
Reasoning in Fuzzy Description Logics using Automata

Stefan Borgwardta,∗, Rafael Peñalozab,∗

aInstitute for Theoretical Computer Science, Technische Universität Dresden, Germany
bKRDB Research Centre, Free University of Bozen-Bolzano, Italy

Abstract

Automata-based methods have been successfully employed to prove tight complexity bounds for reasoning
in many classical logics, and in particular in Description Logics (DLs). Very recently, the ideas behind these
automata-based approaches were adapted for reasoning also in fuzzy extensions of DLs, with semantics
based either on finitely many truth degrees or the Gödel t-norm over the interval [0, 1]. Clearly, due to the
different semantics in these logics, the construction of the automata for fuzzy DLs is more involved than for
the classical case.

In this paper we provide an overview of the existing automata-based methods for reasoning in fuzzy DLs,
with a special emphasis on explaining the ideas and the requirements behind them. The methods vary from
deciding emptiness of automata on infinite trees to inclusions between automata on finite words. Overall,
we provide a comprehensive perspective on the automata-based methods currently in use, and the many
complexity results obtained through them.
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1. Introduction

The Web Ontology Language OWL21 has been widely used to formulate many different ontologies, with
a particular concern in the biomedical sciences and healthcare systems, as evidenced by the large ontology
repository BioPortal.2 This is due in no small part to the well-defined formal semantics of OWL2DL and
its tractable profiles, which are provided by Description Logics (DLs) [1] of different expressivity, and the
existence of many highly optimized reasoning systems for DLs.3 OWL2DL and its profiles provide the
flexibility for handling many different ontology development needs, and existing ontologies cover the whole
range, from very large ontologies written over a very inexpressive language, like SNOMEDCT,4 to more
specialized ones describing complex interactions between concepts.

In description logics, knowledge is represented using concepts describing sets of objects, such as Fever
and Male, and roles that draw connections between objects, such as hasSymptom and hasParent. Formally,
concepts correspond to unary predicates from first-order logic, while roles are binary predicates. In DLs,
complex concepts are usually built from two disjoint sets of concept names and role names using concept
constructors. The specific DL used, and hence its expressivity, is determined by the choice of constructors
allowed.

The ontology itself expresses the domain knowledge through a finite set of axioms that restrict the way
in which concepts may be interpreted, and state some explicit knowledge about the individuals populating
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the domain. For example, the general concept inclusion

∀hasParent.∃hasBloodType.TypeO v ∃hasBloodType.TypeO,

expresses that people whose parents both have blood type O must also have the same blood type. Similarly,
the assertions

hasBloodType(henry, t) and TypeA(t)

state that the individual Henry has a blood type that can be classified as type A. Along with this explicitly
represented knowledge, many implicit consequences can be derived from a given ontology. One of the main
goals in DLs is to devise and implement efficient reasoning methods that can extract this implicit knowledge
in an automated manner.

Since they attempt to model the real world, in biomedical ontologies it is common to find concepts such
as HighConcentration (GALEN5) and LowFrequency (SNOMEDCT) for which no precise definition can be
given. For instance, there is no precise point at which a concentration stops being normal to become high.
Fuzzy DLs have been introduced as knowledge representation formalisms capable of handling imprecise
concepts, as well as imprecise knowledge. To achieve this, they introduce more than two degrees of truth,
allowing for a more fine-grained analysis of interactions between such vague concepts. For example, given
the knowledge

∃hasDisease.Influenza v ∃hasSymptom.Fever u ∃hasSymptom.Headache

that influenza induces the symptoms fever and headache, it makes sense to say that a lower degree of fever
indicates a less severe case of influenza, which is modeled by using a lower degree of truth.

Fuzzy DLs are based on fuzzy set theory [2] and mathematical fuzzy logic [3]. Usually, the set of
truth degrees is the interval [0, 1] of real numbers, and thus a statement can be true to some intermediate
degree, e.g. 0.5, instead of only completely true (1) or completely false (0). The logical constructors such
as conjunction and implication are then generalized to this extended set of truth degrees. The oldest and
most popular fuzzy semantics, the so-called Zadeh semantics, is based on the minimum function to interpret
conjunction, the maximum function for disjunction, 1 − x for the negation ¬x, and the Kleene-Dienes-
implication max{1− x, y} for the implication x→ y. The latter is derived from the classical equivalence of
x→ y and ¬x∨ y. However, this choice of implication function has some unintuitive consequences [4]. This
is particularly unfortunate in the context of description logics since they make heavy use of implications in
the axioms (v) and some constructors.

An alternative approach with a deeper formal motivation uses arbitrary t-norms, which satisfy only
some basic properties, as interpretation functions for the conjunction [5]. The implication is then evaluated
using the residuum of such a t-norm. The minimum function is a t-norm, also called the Gödel t-norm,
but there are infinitely many others. Unfortunately, using t-norm based semantics for fuzzy DLs turned
out to be problematic, with very inexpressive DLs losing their tractability [6], and slightly more expressive
logics becoming undecidable [7–10]. Two possible ways to avoid this problem that have been identified are
to restrict the semantics either to the (relatively) harmless Gödel t-norm or to a finite set of truth degrees.

Automata-based methods have proven to be very useful tools for finding tight bounds for the complexity
of reasoning in DLs and other logics [11–13]. In a nutshell, automata provide an elegant and complexity-wise
efficient formalism for handling complex, potentially infinite, models. Very recently, the ideas developed for
the classical case have been adapted for proving tight complexity bounds for reasoning in DLs using the
Gödel t-norm [14, 15], or a finite structure [16] for their semantics. Perhaps surprisingly, reasoning in these
fuzzy logics does not require the use of fuzzy automata [17], but standard non-deterministic automata suffice.
However, the translation to these automata is necessarily more elaborate to be able to handle models with
infinitely many different truth degrees (as in [14]) and complex finitely-valued t-norms (see [16]).

In this paper, we present an overview of the automata-based methods recently developed for reasoning
in these fuzzy DLs. In Section 4.1, we describe how to find tree-shaped fuzzy models directly through the
runs of an automaton, an approach which was developed in [16, 18]. Section 4.2 illustrates a case where
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this model cannot be constructed directly, but instead an abstraction of such a model can be recognized by
an automaton; see [14]. Finally, Section 5 is concerned with a different approach, where the interpretations
of concepts can be characterized in terms of regular languages recognized by finite word automata [15].
Our goal is to provide a comprehensive perspective of the ideas employed and the results obtained. To
simplify the description and improve readability, we consider only relatively inexpressive fuzzy DLs which,
nonetheless, are expressive enough to motivate the different constructions. Due to our general definitions
of fuzzy ontologies and reasoning problems, we provide new (although not surprising) results for reasoning
w.r.t. ordered ABoxes in finitely-valued DLs (Theorems 16, 28, and 29). In Section 6, we describe how far
these approaches can be generalized to more expressive logics and other types of ontologies. The interested
reader can find all the proofs, in a more general context, in the original papers [14–16].

2. Gödel Fuzzy Description Logics

Following the approach from Mathematical Fuzzy Logic [5], fuzzy Description Logics (DLs) extend
classical DLs by allowing more than two truth (or membership) degrees. For the sake of clarity, here we
consider the most prominent approaches, in which the class of truth degrees is either the whole interval of real
numbers [0, 1], or a finite subset L ⊆ [0, 1] of this interval that includes the extreme values 0 and 1. However,
readers should be aware that other classes of truth degrees have also been considered in the literature; see
Section 6 for more details.

In order to handle more than two truth degrees, the interpretation of the logical connectives is extended
in a truth-functional manner. In general there exist infinitely many possible meaningful interpretations,
which have been extensively studied in the literature [3, 5, 19]. One of the best known semantics, due to its
simplicity and good behavior, is the so-called Gödel semantics, in which conjunction is interpreted by the
minimum of the truth degrees, and the interpretations of all other connectives are guaranteed to maintain
basic logical properties in relation to this function.

We now formally introduce the syntax and semantics of fuzzy DLs under the Gödel semantics. Since
the family of Description Logics has many members, we consider here only fuzzy extensions of the basic DL
ALC and its sublogic FL0 as prototypical examples. In Section 6 we discuss which of the presented results
can be extended to other (more expressive) DLs. The semantics of the logics depends on the class of truth
degrees available. Thus, for the rest of this paper we consider a fixed, but arbitrary, chain C of truth degrees,
which is either the interval [0, 1], or a finite subset L ⊆ [0, 1] including 0 and 1. In the general case, we
denote the resulting fuzzy DLs using the prefix C- (e.g. C-FL0), for the interval [0, 1] we adopt the notation
G- (for Gödel), and when a finite set L is considered, we denote it by L-.

2.1. Syntax and Semantics of C-NAL
As in all DLs, the syntax of the fuzzy description logic C-NAL is based on concepts and roles.6 These

are interpreted as (fuzzy) unary and binary relations, respectively. More formally, let NI, NR, and NC be
mutually disjoint sets of individual, role, and concept names, respectively. C-NAL concepts are built through
the rule

C ::= A | > | ¬C | C u C | ∃r.C | ∀r.C,

where A ∈ NC and r ∈ NR. We call concepts of the form ∃r.C or ∀r.C quantified concepts. The semantics of
this logic is given by means of interpretations, which are defined next.

Definition 1 (interpretation). An interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty domain,
and ·I is a function that maps every individual name a ∈ NI to an element aI ∈ ∆I , every concept name
A ∈ NC to a fuzzy set AI : ∆I → C, and every role name r ∈ NR to a fuzzy binary relation rI : ∆I×∆I → C.

6C-NAL is a fuzzy extension of the classical DL ALC. The difference in the name is chosen to emphasize that the residual
negation, as opposed to the involutive negation x 7→ 1−x, is used for its semantics, and that there is no disjunction constructor.
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Table 1: Syntax and Semantics of C-NAL

Constructor Syntax Semantics

top concept > 1

(residual) negation ¬C CI(x)⇒ 0

conjunction C uD min(CI(x), DI(x))

existential restriction ∃r.C supy∈∆I min(rI(x, y), CI(y))

value restriction ∀r.C infy∈∆I r
I(x, y)⇒ CI(y)

This function is extended to arbitrary concepts using the Gödel operators as shown in Table 1, where ⇒ is
the Gödel residuum defined for every p, q ∈ C as

p⇒ q :=

{
q if p > q

1 otherwise.

The residuum has the interesting property that for all x, y, z ∈ C we have min(x, y) ≤ z iff y ≤ x ⇒ z,
which is shared by all continuous t-norms and their residua [19]. The residual negation x ⇒ 0 is always
crisp, i.e. evaluated to 0 or 1:

x⇒ 0 =

{
0 if x > 0

1 otherwise.

Notice that the semantics of the quantified concepts requires a computation over the whole (potentially
infinite) domain. To handle this computation effectively, in the literature on fuzzy DLs interpretations are
usually restricted to be witnessed [20], which means that existential and value restrictions must be interpreted
as maxima and minima, respectively. More formally, an interpretation I is witnessed if for every existential
restriction ∃r.C and every x ∈ ∆I there is a witness y ∈ ∆I such that (∃r.C)

I
(x) = min(rI(x, y), CI(y)),

and analogously for every value restriction ∀r.C and every x ∈ ∆I there is a witness y ∈ ∆I with
(∀r.C)

I
(x) = (rI(x, y)⇒ CI(y)). We also adopt this restriction here, and for the rest of this paper consider

only witnessed interpretations. Notice that considering witnessed interpretations is only a restriction in the
case that the class of truth degrees is infinite. Whenever only finitely many truth degrees are used, every
interpretation is necessarily witnessed [20]. For brevity, we will henceforth call witnessed interpretations
simply interpretations.

The main use of description logics is to serve as languages for knowledge representation. The knowledge
of a domain is represented using axioms that restrict the class of interpretations that are relevant for the
different reasoning tasks. These axioms may describe general relations between concepts, or properties of
some specific individuals.

Definition 2 (axioms). A crisp assertion is either a concept assertion of the form a :C or a role asser-
tion of the form (a, b):r for a concept C, r ∈ NR, and a, b ∈ NI. An (order) assertion is an expres-
sion of the form 〈α ./ β〉, where α is a crisp assertion, β is either a crisp assertion or a value from C,
and ./ ∈ {=,≥, >,≤, <}. The interpretation I satisfies the order assertion 〈α ./ β〉 iff αI ./ βI , where
(a :C)

I
:= CI(aI), ((a, b):r)

I
:= rI(aI , bI), and pI := p for all p ∈ C. An ordered ABox A is a finite set of

order assertions. An interpretation is a model of the ordered ABox A if it satisfies all order assertions in A.
A general concept inclusion (GCI) is an expression of the form 〈C v D ≥ p〉, where C and D are concepts

and p ∈ C. The interpretation I satisfies this GCI if for all x ∈ ∆I it holds that CI(x) ⇒ DI(x) ≥ p. A
TBox is a finite set of GCIs. An ontology is a pair O = (A, T ), where A is an ordered ABox and T is a
TBox. An interpretation is a model of a TBox T if it satisfies all GCIs in T , and it is a model of an ontology
O = (A, T ) if it is a model of both A and T .

Notice that the condition for the interpretation I to satisfy the GCI 〈C v D ≥ p〉 is equivalent to
requiring, for every x ∈ ∆I that either CI(x) ≤ DI(x) or DI(x) ≥ p. In particular, if p = 1, then this
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restriction simplifies to requiring that CI(x) ≤ DI(x). For brevity, we will usually write GCIs of the form
〈C v D ≥ 1〉 as 〈C v D〉.

In the literature, often only assertions of the form 〈α ./ p〉 with p ∈ C are allowed (see e.g. [21]).7 We
consider a more expressive variant that can express order relations between crisp assertions. For example, we
can express that an individual a belongs to the concept C with a higher truth degree than the individual b
through the assertion 〈a : C > b : C〉 without having to specify any explicit bounds on the degrees of CI(aI)
or CI(bI). This more general kind of ABox will also be helpful for developing a simpler reasoning algorithm
for this logic, as shown in Section 4.

We use the expression sub(O) to denote the set of all subconcepts appearing in an ontology O, either as
part of a GCI or in a concept assertion. Clearly, since O is a finite set of axioms, sub(O) is always finite.
We further denote by VO the set of all truth degrees appearing in O, together with 0 and 1. This set is also
always finite and totally ordered. We often denote the elements of VO ⊆ C as 0 = p0 < p1 < · · · < pk = 1,
where |VO| = k + 1.

The most basic reasoning task in C-NAL and other (fuzzy) DLs is to decide consistency of a set of axioms;
that is, whether a given ontology has a (witnessed) model. However, several other decision problems and
inferences exist. Moreover, one might also be interested in computing the truth degree of an inference. All
these tasks are formalized next.

Definition 3 (reasoning). An ontology O is consistent if it has a model. Given p ∈ C, a concept C is
p-satisfiable w.r.t. O if there is a model I of O and an x ∈ ∆I with CI(x) ≥ p. The best satisfiability degree
of C w.r.t. O is the supremum over all p such that C is p-satisfiable w.r.t. O.

C is p-subsumed by a concept D w.r.t. O if all models of O satisfy the GCI 〈C v D ≥ p〉. The best
subsumption degree of C and D w.r.t. O is the supremum over all p such that C is p-subsumed by D w.r.t. O.

If consistency is decidable, then satisfiability and subsumption can be restricted without loss of generality
to ontologies containing an empty ABox: if O is inconsistent, then these two problems are trivial since O
has no model, and if O is consistent, then the ABox assertions cannot contradict the p-satisfiability of C,
and therefore C is p-satisfiable w.r.t. O = (A, T ) iff it is p-satisfiable w.r.t. (∅, T ). A similar argument can
be made for subsumption-related reasoning tasks. For details, see [24, Lemma 2.22], where this claim is
shown for ordinary ABoxes; however, the proof can easily be adapted to ordered ABoxes.

2.2. C-FL0 and Greatest Fixed-Point Semantics
The second class of logics we consider in this paper is denoted by C-FL0 and obtained from C-NAL

by allowing only top, conjunctions, and value restrictions as concept constructors. More precisely, C-FL0

concepts are built using the rule
C ::= A | > | C u C | ∀r.C.

The notions of axioms, ontologies, and their semantics are defined analogously to C-NAL over this restricted
class of concepts. Since this logic is incapable of expressing negations, consistency can be decided by a non-
deterministic algorithm in a straightforward manner: simply guess an ordering of all the assertions appearing
in the ABox, and verify that it complies with the restrictions in the TBox. Thus, when dealing with C-FL0,
we focus on deciding subsumption and computing the best subsumption degree w.r.t. a TBox. Adapting
from [11], we further restrict the TBox to contain only a special class of GCIs called primitive concept
definitions and consider greatest fixed-point semantics, which leads to a lower complexity for the reasoning
problems.

Definition 4 (cyclic TBox). A (primitive concept) definition is a GCI of the form 〈A v C ≥ p〉, where
A ∈ NC, C is a concept, and p ∈ C. A cyclic TBox is a finite set of definitions. Given a cyclic TBox T , a
concept name is defined if it appears on the left-hand side of some definition in T , and primitive otherwise.

7Notable exception are the fuzzyDL reasoner, which allows to state arithmetic constraints over individuals [22], and the
formalism of [23], which allows to use rather expressive comparison expressions as (crisp) concepts.
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Note that, as usual in the DL literature [1], cyclic TBoxes do not necessarily contain a cycle in the
concept definitions; however, cycles are allowed. It is easy to see that every cyclic TBox can be equivalently
rewritten into one where all the definitions are of the form 〈A v ∀w.B ≥ p〉, where A,B ∈ NC, w ∈ N∗R,
and p ∈ C,8 and there are no two definitions 〈A v ∀w.B ≥ p〉, 〈A v ∀w.B ≥ p′〉 with p 6= p′ [15]. We say
that such a TBox is in normal form. Concept definitions can be seen as a restriction of the interpretation
of the defined concepts, depending on the interpretation of the primitive concepts. We use this intuition
and consider greatest fixed-point semantics. The following construction is based on the classical notions
from [11].

Let now ∆ be a fixed domain. A primitive interpretation is a pair J = (∆, ·J ) as in Definition 1,
except that the interpretation function ·J is only defined on NR and the set NTP of all primitive concept
names w.r.t. T . Given such a primitive interpretation J , we use functions f : NTD → C∆ to describe possible
interpretations for the set of defined concept names NTD . Given a primitive interpretation J and a function
f : NTD → C∆, the induced interpretation IJ,f has the same domain as J and extends the interpretation
function of J to the defined concepts names A ∈ NTD by taking AIJ,f := f(A). The interpretation of the
remaining concept names, i.e., those that do not occur in T , is fixed to map all elements of the domain to 0.

Let LT := (C∆)N
T
D denote the set of all functions f of the form described above. We can describe the effect

that the axioms in T and the primitive interpretation J have on LT through the operator T TJ : LT → LT ,
which is defined as follows for all f ∈ LT , A ∈ NTD , and x ∈ ∆:

T (f)(A)(x) := inf
〈AvC≥p〉∈T

(p⇒ CIJ,f (x)).

This operator computes new values of the defined concept names according to the old interpretation IJ,f
and their definitions in T .

We are interested in using the greatest fixed-point of T TJ , for some primitive interpretation J , to define
a new semantics for cyclic TBoxes T in C-FL0. Obviously, this can only be achieved if such a fixed-point
exists. As for the classical case, it can be shown that the operator T TJ is downward ω-continuous and hence,
using a basic result from Tarski [25], T TJ has a greatest fixed-point which can be computed by an iterative
application of T TJ to the function that maps all defined concept names to >J (see [11, 15] for details).

In the following, we denote by gfpT (J ) the interpretation IJ,f for f := gfp(T TJ ). Note that I := gfpT (J )
is actually a model of T since for every 〈A v C ≥ p〉 ∈ T and every x ∈ ∆ we have

AI(x) = f(A)(x) = T TJ (f)(A)(x) = inf
〈AvC′≥p′〉∈T

(p′ ⇒ C ′I(x)) ≤ p⇒ CI(x)

since f is a fixed-point of T TJ , and thus min(p,AI(x)) ≤ CI(x), which is equivalent to p ≤ AI(x)⇒ CI(x).
We can now define the reasoning problem in C-FL0 that we want to solve.

Definition 5 (gfp-subsumption). An interpretation I is a gfp-model of a TBox T if there is a primitive
interpretation J such that I = gfpT (J ). Given A,B ∈ NC and p ∈ C, A is gfp-subsumed by B to degree p
w.r.t. T if every gfp-model I of T satisfies the GCI 〈A v B ≥ p〉. The best gfp-subsumption degree of A
and B w.r.t. T is the supremum over all p such that A is gfp-subsumed by B to degree p w.r.t. T .

The normalization of cyclic TBoxes can be made such that equivalence w.r.t. gfp-semantics is preserved.
Therefore the gfp-models of the cyclic TBox T are the same as those of some cyclic TBox T ′ in normal form
whose size is linear in the size of T . To solve the problem of deciding gfp-subsumptions, it thus suffices to
consider TBoxes in normal form.

Recall that the class of truth degrees C may be a finite subset L ⊆ [0, 1] containing the extreme elements
0 and 1, or the whole interval of real numbers [0, 1]. Whenever it is important to distinguish the shape of C
used for the semantics of the logic, we will denote it explicitly in the name of the logic and write G-NAL if
C = [0, 1], and L-NAL if C is the finite subset L.

We demonstrate later how automata can be used to solve reasoning tasks in the different variants of
C-NAL. In the next section, we provide a basic introduction to the automata models that we use and their
associated decision problems.

8For w = r1 . . . rn ∈ N∗
R, we use ∀w.B to abbreviate ∀r1. . . . ∀rn.B (∀ε.B is simply B).
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3. Basic Automata Theory

We now describe the automata models that will be the base for our reasoning techniques. In general,
one can think of finite-state automata as machines that recognize languages defined over different kinds of
structures. For the scope of this paper, we focus on two automata models that work on finite words and
infinite trees, respectively.

3.1. Automata on Finite Words
One of the best known classes of automata is that of finite (word) automata [26]. Intuitively, these are

non-deterministic machines that read an input word only once, one symbol at a time, and accept or reject
it depending on the state they reach. For the scope of this paper, we consider a variant of finite automata
that can read several symbols simultaneously.

Definition 6 (WA). An automaton with word transitions (WA) is a tuple A = (Σ, Q, q0,∆, qf ), where

• Σ is a finite alphabet of input symbols,

• Q is a finite set of states

• q0 ∈ Q is the initial state,

• ∆ ⊆ Q× Σ∗ ×Q is the finite transition relation, and

• qf ∈ Q is the final state.

A finite path in A is a sequence π = q0w1q1w2 . . . wnqn, where qi ∈ Q and wi ∈ Σ∗ for all i ∈ {1, . . . , n},
and qn = qf . Its label is the finite word `(π) := w1w2 . . . wn. The path π is accepting if (qi−1, wi, qi) ∈ ∆ for
all i, 1 ≤ i ≤ n. The set of all accepting finite paths (or runs) with label w in A is denoted by paths(A, w).
The language accepted by A is defined as L(A) := {w ∈ Σ∗ | paths(A, w) 6= ∅}.

The idea is that, starting from a fixed initial state q0, the automaton reads substrings of the input
word w and non-deterministically chooses a new state according to its transition relation ∆. If after reading
the whole word the automaton is in the final state, then w is accepted by A. Clearly, every WA can be
translated into a finite automaton that accepts the same language, by simply adding more states for reading
each substring one symbol at a time. However, WA provide a clearer a more compact representation when
specific words are read at a time, as is the case in this paper.

Automata with word transitions were used in [11] to decide subsumption between two (classical) FL0

concepts w.r.t. a cyclic TBox using the greatest fixed-point semantics. This is achieved by reducing the
subsumption problem to a polynomial number of language inclusion tests between automata with word
transitions. Thus, the complexity of deciding subsumption in classical FL0 is bounded from above by the
complexity of deciding inclusion between the languages accepted by two WA, which is in PSpace.

Proposition 7 ([27]). Let A, A′ be two WA. Deciding whether L(A) ⊆ L(A′) requires polynomial space in
the sizes of A and A′.

To reason about the more expressive constructors of NAL, we need a more complex automata model.
We extend WA in two ways: first, the input structure is allowed to branch in the shape of a tree, and second,
the input, and hence also the runs of the automaton, are infinite.

3.2. Automata on Infinite Trees
Tree automata extend finite automata by allowing the input structure to be tree-shaped. In particular,

this means that the language accepted by such an automaton is a set of trees. We further extend this
notion to consider infinite inputs. However, we also remove the alphabet symbols for the input trees, which
means that there is only one input structure—the unlabeled tree {1, . . . , k}∗ for a fixed arity k. In this
representation, ε is considered the root node of the tree, and ui with u ∈ {1, . . . , k}∗ and i ∈ {1, . . . , k} is
the i-th successor of u.
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Definition 8 (LA). A looping automaton on k-ary infinite trees, or looping automaton (LA) for short, is a
tuple A = (Q, I,∆) consisting of

• a non-empty set Q of states,

• a subset I ⊆ Q of initial states, and

• a transition relation ∆ ⊆ Qk+1.

A run of this automaton is a mapping ρ : {1, . . . , k}∗ → Q that satisfies the following two conditions:

1. ρ(ε) ∈ I, and

2. for all u ∈ {1, . . . , k}∗, it holds that
(
ρ(u), ρ(u1), . . . , ρ(uk)

)
∈ ∆.

We say that the LA A is non-empty iff it has a run.

Intuitively, a looping automaton tries to label an k-ary infinite tree in such a way that the root is labeled
with an initial state (from I), and the labels of the successors of each node satisfy the transition relation ∆.
If such a labeling is possible, then the automaton accepts the (unique) unlabeled input tree, and hence is
non-empty; otherwise, it is empty.

Clearly, as the input tree is infinite, one cannot expect to produce the run (i.e., the labeling) explicitly
in finite time. However, it is possible to decide whether A is non-empty using time bounded polynomially
in the number of states of A. The idea is simply to identify all bad states—those that cannot appear in any
run—and then verify that there is at least one initial state that is not bad. For more details, see [12].

Proposition 9 ([12]). Emptiness of an LA A can be decided in time polynomial in the size of A.

In the following section, we show how looping automata can be used to reason with C-NAL ontologies.
Afterwards, we consider the easier case of greatest fixed-point semantics in C-FL0, which can be solved using
automata with word transitions.

4. Reasoning with C-NAL Ontologies

We now consider the problem of reasoning with C-NAL. As we will see, handling the infinite case will
require a more elaborate technique than the finite case, and for that reason we study these cases separately.
We proceed in this section as follows. We first tackle the problem of deciding consistency of an ontology.
To achieve this, we introduce a simpler version of the problem that we call local consistency, in which the
ABox is restricted to consider only one individual (see Definition 10). In Section 4.1 we use an LA to decide
local consistency for L-NAL ontologies; i.e., when the set of truth degrees is finite. Section 4.2 shows that
the same idea cannot be used directly for G-NAL, and provides a new construction capable of handling the
infinite set of truth degrees. Finally, in Section 4.3 we show how local consistency can be used to solve all
the other reasoning tasks introduced in Section 2.

Definition 10 (local ABox). A local ABox is an ordered ABox that contains no role assertions, and where
all concept assertions refer to the same individual name. A local ontology is an ontology (A, T ), where A is
a local ABox. Local consistency refers to the problem of deciding consistency of a local ontology.

For example, the ABox {〈henry :Tall > henry :Fat〉} is local, while {〈henry :Tall > tom :Tall〉} and
{〈(henry, henry): likes〉} are not. As we see next, looping automata can be used for deciding local consistency
in C-NAL by characterizing tree-shaped models of the local ontology as the runs of such an LA.
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4.1. Local Consistency in L-NAL
Our algorithm for deciding local consistency is based on the fact that a local L-NAL ontology O has

a model iff it has a well-structured tree-shaped model, called a Hintikka tree. Intuitively, Hintikka trees
are abstract representations of models that explicitly express the membership value of all the concepts that
are relevant for the input ontology; i.e., those in sub(O). We construct automata that have exactly these
Hintikka trees as their runs, and the initial states verify the existence of an element that satisfies the local
ABox. Reasoning is hence reduced to testing emptiness of these looping automata.

Hintikka trees are infinite labeled trees, where each node is labeled with a so-called Hintikka function.
These functions are fuzzy sets over the domain sub(O)∪{ρ}, where ρ is an arbitrary new element that will be
used to express the degree with which the role relation to the parent node holds. Hintikka functions restrict
the values for complex concepts built using the propositional constructors >, u, and ¬, according to the
fuzzy semantics. The interpretation of existential and value restrictions is considered later, in Definition 12.

Definition 11 (Hintikka function). A Hintikka function for O is a function H : sub(O) ∪ {ρ} → L that
satisfies the following conditions for every C ∈ sub(O):

1. C = > implies H(C) = 1,

2. if C = D1 uD2, then H(C) = min(H(D1), H(D2)), and

3. if C = ¬D, then H(C) = H(D)⇒ 0.

The Hintikka function H is compatible with the TBox T if for every GCI 〈C v D ≥ p〉 ∈ T it holds that
H(C) ⇒ H(D) ≥ p. It is compatible with A if for every order assertion 〈a :C ./ a :D〉 or 〈a :C ./ p〉 in A,
we have H(C) ./ H(D) or H(C) ./ p, respectively.

The arity k of the Hintikka trees is determined by the number of quantified concepts of the form ∃r.C or
∀r.C that appear in sub(O). Intuitively, each successor will act as the witness for one of these restrictions.
We define K := {1, . . . , k} to be the index set of all successors. Since we need to know which successor in
the tree is the witness of which restriction, we fix an arbitrary bijection

ϕ : {D | D ∈ sub(O) is of the form ∃r.C or ∀r.C} → K.

For a given role name r ∈ NR, we denote by Φr the set of all indices ϕ(D) where D ∈ sub(O) is a quantified
concept of the form ∃r.C or ∀r.C; i.e., all the indices that correspond to quantified concepts constructed
using the role r.

The following condition ensures that the functions labeling the different successors of a node verify the
semantics of the existential and value restrictions that appear in the ontology.

Definition 12 (Hintikka condition). The tuple of k + 1 Hintikka functions (H0, H1, . . . ,Hk) satisfies the
Hintikka condition if:

• for every existential restriction ∃r.C ∈ sub(O), the following hold:

– H0(∃r.C) = min(Hi(ρ), Hi(C)) for i = ϕ(∃r.C), and

– H0(∃r.C) ≥ min(Hj(ρ), Hj(C)) for all j ∈ Φr;

• for every value restriction ∀r.C ∈ sub(O), the following hold:

– H0(∀r.C) = Hi(ρ)⇒ Hi(C) for i = ϕ(∀r.C), and

– H0(∀r.C) ≤ Hj(ρ)⇒ Hj(C) for all j ∈ Φr.

We briefly explain the intuition behind this definition. For an existential restriction ∃r.C, the first
condition makes sure that its interpretation is witnessed by the designated successor ϕ(∃r.C). The second
condition additionally ensures that the degree of this existential restriction is indeed the supremum of the
degrees of all r-successors. The conditions for value restrictions are dual, ensuring the appropriate witness,
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ε

1 2

A 7→ 0.8

∃r.B 7→ 0.6

A u ∃r.B 7→ 0.6

∀r.¬A 7→ 0.8
ρ 7→ 1

A 7→ 0

¬A 7→ 0.8

B 7→ 0.6

∃r.B 7→ 0.2

ρ 7→ 1

A 7→ 0

¬A 7→ 0.8

B 7→ 0

Figure 1: A Hintikka tree for the ontology from Example 13

and that this witness provides the infimum of the degrees among the r-successors. Notice that if Hi(ρ) = 0,
then the inequalities in these conditions are trivially satisfied.

A Hintikka tree for the local ontology O = (A, T ) is an infinite k-ary tree T labeled with Hintikka
functions for O that are compatible with T such that T(ε) is compatible with A and for every node
u ∈ K∗, the tuple (T(u),T(u1), . . . ,T(uk)) satisfies the Hintikka condition. Compatibility ensures that all
the terminological axioms are satisfied at any node of the Hintikka tree, while the Hintikka condition makes
sure that the tree is in fact a (witnessed) model of the TBox.

Example 13. Consider the chain L = {0, 0.2, 0.4, 0.6, 0.8, 1} and the ontology O = (A, T ), where

A = {〈a :(A u ∃r.B) > 0.4〉} and T = {〈A v ∀r.¬A〉, 〈B v ∃r.B ≥ 0.2〉}.

The set sub(O) consists of the elements A, ¬A, B, ∃r.B, Au∃r.B, and ∀r.¬A. The arity of the Hintikka trees
is 2 since the only quantified concepts are ∃r.B and ∀r.¬A. We fix the mapping ϕ by setting ϕ(∃r.B) := 1
and ϕ(∀r.¬A) := 2.

Figure 1 depicts the initial part of a Hintikka tree T for O, where the values that are not shown
are implicitly 0. The Hintikka function T(ε) at the root must be compatible with A, i.e. we must have
T(ε)(A u ∃r.B) > 0.4; here, this value was guessed to be 0.6. Definition 11 now forces us to assign to A
and ∃r.B two values whose minimum is 0.6, for example 0.8 and 0.6, respectively. The GCI 〈A v ∀r.¬A〉
requires the degree of T(ε)(∀r.¬A) to be ≥ 0.8. The other GCI does not constrain the initial Hintikka
function any further.

The Hintikka function T(1) labeling the first successor must satisfy the first condition of Definition 12,
which enforces that min(T(1)(ρ),T(1)(B)) must be 0.6. If we guess T(1)(B) = 0.6, then to achieve com-
patibility with T , we need to set T(1)(∃r.B) to at least 0.2. Finally, since T(ε)(∀r.¬A) = 0.8, we must have
T(1)(¬A) = 0.8 by the Hintikka condition, and thus T(1)(A) = 0. The second successor can be constructed
to witness the fact that T(ε)(∀r.¬A) = 0.8 following similar arguments.

This example demonstrates that, using the notion of Hintikka trees, one can inductively build a model
of the input ontology O, if one exists. The proof of the following theorem uses arguments similar to those
in [13]. The main difference is the presence of successors witnessing the value restrictions, and the condition
at the root of the tree ensuring local consistency. The full proof follows the same steps as [16], where only
the root condition needs to be extended to handle order assertions.

Lemma 14. In L-NAL, a local ontology O = (A, T ) is consistent iff there is a Hintikka tree for O.

By building looping automata whose runs correspond exactly to those Hintikka trees, we reduce consis-
tency reasoning in L-NAL to the emptiness problem of such automata.
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Definition 15 (Hintikka automaton). Let O = (A, T ) be a local ontology. The Hintikka automaton for O
is the LA AO = (Q, I,∆), where

• Q is the set of all Hintikka functions compatible with T ,

• I is the set of all Hintikka functions from Q that are compatible with the local ABox A, and

• ∆ is the set of all tuples from Qk+1 that satisfy the Hintikka condition.

The runs of AO are exactly those Hintikka trees T for O where T(ε) is compatible with all the assertions
in A. Thus, O is locally consistent iff AO is non-empty.

Recall that k is bounded by the number |sub(O)| of subconcepts appearing in O, which is polynomial
in the size of O. Since there are at most |L||sub(O)|+1 Hintikka functions, the size of ∆ is bounded by
|L|(|sub(O)|+1)2 , and hence the size of the automaton AO is exponential in the input. By Proposition 9,
local consistency in L-NAL can be decided in exponential time. Recall that deciding concept satisfiability
w.r.t. general TBoxes is already ExpTime-hard for classical ALC [28], which is equivalent to NAL with
two-valued semantics. We can transform any classical ALC TBox T into a L-NAL TBox T ′, for any finite
set L, in which all GCIs are crisp; that is, of the form 〈C v D ≥ 1〉, such that the concept E is satisfiable
w.r.t. T iff the ontololy ({〈a : E ≥ 1〉}, T ′) is consistent. We thus obtain a tight complexity bound for local
consistency, as formalized in the following theorem.

Theorem 16. Deciding local consistency in L-NAL w.r.t. general TBoxes is ExpTime-complete.

In the next section we show that the same complexity bounds hold if we allow the whole interval [0, 1] in
the semantics. However, we need to generalize the notion of Hintikka trees in such a way that they represent
classes of models, rather than just single models of the ontology.

4.2. Local Consistency in G-NAL
It is a simple observation that any set of truth values that contains 0 and 1 is closed w.r.t. the Gödel

connectives. Owing to this observation, it is common to restrict reasoning in fuzzy DLs with Gödel semantics
to the finitely many truth values occurring in the ontology [29, 30]. This restriction is also sometimes justified
by the “limited precision of computers” [31].

However, the restriction to finitely many truth degrees affects the expressivity of the language, even
for the very simple description logic G-AL, the sublogic of G-NAL which allows ∃, ∀, u, and >, but no
negations ¬. It is possible to show an even stronger result: reasoning in this logic cannot, without loss of
generality, be restricted to finitely-valued models, i.e., models that only use values from an arbitrary finite
subset of [0, 1]. Notice that for the related Zadeh semantics, which differ from the Gödel semantics only
in the operators used to interpret implication and negation, reasoning can be restricted to finitely-valued
models without loss of generality [4, 21].

Example 17. Let T0 be the G-AL TBox

T0 = {〈∀r.A v A〉, 〈∃r.> v A〉}.

We show that > is not 1-subsumed by A w.r.t. the ontology O = (∅, T0), but every finitely-valued model of
this ontology also satisfies 〈> v A〉. For the former, we construct a model I0 of T0 as follows (see Figure 2).
Let ∆I0 be the set of all positive natural numbers. We define AI0(n) := rI0(n, n+ 1) := 1

n+1 for all n ∈ N
and rI0(n,m) := 0 if m 6= n + 1. It is straightforward to check that this is a witnessed model of T0 that
violates 〈> v A〉. Thus, > is not 1-subsumed by A w.r.t. O. In fact, the best subsumption degree of >
and A w.r.t. O is 0.

Assume now that there is a witnessed model I of T0 using only finitely many truth values that violates
〈> v A〉. Since I uses only finitely many truth values, there exists an element y ∈ ∆I for which AI(y) is
minimal, that is, AI(y) ≤ AI(x) holds for all x ∈ ∆I . Furthermore, since I violates 〈> v A〉 there must be
some x0 ∈ ∆I satisfying AI(x0) < 1. In particular, this yields AI(y) < 1.

11



1 2 3
r : 1

2 r : 1
3

A : 1
2 A : 1

3 A : 1
4

Figure 2: The model I0 from Example 17

As I is witnessed, there must exist a z ∈ ∆I such that (∀r.A)
I
(y) = rI(y, z)⇒ AI(z). The first axiom

of T0 entails rI(y, z)⇒ AI(z) ≤ AI(y) < 1, and in particular

rI(y, z) > AI(z). (1)

The second axiom from T0 yields

rI(y, z) = min(rI(y, z), 1) ≤ (∃r.>)
I
(y) ≤ AI(y). (2)

From (1) and (2) we obtain AI(y) > AI(z), contradicting the minimality of AI(y). We have thus shown
that a witnessed model of T0 with only finitely many truth values cannot violate 〈> v A〉. In particular, T0

entails 〈> v A〉 when reasoning is restricted to a finite set of truth degrees.

Recall that a (fuzzy) DL has the finite model property if every consistent ontology has a model with finite
domain. A simple consequence of the last example is that G-AL does not have the finite model property.
Indeed, I0 is a model of the ontology ({〈a :A = 0.5〉}, T0) if we interpret the individual name a as aI0 := 1.
This shows that this ontology is consistent. However, any finite model I of T0 uses only finitely many truth
degrees. As shown in the example, such an interpretation must satisfy AI(x) = 1 for all x ∈ ∆I , and hence
violate the assertion 〈a :A = 0.5〉. We thus obtain the following result.

Theorem 18. G-AL does not have the finite model property nor the finitely-valued model property.

The lack of the finitely-valued model property implies that some of the standard techniques used for
reasoning in fuzzy DLs cannot be directly applied to any logic that contains G-AL. For example, termination
of the tableaux-based approach [32, 33] relies on the existence of finitely many types that can describe domain
elements by specifying the membership degrees for all relevant concepts, while any sound and complete
reduction to crisp reasoning [4, 29] implies the finitely-valued model property. We also cannot directly use
the construction from Section 4.1, as it would result in an automaton with infinitely many states.

Since all known undecidability proofs for fuzzy DLs [7–10, 34] are based on the fact that one can enforce
models to have infinitely many values, one could thus be inclined to believe that consistency in G-NAL is also
undecidable. We will show that this is not the case, and in fact consistency, subsumption, and satisfiability
are ExpTime-complete. For now we focus on local consistency.

Our approach for handling infinitely many truth degrees is based on the observation that the axioms
and the semantics of the constructors only introduce restrictions on the order of the values that models can
assign to concepts, not on the values themselves. For example, an interpretation I satisfies an assertion
〈a :(AuB) ≥ p〉 iff AI(aI) ≥ p and BI(aI) ≥ p. Thus, rather than building a model directly, we first create
an abstract representation of this model by encoding, for each domain element, only the order between
concepts. A similar approach has been previously used for fuzzy extensions of other logics based on Gödel
semantics [35, 36]. Here we show how the abstraction to ordering affects the construction of Hintikka trees
and Hintikka automata recognizing them.

Example 19. Consider again the TBox T0 from Example 17. When trying to construct a model violating
〈> v A〉, we start with a domain element satisfying the restriction that the value of A is strictly smaller
than 1 (see Figure 3). The second axiom implies that the degree of any outgoing r-connection is bounded by
the value of A. Moreover, the first axiom states that the witness of ∀r.A must satisfy A to a degree strictly
smaller than the value of the r-connection, and thus strictly smaller than the original value of A.
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1 2 3

0 < A < 1

0 < A < r ≤ A↑ < 1

0 < A < r ≤ A↑ < 1

Figure 3: An abstract description of I1 from Example 17

This yields an abstract description of two domain elements in terms of order relations between values of
concepts at the current node and the parent node (denoted by a subscript ↑). Applying the same argument
to the new element yields another element with the same restrictions. In order to construct a model, it
is easy to see that the value of A at all considered elements has to be strictly greater than 0—once the
value of A is 0, there can be no successors with smaller values for A. Note that it suffices to consider order
relations between concepts of neighboring elements, which are directly connected by some role to a degree
greater than 0. In other words, the construction of this abstract model can be done locally.

As in this example, we use the subscript ↑ to refer to values of the parent node in the tree-like model
that we will construct. As in Section 4.1, we use ρ to represent the degree of the role connection from the
parent node.

Definition 20 (order structure U). We define the set sub↑(O) := {C↑ | C ∈ sub(O)} and the set
U := VO ∪ sub(O)∪ sub↑(O)∪ {ρ}. Let order(U) denote the set of all total preorders .∗ over U that have 0
and 1 as least and greatest element, respectively, and preserve the order of real numbers on VO = U ∩ [0, 1].
For any .∗ ∈ order(U) and ./ ∈ {=,≥, >,≤, <}, we denote by ./∗ the corresponding relation induced by
the total preorder .∗, i.e. ≡∗, &∗, >∗, .∗, or <∗, which are defined as usual.

Given .∗ ∈ order(U), the following functions on U that mimic the operators of Gödel fuzzy logic over
[0, 1] are well-defined since .∗ is total:

min∗(x, y) :=

{
x if x .∗ y

y otherwise,

res∗(x, y) :=

{
1 if x .∗ y

y otherwise.

It is easy to see that the operators min∗ and res∗ agree with min and ⇒, respectively, on the set VO.
We use the subscript ∗ to distinguish different total preorders from order(U).

For convenience, we extend the notation of sub↑(O) to the elements of VO by setting q↑ := q for all
q ∈ VO. Using the total preorders from order(U), we can now describe the relationships between all the
subconcepts from O and the truth degrees from VO at given domain elements. One can think of such a
preorder as the type of a domain element, from which a tree-shaped interpretation can be built.

As for the finitely-valued case, let k be the number of quantified concepts in sub(O) and ϕ an arbitrary
but fixed bijection between the set of all quantified concepts in sub(O) and K := {1, . . . , k}. This bijection
specifies which quantified concept is witnessed by which successor in the tree. The following definition lifts
the notion of Hintikka functions to the new setting (cf. Definition 11).

Definition 21 (Hintikka ordering). A Hintikka ordering is a total preorder .H ∈ order(U) that satisfies
the following conditions for every C ∈ sub(O):

• C = > implies C ≡H 1,

• if C = D1 uD2, then C ≡H minH(D1, D2), and

• if C = ¬D, then C ≡H resH(D, 0).
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Figure 4: A Hintikka tree for Example 17

This preorder is compatible with the TBox T if for every GCI 〈C v D ≥ p〉 ∈ T we have resH(C,D) &H p.
It is compatible with A if for every order assertion 〈a :C ./ p〉 or 〈a :C ./ a :D〉 in A, we have C ./H p or
C ./H D, respectively.

The conditions imposed on Hintikka orderings ensure that they preserve the semantics of all the propo-
sitional constructors. For every quantified concept, we still need to ensure the existence of a witness. This
is achieved through ϕ and the following adapted Hintikka condition (cf. Definition 12).

Definition 22 (Ordered Hintikka condition). The (ordered) Hintikka condition consists of the following
requirements for a (k+1)-tuple (.0,.1, . . . ,.k) of Hintikka orderings:

• for every 1 ≤ i ≤ k and all α, β ∈ VO ∪ sub(O), we have α .0 β iff α↑ .i β↑;

• for every ∃r.C ∈ sub(O), we have

– (∃r.C)↑ ≡i mini(ρ, C) for i = ϕ(∃r.C), and
– (∃r.C)↑ &i mini(ρ, C) for all i ∈ Φr; and

• for every ∀r.C ∈ sub(O), we have

– (∀r.C)↑ ≡i resi(ρ, C) for i = ϕ(∀r.C), and
– (∀r.C)↑ .i resi(ρ, c) for all i ∈ Φr.

An (ordered) Hintikka tree for O is an infinite k-ary tree, where every node u is associated with a Hintikka
ordering .u compatible with T , such that:

• every tuple (.u,.u1, . . . ,.uk) satisfies the Hintikka condition, and

• .ε is compatible with A.

For instance, Figure 4 depicts a Hintikka tree for the TBox T0 from Example 17 and the local ABox
A = {〈a :A < 1〉}. Notice that every node is labeled with the same preorder and the tree is invariant
w.r.t. the choice of ϕ. As in the finitely-valued case, the existence of an (ordered) Hintikka tree for a local
ontology O implies the consistency of O. Conversely, every model can be transformed into a Hintikka tree.
The idea is to unravel the model into an infinite tree by creating copies of domain elements to remove any
cycles, and then abstract from the specific values by just considering the ordering between the elements
of U . Overall, we obtain the following characterization in analogy to that of Lemma 14.

Lemma 23. In G-NAL, a local ontology O is consistent iff there is an ordered Hintikka tree for O.

We can now proceed to define a new kind of Hintikka automaton whose runs are exactly the ordered
Hintikka trees for O (cf. Definition 15).
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Definition 24. The (ordered) Hintikka automaton for a local ontology O is the LA AO := (Q, I,∆), where

• Q is the set of all Hintikka orderings compatible with T ,

• I is the set of all Hintikka orderings from Q that are compatible with A, and

• ∆ contains all tuples from Qk+1 that satisfy the Hintikka condition.

Observe that the number of Hintikka orderings for O is bounded by 2|U|
2

and the cardinality of the
set U = VO ∪ sub(O) ∪ sub↑(O) ∪ {ρ} is linear in the size of O. Likewise, the arity k of the automaton
is bounded by |sub(O)|, which is linear in the size of O. Thus, the size of the Hintikka automaton AO
is exponential in the size of O. By Proposition 9, we again obtain an ExpTime-decision procedure for
consistency of ontologies with local ordered ABoxes in G-NAL. Reasoning in G-NAL with only assertions
of the form 〈α ≥ p〉 is equivalent to reasoning in classical ALC [10], which is already ExpTime-hard w.r.t.
general TBoxes [28]. Hence, our complexity bounds are tight.

Theorem 25. Deciding local consistency in G-NAL w.r.t. general TBoxes is ExpTime-complete.

In the following section, we remove the restriction to local ordered ABoxes and show that consistency,
as well as the other reasoning problems considered in this paper, remains ExpTime-complete.

4.3. Consistency and Other Reasoning Problems
We have so far shown how to decide consistency of an ontology under the assumption that the ABox

is local; i.e., it refers to the knowledge of one individual name only. In general, ontologies contain concept
assertions about several different individuals, and these individuals are also related via role assertions. To
handle this general case, we adapt a technique from classical DLs known as pre-completion [37].

Recall that every consistent local ontology has a tree-shaped model, with the root node interpreting
the (unique) individual name appearing in the ABox. Generalizing this idea, it is easy to see that every
consistent ontology has a forest-shaped model; that is, a model composed of a finite set of trees, with their
roots interpreting the individuals of the ABox, whose roots can be arbitrarily interconnected through roles.
The idea of pre-completion is to extend the input ABox to a full specification of the degrees to which each
individual belongs to each of the relevant concepts of the ontology. Clearly, while this can be done explicitly
for the finitely-valued case, in G-NAL it is necessary to abstract from the specific membership degrees and
specify only a preorder among them, as done for local consistency. This is achieved using order assertions.
In the following, we provide a general definition of pre-completion that can be used to reduce consistency to
local consistency in both, the finite and the infinitely-valued cases. For this definition, we require the notion
of a coherent ordered ABox. An ordered ABox A is coherent if it is possible to map every crisp assertion
appearing in A to an element in C, such that all the order assertions in A are satisfied.

Definition 26 (pre-completion). Let O = (A, T ) be an ontology, and let Ind(A) denote the set of all
individual names that appear in the ABox A, Role(O) the set of all role names appearing in O, and
As(O) := {a :C, (a, b):r | a, b ∈ Ind(A), C ∈ sub(O), r ∈ Role(O)} the set of all crisp assertions that may be
relevant for O. A pre-completion of A w.r.t. T is a coherent ordered ABox B such that:

1. A ⊆ B;

2. for every α ∈ As(O) and β ∈ As(O) ∪ VO we have either 〈α < β〉, 〈α = β〉, or 〈α > β〉 in B;

3. for every a ∈ Ind(A) and all C ∈ sub(O):

• if C = >, then 〈a :C = 1〉 ∈ B,
• if C = D1 u D2, then if 〈a :D1 < a :D2〉 ∈ B, then 〈a :C = a :D1〉 ∈ B; and 〈a :C = a :D2〉 ∈ B

otherwise,

• if C = ¬D, then if 〈a :D > 0〉 ∈ B, then 〈a :C = 0〉 ∈ B; otherwise, 〈a :C = 1〉 ∈ B;
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4. for every ∃r.C ∈ sub(O) and a, b ∈ Ind(A), {〈a :∃r.C ≥ (a, b):r〉, 〈a :∃r.C ≥ b :C〉} ∩ B 6= ∅;

5. for every ∀r.C ∈ sub(O) and a, b ∈ Ind(A), {〈a :∀r.C ≤ b :C〉, 〈(a, b):r ≤ b :C〉} ∩ B 6= ∅; and

6. for all a ∈ Ind(A) and every GCI 〈C v D ≥ p〉 ∈ T , {〈a :C ≤ a :D〉, 〈a :D ≥ p〉} ∩ B 6= ∅.
This definition generalizes the local conditions imposed by Hintikka functions and Hintikka orderings to

handle several individuals simultaneously. Notice that these conditions do not guarantee the existence of
witnesses for the quantified concepts, but only that they are not violated by the role assertions. From such
a pre-completion we can generate a set of local ontologies whose consistency tests will handle the witnessing
of quantified concepts.

Notice that the pre-completion B has polynomially many order assertions. It can be seen as a system
of linear inequalities between the “variables” in As(O). In the case of the Gödel t-norm, these inequalities
refer to the whole interval [0, 1], and hence their consistency is well-known to be decidable in polynomial
time [38, 39]. For finite chains, it requires to solve an integer linear program, which can be done in non-
deterministic polynomial time [40]. Given a pre-completion B and a ∈ Ind(A), we define the local ordered
ABox Ba as the restriction of B to only order restrictions on concept assertions over a; that is,

Ba := {〈a :C ./ p〉 ∈ B} ∪ {〈a :C ./ a :D〉 ∈ B}.

Lemma 27. An ontology O = (A, T ) is consistent iff there is a pre-completion B of A w.r.t. T such that,
for every a ∈ Ind(A), the local ontology Oa := (Ba, T ) is consistent.

Notice that every pre-completion must be a set of order assertions between elements of As(O)∪VO. There
are exponentially many such sets, each of which is of size polynomial in the size of O. To decide consistency
of O, we can enumerate all candidate ordered ABoxes B and check for each of them that (i) it satisfies
all the conditions from Definition 26 (in non-deterministic polynomial time, and hence also in deterministic
exponential time), and (ii) each of the local ontologies Oa is consistent (in exponential time; see Theorems 16
and 25). Overall, we obtain the following complexity result.

Theorem 28. Deciding consistency in C-NAL w.r.t. general TBoxes is ExpTime-complete.

We now turn our attention to the remaining reasoning problems introduced in Definition 3; namely,
deciding satisfiability and subsumption between concepts, as well as computing the best degrees to which
these entailments hold. Recall that, as described in Section 2, for these reasoning problems we can assume
w.l.o.g. that the ABox is empty.

Let O = (∅, T ) be an ontology. It is easy to see that p-subsumption and p-satisfiability w.r.t. O can
be reduced in polynomial time to consistency w.r.t. local ordered ABoxes. More precisely, for any two
concepts C,D and p ∈ [0, 1],

• C is p-satisfiable w.r.t. O iff ({〈a :C ≥ p〉}, T ) is consistent, and

• C is p-subsumed by D w.r.t. O iff ({〈a :D < p〉, 〈a :C > a :D〉}, T ) is inconsistent,

where a is an arbitrary individual name. We thus obtain the following result from Theorem 25.

Theorem 29. The problem of deciding satisfiability or subsumption in C-NAL w.r.t. general TBoxes is
ExpTime-complete.

Consider now the problems of computing the best satisfiability and subsumption degrees. In the case
that C is a finite set L ⊆ [0, 1], then these best entailment degrees can be found by verifying, for every p ∈ L,
whether p-satisfiability or p-subsumption holds, respectively. Overall, this requires |L| entailment tests, each
of which can be solved in exponential time. Thus, the best satisfiability and subsumption degrees w.r.t. an
L-NAL ontology can be computed in exponential time.

Obviously, the computation procedure sketched above cannot be performed in G-NAL, as it would
require uncountably many calls to the decision procedure. To obtain a terminating procedure, we exploit
once again the idea of using preorders from order(U) and Hintikka trees to show that the local consistency
checks required for deciding p-satisfiability and p-subsumption only depend on the position of p relative to
the values occurring in T , but not on the precise value of p.
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Lemma 30. Let p, p′ be elements of the open interval (pi, pi+1) for two adjacent values pi, pi+1 ∈ VO,
and C, D be concepts. Then ({〈a :C ≥ p〉}, T ) is consistent iff ({〈a :C ≥ p′〉}, T ) is consistent. Likewise,
({〈a :D < p〉, 〈a :C > a :D〉}, T ) is consistent iff ({〈a :D < p′〉, 〈a :C > a :D〉}, T ) is consistent.

This lemma states that subsumption between C and D or satisfiability of C either holds for all values in
an interval (pi, pi+1), or for none of them. Thus, there is no need to test them all for subsumption; choosing
a representative of each interval, along with the elements of VO, suffices. This yields the following result.

Corollary 31. For any two concepts C and D, the best subsumption degree of C and D w.r.t. O and the
best satisfiability degree of C w.r.t. O are always in VO.

Since the best subsumption degree p of C and D is always a subsumption degree, i.e., C is p-subsumed
by D, it suffices to check subsumption w.r.t. the values from VO in order to determine the best subsump-
tion degree. Thus, we only have to execute linearly many (in-)consistency checks to compute the best
subsumption degree.

However, it is possible that C is p-satisfiable for every p ∈ (pi, pi+1), but not pi+1-satisfiable. Therefore,
we check satisfiability for all values pi+pi+1

2 . The best satisfiability degree is then the largest pi+1 for
which this check succeeds (or 0 if it never succeeds). Again, this means that we have to execute linearly
many consistency checks to compute the best satisfiability degree. By combining these reductions with
Theorems 16 and 25, we obtain the following results.

Corollary 32. In C-NAL, best subsumption and satisfiability degrees w.r.t. general TBoxes can be computed
in exponential time.

This finishes our study of reasoning problems for C-NAL. In particular, we have shown that also
subsumption in C-FL0 w.r.t. general TBoxes is ExpTime-complete since it is ExpTime-hard already for
classical FL0 [41]. In the next section, we focus on the restricted case of subsumption in C-FL0 w.r.t. cyclic
TBoxes under greatest fixed-point semantics, which is PSpace-complete for classical FL0 [11].

5. GFP-Subsumption w.r.t. Cyclic C-FL0 TBoxes

Our goal is to describe the restrictions imposed by a cyclic TBox T in normal form using automata. To
simplify the construction, it is helpful to consider a generalization of WA where the transitions are associated
with a weight from C.

Definition 33 (WWA). A weighted automaton with word transitions (WWA) is a tuple of the form
A = (Σ, Q, q0,wt, qf ), where

• Σ is a finite alphabet of input symbols,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• wt : Q× Σ∗ ×Q→ C is the transition weight function with the property that its support

supp(wt) := {(q, w, q′) ∈ Q× Σ∗ ×Q | wt(q, w, q′) > 0}

is finite, and

• qf ∈ Q is the final state.

The notions of finite paths and labels are defined as for WA, and the set of all finite paths with label w
in A is denoted by paths(A, w). The weight of a finite path π = q0w1q1w2 . . . wnqn in A is computed as
wt(π) := minni=1 wt(qi−1, wi, qi). The behavior ‖A‖ : Σ∗ → C of A is defined for all w ∈ Σ∗ by

‖A‖(w) := sup
π∈paths(A,w)

wt(π).
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A B
ε : 0.6

r : 0.8

Figure 5: A weighted automaton constructed from T in Example 36

Intuitively, WWA generalize WA by adding a weight to each transition that the automaton needs to
make during its execution. The total weight of a path is the minimum of the weights of the transitions it
uses. This can be seen as a conjunction, since all these transitions need to be traversed in order to obtain
the path. In WA, a word w is accepted if there is at least one accepting path for w; this is generalized in
WWA to computing the maximum weight over all the possible paths for w. We can see the behavior of A
as a fuzzy language on the alphabet Σ, where every word is given a membership degree from C.

Given a C-FL0 TBox T , let NTC be the set of all concept names appearing in T ; that is, NTC := NTP ∪NTD .
We define a family of WWA, one for each pair of concept names in NTC , as follows.

Definition 34 (automata ATA,B). For concept names A,B ∈ NTC , the WWA ATA,B = (NR,N
T
C , A,wtT , B)

is defined by the transition weight function

wtT (A′, w,B′) :=

{
p if 〈A′ v ∀w.B′ ≥ p〉 ∈ T ,
0 otherwise.

Notice that for a given TBox T and concept names A,A′, B,B′ ∈ NTC , the automata ATA,B and ATA′,B′
differ only in their initial and final states; the sets of states and transition weight function are always the
same. Since T is in normal form, for any two concept names A′, B′ ∈ NTC and w ∈ N∗R, there is at most one
axiom 〈A′ v ∀w.B′ ≥ p〉 in T , and hence the transition weight function is well-defined. This function has
finite support since T is finite.

Using these automata, we can characterize the class of gfp-models of the TBox T , as stated by the
following lemmata.

Lemma 35. For every gfp-model I = (∆, ·I) of T , x ∈ ∆, and A ∈ NTC ,

AI(x) = inf
B∈NTP

inf
w∈N∗R

(
‖ATA,B‖(w)⇒ (∀w.B)I(x)

)
.

This equation expresses the interpretation of a concept name A in terms of the behavior of the automata
ATA,B and the interpretations of value restrictions over the primitive concept names B, which only depend on
the primitive interpretation J underlying I. For primitive concept names A, the right-hand side is always
equal to (

‖ATA,A‖(ε)⇒ (∀ε.A)I(x)
)

=
(
1⇒ AJ (x)

)
= AJ (x),

as expected. For defined concept names A, the intuition is that every finite path π in the automata ATA,∗
corresponds to a conjunct of the form ∀w.B in the (expanded) definition of A w.r.t. T , where w is the label
of π and B ∈ NTP is the final state of π. According to Definition 34, wt(π) then describes the degree to
which ∀w.B contributes to the interpretation of A. Note that, due to cycles in T , in general there may be
infinitely many concepts of the form ∀w.B with w ∈ Σ∗, B ∈ NTP in the expanded interpretation of A.

Example 36. Consider the cyclic TBox in normal form

T := {〈A v ∀ε.B ≥ 0.6〉, 〈A v ∀r.A ≥ 0.8〉}.

Figure 5 depicts the resulting WWA ATA,B that contains an r-transition from A to A with weight 0.8 and
an ε-transition from A to B with weight 0.6.

The weight of any word rn in this automaton is easily computed to be 0.6. For any gfp-model I of T
with underlying primitive interpretation J , Lemma 35 shows that AI(x) is determined by the smallest value
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of the form 0.6 ⇒ (∀rn.B)J (x) for any n ≥ 0. If we have (∀rn.B)J (x) ≥ 0.6 for all n ≥ 0, i.e. if all paths
from x to some y via r-connections in J satisfy the property that either the minimum degree of the r-edges
on this path is ≤ BJ (y), or else BJ (y) ≥ 0.6, then we know that AI(x) = 1. Otherwise, the value of AI(x)
is the infimum over the values of all such r-paths in J .

Using the characterization of Lemma 35, it is possible to decide gfp-subsumptions by comparing the
behavior of WWA, as described next.

Lemma 37. Given A,B ∈ NTC and p ∈ C, A is gfp-subsumed by B to degree p w.r.t. T iff for all C ∈ NTP
and w ∈ N∗R it holds that min(p, ‖ATB,C‖(w)) ≤ ‖ATA,C‖(w).

This means that, in order to decide gfp-subsumption between A and B, we have to compare the paths
in ATA,C and ATB,C accepting the same words. From another perspective, we have to consider the weights
of all matching terms ∀w.C in the expanded definitions of A and B according to T , and see whether they
support the desired subsumption degree p.

Since wtT has finite support and takes only values from VT , min(p, ‖ATB,C‖(w)) > ‖ATA,C‖(w) holds iff
min(p′, ‖ATB,C‖(w)) > ‖ATA,C‖(w), where p′ is the smallest element of VT such that p′ ≥ p. This means that
it suffices to be able to check gfp-subsumptions for the values in VT . Rather than doing it with the WWA
ATB,C and ATA,C directly, we will perform inclusion tests between polynomially many unweighted automata,
which intuitively correspond to the cuts of the weighted automaton at different degrees.

Definition 38 (automata A≥p). Given a WWA A = (Σ, Q, q0,wt, qf ) and a value p ∈ C, the WA
A≥p = (Σ, Q, q0,∆p, qf ) is given by the transition relation ∆p := {(q, w, q′) ∈ Q×Σ∗×Q | wt(q, w, q′) ≥ p}.

The language of this automaton has the obvious relation to the behavior of the original WWA A:

L(A≥p) = {w ∈ Σ∗ | ‖A‖(w) ≥ p}.

Using Lemma 37, we obtain the following characterization of gfp-subsumption in terms of language inclusions
between WA.

Lemma 39. Let A,B ∈ NTC and p ∈ VT . Then A is subsumed by B to degree p w.r.t. T iff for all C ∈ NTP
and p′ ∈ VT with p′ ≤ p it holds that L((ATB,C)≥p′) ⊆ L((ATA,C)≥p′).

A direct consequence of this lemma is that gfp-subsumption between concept names in C-FL0 remains
in the same complexity class as for classical FL0 (see Proposition 7).

Theorem 40. Deciding gfp-subsumption between concept names in C-FL0 is PSpace-complete.

As in the case of C-NAL, to compute the best gfp-subsumption degree between A and B, it suffices to
check above inclusions for increasing values p ∈ VT . The largest p for which these checks succeed is the
requested degree. Thus, this degree can also be computed using only polynomial space.

6. Related Work

The results presented here are special cases of the more general constructions presented before in [14–16].
We describe first how far they can be extended.

The Hintikka automata for finite chains (Section 4.1) can be used even for arbitrary finite lattices L of
truth degrees and with arbitrary t-norms instead of only the infimum function of the lattice. Moreover, the
definitions can be extended to cover much more expressive DLs such as L-ALCI [42], L-SHI [16], and even
L-SHOI [43]. Borrowing an automata-based technique originally developed for classical DLs from [13], it
is possible to show lower complexity bounds for some of these fuzzy DLs, if the TBox is restricted to be
acyclic; i.e., if the TBox contains only concept definitions, and there is no cyclic dependency between defined
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concepts. In particular, it has been shown that all the studied decision problems are PSpace-complete in
the logics L-ALCHI, L-ALCHO, L-SIc, and L-SOc [16, 43].9

The ordered Hintikka trees (Section 4.2) can be adapted to deal with the implication constructor and
even the involutive negation interpreted by the function x 7→ 1 − x [14]. Moreover, we believe that the
techniques of [14] and [16] can be combined to derive tight complexity results for more expressive Gödel
DLs and also under the restriction to acyclic TBoxes.

In the case of C-FL0, if the TBox is acyclic, then the automata (ATB,C)≥p obtained through our construc-
tion in Section 5 are, in fact, acyclic too. It is well-known that deciding the inclusion between two acyclic
automata is in coNP [27]. Hence, deciding subsumption between concept names w.r.t. acyclic TBoxes is
also in coNP, once again matching the complexity of the classical case.

In the following, we give a short overview of other research on fuzzy description logics. The first papers
on fuzzy DLs considered Zadeh semantics over [0, 1] and presented tableaux algorithms for reasoning in
fuzzy ALC with acyclic TBoxes [21, 44]. However, these algorithms are not complexity-optimal, yielding
ExpSpace as the best known upper bound, compared to the lower bound of PSpace from classical ALC.
These algorithms were later generalized to deal with GCIs [45] and more expressive DLs such as SHIN [32],
ALCIQ [46], and even SROIQ [47].

For fuzzy DLs using arbitrary t-norms over [0, 1], the presence of GCIs in combination with a negation
constructor often leads to undecidability [7–10]. On the other hand, sometimes these logics become trivial
in the sense that fuzzy ontologies are not more expressive than classical ones [48]. In the less expressive DL
EL with GCIs, the Gödel t-norm over [0, 1] does not increase the complexity of reasoning, i.e. it remains in
PTime [49]. However, there are indications that this is not true for other t-norms [50].

When restricting to acyclic TBoxes, fuzzy DLs over [0, 1] with arbitrary t-norms are still decidable,
and several tableaux algorithms were developed for this setting [33, 51–54]. The idea of these algorithms
is to construct an abstract representation of a model in which concrete values of concepts are encoded
by variables ranging over [0, 1]. According to the chosen t-norm, the values of these variables are then
restricted by polynomial inequations. In this way, a system of inequations is constructed that is in the
worst case of exponential size and has a solution iff a model of the input TBox exists. Again, this yields
upper bounds (either NExpTime or ExpSpace) different from the only known lower bound (PSpace). The
precise complexity of reasoning in these logics remains open.

The first paper dealing with finite lattices of truth degrees in fuzzy DLs considered a generalized Zadeh
semantics for L-ALC with acyclic TBoxes and proposed a generalization of a classical tableau algorithm [55].
This was later extended to the more expressive logic L-SHIN [56].

The most popular approach for reasoning with fuzzy DLs over finite chains is to reduce the fuzzy
ontology to a classical one and then employ optimized decision procedures for the resulting classical reasoning
problems. This technique even allows to reduce GCIs. The idea is to translate every concept name A into
finitely many classical concept names A≥p, p ∈ L, with the intention that the interpretation of A≥p collects
all those individuals that belong to A with a membership degree at least p. To encode the order on L,
one has to introduce a new GCI A≥p2 v A≥p1 for every adjacent pair (p1, p2) in the total order on L.
The same is done for all role names. Complex concepts and axioms are then recursively translated into
classical concepts and axioms that employ the new concept and role names. Under generalized Zadeh
semantics, the reduction is polynomial [57], showing ExpTime-completeness of reasoning in L-ALCH with
GCIs. However, for chains using different t-norms, such a translation can cause an exponential blowup in
the size of the ontology, yielding suboptimal complexity upper bounds. This idea was applied to fuzzy DLs
ranging from L-ALCH [30] up to L-SROIQ [29, 31, 58]. It can also be applied to fuzzy DLs using Zadeh
semantics over [0, 1] since reasoning in such logics can be restricted to the finitely many values occurring in
the input TBox (and their negations) [59].

9The subscript c denotes the use of crisp roles, i.e. that the interpretation of all roles is restricted to the classical truth
values 0 and 1.
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7. Conclusions

We have illustrated the utility of automata-based techniques for reasoning in fuzzy description logics and
hinted at extensions to more expressive DLs. Logics of the types G-L and L-L for a finite chain (or lattice) L
are of particular interest since they allow to use GCIs in combination with expressive concept constructors.
The only other fuzzy semantics for which this is true is the traditional Zadeh semantics [21, 47], which has
some shortcomings with regards to the used implication function [4]. On the other hand, expressive t-norm
based fuzzy description logics supporting GCIs are often either undecidable [7–10] or do not support actual
fuzzy reasoning [10, 48].

The goal of this paper was to introduce the reader to the current automata-based approaches for reasoning
in fuzzy DLs, which have been successfully used for proving tight complexity bounds. As such, we have
presented the ideas behind the three main constructions used in the area; namely: building tree-shaped
models directly through the runs of an automaton; building an abstraction of these models, when the model
cannot be constructed; and characterizing the interpretation of a concept in terms of regular languages.
We expect that the simple cases presented here will aid in the understanding of the ideas underlying these
techniques and encourage their application to other scenarios.

We want to point out three gaps that remain open in the complexity analysis of fuzzy description logics.
First, fuzzy extensions of inexpressive DLs like EL, FL0, and DL-Lite using semantics other than (finite
or infinite) Gödel chains have so far received little attention in the literature [6, 50, 60]. Second, the
precise complexity of reasoning with acyclic TBoxes in fuzzy DLs using t-norms over [0, 1] (except the Gödel
t-norm) is currently unknown. The only known tableaux algorithms for these logics are not optimal w.r.t.
complexity [33, 51–54]. The last gap concerns very expressive DLs (above SHOI) with semantics based
on finite lattices. For SROIQ over finite chains, only the reductions to classical DLs from [29, 31, 58] are
known, which may incur an exponential blowup in the size of the ontology in the worst case.
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