
Parallel Attribute Exploration

Francesco Kriegel

Institute of Theoretical Computer Science, TU Dresden, Germany
francesco.kriegel@tu-dresden.de

Abstract. The canonical base of a formal context is a minimal set of implica-
tions that is sound and complete. A recent paper has provided a new algorithm
for the parallel computation of canonical bases. An important extension is the
integration of expert interaction for Attribute Exploration in order to explore
implicational bases of inaccessible formal contexts. This paper presents and
analyzes an algorithm that allows for Parallel Attribute Exploration.

Keywords: Formal Concept Analysis ·Attribute Exploration · Canonical Base
· Implication · Parallel Algorithm · Expert Interaction · Supervised Learning

1 Introduction

Implications provide an easily understandable means of logical knowledge representation.
When learning terminological knowledge, it is hence straight-forward to extract valid
implications from a data-set. If the data-set is complete, i.e., fully describes all individuals
in the domain of interest, and if furthermore the data-set has a propositional structure or
is represented as a formal context, then it suffices to compute the canonical base which
is sound and complete for the set of implications holding in the data-set. This result
has been found by Guigues and Duquenne [8] in the field of Formal Concept Analysis,
where the authors utilize the notion of pseudo-intents to construct such canonical bases.
A strong advantage of a canonical base is its minimality, i.e., there is no smaller set
of implications which is sound and complete for the underlying data-set. Ganter [5]
introduced the algorithm NextClosure for the computation of canonical bases, and
proved its correctness. Previously, in the field of database theory, the deduction of
dependencies has been investigated in Maier [12], but however no explicit construction
of a base of dependencies was provided.
For the case of incomplete data-sets, i.e., if there are further individuals in the

domain of interest that are not described in the data-set, a technique called Attribute
Exploration has been developed by Ganter [4–6] and Stumme [13]. It allows for in-
teraction with an expert which is able to provide unknown individuals that are not
contained in the data-set but represent counterexamples to otherwise valid implications.
This algorithm is merely an extension of the algorithm NextClosure by Ganter [5].
Unfortunately, the algorithm uses the lectic order on the attribute set, which is linear, to
compute the implications in the canonical base. As a consequence, it is not (obviously)
possible to parallelize this default Attribute Exploration. However, in [10, 11] we have
introduced the algorithm NextClosures that is also able to compute canonical bases,
but in a non-linear order which makes it possible to enumerate the elements of the
canonical base in a parallel manner. In particular, the canonical base is constructed
w.r.t. increasing premise cardinality. Benchmarks have shown that there is an inverse

francesco.kriegel@tu-dresden.de

linear correlation between the computation time and the number of available CPU cores,
provided that the underlying formal context is large enough, and that its performance
on one CPU core is comparable to NextClosure, more specifically the quotient of the
computation times for the same formal context is between 1

3 and 3. The benchmarks
in [10, 11] should only be interpreted in a relative way – using more efficient data
structures (e.g., java.util.BitSet), or faster programming languages (e.g., C++),
the computation times can be decreased further. An implementation of NextClosures
in the programming language Java 8 can be found in [9].

In this paper, NextClosures is extended with the possibility of expert interaction.
More specifically, we assume that there is a formal context that describes the domain
of interest, but it is inaccessible and there is an expert (or a set of experts) that can
correctly decide whether an implication holds in this context, and if she refutes then
also provides a counterexample. Additionally, there may be an observed subcontext
of the full domain context, which is used to decrease the number of questions posed
to the expert. Using the technique of Attribute Exploration, it is possible to construct
a minimal implicational base of the domain context. The algorithm ParallelAt-
tributeExploration that will be described in the following sections implements this
technique and furthermore allows for a parallel execution.

Angluin, Frazier, and Pitt [1] have also investigated the problem of learning propo-
sitional Horn-theories by means of oracles. In particular, they assume that there are
two experts: a membership oracle and an equivalence oracle. While the first expert
decides whether a certain object satisfies the (unknown) target theory, the second
expert decides whether the current theory is equivalent to the target theory (and if
not, returns a counterexample). Later, Arias and Balcázar [2] have proven that this
learning approach always constructs the canonical base [8] for the target theory.

This document is structured as follows. Section 2 introduces the basic notions of Formal
Concept Analysis, and Section 3 defines the notion of an expert as well as provides some
important statements on the interplay of formal contexts and experts. Section 4 presents
the algorithm ParallelAttributeExploration, and furthermore proves its soundness
and completeness. Section 5 draws a comparison with the default algorithm for Attribute
Exploration, as well as discusses some possibilities for the integration of several experts.

2 Formal Concept Analysis

In this section we shall introduce the basic notions of Formal Concept Analysis, cf. [7]. A
formal context K = (G,M,I) consists of a set G of objects, a setM of attributes, and an
incidence relation I ⊆ G×M such that g I m indicates that object g has attribute m.
Furthermore, for subsets A ⊆ G and B ⊆M , their derivations are defined as follows:

AI := {m ∈M | ∀g ∈ A : g I m} and BI := {g ∈ G | ∀m ∈ B : g I m} .

It is well-known [7] that both derivation operators form a so-called Galois connection
between the powersets ℘(G) and ℘(M), i.e., the following statements hold true for
all subsets A,A1,A2 ⊆ G and B,B1,B2 ⊆ M :

1. A ⊆ BI ⇔ B ⊆ AI.
2. A ⊆ AII.
3. AI = AIII.
4. A1 ⊆ A2 ⇒ AI2 ⊆ AI1.

5. B ⊆ BII.
6. BI = BIII.
7. B1 ⊆ B2 ⇒ BI2 ⊆ BI1 .

For subsets A ⊆ G and B ⊆M , the pair (A,B) is a formal concept of K if AI = B
and BI = A. Then we refer to A as the extent, and to B as the intent of (A,B). The set
of all formal concepts is denoted as B(K), and Int(K) denotes the set of all intents of K.
B(K) can be ordered by (A,B) ≤ (C,D) if A ⊆ C (or dually if B ⊇ D), and indeed
then (B(K),≤) is a complete lattice where infima and suprema are given as follows:∧

t∈T
(At,Bt) = (

⋂
t∈T

At, (
⋃
t∈T

Bt)
II) and

∨
t∈T

(At,Bt) = ((
⋃
t∈T

At)
II,
⋂
t∈T

Bt).

An implication over M is an expression of the form X → Y where X,Y ⊆M . The
set of all implications over M is denoted by Imp(M). We say that X → Y is valid in
K, denoted as K |= X → Y , if XI ⊆ Y I. Imp(K) is the set of all valid implications
of K. A subset Z ⊆M is a model of X → Y if X ⊆ Z implies Y ⊆ Z, denoted by
Z |= X → Y , and Mod(X → Y) is the set of all models of X → Y . Furthermore,
Mod(L) :=

⋂
{Mod(X → Y) |X → Y ∈ L} is the set of all models of an implication

set L. It is well-known that the following statements are equivalent:

1. X → Y is valid in K.
2. Each intent of K models X → Y .
3. Each object intent of K models X → Y .
4. Y ⊆ XII.

Furthermore, the relation |= may be lifted to implication sets as follows: Let L∪{X →
Y } ⊆ Imp(M), then L entails X → Y , symbolized by L |= X → Y , if every model
of L is a model of X → Y . Then Imp(L) is the set of all implications that are
entailed by L. For each subset X ⊆ M , there is a smallest superset XL of X that
is a model of L, since Mod(L) is closed under intersection. It is well-known that
this set can be computed as follows:

XL =
⋃
n≥1X

Ln where XLn+1 := (XL1)Ln for all n ≥ 1,

and XL1 := X ∪
⋃
{Z | Y → Z ∈ L and Y ⊆ X } .

It is easy to verify that the following statements are equivalent:

1. L |= X → Y .
2. For all Z ⊆M , Z |= L implies Z |= X → Y .
3. For all formal contexts K with attribute set M , K |= L implies K |= X → Y .
4. Y ⊆ XL.

Note that a formal context is just another notion for a set of propositional models
(where the attributes inM are considered as propositional variables). In particular, for a
formal context K = (G,M,I) the set PK := {χMgI | g ∈ G}, where χ

M
B is the character-

istic function of B in M , is a set of propositional models such that for each implication
X → Y over M , X → Y is valid in K if, and only if,

∧
X →

∧
Y is valid in PK.

Analogously, ifP is a set of propositional models over a setM of propositional variables,
then the formal context KP := ({p−1(1) | p ∈ P },M,3) satisfies P |=

∧
X →

∧
Y

if, and only if, KP |= X → Y , for all implications X → Y over M .
An implicational base of a formal context K is an implication set that is sound, i.e.,

is valid in K, and is complete, i.e., entails all valid implications of K. An implicational
base is irredundant if none of its implications follows from the others, and is minimal
if it has minimal cardinality among all implicational bases for K. It is straight-forward
to show that the following statements are equivalent:

1. L is an implicational base for K.
2. Imp(L) = Imp(K).
3. Mod(L) = Int(K).

A pseudo-intent of K = (G,M,I) is an attribute set P ⊆M such that P 6= P II,
and QII ⊆ P for all pseudo-intents Q (P . The set of all pseudo-intents of K is
denoted by PsInt(K). The canonical base of a formal context K is defined as

Bcan(K) :=
{
P → P II

∣∣ P ∈ PsInt(K)
}
,

and is a minimal implicational base for K, cf. [5–8].
It has been shown that the set of all intents and pseudo-intents is a closure system.

The corresponding closure operator ·K∗ is given by the following definition:

XK∗ :=
⋃
n≥1X

K∗n where XK∗n+1 := (XK∗1)K
∗
n for all n ≥ 1,

and XK∗1 := X ∪
⋃{

P II
∣∣ P ∈ PsInt(K) and P (X

}
.

More specifically, then an attribute set X ⊆M is an intent or a pseudo-intent of K
if, and only if, X = XK∗. Additionally, we may also define a pseudo-closure operator
for implication sets L ⊆ Imp(M):

XL
∗
:=
⋃
n≥1X

L∗n where XL
∗
n+1 := (XL

∗
1)L
∗
n for all n ≥ 1,

and XL
∗
1 := X ∪

⋃
{Z | Y → Z ∈ L and Y (X } .

It is readily verified that both closure operators ·K∗ and ·L∗ coincide in case L = Bcan(K).

3 Experts

An expert is an oracle that correctly answers questions in a certain domain of interest.
For our purposes, the questions are expressed in form of implications, and an expert
may either accept or decline. If the expert accepts an implication, then it must hold
for all objects in the domain of interest, and otherwise she must return a refutation,
i.e., an object that serves as a counterexample. In this section, we will formally define
the notion of an expert, and provide some basic statements.

Definition 1 (Expert, [3, Definition 6.1.2]). Let M be a set of attributes. An
expert on M is a partial mapping χ : Imp(M)→p ℘(M) that satisfies the following
properties:

1. If χ(X → Y) is defined, then the value is not a model of X → Y , i.e.,
χ(X → Y) = C implies X ⊆ C and Y 6⊆ C. Furthermore, we then call C
a counterexample against X → Y .
(Experts return counterexamples for refuted implications.)

2. If χ(X → Y) is undefined, then every other counterexample given by χ must be
a model of X → Y , i.e., χ(U → V) = C implies X 6⊆ C or Y ⊆ C.
(Counterexamples do not refute accepted implications.)

Furthermore, we say that χ accepts X → Y , and denote this as χ |= X → Y , if
χ(X → Y) is undefined, and that χ refutes X → Y otherwise. The set of all accepted
implications of χ is denoted by Imp(χ), and the set of all counterexamples of χ is
denoted by Cex(χ) := {C | ∃X,Y ⊆M : χ(X → Y) = C }.

There is a correspondence between formal contexts and experts as follows:

Definition 2 (Induced Expert). An expert χ on M is induced by a formal context
K = (G,M,I) if it accepts exactly those implications that are valid in K, i.e., Imp(K) =
Imp(χ). If χ is an expert on M, then its induced formal context is Kχ := (Cex(χ),M,3).

Lemma 3. Let K = (G,M,I) be a formal context and χ an expert on M. Then
χ is induced by K if, and only if, it accepts only valid implications of K, and all
counterexamples are intents of K, i.e., Imp(χ) ⊆ Imp(K) as well as Cex(χ) ⊆ Int(K).

Proof. The if-direction is trivial. For the converse direction, assume that χ accepts
exactly those implications that are valid in K. Of course, then each implication accepted
by χ is valid in K. Assume that χ refutes an implication with a counterexample C. Since
the implication C → CII is trivially valid in K, χ accepts C → CII. Consequently,
the counterexample C must be a model of C → CII, i.e., C is an intent of K. ut

Lemma 4. If χ is an expert on M, then χ is an induced expert of Kχ.

Proof. Let χ be an expert on M , and consider an implication X → Y . If χ accepts
X → Y , then by Statement 2 of Definition 1 all counterexamples of χ are models of
X → Y . We conclude that all object intents of the Kχ are models of X → Y , i.e.,
X → Y is valid in Kχ.
Vice versa, if X → Y is valid in Kχ, then all intents of Kχ are models of X → Y .

Hence, χ cannot refute X → Y , as the counterexample would be an object intent of
Kχ, but would not be a model of X → Y . ut

Corollary 5. If K is a formal context with an induced expert χ, then an implication
is valid in K if, and only if, it is valid in Kχ. Furthermore, then every (minimal)
implicational base of K is a (minimal) implicational base of Kχ, and vice versa, i.e.,
the sets of intents of K and Kχ coincide.

Definition 6 (Optimal Expert). An expert χ is optimal if for all implications
X → Y , it is true that χ acceptsX → Y ∩C if χ refutesX → Y with counterexample C.

Lemma 7. Let K be a formal context. An induced expert χ of K is optimal if,
and only if, for all implications X → Y , χ(X → Y) = C implies Y ∩C ⊆ XII ⊆ C.

Furthermore, the canonical expert χK for K is an optimal induced expert for K, where

χK(X → Y) :=

{
undefined if K |= X → Y,

XII otherwise.

Proof. The if-direction is obvious. Vice versa, let χ be optimal for K, and consider
an implication X → Y that is refuted by χ with counterexample C, i.e., X ⊆ C and
Y 6⊆ C. Since χ is induced by K, C is an intent, and so XII ⊆ C. Furthermore, as
χ is optimal, X → Y ∩C is valid in K, i.e., Y ∩C ⊆ XII.

Eventually, χK is an induced expert for K, since it accepts all implications that are
valid in K, and all counterexamples are intents of K. Furthermore, it is optimal, as
implications X → Y ∩XII are trivially valid in K. ut

Lemma 8. Let χ be an expert. Then there is an optimal expert χ̂ such that both accept
the same implications, i.e., Imp(χ) = Imp(χ̂).

Proof. Consider an expert χ. We construct an equivalent optimal expert χ̂ as follows.
Let X → Y be an arbitrary implication. If χ accepts X → Y , then χ̂ accepts X → Y ,
too. If χ rejects X → Y , then proceed in the following way. Let Y0 := Y , and n := 0.
While χ rejectsX → Yn with the counterexample Zn, set Yn+1 := Yn∩Zn and increase
n. Eventually, define χ̂(X → Y) :=

⋂n
k=0Zk.

It remains to prove that χ̂ is optimal and accepts the same implications as χ. Assume
that χ̂ refutes X → Y with counterexample Z. Then there exists a sequence Z0, . . . ,Zn
of counterexamples of χ as above such that Z equals their intersection, and χ accepts
X → Y ∩Z. By construction, then also χ̂ accepts the adjusted implication X → Y ∩Z.
By definition, we already know that Imp(χ) ⊆ Imp(χ̂). Vice versa, since χ rejects

only if χ̂ rejects, we conclude that χ accepts if χ̂ accepts. ut

Proposition 9. Let K = (G,M,I) be a formal context and χ an expert on M. Then
the following statements are equivalent:

1. χ is induced by K.
2. χ accepts exactly those implications that are valid in K, i.e., Imp(χ) = Imp(K).
3. χ accepts only valid implications of K, and all counterexamples are intents of K,

i.e., Imp(χ) ⊆ Imp(K) and Cex(χ) ⊆ Int(K).
4. Each intent of K is an intersection of counterexamples of χ, and all counterexamples

are intents of K, i.e., 〈Cex(χ)〉⋂ = Int(K).

Proof. Statements 1 to 3 are equivalent by Definition 2 and Lemma 3.

3.⇔4. We consider the optimization χ̂ from Lemma 8, then by construction it is true
that every counterexample of χ̂ is an intersection of counterexamples of χ. The maximal
intent M is obtained as the empty intersection (of counterexamples). For each intent
B = BII where B 6=M , the implication B →M is invalid in K, and thus must be
rejected by χ̂ with a counterexample C. Then Lemma 7 yields C =M ∩C ⊆ BII ⊆ C.
Vice versa, let every intent of K be an intersection of counterexamples of χ, and

assume that all counterexamples are intents of K. Consider an implication X → Y
that is not valid in K, i.e., Y 6⊆ XII. In particular, then XII is an intersection of
counterexamples C1, . . . ,Cn of χ, and the Ci are intents ofK. If χ acceptsX → Y , then
Statement 2 of Definition 1 implies that all counterexamples of χ are models of X → Y ,
and in particular each Ci is a model ofX → Y . Since the set of models of an implication
is closed under intersection, XII must be a model of X → Y . Contradiction! ut

Lemma 10. Let χ be an induced expert of a formal context K. If χ is optimal, then
Cex(χ) is closed under non-empty intersections.

Proof. Let χ be optimal, and consider two counterexamples C1 and C2. The impli-
cation C1 ∩ C2 → M must be rejected by χ with a counterexample C such that
M ∩C ⊆ (C1 ∩C2)

II ⊆ C, i.e., C = C1 ∩C2, since both Ci are intents. ut

However, the converse statement does not hold in general. To see this, consider a
formal context K over M := {a, b, c} where Int(K) = {{a},{a, b},{a, b, c}}. Hence, for
each induced expert χ, we have ∅ 6= Cex(χ) ⊆ {{a},{a, b}} and it is easily verified
that for each choice, the set of counterexamples is closed under non-empty intersections.
However, an induced expert χ with χ({a} → {b, c}) := {a, b} is not optimal.

4 Parallel Attribute Exploration

As the next step, we will introduce the algorithm for Parallel Attribute Exploration.
Assume that we want to compute a minimal implicational base for an inaccessible
formal context D with attribute set M , and we have observed an induced subcontext
K = (G,M,I) of D as well as we know an expert χ that is induced by D. Of course, it
is not useful to simply compute an implicational base of K, as wrong conclusions could
be drawn. There are two naïve ways to accomplish the computation of a base. According
to Corollary 5, we may construct the formal context Kχ induced by χ, and compute its
canonical base, e.g., by means of the algorithms in [5, 6, 11]. However, this is certainly no
practical approach, as its puts a high workload on the expert by posing all possible impli-
cations as questions to her. A slight improvement would consist in first checking whether
the implication in question is already refuted by the known subcontextK, and only in case
of validity ask the expert for acceptance. Of course, all implications holding in D are valid
in K, too. Unfortunately, this modification is still not efficient, since the number of ques-
tions posed to the expert will not be minimal in order to compute an implicational base.
In general, calls to the expert are expensive, and it should be ensured that only a minimal
amount of work is put on her. This is the starting point for an algorithm called Attribute
Exploration, which is basically an extension of NextClosure with expert interaction as
introduced by Ganter [5, 6] and Ganter and Wille [7]. It enumerates all pseudo-intents
of the context D and only poses implicational questions to the expert whose premise is
a pseudo-intent. This ensures the minimality on the number of questions w.r.t. both K
and χ. If furthermore χ is optimal, then the number of questions is minimal w.r.t.K, i.e.,
for each other expert χ′ induced by D, χ′ must answer at least as many questions as χ.

While Attribute Exploration [5–7] constructs the canonical base of D in a lectic order,
Algorithm 1 computes it w.r.t. increasing premise cardinality, which in turn allows
to process all implications with the same premise cardinality in parallel. Note that
Algorithm 1 is an extension of [11, Algorithm 1] with expert interaction.

Definition 11. Let (G1,M, I1) and (G2,M, I2) be two formal contexts with disjoint
object sets and the same attribute set. Their subposition is defined as the formal context

(G1,M, I1)

(G2,M, I2)
:= (G1 ∪G2,M, I1 ∪ I2).

For a formal context K = (G,M,I) and an attribute set X ⊆M, the formal context

K[X] := (G∪ {gX},M, I ∪ {gX} ×X)

is obtained by adding a new object gX /∈ G that has all attributes from X. In particular,
K[X] is a subposition of K and the row X. For a sequence X1,X2, . . . ,Xn ⊆M, we
inductively define

K[X1,X2, . . . ,Xn] := (K[X1])[X2, . . . ,Xn].

Furthermore, we write K ≤M D if there is a context U such that D = K
U .

If L is an implication set, and k ∈ N, then L�k := {X → Y ∈ L | |X| ≤ k } contains
all implications from L whose premises have a cardinality of at most k. Furthermore,
we define PsInt(K)�k := {P ∈ PsInt(K) | |P | ≤ k }.

Lemma 12. Let K = (G,M,I) be a formal context, and X ⊆M an attribute set. Fur-
thermore, denote the incidence relation of K[X] by J. Then the following statements hold:

1. For all attribute sets B ⊆M, it is true that

BJJ =

{
BII ∩X if B ⊆ X, and
BII otherwise.

2. If X is a model of the implication Y → Y II, then Y II = Y JJ .
3. If X is a model of all implications P → P II where P is a pseudo-intent of K with
|P | ≤ k, then the pseudo-intents of K and K[X] with cardinality ≤ k coincide, i.e.,
X |= Bcan(K)�k implies PsInt(K)�k = PsInt(K[X])�k.

Proof. 1. Let B ⊆ X, then BJ = BI ∪ {gX}, and hence BJJ = (BI ∪ {gX})J =
BIJ ∩ gJX = BII ∩X. Otherwise, BJ = BI, and thus BJJ = BIJ = BII.

2. Assume that X |= Y → Y II, i.e., Y ⊆ X implies Y II ⊆ X. If Y ⊆ X, then
Y JJ = Y II ∩X = Y II. Otherwise, Y JJ = Y II follows directly.

3. We prove the statement by induction on k. First let k = 0. Obviously, ∅ is the only
set of cardinality 0. Since it has no strict subsets, it is a pseudo-intent if, and only if,
it is no intent. If ∅ is a pseudo-intent of K, then X is a model of ∅ → ∅II . Statement 2
yields ∅II = ∅JJ , and thus ∅ 6= ∅JJ . If otherwise ∅ is an intent of K, then it holds that
∅ = ∅II ⊇ ∅II ∩X ⊇ ∅, i.e., ∅ must be an intent of K[X], too.

Now assume that the induction hypothesis holds for k. Consider a pseudo-intent P of
K with |P | = k + 1. Since X is a model of P → P II , Statement 2 yields P II = PJJ ,
and hence P is no intent of K[X]. Now let Q (P be a pseudo-intent of K[X]. Then
|Q| ≤ k, and hence Q is a pseudo-intent of K by induction hypothesis. Consequently,
QII ⊆ P , and thus QJJ ⊆ P .

Vice versa, let P be a pseudo-intent of K[X] with |P | = k + 1. Then P is no intent
of K, as P 6= PJJ ⊆ P II. Consider a pseudo-intent Q (P of K. Then Q must be
a K[X]-pseudo-intent by induction hypothesis. Furthermore, QJJ ⊆ P . Since X is a
model of Q→ QII, Statement 2 implies QJJ = QII, and thus QII ⊆ P . ut

As an immediate consequence we deduce from the preceding lemma, more specifically
from Statements 2 and 3, that the following corollary holds.

Corollary 13. Let K = (G,M,I) be a formal context, and X ⊆M an attribute set.
If X is a model of Bcan(K)�k, then Bcan(K)�k = Bcan(K[X])�k.

Algorithm 1 ParallelAttributeExploration

Require: a formal context K = (G,M,I)
Require: an expert χ on M
1 C := {∅}, L := ∅
2 for k = 0,1, . . . , |M| − 1 do
3 for all C ∈ C with |C| = k do in parallel
4 if C = CL∗ then
5 while C 6= CII and χ(C → CII) = X do
6 K := K[X]
7 if C 6= CII then
8 L := L∪ {C → CII}
9 C := C∪ {CII ∪ {m} |m /∈ CII }
10 else
11 C := C∪ {CL∗}
12 Wait for termination of all parallel processes.
13 return (K,L)

By successive application of the previous corollary we get the following statement.

Lemma 14. Let K = (G,M,I) be a formal context, and X1, . . . ,Xn ⊆M attribute
sets. If each Xi is a model of Bcan(K)�k, then Bcan(K)�k = Bcan(K[X1, . . . ,Xn])�k.

Proof. We show by induction on i ∈ {1, . . . , n} thatBcan(K)�k = Bcan(K[X1, . . . ,Xi])�k.
The induction base follows from Corollary 13. Now assume that i < n and the induction
hypothesis holds for i. Then Xi+1 |= Bcan(K)�k = Bcan(K[X1, . . . ,Xi])�k, and again by
Corollary 13 we conclude Bcan(K[X1, . . . ,Xi])�k = Bcan(K[X1, . . . ,Xi,Xi+1])�k. ut

In [11] we have shown that in order to correctly determine whether an attribute set
with at most k elements is an intent or pseudo-intent of K, it suffices to know the part
of the canonical base that consists of all implications whose premise has a cardinality
smaller than k. More specifically, we cite the following corollary.

Corollary 15 ([11, Corollary 3]). If L contains all implications P → P II where
P is a pseudo-intent of K with |P | < k, and otherwise only implications with premise
cardinality k, then for all attribute sets X ⊆M with |X| ≤ k the following statements
are equivalent:

1. X is an intent or a pseudo-intent of K.
2. X is L∗-closed.

Algorithm 1 describes Parallel Attribute Exploration in pseudo-code. If the expert
χ is optimal, then the while-statement in Line 5 may be replaced with the analogous
if-statement, since after χ refutes an implication C → CII with a counterexample X
we have that χ accepts C → CII ∩X, and CJJ = CII ∩X where J is the incidence
relation of K[X], i.e., in the second iteration, the condition of the while-statement
always evaluates to false. In particular, the optimality of the expert is no restriction,
since according to Lemma 8 we may always optimize an expert.

In the following text we will analyze Algorithm 1, and show its soundness, complete-
ness, and termination. Beforehand, we define the following notions:

1. A run of ParallelAttributeExploration is in state k if all candidates of car-
dinality k have been processed, but none of cardinality k+ 1.

2. Ck denotes the set of candidates in state k.
3. Lk denotes the set of implications in state k.
4. Kk := (Gk,M, Ik) denotes the formal context in state k.
5. X1

k, . . . ,X
nk

k denote all counterexamples provided by the expert between states
k and k+ 1, i.e., it is true that Kk[X1

k, . . . ,X
nk

k] = Kk+1.

Proposition 16. Let K = (G,M,I) be a formal context, and χ an expert on M, such
that all implications accepted by χ are valid in K. Further assume that Algorithm 1
is started on (K, χ) as input, and is currently in state k. Then the following statements
are satisfied:

1. Ck contains all pseudo-intents of Kk+1 with cardinality k+ 1.
2. Lk consists of all implications P → P IkIk where P is a pseudo-intent of Kk with

cardinality ≤ k, i.e., Bcan(Kk)�k = Lk.
3. Between the states k and k+1, every attribute set with cardinality k+1 is L∗-closed

if, and only if, it is either an intent or a pseudo-intent of Kk+1.

Proof. W.l.o.g. assume that the expert χ is optimal, and Line 5 of Algorithm 1 has
been replaced with the analogous if-statement as discussed above.
We show the statements by induction on k. For the base case assume k = −1, as

the initial state is −1. The candidate set is initialized as {∅}, and thus C−1 indeed
contains all pseudo-intents with 0 elements. As there are no pseudo-intents of K−1 = K
with at most −1 elements, the initial implication set L−1 = ∅ satisfies Statement 2.
Between the states −1 and 0 all candidates with 0 elements are processed, i.e., only
∅ is processed. Obviously, ∅ is either an intent or a pseudo-intent of K0, i.e., it is
(K0)

∗-closed. Furthermore, ∅ has no strict subsets, and hence it must be L∗-closed for
all implication sets L between states −1 and 0, i.e., L−1 ⊆ L ⊆ L0.
For the induction step assume that the statements hold for all states ≤ k.
2. We will prove that Bcan(Kk+1)�k+1 = Lk+1. Statement 2 of the induction hypoth-

esis yields that Bcan(Kk)�k = Lk. All counterexamples provided by the expert between
states k and k + 1 are models of Lk, as the expert has accepted all implications in Lk.
As a consequence, Lemma 14 implies Bcan(Kk)�k = Bcan(Kk+1)�k. Since Algorithm 1
does not remove or modify any implications in L, and between the states k and k + 1
only implications with a premise cardinality of k+ 1 are added to L, it is true that
Lk+1�k = Lk and Lk+1 cannot contain any implications with a premise cardinality
> k+1. Hence, Lk+1 contains Bcan(Kk+1)�k, and it remains to show that Lk+1 contains
all implications of Bcan(Kk+1) with premise cardinality k+ 1.

By Statement 1 of the induction hypothesis, the candidate set Ck contains all pseudo-
intents of Kk+1 with k+ 1 elements. Of course, all these candidates are processed in
Lines 4–12 of Algorithm 1 between the states k and k+ 1. Then Statement 3 of the
induction hypothesis yields that for each candidate C between the states k and k+1, C
is L∗-closed if, and only if, C is an intent or a pseudo-intent of Kk+1. Consequently, each
pseudo-intent of Kk+1 of cardinality k+1 is recognized in Line 4. Now consider one such
recognized pseudo-intent C. If it were an intent of the current formal contextK, then also
ofKk+1. Thus, the test for non-closedness in Line 5 passes, and the question C → CII is
posed to the expert χ in Line 5. If the conclusion CII is too large, i.e., χ rejects the impli-
cation, then the returned counterexample X is added as a new row to K in Line 6. After

execution of Lines 5 and 6, the implication C → CII is accepted, and hence is valid in
Kk+1. All other counterexamples provided by the expert between states k and k+1must
be models of C → CII , and by a repeated application of Statement 2 of Lemma 12 we
conclude that CII = CIk+1Ik+1. It follows that C → CII is indeed an implication of the
canonical base ofKk+1, and it is contained inLk+1, since it has been added toL in Line 8.
Eventually, it remains to show that there are no other implications in Lk+1 with

premise cardinality k+1 which are not in the canonical base ofKk+1. Consider any candi-
date C between states k and k+1 that is no pseudo-intent of Kk+1. An implication with
premise C could only have been added to L if C is recognized as L∗-closed in Line 4, i.e.,
only ifC is an intent ofKk+1. IfC is also an intent of the current contextK, then no impli-
cation with premise C is added to L, cf. Lines 4–8. Otherwise, if C is no intent of the cur-
rent contextK, then the questionC → CII must be rejected by χ with a counterexample
X (that is trivially an intent of K[X]). Furthermore, then it holds that CJJ = CII ∩X
where J is the incidence relation of K[X]. It remains to prove that C = CJJ . The
adjusted implicationC → CII∩X is valid inKk+1, as it trivially holds in the current con-
textK and the expert must accept it due to optimality, i.e., all counterexamples provided
by χ (between states k and k+1) are models of the implication. Consequently, CII ∩X
is a subset of CIk+1Ik+1 = C, and thus C = CJJ . It follows that the check for non-
closedness in Line 7 fails, and hence no implication with premiseC is added to L in Line 8.

3. We have already shown that Bcan(Kk+1)�k+1 = Lk+1. Lemma 14 states that
Bcan(Kk+1)�k+1 = Bcan(Kk+2)�k+1, since all counterexamples X1

k+1, . . . ,X
nk+1

k+1 are
models of Lk+1. Consequently, for each implication set L with Lk+1 ⊆ L ⊆ Lk+2,
Corollary 15 yields that an attribute set of cardinality k+2 is an intent or a pseudo-intent
of Kk+2 if, and only if, it is L∗-closed, since L is a superset of Bcan(Kk+2)�k+1 and
furthermore only contains implications with a premise cardinality k+ 2.

1. Let P be a pseudo-intent of Kk+2 with cardinality k + 2. We have to show that
P occurs as a candidate in Ck+1. Beforehand, we prove an auxiliary lemma:

Lemma 17. If ` < k + 2, then for all h with ` ≤ h ≤ k + 2 it holds that
PsInt(K`)�` = PsInt(Kh)�` and Bcan(K`)�` = Bcan(Kh)�`.

Proof. Assume that ` < k+ 2. We prove the claim by induction on h. The base case
h = ` is trivial. For the inductive step assume that the statement holds for h with
` ≤ h < k + 2. In particular, then Lh = Bcan(Kh)�h. We proceed by showing the inner
induction: Bcan(Kh)�` = Bcan(Kh[X1

h, . . . ,X
i
h])�` for all i ∈ {1, . . . , nh}.

base case: X1
h |= Lh = Bcan(Kh)�h ⊇ Bcan(Kh)�` and thus Corollary 15 yields that

Bcan(Kh)�` = Bcan(Kh[X1
h])�`.

inductive step: Xi
h |= Lh = Bcan(Kh)�h ⊇ Bcan(Kh)�` = Bcan(Kh[X1

h, . . . ,X
i−1
h])�`

and hence Corollary 15 implies Bcan(Kh)�` = Bcan(Kh[X1
h, . . . ,X

i
h])�`.

Since the statement holds in particular for i = nh, we conclude that Bcan(Kh)�` =
Bcan(Kh+1)�`, since Kh+1 = Kh[X1

h, . . . ,X
nh

h]. ut

Assume that there is a pseudo-intent Q of Kk+2 that is maximal w.r.t.Q (P . Then
it holds that Q (QIk+2Ik+2 (P , and QIk+2Ik+2 is the only intent of Kk+2 between Q
and P . Let ` := |Q|, i.e., Q ∈ PsInt(Kk+2)�`. Then Q must be a pseudo-intent of K`,
cf. Lemma 17. Consequently, L` contains Q→ QI`I`, it is true that QI`I` = QIk+2Ik+2,

and the candidates QI`I` ∪ {m} for m ∈ P \QI`I` have been added to C, cf. Line 9.
Hence, define the sequence

C0 := QI`I` ∪ {m} where m ∈ P \QI`I`, and
Ci+1 := (Ci)

L∗ where L|Ci|−1 ⊆ L ⊆ L|Ci|.

The attribute m for the first element C0 of the sequence may be chosen arbitrarily.
Furthermore, all following elements are well-defined, since implications in L|Ci| \L|Ci|−1
have no influence on the closure of Ci. It is obvious that each Ci occurs as a candidate
during the algorithm’s run, cf. Lines 9 and 11, and that the sequence increases, i.e.,
Ci ⊆ Ci+1 for all indices i. We now prove by induction on i that Ci ⊆ P . The base
case for i = 0 is trivial. Assume that Ci ⊆ P . Consider any implication set L where
L|Ci|−1 ⊆ L ⊆ L|Ci|. Then Ci+1 = (Ci)

L∗. Furthermore, we have that |Ci| ≤ k + 2,
and thus L|Ci| ⊆ Lk+2. Consequently,

Ci+1 = (Ci)
L∗ = (Ci)

(L|Ci|)
∗

⊆ (Ci)
(Lk+2)

∗
⊆ P (Lk+2)

∗
= P.

If there were an index i with Ci = Ci+1, i.e., Ci were (L|Ci|)
∗-closed, then Ci must be

an intent or a pseudo-intent of K|Ci|. In particular, QIk+2Ik+2 (Ci ⊆ P . If Ci were an
intent, then also one of Kk+2, which contradicts the maximality of Q. Hence Ci must be
a pseudo-intent, and in particular one of Kk+2 by Lemma 17. Due to the fact that Q is a
maximal pseudo-intent below P , we may conclude that Ci = P . In summary, it follows
that the sequence strictly converges to P (in finitely many steps if P \Q is finite), i.e.,
ends with P , and since each element is a candidate, P must occur as a candidate in C.

Eventually, we have to consider the case where no pseudo-intent of Kk+2 below P
exists. In particular, then ∅ must be an intent of Kk+2. As a consequence, ∅ is an intent
of K0, too, as otherwise there would be an implication with premise ∅ in L. Thus,
the candidates {m} where m ∈ P have been inserted into C. We may now define a
sequence as above, but with C0 := {m} for an m ∈ P , and argue similarly as above.
However, we have to additionally take care of the case Ci = Ci+1, as we may not use
the maximality argument. Instead, assume that i is a minimal such index, and then
merely continue the sequence with Ci+1 := Ci ∪{m} where m ∈ P \Ci. This choice is
suitable, since then Ci+1 is a candidate, too, cf. Line 9. It follows that it is a sequence
of candidates that ends with P , i.e., P ∈ Ck+2. ut

Theorem 18. Let D be an (inaccessible) formal context with a finite attribute set,
K be a finite subcontext of D such that K and D share the same attribute set, i.e.,
K ≤M D, and χ an expert that is induced by D and answers questions in finite time. If
Algorithm 1 is started on (K, χ) as input, then it terminates, and returns a refinement
K◦ of K with Int(K◦) = Int(D) as well as a minimal implicational base of D.

Furthermore, there is no algorithm that computes a minimal implicational base of
D, but poses less questions to χ than Algorithm 1.

Proof. Termination is a consequence of finiteness of K. If K is finite, then it has a finite
attribute set M , and consequently there may only be finitely many candidates on each
level. Furthermore, the computation of closures w.r.t. the operator L∗ can always be
obtained in finite time, since the implication set L consists of finitely many implications

at any time during the algorithm’s run. Obviously, also the intent closure ·II can be
computed in finite time for finite contexts. Since each candidate is only used once to
pose a question to the expert, it is not possible that the expert may return infinitely
many counterexamples, and hence the adjusted context cannot grow to an infinite size.

The context K◦ := K|M| of the final state is returned by the algorithm. It is readily
verified that it contains the initial context K as a subcontext. Furthermore, due to the
fact that K is itself a subcontext of D, and during the algorithm’s run only intents
of D are added as new rows to K, we conclude that Int(K◦) ⊆ Int(D).

By Proposition 16, it follows that in the final state |M |, L◦ := L|M| is the canonical
base of K◦, i.e., Imp(K◦) = Imp(L◦). Furthermore, Imp(D) = Imp(χ) by Definition 2.
Since all implications in L◦ have been accepted by χ, we conclude L◦ ⊆ Imp(χ), and
hence Imp(L◦) ⊆ Imp(χ). From Int(K◦) ⊆ Int(D) it follows that Imp(D) ⊆ Imp(K◦). (If
there were an implication that is valid in D, but is not valid inK◦, then a counterexample
would exist which is an intent of K◦, i.e., an intent of D. Contradiction!) Consequently,
the returned implication set L◦ is indeed a minimal implicational base of D. Since L◦
is sound and complete for both K◦ and D, it follows that Int(K◦) = Mod(L◦) = Int(D).
The last claim is an immediate consequence of the fact, that L|M| is a minimal

implicational base. ut

5 Discussion

Of course, it would be possible to utilize multiple experts in the default Attribute Explo-
ration [4–7, 13], but however this would not give any performance boost (if we assume
that all experts answer immediately), as only one question in form of an implication is con-
structed at a time. If we compare Algorithm 1 with default Attribute Exploration, the or-
der of the questions is different. They are enumerated in the lectic order, while the Paral-
lelAttributeExploration enumerates w.r.t. increasing set cardinality of the premises.
This means that on the one hand between two states of Algorithm 1 several implications
can be processed in parallel, and on the other hand the difficulty of the questions (when
measured in premise size) increases during the algorithm’s run. In the default Attribute
Exploration the difficulty of the questions varies during the algorithm’s run, as they are
constructed in the lectic order that does not respect set cardinality. Furthermore, the de-
fault algorithm cannot continue before the last posed question has been answered, but in
contrast the parallel algorithm may process all posed questions with same premise cardi-
nality in parallel. However, both algorithms return the same result for the same experts.
For an integration of several experts, there are the following options:

1. Randomly choose an (idle) expert, and pose the question to her.
2. Pose the question to all experts, and return the first answer.
3. Pose the question to all experts, and accept if all experts accept.
4. Pose the question to all experts, and accept if at least one expert accepts.

However, if we assume that all available experts are indeed induced by the formal con-
text describing the domain of interest, i.e., have the same knowledge, then each of the four
possibilities above would yield the same result, and hence it suffices to equally distribute
the questions to all available experts. The four choices would only create different be-
haviours if the knowledge of the experts is not equivalent, or if the answering delays vary.

For instance, assume that there are experts χ1, . . . , χn such that each χi is induced
by a formal context Di ≤M D, and

⋃n
i=1Di = D, i.e., each expert knows a part of

the domain of interest, and no part of the domain of interest is unknown. Then an
implication is valid in D if, and only if, it is valid in each Di. An induced expert χ
of D is then obtained with the following definition: For an implication X → Y , let
χ |= X → Y if χi |= X → Y for all indices i ∈ {1, . . . , n}, and otherwise define
χ(X → Y) as an arbitrary element of {C | ∃i ∈ {1, . . . , n} : χi(X → Y) = C }, i.e.,
query all experts, and return the first counterexample, or accept otherwise.

6 Conclusion

We have considered the problem of Parallel Attribute Exploration, where a (minimal)
implicational base for a domain of interest shall be computed in a parallel manner. The
domain of interest is a formal context of which only some objects and their intents are
known, and furthermore some experts are available that can correctly decide whether im-
plications are valid. The introduced algorithm ParallelAttributeExploration is an
extension of the algorithm NextClosures [10, 11], and a prototypical implementation is
available [9]. It is planned to utilize it for a collaborative knowledge acquisition platform.
As a future step, the algorithm will be further extended to handle background

knowledge, as this has been done by [4, 13] for the default Attribute Exploration with
lectic order. Furthermore, the algorithm will be generalized to the case where the
data-set is described in terms of a closure operator in a (graded) complete lattice.
Acknowledgements The author gratefully thanks the anonymous reviewers for their
constructive hints and helpful remarks.

References

[1] Dana Angluin, Michael Frazier, and Leonard Pitt. “Learning Conjunctions of Horn
Clauses”. In: Machine Learning 9 (1992), pp. 147–164.

[2] Marta Arias and José L. Balcázar. “Canonical Horn Representations and Query Learning”.
In: Algorithmic Learning Theory, 20th International Conference, ALT 2009, Porto,
Portugal, October 3-5, 2009. Proceedings. 2009, pp. 156–170.

[3] Daniel Borchmann. “Learning Terminological Knowledge with High Confidence from
Erroneous Data”. PhD thesis. Technische Universität Dresden, 2014.

[4] Bernhard Ganter. “Attribute Exploration with Background Knowledge”. In: Theor.
Comput. Sci. 217.2 (1999), pp. 215–233.

[5] Bernhard Ganter. Two Basic Algorithms in Concept Analysis. FB4-Preprint 831.
Darmstadt, Germany: Technische Hochschule Darmstadt, 1984.

[6] Bernhard Ganter. “Two Basic Algorithms in Concept Analysis”. In: Formal Concept
Analysis, 8th International Conference, ICFCA 2010, Agadir, Morocco, March 15-18,
2010. Proceedings. 2010, pp. 312–340.

[7] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, 1999.

[8] Jean-Luc Guigues and Vincent Duquenne. “Famille minimale d’implications informatives
résultant d’un tableau de données binaires”. In: Mathématiques et Sciences Humaines
95 (1986), pp. 5–18.

[9] Francesco Kriegel. Concept Explorer FX. Software for Formal Concept Analysis. 2010–
2016. url: https://github.com/francesco-kriegel/conexp-fx.

[10] Francesco Kriegel. NextClosures – Parallel Exploration of Constrained Closure Operators.
LTCS-Report 15-01. Dresden, Germany: Chair of Automata Theory, Institute of
Theoretical Computer Science, Technische Universität Dresden, 2015.

https://github.com/francesco-kriegel/conexp-fx

[11] Francesco Kriegel and Daniel Borchmann. “NextClosures: Parallel Computation of
the Canonical Base”. In: Proceedings of the 12th International Conference on Concept
Lattices and Their Applications (CLA 2015), Clermont-Ferrand, France, October 13-16,
2015. 2015, pp. 181–192.

[12] David Maier. The Theory of Relational Databases. Computer Science Press, 1983.
[13] Gerd Stumme. “Attribute Exploration with Background Implications and Exceptions”.

In: Data Analysis and Information Systems. Ed. by Hans-Hermann Bock and Wolfgang
Polasek. Studies in Classification, Data Analysis, and Knowledge Organization. Springer,
1996, pp. 457–469.

	Parallel Attribute Exploration

