∃marriedTo.>} → {∃hasChild.>}

In particular, all the above implications contain only concept descriptions that are
contained in MI,1. The implications from the canonical base can then be transformed
into GCIs by conjoining the elements of the premises and conclusions, respectively,
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possibly removing redundant concept descriptions. For example, the third GCI can be
translated to

Mother v Female u ∃hasChild.>.

The previous theorem allows us to consider small bases of KI,d and transform them into
bases of I. This is useful on its own, but does not directly help us in finding “small”
bases of I, as it may happen that “small” bases of KI,d do not give rise to “small” bases
of I, for some suitable notion of “small”. We shall remedy this by presenting a result
that the canonical base of KI,d with background knowledge SI,d gives rise to a minimal
base of I.

The result is again inspired by a similar result from (Distel, 2011, Theorem 5.18), and
indeed the main line of argumentation is very similar. Let

BCan(I, d) :=
{l

U v (
l
U)IId

∣∣∣ (U → U ′′) ∈ Can(KI,d,SI,d)
}
.

To show that in this way we obtain a base of minimal cardinality we consider some
arbitrary base B of I. To this base we then associate a base LB of implications of KI,d
such that |LB| ≤ |B|. Then because Can(KI,d,SI,d) has minimal cardinality we obtain
|Can(KI,d,SI,d)| ≤ |LB|, and from this |BCan(I, d)| ≤ |B| as required.

Elaborating on this line of argumentation we obtain the following result. As the proof
is rather long and contains a lot of technical details we defer it Appendix A.4.

Theorem 4.32. Let I be a finite interpretation over NC and NR, and let d ∈ N.
Then BCan(I, d) is a base of all valid GCIs of I with role-depth at most d. Furthermore,
BCan(I, d) has minimal cardinality among all bases of all valid GCIs of I with role-depth
at most d.

5. Learning from DBpedia: An Extended Example

With our previous argumentation we have obtained a way to extract, in the form of a
finite base, all valid GCIs of a given finite interpretation satisfying a given role-depth
bound. As the resulting method is effective, we can seek to apply it to data-sets from
real-world applications to evaluate the usefulness of our approach. To this end we recall
our previous remark about data-sets of RDF triples. There we observed that we can
consider each such data-set as a finite interpretation, as both essentially are vertex- and
edge-labeled graphs. In this way our results allow to extract terminological knowledge
from data-sets of the Semantic Web.

In this section we shall illustrate this method by applying it to a subset of the DBpedia
data-set (Bizer et al., 2009) from the release of 2014. Note that this section does not
serve as a thorough evaluation of our approach as a method to automatically extract
ontologies from data. Indeed, a method of how to perform such an evaluation is subject
to future research. We shall discuss this further in Section 6.

The subset of DBpedia that we will use for our experiments shall be represented
by a finite interpretation IDBpedia. To construct this finite interpretation IDBpedia we
shall proceed as follows. In DBpedia there are, among others, two data sets named
mapping-based types and mapping-based properties (cleaned). Let us call the former data
set T , and the latter P .

The data set T consists of triples of the form

<http://dbpedia.org/resource/Ellson,_Minnesota>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/PopulatedPlace> .
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<http://dbpedia.org/resource/Otis_Taylor_(American_football)>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Athlete> .

<http://dbpedia.org/resource/Eddie_George>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person> .

i.e., it contains information about instances being of certain types. Because the predicate
in all those triples is

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

we can equally consider T as a data set of pairs instead of triples.
The second data set P contains triples like

<http://dbpedia.org/resource/Jowkar,_Afghanistan>

<http://www.w3.org/2003/01/geo/wgs84_pos#lat>

"35.521388888888886"^^<http://www.w3.org/2001/XMLSchema#float> .

<http://dbpedia.org/resource/Khenaman_Rural_District>

<http://dbpedia.org/ontology/isPartOf>

<http://dbpedia.org/resource/Kerman_Province> .

<http://dbpedia.org/resource/Robert_Benchley>

<http://dbpedia.org/ontology/influenced>

<http://dbpedia.org/resource/James_Thurber> .

i.e., this data set contains relationships between instances as well as literal information
about instances.

For readability, we shall from now on omit the prefix http://dbpedia.org/ontology.
Where other prefixes have been used we leave them in place to avoid ambiguities.

To get a reasonably sized data set out of T and P for our experiments we proceed as
follows. First we consider all triples (s, p, o) in the mapping-based properties data set P
such that p = child. All entities s and o that occur in such a triple are collected into
a set ∆IDBpedia . Then for each element x in ∆IDBpedia we consider all pairs (x, c) in the
mapping-based types data set T and define the set NC to be the set of all those elements
c, i.e.,

NC := { c | ∃x ∈ ∆IDBpedia : (x, c) ∈ T }.

Then for each A ∈ NC we set

AIDBpedia := {x ∈ ∆IDBpedia | (x,A) ∈ T }.

Then IDBpedia := (∆IDBpedia , ·IDBpedia) is an interpretation over NC and NR := { child }.
We have |∆IDBpedia | = 16891 and |NC | = 183.

By construction one could expect IDBpedia to contain only elements that are instances
of the concept Person, as we only consider instances in the DBpedia data set that either
have or are children. But since DBpedia extracts its data from Wikipedia Infoboxes in
a heuristic way, elements that are not persons are also contained in IDBpedia, example
being organizations, books, and places. This is because in Wikipedia Infoboxes children
are sometimes stored together with the organizations they belong to, or the places they
have lived in. If this extra information points to another Wikipedia page, DBpedia may
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mistakenly pick up this page as the child of the current article, instead of the child itself.
Because of this, individuals that are not persons do appear in IDBpedia. For our purpose
of demonstrating our approach to learn GCIs from finite interpretations, however, this
fact does not play much of a role.

We now apply our approach to IDBpedia and compute a base BIDBpedia
of all EL⊥ GCIs

with role-depth at most 2, using a prototypical implementation of the algorithm described
before1. The base BIDBpedia

then consists of 3880 elements. In the following we shall have
a closer look on some typical elements of BIDBpedia

to convey a feeling which kind of
knowledge our algorithm extracts from IDBpedia.

The first GCIs computed by our algorithm only involve concept names, for example

ChemicalSubstance v Mineral,

ChessPlayer v Athlete,

HockeyTeam v SportsTeam,

Saint v Cleric,

Governor v Politician,

IceHockeyPlayer v Athlete.

We note that most of those GCIs are valid in the DBpedia data-set by construction. This
is because Wikipedia Infoboxes, from which DBpedia extracts its knowledge, are not
standardized in any way, and thus some background knowledge is necessary to produce a
consistent data-set. This background knowledge is given by a manually created ontology
of 685 classes, and the above given GCIs are all contained therein. But BIDBpedia

also
contains GCIs which are not represented in DBpedia’s ontology. Examples for such GCIs
are

Coach v CollegeCoach,

Name v GivenName,

TimePeriod v Year.

The reason for the presence of these GCIs is that the data-set IDBpedia is too restrictive,
in the following sense: DBpedia itself contains counterexamples to TimePeriod v Year,
but those are not contained in IDBpedia due to the way this data-set is constructed. In
this sense, IDBpedia is too restrictive as it misses crucial counterexamples, and the above
examples are artifacts of the way we have chosen our data-set.

Another type of GCI contained in BIDBpedia
are GCIs representing disjointness con-

straints, as

Agent u ChemicalSubstance v ⊥,

ChemicalSubstance u TimePeriod v ⊥,

Agent u TimePeriod v ⊥,

Judge u Politician v ⊥,

Journalist u Judge v ⊥,

HorseTrainer u Politician v ⊥,

1The source-code for this implementation is available under http://github.com/exot/EL-exploration.

29

http://github.com/exot/EL-exploration


July 26, 2016 Journal of Applied Non-Classical Logics jancl

HorseTrainer u Judge v ⊥,

FictionalCharacter u HorseTrainer v ⊥,

Architect u Scientist v ⊥,

Architect u Journalist v ⊥,

Architect u FictionalCharacter v ⊥.

Those GCIs contain only concept names, but the main strength of our algorithm is
to learn GCIs that contain roles. A first example of a GCI in BIDBpedia

containing a
role-name is

Pope v ∃child.Person u Cleric.

While it is surprising that IDBpedia contains popes, it is even more surprising that all
popes contained in IDBpedia do have children (and are not contained in IDBpedia because
they are the children of famous persons). The reason for this is that apparently popes
never had famous parents, and thus appear in IDBpedia because they have famous children.
The only such popes where Alexander VI, Paul III, and Julius II, and these are the only
popes contained in IDBpedia. This is why our algorithm extracts the above-mentioned
GCI. Interestingly, BIDBpedia

also contains the GCI

∃child.Person u Pope u Saint v ⊥

that expresses the fact that so far the Catholic Church has not canonized any popes
having children.

A general pattern of GCIs involving the child role is to exclude that certain professions
have (famous) children, like

∃child.> u Astronaut v ⊥

∃child.> u Medician v ⊥

∃child.> u ChessPlayer v ⊥

∃child.Politician u Engineer v ⊥

∃child.Mayor u Governor v ⊥

∃child.Scientist u Judge v ⊥

∃child.Journalist u Monarch v ⊥

∃child.Journalist u PlayboyPlaymate v ⊥

∃child.> u Economist v ⊥

∃child.> u BritishRoyalty v ⊥

∃child.> u BeautyQueen v ⊥

∃child.> u Philosopher v ⊥

A variation of this pattern is to express the fact that certain professions only have persons
as children:

∃child.> u SoccerManager v ∃child.Person

∃child.> u BaseballPlayer v ∃child.Person
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∃child.> u Saint v ∃child.Person

∃child.> u ScreenWriter v ∃child.Person

Note that these GCIs are indeed interesting GCIs, as IDBpedia contains individuals
that are not persons. The above mentioned GCIs then express the fact that for certain
professions DBpedia has extracted only persons as children. On the other hand, one
could expect that only persons can have children (as only Wikipedia Infoboxes of persons
do have entries for children), and indeed BIDBpedia

contains the GCI

∃child.> v Person.

Interestingly, one can even make use of some GCIs in BIDBpedia
to find places where

DBpedia has extracted children that are not persons. For example, our algorithm extracts
from IDBpedia the GCI

∃child.Place u Engineer v ∃child.Http://schema.org/AdministrativeArea

indicating that in at least one case a child has been extracted that is not a person, but a
place, and that the person having that child is an engineer. In this case, there is only
one such engineer, named Edward Snell, and his infobox lists his children together with
their places of birth (among others).

Finally, the majority of GCIs contained in BIDBpedia
does not follow any obvious pattern,

and we list some here to give an impression how they look like.

∃child.Judge u Judge v ∃child.(Judge u ∃child.OfficeHolder)

∃child.Engineer v Engineer

PlayboyPlaymate v ∃child.Person

∃child.ComicsCreator u Politician v Congressman

∃child.Criminal u Politician v MemberOfParliament

6. Conclusions and Future Work

In this paper we have discussed an approach to learn valid GCIs of finite interpretations
whose quantifier depth does not exceed a given bound. For this we have modified the
original argumentation of (Distel, 2011) to allow for role-depth bounds, and we have
shown that all major results are still valid. Moreover, the introduction of role-depth
bounds has also simplified the logical setup in which we need to argue, as we do not
need to consider logics with cyclic concept descriptions anymore. Considering those
logics was necessary in the original approach of (Distel, 2011). Finally, we have also
demonstrated using a real-world data-set that our approach is effective, showing that
we can automatically learn terminological knowledge expressible in EL⊥ from larger
data-sets.

While the experiments we have conducted in Section 5 show that ontology engineers
can use our approach to extract terminological knowledge from data-sets, they also
illustrate a major disadvantage of our approach when applied to real-world data: when
the data-set contains errors, then the GCIs extracted by our algorithm can be too
specific, because errors can invalidate a more general pattern. This issue has been
addressed in (Borchmann, 2014), where in addition to extracting valid GCIs from a finite
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interpretation also GCIs are considered that are “almost valid” in the given data-set. A
GCI is said to be “almost valid” if it is correct in at least a certain number of cases where
it is applicable. Experiments in (Borchmann, 2014) indicated that considering almost
valid GCIs instead of only valid GCIs of finite interpretations increases the usefulness of
the underlying approach to learn terminological knowledge from real-world data.

The work of (Borchmann, 2014) builds upon the original approach of (Distel, 2011),
and hence does not allow for role-depth bounds. As real-world data can always be
assumed to be faulty, and the approach of (Borchmann, 2014) promises to perform
better on such data-sets, also introducing role-depth bounds there may increase the
practicability of our ideas even more. We believe that such an extension is not difficult,
albeit technical, and we leave it as future work.

The description logic EL⊥ we have used here is an inexpressive logic, and does not
capture important forms of knowledge one may be interested in. For example, we have
seen in our experiments that we extract the GCI

∃child.> u SoccerManager v ∃child.Person

from IDBpedia. This GCI suggests, but does not exactly express, the fact that each soccer

manager who has children only has persons as children. Indeed, EL⊥ cannot express this
fact, as it is not able to talk about all successors of a given individual. However, using a
more expressive logic, i.e., one that allows for the universal quantifier ∀, this fact can
easily be expressed as

∃child.> u SoccerManager v ∀child.Person.

There is some work extending the original approach of (Distel, 2011) to more expressive
description logics (Distel, 2008). Including these extensions in our approach can provide
the expressiveness to learn more interesting knowledge from given data-sets, while
allowing to control the amount of the GCIs to be learned by restricting their maximal
quantifier depth.

On a more general level it is not easy to assess the usefulness of our approach for
constructing real-world ontologies from data. Indeed, the experiment we have discussed
in Section 5 only gives a first impression how our algorithm behaves, but does not reveal
whether it is really able to extract knowledge suitable for inclusion in a knowledge base.
For this a more sophisticated experimental setup has to be developed that formulates
necessary criteria for evaluating the performance of automatic knowledge extraction
algorithms. For this a certain form of gold standard seems to be necessary to be used as
a yardstick to measure the quality of the knowledge our algorithm can extract. Obtaining
such a gold standard together with a suitable data set seems to be an expensive and
time-consuming undertaking. Indeed, we believe that such a gold standard depends
highly on a certain application, i.e., different applications require different gold standards.
As such, judging the quality of learned GCIs cannot be done in isolation. It is therefore
not clear how to evaluate the outcome of our approach to learn knowledge from data. We
consider research in this direction as a crucial and necessary next step in understanding
the usefulness and applicability of our approach in learning ontologies from data.
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Appendix A. Missing Proofs

In this section we provide the proofs that have been omitted in the main text.

A.1 Proof of Theorem 4.9

We first show the claim that all model-based most-specific concept descriptions are
expressible in terms of MI,d. For this we start with an auxiliary proposition.

Proposition A.1. For all EL⊥-concept descriptions C,D over NC and NR and all
r ∈ NR it is true that

(CIId uD)I = (C uD)I ,

(∃r.CIId)I = (∃r.C)I .

Proof. For the first equation we obtain

(CIId uD)I = CIIdI ∩DI

= CI ∩DI

= (C uD)I .

For the second equation we can compute

x ∈ (∃r.CIId)I ⇐⇒ ∃y ∈ CIIdI : (x, y) ∈ rI

⇐⇒ ∃y ∈ CI : (x, y) ∈ rI

⇐⇒ x ∈ (∃r.C)I

which shows the claim.

Now define for an EL⊥-concept description C 6= ⊥ the lower approximation approxI,d(C)

of C in MI,d as follows. Let U ⊆ NC and Π ⊆ NR × EL⊥(NC , NR) such that

C =
l
U u

l

(r,E)∈Π

∃r.E.

Then

approxI,d(C) :=
l
U u

l

(r,E)∈Π

∃r.EIId−1 .

If C = ⊥, then define approxI,d(C) := ⊥.

Proposition A.2. If rd(C) ≤ d, then it is true that

CIId v approxI,d(C) v C.

Proof. The claim is clearly true for C = ⊥. Therefore, assume that

C =
l
U u

l

(r,E)∈Π

∃r.E.
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We know by Lemma 4.4 that EIId−1 v E is true for all (r, E) ∈ Π, and thus ∃r.EIId−1 v
∃r.E. Therefore,

approxI,d(C) =
l
U u

l

(r,E)∈Π

∃r.EIId−1

v
l
U u

l

(r,E)∈Π

∃r.E

= C.

Furthermore, it is true that

CI =
(l

U u
l

(r,E)∈Π

∃r.E
)I

=
(l

U u
l

(r,E)∈Π

∃r.EIId−1

)I
=
(
approxI,d(C)

)I
using Proposition A.1. In particular, we obtain CI ⊆

(
approxI,d(C)

)I
, and by (4)

CIId v approxI,d(C),

as desired.

Lemma A.3. For every X ⊆ ∆I the concept description XId is expressible in terms
of MI,d.

Proof. By Proposition A.2 we have

(XId)IId v approxI,d(XId) v XId .

By Lemma 4.4, XIdIId ≡ XId , and therefore the previous statement specializes to

XIdIId ≡ approxI,d(XId) ≡ XId ,

and since approxI,d(XId) is expressible in terms of MI,d, so is XId .

Theorem A.4 (Theorem 4.9). Let I be a finite interpretation over the signature
(NC , NR), and let d ∈ N. Then the set

B2 := {
l
U v (

l
U)IId | U ⊆MI,d }

is a finite base of I w.r.t. role-depth d.

Proof. Since B2 ⊆ B0, and B0 is sound for I, so is B2. Furthermore, B2 is finite because
MI,d is finite.

By Lemma 4.6, to show that B2 is complete for Thd(I) it is enough to show for all
EL⊥-concept descriptions D over NC and NR with rd(D) ≤ d that

B2 |= (D v DIId).
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We shall show this claim by induction over the structure of D.
Base Case: D = ⊥ or D = A ∈ NC . If D = ⊥, then D =

d
∅, and since ∅ ⊆ MI,d,

it is true that (D v DIId) ∈ B2. In particular, B2 |= (D v DIId). If D = A, then
D =

d
{A }, and since A ∈ MI,d, {A } ⊆ MI,d, and again (D v DIId) ∈ B2 and thus

B2 |= (D v DIId).
Step Case D = E u F . Let J be an interpretation such that J |= B2. Then

DJ = (E u F )J = EJ ∩ FJ .

By induction hypothesis, B2 |= (E v EIId) and B2 |= (F v F IId), and thus EJ ⊆
(EIId)J , FJ ⊆ (F IId)J . Therefore

DJ = EJ ∩ FJ

⊆ (EIId)J ∩ (F IId)J

= (EIId u F IId)J .

By Lemma A.3, EIId u F IId is expressible in terms of MI,d. Therefore, B2 contains
(EIId u F IId) v (EIId u F IId)IId up to equivalence. Since J is a model of B2 it follows

(EIId u F IId)J ⊆ (EIId u F IId)IIdJ

= (E u F )IIdJ

= DIIdJ ,

using Proposition A.1. Therefore, DJ ⊆ DIIdJ , and thus J |= (D v DIId). Since J
had been chosen arbitrarily we obtain B2 |= (D v DIId).

Step Case D = ∃r.E. Again, let J be an interpretation such that J |= B2. By the
definition of the semantics of existential restrictions, we have

x ∈ DJ ⇐⇒ x ∈ (∃r.E)J

⇐⇒ ∃y ∈ EJ : (x, y) ∈ rJ .

By induction hypothesis, B2 |= (E v EIId) holds. Of course we have EIId v EIId−1 ,
and thus we furthermore obtain

x ∈ DJ =⇒ ∃y ∈ EIId−1J : (x, y) ∈ rJ

⇐⇒ x ∈ (∃r.EIId−1)J .

Since (∃r.EIId−1) ∈MI,d, it is true that (∃r.EIId−1 v (∃r.EIId−1)IId−1) ∈ B2, so

(∃r.EIId−1)J ⊆ (∃r.EIId−1)IId−1J

= (∃r.E)IId−1J

= DIId−1J

using Proposition A.1. Putting it all together we obtain DJ ⊆ DIIdJ , and since J had
been chosen arbitrarily, we have shown B2 |= (D v DIId). This completes the proof of
the induction step, and thus the proof of this theorem.
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A.2 Proof of Corollary 4.14

For the proof of Corollary 4.14 we introduce the auxiliary notion of simulations be-
tween description graphs (Franz Baader, 2002; Baader, 2003b). As we shall see, the
existence of simulations between description graphs is closely related to the existence of
homomorphism between description graphs.

Definition A.5 (Simulation). Let G1 = (V1, E1, L1, v1) and G2 = (V2, E2, L2, v2) be two
EL-description graphs. A binary relation Z ⊆ V1 × V2 is a simulation from G1 to G2,
written Z : G1

⇀∼ G2, if and only if the following conditions are satisfied:

(S1) (v1, v2) ∈ Z,
(S2) (w1, w2) ∈ Z implies L1(w1) ⊆ L2(w2), and
(S3) whenever (w1, w2) ∈ Z and (w1, r, w

′
1) ∈ E1, then there exists w′2 ∈ V2 such that

(w2, r, w
′
2) ∈ E2 and (w′1, w

′
2) ∈ Z.

w1

w2

v1

∃v2

Z Z

r

r

It can be easily verified that the class of simulations is closed under composition, i.e.,
if Z1 : G1

⇀∼ G2 and Z2 : G2
⇀∼ G3 are simulations, then the product

Z1 ◦ Z2 := { (w1, w3) | ∃w2 ∈ V2 : (w1, w2) ∈ Z1, (w2, w3) ∈ Z2 }

is a simulation from G1 to G3.
The statement and the proof of the following proposition are a special case of (Franz

Baader, 2002, Proposition 18), adapted to the needs of this paper.

Proposition A.6. Let I be an interpretation over NC and NR, let C be an EL-concept
description over NC and NR, and let G(C) = (VC , EC , LC , vC) be the EL-description
graph of C. Then for every x ∈ ∆I the following statements are equivalent:

(i) x ∈ CI ,
(ii) there exists a simulation Z : G(C) ⇀∼ G(I, x).

Proof. (i) =⇒ (ii). Suppose x ∈ CI . Define

Z = { (v, y) ∈ VC ×∆I | y ∈ (C(G(C)v))I }.

We show that Z is a simulation. Since x ∈ CI we have (vC , x) ∈ Z. Let (v, y) ∈ Z, and
let

C(G(C)v) = P1 u · · · u Pk u ∃r1.D1 u · · · u ∃r`.D`.

(S2) It is true that LG(C)(v) = {P1, . . . , Pk }. Since y ∈ (C(G(C)v))I we have y ∈ P Ii
for 1 ≤ i ≤ k. Therefore, {P1, . . . , Pk } ⊆ LG(I,x)(y).

(S3) Let (v, r, v′) ∈ EG(C). Then r = ri for some 1 ≤ i ≤ `, and Di = C(G(C)v′). Since

y ∈ (C(G(C)v))I it is true that y ∈ (∃ri.Di)
I . Therefore, there exists yi ∈ ∆I such

that (y, yi) ∈ rI and yi ∈ DIi . But then (y, ri, yi) ∈ EG(I,x) and (v′, yi) ∈ Z, as
required.

(ii) =⇒ (i). Let Z : G(C) ⇀∼ G(I, x) be a simulation. For v ∈ VC denote with h(v) the
maximal length of a path from v to some leaf in G(C). We show by induction over h(v)
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that

(v, y) ∈ Z =⇒ y ∈ (C(G(C)v))I . (A1)

Since (vC , x) ∈ Z, we obtain from this that x ∈ (C(G(C)vC
))I = CI as desired.

Let (v, y) ∈ Z and assume that (A1) holds for each w ∈ VC with h(w) < h(v). Again
let

C(G(C)v) = P1 u · · · u Pk u ∃r1.D1 u · · · u ∃r`.D`.

Since Z is a simulation, we have {P1, . . . , Pk } = LG(C)(v) ⊆ LG(I,x)(y), and therefore

y ∈ (P1 u · · · u Pk)I .

Now let { (v, ri, vi) | 1 ≤ i ≤ ` } ⊆ EC be all outgoing edges of v in G(C). Then
Di = C(G(C)vi

) for each i ∈ { 1, . . . , ` }. Since Z is a simulation, for each vi there exists
yi such that (vi, yi) ∈ Z and (y, ri, yi) ∈ EG(I,x). Since h(vi) < h(v), the induction

hypothesis yields yi ∈ (C(G(C)vi
))I = DIi for each i ∈ { 1, . . . , ` }. Moreover, since

(y, ri, yi) ∈ EG(I,x), it is true that (y, yi) ∈ rIi and thus y ∈ (∃ri.Di)
I for each i ∈

{ 1, . . . , ` }. All in all we obtain

y ∈ (∃r1.D1 u · · · u ∃r`.D`)
I

and thus y ∈ (C(G(C)v))I as required.

The following proposition relates the existence of simulations to the existence of homo-
morphisms.

Proposition A.7. Let G1 = (V1, E1, L1, v1) be a description tree, and let G2 =
(V2, E2, L2, v2) be a description graph. Then there exists a simulation Z : G1

⇀∼ G2 if
and only if there exists a homomorphism ϕ : G1 → G2.

Proof. If there exists a homomorphism ϕ : G1 → G2, then

Z := { (x, ϕ(x)) | x ∈ V1 }

is clearly a simulation Z : G1
⇀∼ G2.

Conversely, if Z : G1
⇀∼ G2 is a simulation, then we can inductively define a homomor-

phism ϕ : G1 → G2 with ϕ ⊆ Z as follows. Set ϕ(v1) := v2, and suppose inductively that
ϕ has already been defined for all nodes with depth in G1 of at most n. Let v′ be a node
of depth n + 1. Then there exists v ∈ V1 and r ∈ NR such that (v, r, v′) ∈ E1. Since
v has depth n, w = ϕ(v) is already defined and (v, w) ∈ Z. Since Z is a simulation,
there exists w′ ∈ V2 such that (v′, w′) ∈ Z and (w, r, w′) ∈ E2. Set ϕ(v′) := w′. Then
ϕ : G1 → G2 is a homomorphism by construction.

Checking for the existence of a simulation between two given finite description graphs
can be done in polynomial time (Henzinger et al., 1995), and thus the proposition yields
that the existence of a homomorphism from a finite description tree to a finite description
graph can be decided in polynomial time as well.

Since EL-description graphs of EL-concept descriptions are always trees we immediately
obtain Corollary 4.14.
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A.3 Proof of Theorem 4.30

The proof of the following theorem is a straight-forward adaption of the proof of (Distel,
2011, Theorem 5.12).

Theorem A.8 (Theorem 4.30). Let I = (∆I , ·I) be a finite interpretation, and let
d ∈ N. Let L be a base of KI,d with background knowledge SI,d. Then

B3 :=
{l

U v
(l

U
)IId ∣∣∣ (U → V ) ∈ L

}
is a finite base of all valid GCIs of I with role-depth at most d.

Proof. Clearly B3 is a finite set, and all GCIs are valid in I. Thus we only need to show
that B3 is complete for Thd(I). For this, we assume without loss of generality that L
only contains implications of the form U → U ′′ for some U ⊆MI,d.

Let J = (∆J , ·J ) be a model of B3. Recall that KMI,d,J denotes the induced formal
context of MI,d and J . Let us write KJ := KMI,d,J and KI := KI,d. We shall show the
following subclaims:

(i) all implications from L ∪ SI,d are valid in KJ ,
(ii) all implications V → V ′′KI are valid in KJ , for V ⊆MI,d,

(iii) all GCIs
d
V v (

d
V )IId are valid in J , for V ⊆MI,d.

The last claim states that B3 entails B2, and thus shows by Theorem 4.9 that B3 is
complete for Thd(I).

For the first subclaim we first observe that all GCIs C v D with C,D ∈MI,d hold in
every interpretation, and in particular in J . Thus, all implications ({C } → {D }) ∈ SI,d
hold in KJ , since by Proposition 4.26

{C }′KJ = CJ ⊆ DJ = {D }′KJ .

Thus let (U → U ′′KI) ∈ L. We need to show that

U ′KJ ⊆ (U ′′KI)
′
KJ .

For this we first observe that

U ′KJ = (
l
U)J

by Proposition 4.26. Since (
d
U)IId is expressible in terms of MI,d, Proposition 4.27

yields

(
(
l
U)IId

)J
=
(

prMI,d
(
(
l
U)IId

))′
KJ
.

Proposition 4.29 yields prMI,d
(
(
d
U)IId

)
= U ′′KI , and thus

(
(
l
U)IId

)J
= (U ′′KI)

′
KJ .

Then

U ′KJ = (
l
U)J ⊆

(
(
l
U)IId

)J
= (U ′′KI)

′
KJ ,
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Figure A1. Left: the description graph G(C); Right: the description graph H(C)

which shows the first subclaim.
For the second subclaim let V ⊆MI,d. Then V → V ′′KI is valid in KI . Since L ∪ SI,d

is a base of KI , it follows that V → V ′′KI is entailed by L ∪ SI,d. Since L ∪ SI,d is sound
for KJ , the implication V → V ′′KI is also valid in KJ . This finishes the second subclaim.

For the final subclaim let again V ⊆ MI,d. Since V → V ′′KJ is valid in KJ by the
second subclaim, it is true that

V ′KJ ⊆ (V ′′KI)
′
KJ ,

and a similar argumentation as above shows that

(
l
V )J ⊆ ((

l
V )IId)J ,

i.e.,
d
V v

d
V IId holds in J , as it was claimed.

A.4 Proof of Theorem 4.32

We start by providing two auxiliary statements that we shall make use of in the proof of
Theorem 4.32. For the first statement we shall in turn make use of the following fact: for
each interpretation I and each n ∈ N \ { 0 } we can consider the interpretation In that
arises from the product of the description graph of I with itself n times. Then if C v D
is a GCI that is valid in I, this GCI is also valid in In. This is true intuitively, and has
been proven formally in (Distel, 2011, Lemma 5.15).

The following lemma is a variation of (Distel, 2011, Lemma 5.16).

Lemma A.9. Let I be a finite interpretation, let d ∈ N, and let B be a set of valid
GCIs of I where B only contains concept descriptions from EL⊥(NC , NR)d. Let C be a
concept description such that C ≡

d
U for some U ⊆MI,d. Let D be some EL⊥-concept

description such that C 6v D and rd(D) ≤ d. If C v D follows from B, then there is
some (E v F ) ∈ B such that C v E and C 6v F .

Proof. Clearly C 6= ⊥, as otherwise C v D. Thus there exists S ⊆ NC and Π ⊆
NR ×P(∆I) such that

C ≡
l
S u

l

(r,X)∈Π

∃r.XId−1 .

Let G(C) = (VC , EC , LC , vC) be the description graph of C, and let G(D) be the
description graph of D. Denote with I(G(C)) the interpretation that corresponds to
the description graph G(C). Then vC ∈ CI(G(C)) by Corollary 4.14. On the other hand,
as C 6v D, Proposition 4.15 yields that there does not exist a homomorphism from G(D)
to G(C), and hence vC /∈ DI(G(C)) by Corollary 4.14. Therefore, I(G(C)) 6|= (C v D).
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The description graph G(C) is a tree with root vC . If we denote the children of vC
by v1, . . . , vn, then each such vi is the root of the description tree G(X

Id−1

i ) of X
Id−1

i .

Let Xi = {x1
i , . . . , x

k
i }. By Corollary 4.22, the tree G(X

Id−1

i ) is a product of trees which

arise from the description graph of I by unravelling at the elements xji up to depth d− 1.
A graphical representation of G(C) is shown on the left of Figure A1.

Let us now consider the description graph H(C) that we obtain from G(C) by replacing
all unravellings of I up to depth d − 1 by the full description graph of I. By this

each subtree G(X
Id−1

i ) in G(C) is transformed into a graph isomorphic to I|Xi|. This
transformation is sketched on the right of Figure A1.

We shall now show that in the interpretation I(H(C)) that correspond to H(C)
the GCI C v D does not hold as well. To this end we observe that there exists a
homomorphism from G(C) to H(C), showing that vC ∈ CI(H(C)). On the other hand, a
homomorphism from G(D) to H(C) could easily be transformed into a homomorphism
from G(D) to G(C), as rd(D) ≤ d. As such a homomorphism does not exist we obtain
vC /∈ DI(H(C)). Therefore, I(H(C)) is not a model of C v D.

As B entails C v D there must exist a GCI (E v F ) ∈ B that is not valid in I(H(C)).
As E v F is valid in I, by the remark immediately preceding this proof it is valid in all
interpretations I|X1|, . . . , I|Xn| as well. But then the only element E v F can fail for in

I(H(C)) is vC , and thus vC ∈ EI(H(C)), vC /∈ F I(H(C)). As rd(E), rd(F ) ≤ d we obtain
vC ∈ EI(G(C)), vC /∈ F I(G(C)).

Now by Corollary 4.14 there exists a homomorphism from the description graph G(E)
to G(C), and there does not exist a homomorphism from G(F ) to G(C). This is because
the description graph of I(G(C)) is isomorphic to G(C). But then Proposition 4.15 yields
C v E and C 6v F , as required.

The following proposition is a variation of (Distel, 2011, Lemma 5.17).

Proposition A.10. Let C ∈ EL⊥(NC , NR)d, U ⊆MI,d. Then
d
U v C implies

d
U v

approxI,d(C).

Proof. We can write C as

C =
l
S u

l

(r,D)∈Π

∃r.D

for some S ⊆ NC and some Π ⊆ NR × EL⊥(NC , NR)d−1. Then

approxI,d(C) =
l
S u

l

(r,D)∈Π

∃r.DIId−1 .

Since
d
U v C, for each A ∈ S we also have A ∈ U . Furthermore, for each (r,D) ∈ Π

there must exist some (∃r.XId−1) ∈ U such that ∃r.XId−1 v ∃r.D. Since XId−1 ≡
XId−1IId−1 v DIId−1 we obtain ∃r.XId−1 v ∃r.DIId−1 . But then

l
U v

l
S u

l

(r,D)∈Π

∃r.DIId−1 v approxI,d(C)

as required.

Theorem A.11 (Theorem 4.32). Let I be a finite interpretation over NC and NR, and
let d ∈ N. Then BCan(I, d) is a base of all valid GCIs of I with role-depth at most d.
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Furthermore, BCan(I, d) has minimal cardinality among all bases of all valid GCIs of I
with role-depth at most d.

Proof. Let B be a base of Thd(I). Without loss of generality we can assume that all GCIs
in B are of the form E v EIId for some EL⊥-concept description E with rd(E) ≤ d.

We know that |BCan(I, d)| ≤ |Can(KI,d,SI,d)|. The idea of this proof is to define a set
LB of implications such that

|Can(KI,d,SI,d)| ≤ |LB| ≤ |B|.

If we succeed in this, then we clearly have shown the claim of the theorem. Thus let us
define

LB :=
{

prMI,d(approxI,d(E))→ prMI,d(EIId)
∣∣ (E v EIId) ∈ B

}
.

Then clearly |LB| ≤ |B|. To show |Can(KI,d,SI,d)| ≤ |LB|, we show that LB ∪ SI,d is a
base of KI,d. Then by the minimality of the canonical base we know that LB has at least
as many elements as Can(KI,d,SI,d).

In the remainder of this proof we shall therefore show that LB ∪ SI,d is a base of KI,d.
For this we shall show that LB ∪ SI,d is sound and complete for KI,d.

Let us first show soundness of LB ∪ SI,d. Clearly, SI,d holds in any induced context
with attribute set MI,d, and thus in particular in KI,d. To see that LB is also sound for
KI,d, consider some implication(

prMI,d(approxI,d(E))→ prMI,d(EIId)
)
∈ LB.

Since approxI,d(E) is expressible in terms of MI,d by definition, Proposition 4.27 implies

(
prMI,d(approxI,d(E))

)′
KI,d

= approxI,d(E)I .

Since rd(E) ≤ d, Proposition A.2 yields

(approxI,d(E))I ⊆ EI ≡ (EIId)I

Finally, since EIId is expressible in terms of MI,d by Lemma A.3, Proposition 4.27
applies again and yields

(EIId)I =
(
prMI,d(EIId)

)′
KI,d

.

Thus we have shown that the implication(
prMI,d(approxI,d(E))→ prMI,d(EIId)

)
∈ LB.

holds in KI,d. Since the choice of this implication was arbitrary, we have shown that LB
is sound for KI,d.

It remains to be shown that LB ∪ SI,d is complete for KI,d. For this we show that no
set U ⊆MI,d with U 6= U ′′KI,d is a model of LB ∪ SI,d.

So let U ⊆MI,d with U 6= U ′′. Assume that U is closed under SI,d. Since U is not an
intent, there exists some D ∈ U ′′ \ U with rd(D) ≤ d. By definition of KI,d, it is true
that DI ⊆ U ′. Lemma 4.26 implies U ′ = (

d
U)I , i.e., DI ⊆ (

d
U)I . By Lemma 4.3 we
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obtain

(
l
U)II v D. (A2)

Since U is closed under SI,d, and since D /∈ U , we obtain F 6v D for all F ∈ U . This
is because if F v D for some F ∈ U , then since U is closed under SI,d, we would obtain
D ∈ U . Since D is either a concept name or of the form ∃r.XId−1 , we obtain

l
U 6v D. (A3)

Equations (A2) and (A3) now imply that

l
U 6v (

l
U)IId .

By Lemma A.9 there exists some (E v EIId) ∈ B such that

l
U v E,

l
U 6v EIId .

We now claim that U is not a model of the implication(
prMI,d(approxI,d(E))→ prMI,d(EIId)

)
∈ LB. (A4)

To see this, we first observe that by Proposition A.10 and
d
U v E, we see thatd

U v approxI,d(E). This implies that

prMI,d
(
approxI,d(E)

)
⊆ U.

To show that U is not a model of the implication in (A4) we thus need to show
that prMI,d(EIId) 6⊆ U . Let us assume by contradiction that this is not the case, i.e.,

prMI,d(EIId) ⊆ U . Then

l
U v

l
prMI,d(EIId) ≡ EIId ,

where the last equivalence is due to the fact that EIId is expressible in terms of MI,d.
But this is a contradiction to

d
U 6v EIId . We have thus shown that prMI,d(EIId) 6⊆ U ,

and the proof is finished.
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