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Abstract. We propose applications that utilize the infimum and the supre-
mum of closure operators that are induced by structures occuring in the field
of Description Logics. More specifically, we consider the closure operators
induced by interpretations as well as closure operators induced by TBoxes,
and show how we can learn GCIs from streams of interpretations, and how
an error-tolerant axiomatization of GCIs from an interpretation guided by a
hand-crafted TBox can be achieved.
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1 Introduction

Description Logics [2, 6–8] are a family of well-founded languages for knowledge rep-
resentation with a strong logical foundation as well as a widely explored hierarchy of
decidability and complexity of common reasoning problems. The several reasoning tasks
allow for an automatic deduction of implicit knowledge from given explicitly represented
facts and axioms, and many reasoning algorithms have been developed. Description
Logics are utilized in many different application domains, and in particular provide
the logical underpinning of Web Ontology Language (OWL) [16] and its profiles.

An interesting problem is the task of (semi-)automatic generation of terminological
axioms, so-called general concept inclusions (GCIs), from given data. For example, in
[4, 10] Baader and Distel have generalized the construction of implicational bases from
so-called formal contexts [12, 15] in the field of Formal Concept Analysis [14] to the
construction of bases of EL⊥-GCIs from interpretations in Description Logics. The main
difference of the underlying data structures is that interpretations additionally allow the
expression of binary relations between objects, which implies a number of technical and
theoretical difficulties that have been solved by them. In case of incompleteness of the
input data set, a technique of Attribute Exploration [11–13] can be utilized to axiomatize
implications in a sound and complete manner. This approach furthermore presupposes an
expert in the domain of interest that is able to correctly answer all queries posed to her.
In [5, 10] Baader and Distel have as well extended this technique from formal contexts
to interpretations. A further work in the intersection of Formal Concept Analysis and
Description Logics was developed by Rudolph in [20, 21]. He generalized Attribute

francesco.kriegel@tu-dresden.de


Exploration to Relational Exploration, a technique that processes an interpretation in a
multi-step approach where in each step the role-depth of the involved concept descriptions
is increased. In particular, Relational Exploration is a sound and complete deduction
calculus for GCIs in the Description Logic FLE. A weakness of the exploration methods
is the requirement of an expert that is able to truthfully answer all questions posed to it.

In order theory, closure operators (clop) denote mappings in a powerset – or more gen-
erally, in a lattice – which are extensive, monotone, and idempotent. Many types of data
sets give rise to an induced closure operator in such a way that an implication is valid in
the data set if, and only if, it is valid in the closure operator. For example, each formal
context (G,M,I) induces the clop X 7→ XII on the powerset ℘(M), and each interpre-
tation (∆I, ·I) induces the clop C 7→ CII in the lattice of all EL⊥-concept descriptions
ordered by subsumption v and factorized by equivalence ≡. In a recent paper [19], the
author investigated how implicational bases for closure operators can be computed in a
parallel manner. Furthermore, it was shown that the set of all clops in a complete lattice
constitutes a complete lattice itself, and formulae for computing infima and suprema of
clops were provided. In this document, we will introduce a closure operator C 7→ CT

induced by a TBox T , and will furthermore provide applications for computing bases
of GCIs for the infimum as well as the supremum of C 7→ CT and C 7→ CII.

This document is structured as follows. Section 2 gives a brief overview on the easy
description logic EL⊥. Then, Section 3 cites some related work, and recalls important
notions. Section 4 introduces the notion of a most specific consequence with respect
to a TBox, and shows how to define a closure operator induced by a TBox. Section 5
then discusses applications of infima and suprema of clops induced by interpretations
and TBoxes, and Section 7 draws some conclusions. Note that proofs are not included,
but the interested reader can find them in the corresponding technical report [17].

2 The Description Logic EL⊥

The syntax and semantics of the light-weight description logic EL⊥ are introduced as
follows. Throughout the whole document assume that (NC,NR) is a signature, i.e., NC
is a set of concept names, and NR is a set of role names. An EL⊥-concept description
is a term that is constructed by means of the following inductive rule:

C ::= ⊥ | > | A | C uC | ∃ r.C.

A general concept inclusion (abbr.GCI ) is an expression C v D where both the premise
C as well as the conclusion D are EL⊥-concept descriptions. A TBox is a set of GCIs.

The role depth rd(C) of an EL⊥-concept description C is inductively defined as follows:

rd(⊥) := rd(>) := rd(A) := 0, rd(C uD) := rd(C)∨ rd(D),

and rd(∃ r.C) := 1 + rd(C).

An interpretation I := (∆I, ·I) consists of a non-empty set∆I, called the domain, and
an extension function ·I that maps concept names A ∈ NC to subsets AI ⊆ ∆I, and
maps role names r ∈ NR to binary relations rI ⊆ ∆I×∆I. Then, the extension function
is canonically extended to all EL⊥-concept descriptions by the following definitions:

⊥I := ∅, >I := ∆I, (C uD)I := CI ∩DI,
and (∃ r.C)I := {d ∈ ∆I | ∃ e ∈ ∆I : (d, e) ∈ rI and e ∈ CI }.



A GCI C v D is valid in I if CI ⊆ DI. We then also refer to I as a model of C v D,
and denote this by I |= C v D. Furthermore, I is a model of a TBox T , symbolized
as I |= T , if each GCI in T is valid in I. The entailment relation is lifted to TBoxes
as follows: A GCI C v D is entailed by a TBox T , denoted as T |= C v D, if each
model of T is a model of C v D, too. We then also say that C is subsumed by D with
respect to T . A TBox T entails a TBox U, symbolized as T |= U, if T entails each
GCI in U, or equivalently if each model of T is also a model of U. Two EL⊥-concept
descriptions C and D are equivalent with respect to T , and we shall write T |= C ≡ D,
if T |= {C v D,D v C}. In case T = ∅ we may ommit the prefix ”∅ |=”. However,
then we have to carefully interpret an expression C v D – it either just denotes a
general concept inclusion, i.e., an axiom, without stating where it is valid; or it expresses
that C is subsumed by D (w.r.t.∅), i.e., CI ⊆ DI is satisfied in all interpretations I.
An analogous hint applies to concept equivalences C ≡ D.

It is readily verified that the subsumption v constitutes a quasi-order on the set
EL⊥(NC,NR) of all EL⊥-concept descriptions over the signature (NC,NR). Hence, the
quotient of EL⊥(NC,NR)with respect to the induced equivalence ≡ is a partially ordered
set (a poset). (In the following we will not distinguish between the equivalence classes and
their representatives.) The poset is even a bounded lattice. Of course, ⊥ is the smallest
element, and > is the greatest element. Furthermore, the conjunction u corresponds to
the infimum operation, and the least common subsumer mapping ∨ corresponds to the
supremum operation. Remark that the least common subsumer (abbr. lcs) C ∨D of
two EL⊥-concept descriptions C and D is (up to equivalence) uniquely defined by the
following conditions: 1. C v C ∨D as well as D v C ∨D, and 2. for each EL⊥-concept
description E, if C v E and D v E, then C ∨D v E. It is easy to see that the
equivalence ≡ is compatible with both u and ∨. In the sequel of this document, we shall
denote this bounded lattice by EL⊥(NC,NR) := (EL⊥(NC,NR),v)/≡. For a role-depth
bound δ ∈ N, EL⊥(NC,NR)�δ is the set of all EL⊥-concept descriptions with a role
depth of at most δ, and accordingly EL⊥(NC,NR)�δ := (EL⊥(NC,NR)�δ,v)/≡ symbolizes
the corresponding bounded lattice of (equivalence classes of) EL⊥-concept descriptions.
Note that EL⊥(NC,NR)�δ is complete if the underlying signature (NC,NR) is finite.

3 Related Work

Baader and Distel introduced a technique for the axiomatization of general concept
inclusions that are valid in a given interpretation. More specifically, they interconnected
Formal Concept Analysis with Description Logics by defining so-called induced formal
contexts such that its canonical base can directly be converted into a base of GCIs
for the underlying interpretation. However, there was no possibility to include existing
knowledge. For the case where a set of GCIs valid in the given interpretation is available,
a solution for the computation of a relative base of GCIs has been proposed in [18].
However, it was not clear how to proceed in presence of an interpretation I and a
TBox T where I 6|= T . This problem will be tackled in the following section.

Beforehand, we recall the notion of a model-based most specific concept description.
Let I be an interpretation, and consider a set X ⊆ ∆I as well as a role-depth bound
δ ∈ N. Then an EL⊥-concept description C is called a role-depth-bounded model-based
most specific concept description (abbr.mmsc) of X with respect to I and δ if the
following statements hold: 1. rd(C) ≤ δ, 2. X ⊆ CI, and 3. for all concept descriptions



D, if X ⊆ DI, then ∅ |= C v D. As an immediate consequence of the definition we
infer that the mmsc of X w.r.t.I and δ is unique up to equivalence. Hence, we may
speak of the mmsc, and denote it by XIδ .

4 Most Specific Consequences with respect to a TBox

For a given EL⊥-TBox T , and an EL⊥-concept description C, one may ask for a
concept description D which is most specific with respect to the condition that C is
subsumed by D w.r.t.T . Such a concept description is called most specific consequence,
or most specific subsumer (abbr.mss). Note that Distel has investigated a dual notion
in [10, Chapter 7], namely that of a minimal possible consequence, which he utilized to
constitute an algorithm for the exploration of ontologies, called ABox Exploration. To
emphasize this duality, it is reasonable to use the name of a minimal certain consequence.

In this section, the notion of a most specific consequence shall be formally introduced,
and necessary as well as sufficient conditions for its existence will be explored. Further-
more, we investigate its relationship to entailment with respect to a TBox. The next
section then provides at least one application that utilizes most specific consequences
to construct a base of GCIs that are both valid in a given interpretation as well as
are entailed by a given TBox.

As an exemplary TBox, consider T := {A v ∃ r.A}. It can be readily verified that
for each n ∈ N, the concept description (∃ r.)nA is a consequence (i.e., a subsumer)
of A with respect to T . However, (∃ r.)n+1A is more specific than (∃ r.)nA, and thus
a most specific consequence of A w.r.t.T does not exist in the description logic EL⊥
with descriptive semantics (as introduced in Section 2). There are two solutions to
tackle this problem of existence of most specific consequences. The first one is to
use the extension of EL⊥ with greatest fixpoint semantics. This extension has been
extensively studied in [1, 3, 10], and in particular it has been shown that this extension
can handle terminological cycles (as present in the given TBox T above). In particular,
EL⊥gfp-concept descriptions are pairs C := (AC,TC) where TC is a TBox, and AC is
a defined concept name of TC. We do not introduce the full machinery of the semantics
of EL⊥gfp here, but rather refer the interested reader to [1, 3]. However, it can be shown
that the most specific consequence of the example above indeed exists in EL⊥gfp, and is
given by (A,T ). It is straight-forward to claim that most specific consequences always
exist in EL⊥gfp, but nevertheless a corresponding proof is outstanding.

Another solution for ensuring the existence of most specific consequences is to restrict
the role-depth of the concept descriptions under consideration, as this has been done
in [9] to ensure the existence of model-based most specific concept descriptions in EL⊥
with descriptive semantics. We introduce the following definition.

Definition 1. Let T be an EL⊥-TBox, C an EL⊥-concept description, and δ ∈ N a
role-depth bound. Then an EL⊥-concept description D is called a role-depth-bounded
most specific consequence of C with respect to T and δ if it satisfies the following
conditions: 1. rd(D) ≤ δ, 2. T |= C v D, and 3. for each EL⊥-concept description E,
if rd(E) ≤ δ and T |= C v E, then ∅ |= D v E.

Provided that such role-depth-bounded most specific consequences exist, they are
unique up to equivalence, and hence we may then speak of the most specific consequence,
and we shall denote it by CTδ for a given concept description C, a TBox T , and a



role-depth bound δ. By Definition 1, T |= C v CTδ . Furthermore, from T |= C v C
we conclude that ∅ |= CTδ v C. In summary, T |= C ≡ CTδ .

Lemma 2. Role-depth-bounded most specific consequences always exist, provided that
the signature is finite.

Lemma 3. Let T ∪ {C v D} be an EL⊥-TBox such that D has a role depth of at
most δ. Then the following statements are equivalent:

1. T |= C v D.
2. ∅ |= CTδ v D.
3. {E v ETδ |E ∈ EL⊥(NC,NR)�δ } |= C v D.

If all conclusions of GCIs in T have role depths not exceeding δ, then furthermore the
following statement is equivalent to the previous ones:

4. {E v ETδ | ∃F : E v F ∈ T } |= C v D.

Corollary 4. Let T ∪ {C v D} be an EL⊥-TBox such that T |= C v D, and both
C and D have role depths not exceeding δ. Then for each EL⊥-concept description E,
if ∅ |= ETδ v C, then ∅ |= ETδ v D.

This document does not include a method for the computation of most specific
consequences, and leaves this problem open for future research. However, we have
shown that their existence is guaranteed in the case of descriptive semantics when
the candidate concept descriptions are restricted in their role depth. In particular, the
notion defined in Definition 1 always exists. As a next step, we provide a technique
that allows for the computation of a TBox from a stream of interpretations and that
utilizes those most specific consequences.

Lemma 5. The mapping C 7→ CTδ is a closure operator in the dual of EL⊥(NC,NR)�δ.

5 Axiomatization of General Concept Inclusions from
Streams of Interpretations

Consider a setting where a stream of interpretations In, n ∈ N, can be observed, and
furthermore for each time point n ∈ N, a TBox Tn shall be constructed such that
for each GCI C v D, T |= C v D if, and only if, Ik |= C v D for all previous time
points k ≤ n. Of course, for the initial moment n = 0, we may simply compute T0
as a base of GCIs for I0, utilizing the approach of Baader and Distel [4, 10]. For the
following moments n ≥ 1, we may of course also construct a base of GCIs for the
disjoint union of the interpretations I0,I1, . . . ,In. However, since the method requires
the construction of so-called induced contexts the size of which may be exponential in
the size of the domain of the interpretation, this technique could possibly be infeasible
for late time points. Furthermore, it requires the storing of all interpretations observed
so far. We want to present another technique for solving the above mentioned task.
Please note that this problem was already addressed in [18] for the case of In+1 |= Tn.
Here, we propose a solution that circumvents this rather restrictive precondition.
The infimum of ·T and ·II is the greatest closure operator below both ·T and ·II.

The following lemma recalls an important property of infima of clops, specifically
tailored to the case of implications of concept descriptions, i.e., of general concept
inclusions as they are more commonly called.



Lemma 6. Let I be an interpretation, T an EL⊥-TBox, and C v D a general concept
inclusion such that both premise and conclusion have a role-depth not exceeding δ. Then
the following statements are equivalent:

1. C v D is both valid in I as well as entailed by T .
2. ∅ |= {CIIδ v D,CTδ v D}.
3. ∅ |= CIIδ ∨CTδ v D.
4. C v D is valid in the infimum of C 7→ CIIδ and C 7→ CTδ .

As a conclusion, we infer the following incremental method for the computation of
a sequence of TBoxes from a sequence of interpretations:

1. Upon availability of the first observed interpretation I0, compute its canonical base
of GCIs, as proposed by Baader and Distel in [4, 10]. If only concept descriptions
up to a certain role depth shall be considered, then the variant described by
Borchmann, Distel, et al., in [9] is sufficient.

2. For each new interpretation In+1, compute the canonical base of the infimum of
the clops that are induced by the current TBox Tn as well as by the newly observed
interpretation In+1.

It is readily verified that – by construction – for each time point n ∈ N, the TBox Tn
entails a GCI C v D if, and only if, C v D is valid in the interpretations I0, . . . ,In.

6 Error-Tolerant Axiomatization of General Concept
Inclusions from Interpretations

Assume that we were given an interpretation I as well as a TBox T such that I contains
observations that may be possibly faulty due to inaccurate generation methods, and that
T is certainly valid in the domain of interest, e.g., as it has been hand-crafted by experts.
In particular, we assume that I is not a model of T , i.e., that at least one domain
element in I exists which serves as a counterexample against at least one GCI from T .
However, we are expected to axiomatize terminological knowledge from I, which is valid
in the unknown domain of interest. As a solution, we will construct the implicational
base of the supremum of the clops that are induced by I, and by T , respectively. It is
then ensured that those implications are considered which are valid for all those domain
elements of I that respect the GCIs in T , i.e., that we axiomatize general concept
inclusions from I that are compatible with the axioms contained in T . In a certain sense
this yields a method for an error correction in I when learning GCIs. We will describe
a short motivating example. Define a TBox T and an interpretation I as follows:

NC := {Person,Car,Wheel}, NR := {child}
T := {∃ child.> v Person,Personu Car v ⊥}

I : d

Car
e

Wheel
f

Person
g

Person
child child

Consider the GCI Car v ∃ child.Wheel. Of course, it is valid in I, and furthermore is
contained in the canonical base of I when applying the construction from [4, 10].



We can show that the above mentioned GCI is also valid IIδ g Tδ for δ ≥ 1:

CarIIδ ≡ Caru ∃ child.Wheel

(Caru ∃ child.Wheel)Tδ ≡ Caru ∃ child.Wheelu Personu⊥ ≡ ⊥,

The closure of Car with respect to the supremum is the least common subsumer of
those concept descriptions that are closures of both C 7→ CIIδ and C 7→ CTδ , as well
as are subsumed by Car. It is easy to see that this supremum closure can be computed
by an exhaustive repeated application of both closure operators until a fixpoint is
reached. As we have seen above, the fixpoint ⊥ is reached after the first iteration, and
hence ⊥ is the supremum-closure.
However, the GCI is a consequence of the more specific valid GCI Car v ⊥, and

hence would not have been axiomatized upon construction of the canonical base. In
particular, we see that d is not compatible with T – in contrast to the other domain
elements e, f , and g. Eventually, Car is a pseudo-closure of the supremum, and hence
the canonical base contains the axiom expressing the non-existence of cars.

7 Conclusion

We have defined the notion of most specific consequences with respect to TBoxes, and
considered the corresponding closure operator. We have investigated the interplay of this
closure operator induced by a given TBox with the closure operator induced by an inter-
pretation – more specifically, we have shown how their infimum can be utilized for learn-
ing from streams of interpretations, and have motivated how their supremum can be used
for an error-tolerant axiomatization of general concept inclusions from interpretations in
the presence of a hand-crafted TBox that indicates errors in the observed interpretation.
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