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Abstract. In a previous paper, we have introduced an extension
of the lightweight Description Logic EL that allows us to define
concepts in an approximate way. For this purpose, we have defined
a graded membership function deg , which for each individual and
concept yields a number in the interval [0, 1] expressing the degree
to which the individual belongs to the concept. Threshold concepts
C∼t for ∼ ∈ {<,≤, >,≥} then collect all the individuals that be-
long to C with degree ∼ t. We have then investigated the complexity
of reasoning in the Description Logic τEL(deg), which is obtained
from EL by adding such threshold concepts. In the present paper,
we extend these results, which were obtained for reasoning without
TBoxes, to the case of reasoning w.r.t. acyclic TBoxes. Surprisingly,
this is not as easy as might have been expected. On the one hand, one
must be quite careful to define acyclic TBoxes such that they still
just introduce abbreviations for complex concepts, and thus can be
unfolded. On the other hand, it turns out that, in contrast to the case
of EL, adding acyclic TBoxes to τEL(deg) increases the complexity
of reasoning by at least on level of the polynomial hierarchy.

1 INTRODUCTION

Description logics (DLs) [3] allow their users to define the important
notions of an application domain as concepts by stating necessary
and sufficient conditions for an individual to belong to the concept.
These conditions can be atomic properties required for the individual
(expressed by concept names) or properties that refer to relationships
with other individuals and their properties (expressed as role restric-
tions). The expressivity of a particular DL is determined on the one
hand by what sort of properties can be required and how they can
be combined. On the other hand, DLs provide their users with ways
of stating terminological axioms in a so-called TBox. The simplest
kind of TBoxes are called acyclic TBoxes, which consist of concept
definitions without cyclic dependencies among the defined concepts.
Basically, such a TBox introduces abbreviations for complex concept
descriptions. But even this simple form of TBoxes may increase the
complexity of reasoning, as is, for example the case for the DL FL0,
for which the complexity of the subsumption problem increases from
polynomial-time to coNP-complete if acyclic TBoxes are added [12].

The DL EL, in which concepts can be built using concept names
as well as the concept constructors conjunction (�), existential re-
striction (∃r.C), and the top concept (�),2 has drawn considerable
attention in the last decade since, on the one hand, important infer-
ence problems such as the subsumption problem are polynomial in
EL, not only w.r.t. acyclic TBoxes, but also w.r.t. more expressive
terminological axioms called GCIs [8]. On the other hand, though

1 TU Dresden, email: {franz.baader, oliver.fernandez}@tu-dresden.de
2 In FL0, we have value restrictions (∀r.C) instead of existential restrictions.

quite inexpressive, EL underlies the OWL 2 EL profile3 and can be
used to define biomedical ontologies, such as the large medical on-
tology SNOMED CT,4 which basically is an acyclic EL TBox. In EL
we can, for example, define the concept of a good movie as a movie
that is uplifting, has a simple, but original plot, a likable and an evil
character, action and love scenes, and a happy ending.

Movie � Uplifting � ∃plot.(Simple � Original) �

∃character.Likeable � ∃character.Evil � (1)

∃scene.Action � ∃scene.Love � ∃ending.Happy.

For an individual to belong to this concept, all the stated properties
need to be satisfied. However, maybe we would still want to call a
movie good if most, though not all, of the properties hold.

In [2], we have introduced a DL extending EL that allows us to
define concepts in such an approximate way. The main idea is to use
a graded membership function, which instead of a Boolean member-
ship value 0 or 1 yields a membership degree from the interval [0, 1].
We can then require a good movie to belong to the EL concept (1)
with degree at least .8. More generally, if C is an EL concept, then
the threshold concept C≥t for t ∈ [0, 1] collects all the individuals
that belong to C with degree at least t. In addition to such upper
threshold concepts, also lower threshold concepts C≤t are consid-
ered, and strict inequalities may be used. For example, a bad movie
could be required to belong to the EL concept (1) with a degree less
than .2. In contrast to fuzzy DLs [7, 10, 16], which also yield mem-
bership degrees, we use classical crisp interpretations to define the
semantics of the new logic. The membership degree of an individual
d in a concept C is obtained by comparing the properties that the in-
dividual has with the properties that the concept requires. Moreover,
the obtained threshold concepts are crisp rather than fuzzy.

There are, of course, different possibilities for how to define a
graded membership function m based on the previous idea, and the
semantics of the obtained new logic τEL(m) depends on m. In [2],
we have not only introduced this general framework, but have also
defined a specific graded membership function deg , and have in-
vestigated the complexity of reasoning in τEL(deg) in detail. More
precisely, we have shown that the satisfiability and the ABox con-
sistency problem in τEL(deg) are NP-complete, and the subsump-
tion and the instance problem are coNP-complete (the latter w.r.t.
data complexity). All these results are shown for the setting with-
out TBoxes. From a technical point of view, we think that deg (but
not our logic τEL(deg)) can be expressed using the combination of
Aggregation Operators (AOs) and fuzzy DLs [6]. Nevertheless, we

3 see http://www.w3.org/TR/owl2-profiles/
4 see http://www.ihtsdo.org/snomed-ct/
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believe that the existing results on reasoning in fuzzy DLs with AOs
do not imply any of our results. In fact, the fuzzy DL introduced in
[6] cannot express our threshold concepts, and we show exact com-
plexity results for extensions of EL.

The main contribution of the present paper is to investigate the
complexity of reasoning in τEL(deg) w.r.t. acyclic TBoxes. Surpris-
ingly, this is not as easy as might have been expected. The problem
already starts with how to define acyclic TBoxes in τEL(deg). It
turns out that simply replacing EL concepts by τEL(deg) concepts
in the definition of an acyclic TBox does not yield the desired re-
sult. In fact, acyclic TBoxes are supposed to introduce concept names
(defined concepts) as abbreviations for complex concepts, and these
complex concepts can be obtained by unfolding defined concepts,
i.e., by replacing defined concepts by their definitions until no more
defined concepts occur. For the straightforward definition of acyclic
τEL(deg) TBoxes mentioned above, this unfolding would actually
yield concepts that are not syntactically correct τEL(deg) concepts
since they may contain nested threshold operators, which is not al-
lowed in τEL(deg).5 Thus, we propose a more sophisticated notion
of acyclic TBox for τEL(deg), which consists of an EL part and
a τEL(deg) part satisfying certain properties. These properties en-
sures that unfolding yields a correct τEL(deg) concept. Of course,
from a semantic point of view, we want defined concepts to have
the same meaning as their unfolded counterparts. For this to hold,
we need to require the graded membership function to “respect” the
EL part of the TBox in an appropriate way. We show how deg can
be modified such that it satisfies this requirement. This finally fixes
syntax and semantics of acyclic τEL(deg) TBoxes. We then inves-
tigate reasoning w.r.t. such TBoxes. We show that, again quite sur-
prisingly, the complexity increases by at least one level in the poly-
nomial hierarchy when acyclic TBoxes are added: satisfiability and
consistency are ΠP

2 -hard and subsumption and the instance problem
are ΣP

2 -hard. The best upper bound we can currently show for these
problems is PSpace.

In the next section, we will sketch how the DL τEL(deg) was de-
fined in [2] (more details and motivating discussions can be found
in that paper). In Section 3, we introduce acyclic τEL(deg) TBoxes,
and in Section 4 we sketch proofs of the mentioned complexity re-
sults (detailed proofs can be found in [4]).

2 THE DESCRIPTION LOGIC τEL(deg)

We start by introducing the DL EL and some related notions that
are needed in the rest of the paper. Afterwards, we present the ab-
stract family of DLs τEL(m) that is obtained by extending EL with
threshold concepts defined using a graded membership function m
[2]. Finally, we recall the specific graded membership function deg ,
and briefly discuss the results obtained in [2] concerning the compu-
tational complexity of reasoning in τEL(deg).

2.1 The Description Logic EL
Starting with finite sets of concept names NC and role names NR,
the set CEL of EL concept descriptions is obtained by combining
the concept constructors conjunction (C �D), existential restriction
(∃r.C) and top (�), in the following way:

C ::= � | A | C � C | ∃r.C (2)

5 In fact, the semantics of such nested concepts would not be well-defined
since the graded membership function can only deal with EL concepts as
input.

where A ∈ NC, r ∈ NR and C ∈ CEL.
The semantics of EL is given through standard first-order logic in-

terpretations. An interpretation I=(ΔI , .I) consists of a non-empty
domain ΔI and an interpretation function .I that assigns subsets of
ΔI to concept names in NC and binary relations over ΔI to role
names in NR. The function .I is inductively extended to arbitrary
concept descriptions in the usual way, i.e.,

�I := ΔI , (C �D)I := CI ∩DI ,
(∃r.C)I := {x ∈ ΔI | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}.

Given two EL concept descriptions C and D, we say that C is sub-
sumed by D (in symbols C � D) iff CI ⊆ DI for all interpreta-
tions I. These two concepts are equivalent (in symbols C ≡ D) iff
C � D and D � C. In addition, C is satisfiable iff CI �= ∅ for
some interpretation I.

Information about specific individuals (represented by a set of in-
dividual names NI) can be expressed in an ABox, which is a finite set
of assertions of the form C(a) or r(a, b), where C ∈ CEL, r ∈ NR,
and a, b ∈ NI. In addition to concept and role names, an interpreta-
tion I now assigns domain elements aI to individual names a. We
say that I satisfies an assertion C(a) iff aI ∈ CI , and r(a, b) iff
(aI , bI) ∈ rI . Further, I is a model of A (denoted as I |= A) iff
it satisfies all the assertions of A. Then, an ABox A is consistent
iff I |= A for some interpretation I. Finally, an individual a is an
instance of C in A iff aI ∈ CI for all models I of A.

An EL TBox T is a finite set of concept definitions of the form
E

.
=CE , where E ∈ NC and CE is an EL concept description.6 Ad-

ditionally, we require that no concept name occurs more than once
on the left hand side of a definition. Concept names occurring on
the left hand side of a definition of T are called defined concepts
while all other concept names are called primitive concepts. The sets
of defined and primitive concepts of T are denoted as NT

d and NT
pr ,

respectively. Note that NT
pr = NC \ NT

d , and thus also contains all
concept names not occurring in T . An interpretation I is a model of
T (in symbols I |= T ) iff EI = (CE)

I for all E .
= CE ∈ T . The

relations � and ≡ are now defined modulo all models of T and de-
noted as �T and ≡T , respectively. The satisfiability and the instance
problem can be adapted accordingly to the presence of a TBox, and
we then talk about satisfiability and instance w.r.t. T .

TBoxes can be classified into being acyclic or cyclic, based on
how their defined concepts depend on each other. A defined concept
E1 directly depends on a defined concept E2 iff E1

.
= CE1 ∈ T and

E2 occurs in CE1 . Then, T is called cyclic iff it contains a defined
concept E that depends directly or indirectly on itself. Otherwise, it
is called acyclic. Given an acyclic TBox T , the unfolding uT (C) of
an EL concept description C w.r.t. T is the concept description ob-
tained by exhaustively replacing all occurrences of defined concepts
E by their definitions CE in T . Based on this, the meaning of a con-
cept C can always be determined from the meaning of its unfolded
description: CI = [uT (C)]I for all models I of T , which means
that C ≡T uT (C). From a model-theoretical point of view this is
captured by the following proposition (see [13]).

Proposition 1 Let T be an acyclic EL TBox. Any interpretation I
of NT

pr ∪ NR can be uniquely extended into a model of T .

The definition of the graded membership function deg that we will
recall in Section 2.3 is based on the representation of concepts and in-
terpretations as graphs, and homomorphisms between these graphs.

6 In this paper, we do not consider so-called general concept inclusions
(GCIs), which are of the form C � D for C,D ∈ CEL.
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An EL description graph is a tuple G = (VG, EG, �G), where �G
labels each node v in VG with a subset �G(v) ⊆ NC and each edge
vrw ∈ EG is labeled with a role name r from NR. In [5] it is shown
that every EL concept description C can be translated into an EL de-
scription tree TC and vice versa. Moreover, in [1] interpretations I
are translated into EL description graphs GI . For instance, the left-
hand side of Figure 1 depicts the EL description tree corresponding
to the concept description A � ∃s.(B1 � ∃r.B3 � ∃r.B2), whereas
the right-hand side shows the description graph induced by an in-
terpretation I whose domain consists of 6 elements, and where the
extensions of concept and role names are given by the labels (the
meaning of the lines going from TC to GI will be discussed later).

Homomorphisms between EL description trees were introduced
in [5] to characterize subsumption in EL: C � D iff there exists
a homomorphism from TD to TC mapping the root of TD to the
root of TC (Thm. 1, [5]). The following definition generalizes such
homomorphisms to graphs.

Definition 2 Let G=(VG, EG, �G) and H=(VH , EH , �H) be two
EL description graphs. A mapping ϕ : VG → VH is a homomor-
phism from G to H iff the following conditions are satisfied:

1. �G(v) ⊆ �H(ϕ(v)) for all v ∈ VG, and
2. vrw ∈ EG implies ϕ(v)rϕ(w) ∈ EH .

Such homomorphisms can be used to characterize membership in
EL concept descriptions.

Theorem 3 Let I be an interpretation, d ∈ ΔI , and C an EL con-
cept description. Then, d ∈ CI iff there exists a homomorphism ϕ
from TC to GI such that ϕ(v0) = d.

One final technical notion: the role depth rd(C) of an EL concept
description C is the maximal nesting of existential restrictions in C;
equivalently, it is the height of the description tree TC .

2.2 Adding threshold concepts to EL
In [2], we have extended EL with a family of concept construc-
tors of the form C∼t, such that C is an EL concept description,
∼ ∈ {<,≤, >,≥}, and t is a rational number in [0, 1]. These
new constructors can then be combined with the basic EL concept
constructors (2) to form more complex concepts, e.g., (∃r.A)<1 �
∃r.(A � B)≥.8 � B. Concepts of the form C∼t are called threshold
concepts. The semantics of such concepts is based on a graded mem-
bership function m. The idea is that, given an interpretation I and
d ∈ ΔI , mI(d, C) computes a value between 0 and 1 representing
the extent to which d belongs to C in I. For instance, the concept
C>.8 collects all the individuals that belong to C with degree greater
than .8. To indicate which function m is used to obtain the seman-
tics of threshold concepts, we call the extended logic τEL(m). We
require such functions m to satisfy the following two properties.

Definition 4 A graded membership function m is a family of func-
tions that contains for every interpretation I a function mI : ΔI ×
CEL → [0, 1] satisfying the following conditions (for C,D ∈ CEL):

M1: d∈CI ⇔ mI(d, C)=1 for all d ∈ ΔI ,

M2: C≡D ⇔ ∀I ∀d ∈ ΔI : mI(d, C)=mI(d,D).

The formal semantics of threshold concepts is then defined in terms
of m as follows: (C∼t)

I := {d ∈ ΔI | mI(d, C) ∼ t}. Taking this

Figure 1. Partial mappings.

TC :
v0 : {A}

v1 : {B1}

v2 : {B2}

r

v3 : {B3}

r

s

GI :
d0 : {A}

d1 : {}

d3 : {B2}

r

d4 : {B3}

r

s

d2 : {B1}

d5 : {}

r

s

into account, .I is extended in a natural way to interpret complex
τEL(m) concept descriptions.

Coming back to Definition 4, on the one hand, property M2 ex-
presses the intuition that membership values should not depend on
the syntactic form of a concept, but only on its semantics. On the
other hand, requiring M1 has the following consequences.

Proposition 5 For every EL concept description C we have C≥1 ≡
C and C<1 ≡ ¬C, where the semantics of negation is defined as
usual, i.e., (¬C)I := ΔI \ CI .

The equivalence C<1 ≡¬C says that negation of EL concepts is
expressible in τEL(m). This does not imply, however, that τEL(m)
is closed under negation. Note that nesting of threshold constructors
is not allowed. For example, strings like ((∃r.A)<1)<1 or (E∼t)<1

do not constitute well-formed concepts in τEL(m). Thus, negation
cannot be nested using these constructors.

Regarding notation, we will sometimes use C=t to abbreviate the
concept description C≤t � C≥t. Symbols like Ĉ, D̂ will be used to
refer to τEL(m) concept descriptions.

2.3 The graded membership function deg

In addition to defining the family of DLs τEL(m), in [2] we also
define a concrete graded membership function deg and study its in-
duced DL τEL(deg). Since the latter constitutes our main object of
study, we shall briefly describe the principal components supporting
the definition of deg .

Basically, we use the homomorphism characterization of mem-
bership in EL (Theorem 3) as a starting point. The computation of
degI(d, C) relies on exploring the search space consisting of all par-
tial mappings from TC to GI that map the root of TC to d and respect
the edge structure of TC . Let us explain the reason for considering
such partial mappings using the following example.

Example 6 Figure 1 shows a description tree TC corresponding to
the concept C := A � ∃s.(B1 � ∃r.B2 � ∃r.B3), and the descrip-
tion graph associated to an interpretation I. Clearly, d0 �∈ CI , and
thus there is no homomorphism that maps v0 to d0. Nevertheless, the
mappings depicted in the figure (represented by the dashed lines and
the dotted ones) provide two different views of how d0 partially sat-
isfies the properties required by C. The idea is then to calculate to
which degree each partial mapping fulfills the homomorphism con-
ditions (see Definition 2), and take the degree of the best one as the
membership degree degI(d0, C).
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These partial mappings are formally defined in [2] (Def. 4) as par-
tial tree-to-graph homomorphisms (ptgh). To measure to which de-
gree a ptgh h satisfies the homomorphism conditions, a weighted
function hw : dom(h) → [0, 1] is defined and the value hw(v0)
considered as the corresponding degree. We use again Figure 1 to
sketch how hw calculates such degrees. The formal details, which
are omitted due to space constraints, can be found in [2].

Example 7 Let h denote the mapping represented by the dashed
lines and g the other one. To compute hw(v0), we basically count
the number of properties of v0 (say �), check how many of those d0
actually has in I (say k) and give k/� as the membership degree
hw(v0). In our example, v0 has two properties, namely, A and the
existence of an s-successor with a certain structure (the node v1). In
particular, the s-successor of d0 selected by h to match v1, does not
satisfy all the conditions required by v1. Now, instead of assuming
that d0 lacks the second property and setting hw(v0) = 1/2, hw(v1)
computes a value that expresses to which degree d1 satisfies the con-
ditions required by v1. This is done by applying the same idea recur-
sively. This procedure stops at nodes of TC having no successors in
dom(h).

Thus, the real computation is done in a bottom-up manner. First,
we have hw(v2)=1 and hw(v3)=1. Based on these two values and
the fact that d1 �∈ (B1)

I , we obtain hw(v1) = 2/3. Finally, since
d0 ∈ AI , we get hw(v0) = (1 + hw(v1))/2 = 5/6. Concerning
the mapping g, the reader can verify that gw(v0) < hw(v0), and thus
deg sees h as a better approximation for membership in C.

Based on these ideas, we now define the graded membership func-
tion deg . However, in order to satisfy property M2, all concept de-
scriptions C are transformed into an appropriate reduced form Cr

before actually applying the computations sketched above. This re-
duced form, which was introduced in [11], removes redundancies
from concepts, and has the property that C ≡ D iff the description
trees of Cr and Dr are isomorphic.

Definition 8 (Def. 6, [2]) Let I be an interpretation, d ∈ ΔI and C
an EL concept with reduced form Cr . Moreover, let H(TCr , GI , d)
be the set of all ptghs h from TCr to GI with h(v0) = d. Then,

degI(d, C) := max{q | hw(v0) = q and h ∈ H(TCr , GI , d)}

We have shown in [2] that the maximum in the above expression
always exists. This implies that the function deg is well-defined. In
addition, we could show that the properties M1 and M2 are satis-
fied. Regarding the induced DL τEL(deg), we have investigated the
computational complexity of the standard reasoning problems sat-
isfiability, subsumption, ABox consistency and instance checking. In
particular, the subsumption and the satisfiability problems are tackled
by establishing the following polynomial model property for the sat-
isfiability of concepts of the form Ĉ � ¬D̂, for τEL(deg) concepts
Ĉ, D̂. Note that this is equivalent to the non-subsumption problem
and satisfiability is a special case.

Lemma 9 (Lem. 5, [2]) Let Ĉ and D̂ be τEL(deg) concepts of
sizes s(Ĉ) and s(D̂). If Ĉ � ¬D̂ is satisfiable, then there exists an
interpretation I such that ĈI \ D̂I �=∅ and |ΔI |≤s(Ĉ)·s(D̂).

A analogous property has been also proved for consistent ABoxes
of the form A ∪ {¬Ĉ(a)}, thus yielding a bounded model prop-
erty for non-instance (A �|= Ĉ(a)). Unfortunately, in this case the

bound on the model’s size has the size of the concept Ĉ in the expo-
nent. Nevertheless, since consistency is a particular case where Ĉ is
not present, we have a polynomial model property for ABox consis-
tency. In addition, checking whether a finite interpretation I satisfies
a τEL(deg) concept/ABox can be done in polynomial time. Over-
all, we can thus employ a standard guess-and-check NP-algorithm
to decide satisfiability, non-subsumption, and ABox consistency. For
non-instance, this algorithm is only in NP if we consider data com-
plexity as defined in [9].

Theorem 10 (Th. 5 and Th. 6, [2]) In τEL(deg), satisfiability and
consistency are NP-complete, whereas subsumption and instance
checking (w.r.t. data complexity) are coNP-complete.

3 ACYCLIC TBOXES FOR τEL(m)

We now turn to introducing acyclic TBoxes for the whole family
of DLs τEL(m), and hence also for τEL(deg). As with acyclic
TBoxes in EL, the purpose is to introduce abbreviations for com-
posite τEL(m) concept descriptions. For instance, the EL concept
definition E

.
=∃r.A � ∃r.B can be used to abbreviate the threshold

concept (∃r.A � ∃r.B)≥1/2 as E≥1/2. On top of this, we can then
also introduce the abbreviation β for E≥1/2 and use this abbreviation
in other concept definitions, as done in the following TBox:

⎧⎨
⎩

α
.
= ∃s.A � ∃r.β

β
.
= E≥1/2

E
.
= ∃r.A � ∃r.B

⎫⎬
⎭ (3)

Overall, the concept name α then abbreviates the τEL(m) concept
description ∃s.A � ∃r.(∃r.A � ∃r.B)≥1/2, which can be obtained
from α by unfolding.

However, we cannot use arbitrary acyclic sets of τEL(m) concept
definitions. For example, suppose that α is now defined in the TBox
(3) as α .

= ∃s.A�∃r.(β>.8) instead. Even though the right-hand side
of this definition is a syntactically well-formed τEL(m) concept,
unfolding α w.r.t. this new TBox yields

∃s.A � ∃r.(((∃r.A � ∃r.B)≥1/2)>.8), (4)

which is not a well-formed τEL(m) concept description since
threshold operators are nested. The following definition is designed
to avoid this problem.

Definition 11 An acyclic τEL(m) TBox T̂ is a pair (Tτ , T ), where
T is an acyclic EL TBox and Tτ is a set of concept definitions of the
form α

.
= Ĉα satisfying the following conditions:

• Ĉα is a τEL(m) concept description,
• α does not depend on itself and it does not occur in T ,
• for all threshold concepts C∼t occurring in Ĉα, no defined con-

cept of Tτ occurs in C.

The TBox (3) can be seen as an acyclic τEL(m) TBox where the first
two definitions belong to Tτ and the last to T . Notice that, although
the syntax of the first and third axioms looks quite similar, they are
actually different since the first one contains a concept name whose
definition uses a threshold concept whereas the third one does not.

Given an acyclic τEL(m) TBox T̂ = (Tτ , T ), we define the set
N

̂T
d of defined concepts in T̂ as the union NTτ

d ∪ NT
d , where NTτ

d is
the set of defined concepts in Tτ . We denote the set NC \N ̂T

d as N ̂T
pr .

The notion of unfolding is extended to acyclic τEL(m) TBoxes in
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the obvious way. It is easy to see that the restrictions imposed in the
previous definition guarantee that α ∈ NTτ

d always unfolds into a
well-formed τEL(m) concept description u

̂T (α), whereas E ∈ NT
d

unfolds into an EL concept. Regarding arbitrary τEL(m) concept
descriptions Ĉ, we say that Ĉ is correctly defined w.r.t T̂ if the pair
(Tτ ∪ {α .

= Ĉ}, T ) is still an acyclic τEL(m) TBox, where α is a
fresh concept name not occurring in T̂ and Ĉ.

We are now ready to fix the semantics of acyclic τEL(m) TBoxes.
To start with, we say that an interpretation I is a model of Tτ (and
write I |= Tτ ) iff αI = (Ĉα)

I in τEL(m) for all α .
= Ĉα ∈

Tτ . Then, I satisfies T̂ iff I |= T and I |= Tτ . The subsumption
and equivalence relations �

̂T and ≡
̂T on correctly defined τEL(m)

concepts are defined w.r.t. the set of models of T̂ . The next step is
to ensure that defined concepts α and their unfolded counterparts
u

̂T (α) have the same meaning in all models of T̂ , i.e.,

α≡
̂T u

̂T (α). (5)

Since this equivalence holds for EL, the only constructor that might
lead to a problem is the threshold constructor. More precisely, given
a threshold concept C∼t with C ∈ CEL, for all models of T̂ the
following must hold:

(C∼t)
I =((uT (C))∼t)

I . (6)

Thus, we must turn our attention to the graded membership func-
tion m since m is providing the semantics for such concepts C∼t. In
principle, the graded membership function m is defined on C since
C is an EL concept description. However, this function (e.g., deg) is
agnostic of the TBox and thus treats defined and primitive concepts
alike: they are just concept names for m. In order to satisfy (6), the
function needs to be aware of the TBox. Let us illustrate this using
the graded membership function deg :

Example 12 Let T̂ = (Tτ , T ) be the τEL(m) acyclic TBox corre-
sponding to the definitions in (3). In addition, let I be an interpre-
tations such that ΔI = {d0, dr, ds}, AI = {ds}, BI = {dr}, and
rI ={(d0, d0), (d0, dr)}, sI ={(d0, ds)}.

When trying to extend I to a model of T̂ , we first note that we have
(∃r.A�∃r.B)I =∅, and hence EI must be interpreted as the empty
set. Then, since E is treated as a concept name by deg , this means
that degI(d,E) = 0 for all d ∈ ΔI . Therefore, (E≥1/2)

I = ∅, and
consequently we must define βI := αI := ∅. To see that (6) fails
to hold, one can observe that in contrast to degI(d0, E) = 0, for d0
we obtain degI(d0, ∃r.A � ∃r.B) = 1/2 (recall the ideas defining
deg). This means that (E≥1/2)

I �= ((uT (E))≥1/2)
I . Obviously,

the problem propagates up to the more general requirement in (5).
First, d0 �∈βI but d0 ∈ (u

̂T (β))I . Moreover, it is easy to check that
d0∈(u

̂T (α))I , and thus α �≡
̂T u

̂T (α).

To avoid the problem demonstrated by this example, the graded
membership function m needs to take into account the definitions
in T . This means that T must be a parameter of this function. Fur-
thermore, to ensure that property (6) is satisfied, the membership
degrees for an EL concept description C should be the same as for
its unfolding uT (C). Taking this into account, we extend a given
graded membership function m such that it takes concept definitions
in acyclic EL TBoxes into account.

Definition 13 For all graded membership functions m (in the sense
of Definition 4), the extension of m computing membership degrees

w.r.t. acyclic EL TBoxes is a family of functions containing for every
interpretation I a function m̂I : ΔI×CEL×T(I)→ [0, 1] satisfying

m̂I(d, C, T ) := mI(d, uT (C)),

where T(I) is the set of all acyclic EL TBoxes T such that I |= T .

Clearly, well-definedness of m and acyclicity of T imply well-
definedness of m̂. For the sake of simplicity, we will from now on
use m both to denote the original graded membership function and
its extension m̂.

The use of unfolding in the above definition ensures that, for all
interpretations I and d ∈ ΔI , we have d ∈ (C∼t)

I iff d ∈
((uT (C))∼t)

I . Consequently, (6) always holds, as does (5). Finally,
it is easy to see that the analogon of Proposition 1 is also valid for
acyclic τEL(m) TBoxes.

Proposition 14 Let T̂ be an acyclic τEL(m) TBox. Any interpreta-
tion I of N ̂T

pr ∪ NR can be uniquely extended into a model of T̂ .

The following lemma is an easy consequence of Definition 13. It
shows that graded membership functions constructed in such a way
satisfy a generalization of the conditions stated in Definition 4.

Lemma 15 Let m be a graded membership function as in Defini-
tion 13. Then, for all acyclic EL TBoxes T , we have:

M1T : d∈CI ⇔ mI(d, C, T )=1 for all I |= T and d ∈ ΔI

M2T : C≡T D ⇔ ∀I |=T ∀d∈ΔI : mI(d, C, T )=mI(d,D, T )

where C and D are EL concept descriptions.

To sum up, we have introduced a notion of acyclic TBoxes for
τEL(m) such that unfolding still works from a syntactic point of
view, i.e., the unfolding of a defined concept is a syntactically correct
τEL(m) concept description. To ensure that unfolding is also correct
from the semantic point of view (i.e., (5) holds), we had to extend m
such that it takes the EL part of the given acyclic TBox into account.
In the following, we consider m = deg and show that the presence
of acyclic τEL(deg) TBoxes increases the complexity of reasoning.

4 REASONING WITH ACYCLIC τEL(deg)
TBOXES

We will not only investigate the satisfiability and the subsumption
problem, but also consistency and instance. In the presence of an
acyclic τEL(deg) TBox, the concepts occurring in the ABox need to
be correctly defined w.r.t. this TBox. An acyclic τEL(deg) knowl-
edge base is a pair K = (T̂ ,A) where T̂ is an acyclic τEL(deg)
TBox, and A is a finite set of assertions Ĉ(a) or r(a, b), where Ĉ

is correctly defined w.r.t. T̂ . The satisfaction of such assertions and
ABoxes by interpretations is defined in the obvious way.

Proposition 14 together with (5) tell us that reasoning w.r.t. acyclic
τEL(deg) TBoxes can be reduced to reasoning in the empty termi-
nology, through unfolding. However, as shown by Nebel [12] for the
DL FL0, unfolding may produce concept descriptions of exponen-
tial size. The following is an adaptation of Nebel’s example to EL.

Example 16 The TBox Tn is inductively defined as follows (n≥0):

T0 := {α0
.
= �}

T1 := T0 ∪ {α1
.
= ∃r.α0 � ∃s.α0}

...

Tn := Tn−1 ∪ {αn
.
= ∃r.αn−1 � ∃s.αn−1}
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Obviously, the size of Tn is linear in n, but s(uTn(αn)) ≥ 2n.

Thus, by applying unfolding and then using the known NP deci-
sion procedures for satisfiability/non-subsumption in τEL(deg) [2],
we obtain an NExpTime algorithm to decide the same problems w.r.t.
acyclic τEL(deg) TBoxes. The natural question to ask is thus: can
we do better than NExpTime? We will show that this is indeed the
case by providing a PSpace upper bound. At the moment, we do
not have a matching lower bound. However, we can show that (un-
less NP =ΠP

2 ) the complexity of reasoning w.r.t. acyclic τEL(deg)
TBoxes is higher than of reasoning in τEL(deg) without a TBox.
We start with showing the lower bounds.

4.1 Lower bounds

We reduce the problem ∀∃3SAT to concept satisfiability with respect
to acyclic τEL(deg) TBoxes. This problem is known to be complete
for the class ΠP

2 (see [15], Section 4).

Definition 17 (∀∃3SAT) Let u = {u1, . . . , un}, v = {v1, . . . , v�}
be two disjoint sets of propositional variables, and ϕ(u, v) a 3CNF
formula defined over u ∪ v, i.e., a finite set of propositional clauses
C = {c1, . . . , cq} such that each ck is a set of three literals
{γk

1 , γ
k
2 , γ

k
3 } over u ∪ v. A formula ∀u∃v.ϕ(u, v) is valid iff for

all truth assignments θ of the variables in u there is an extension of θ
for the variables in v satisfying ϕ(u, v). ∀∃3SAT is then the problem
of deciding whether a formula ∀u∃v.ϕ(u, v) is valid or not.

The idea for the reduction goes as follows. Each formula
∀u∃v.ϕ(u, v) is translated into an acyclic τEL(deg) TBox T̂ ϕ

n con-
taining a defined concept αn such that: ∀u∃v.ϕ(u, v) is valid iff αn

is satisfiable in T̂ ϕ
n (where n is the number of variables in u).

The first step consists of encoding ϕ(u, v) into a τEL(deg) con-
cept description Ĉϕ. Literals defined over u and v are represented
by concept names Ai, Āi (1 ≤ i ≤ n) and Bj , B̄j (1 ≤ j ≤ �),
respectively, according to the following mapping:

η(ui) := Ai, η(¬ui) := Āi, η(vj) := Bj , η(¬vj) := B̄j .

Using η, each clause ck can be represented by the EL concept de-
scription Dk :=η(γk

1 ) � η(γk
2 ) � η(γk

3 ). The satisfiability of ck can
then be expressed by the threshold concept (Dk)≥1/3. In fact, by the
definition of deg , an individual d belongs to (Dk)≥1/3 iff it belongs
to at least one concept name in {η(γk

1 ), η(γ
k
2 ), η(γ

k
3 )}. Therefore,

the τEL(deg) concept (D1)≥1/3�. . .�(Dq)≥1/3 appears as a plau-
sible choice to capture the satisfiability status of ϕ(u, v). For this to
work correctly, pairs of concepts (Ai, Āi) and (Bj , B̄j) need to be
complementary since they are meant to play the role of a literal ui

(vj) and its negation. To this end, we define the TBox T c
n,� as follows:

T c
n,� :=

n⋃
i=1

{Fi
.
= Ai � Āi} ∪

�⋃
j=1

{Gj
.
= Bj � B̄j}

Then, (Fi)=1/2 collects the elements that are instances of exactly one
concept in {Ai, Āi} (similarly for (Gj)=1/2 and {Bj , B̄j}). Putting
all these pieces together, Ĉϕ is defined as follows:

Ĉϕ :=

q�

k=1

(Dk)≥ 1
3

�
n�

i=1

(Fi)= 1
2

�
��

j=1

(Gj)= 1
2

The following result is immediate given the construction of Ĉϕ.

Lemma 18 ϕ(u, v) is satisfiable iff Ĉϕ is satisfiable w.r.t. T c
n,�.

Obviously, this is not enough to achieve our main goal since
∀∃3SAT asks for the satisfiability of ϕ(u, v) in all truth assignments
of u. To mimic this universal quantification, we extend the TBox Tn

(from Example 16) into T̂ ϕ
n in such a way that for all models I of

T̂ ϕ
n , (αn)

I �=∅ iff for all X ⊆ u there exists dX ∈ ΔI satisfying:

dX ∈(Ĉϕ)
I and for all i, 1 ≤ i ≤ n: dX ∈(Ai)

I iff ui∈X (7)

For simplicity, we explain this step for n=3. Let us start by look-
ing at the interpretation I3 induced by the description tree represent-
ing the concept uT3(α3), which has the following shape:

d0

r s

r

r s

s

r

r s

r

r s

s

s

It is easy to see that the extension of I3 into a model of T3 is such
that d0 ∈ (α3)

I3 . Moreover, a one-to-one correspondence can be
established between the set of leaves of this tree and the words in
{r, s}3: for all words x=x1x2x3 in {r, s}3, the corresponding leaf
dx is the one reached from d0 by the path d0x1d1x2d2x3dx. Thus,
the desired collection of elements satisfying (7) would exist if we
could ensure the following: for each word x∈{r, s}3 there is at least
one path d0x1 . . . x3dx such that:

dx ∈ (Ĉϕ)
I3 and dx ∈ (Ai)

I3 iff xi = r (1 ≤ i ≤ 3) (8)

The structure of T3 certainly guarantees that every model satisfy-
ing α3 contains a path d0x1 . . . x3dx from a distinguished element
d0, for all x ∈ {r, s}3. Moreover, the domain elements in such a
path satisfy d0∈ (α3)

I3 , d1∈ (α2)
I3 , d2∈ (α1)

I3 and dx∈ (α0)
I3 .

Hence, the first part of (8) can be satisfied by modifying the definition
of α0 to α0

.
= Ĉϕ. To fulfill the second part of (8), we must express

within the logic the correct propagation of A1, A2, A3 along each
path. For example, for x1 and A1, a solution could be to redefine α3

as α3
.
=∃r.(α2 � βr

2) � ∃s.(α2 � βs
2), where:

βr
2 :=

�

x2,x3∈{r,s}

∀x2x3.¬Ā1 βs
2 :=

�

x2,x3∈{r,s}

∀x2x3.¬A1

The definition of βr
2 implies that, if d0∈(α3)

I3 , then all paths start-
ing at d0 following a word x of the form x = rw with w ∈ {r, s}2
must end at an element dx such that dx �∈ (Ā1)

I3 . If we also have
dx∈(α0)

I3 , then this means that dx∈(A1)
I3 . Now, βr

2 is obviously
not a τEL(deg) concept, but its meaning can be equivalently ex-
pressed in the logic. We illustrate this with the help of the following
diagram.

T : v

Ā1

r

Ā1

s

r

Ā1

r

Ā1

s

s
d1

Ā1

s

sh

Notice that the EL description tree T on the left exhibits all (and
only) paths falsifying βr

2 . Moreover, if d0 has an r-successor leading
to one such path (d1 on the right-hand side), then there is always
a ptgh h such that h(v) = d1 and hw(v) > 0. Conversely, it is not
hard to show that, if no such path exists, then any possible ptgh h
satisfies hw(v)=0. Hence, βr

2 is equivalent to the threshold concept
(E3

2)≤0, where E3
2 is the concept corresponding to T . Similarly, we

can also deal with the requirements for Ā2 and Ā3 by using analo-
gous concepts E2

1 and E1
0 . Finally, to succinctly represent these con-

cepts (which would be exponentially large for general n), we employ
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the EL TBox consisting of the following definitions:

E3
2

.
= ∃r.E3

1 � ∃s.E3
1 E2

1
.
= ∃r.E2

0 � ∃s.E2
0 E1

0
.
= Ā3

E3
1

.
= ∃r.E3

0 � ∃s.E3
0 E2

0
.
= Ā2

E3
0

.
= Ā1

To express βs
2 , similar definitions using Ai instead of Āi can be

given. Let us call T3,p the collection of all these definitions. Then,
the final acyclic τEL(deg) TBox T̂ ϕ

3 is the pair (T3,τ , T c
3,� ∪ T3,p),

where T3,τ consists of the following definitions (1≤ i≤ 3):

αi
.
= ∃r.(αi−1 � (Ei

i−1)≤0) � ∃s.(αi−1 � (E ī
i−1)≤0)

α0
.
= Ĉϕ

The construction can easily be generalized to arbitrary n without los-
ing the properties exhibited for n=3 (see[4] for details).

Lemma 19 ∀u∃v.ϕ(u, v) is valid iff αn is satisfiable in T̂ ϕ
n .

In addition, it is easy to see that T̂ ϕ
n is an acyclic τEL(deg) TBox

of size polynomial in the size of ∀u∃v.ϕ(u, v), Therefore, ∀∃3SAT
is polynomial-time reducible to concept satisfiability w.r.t. acyclic
τEL(deg) TBoxes. In addition, non-satisfiability can be reduced to
the subsumption and the instance problem, and satisfiability to the
consistency problem, by the same arguments used in [2] for the set-
ting without TBoxes.

Theorem 20 In τEL(deg), satisfiability and consistency are ΠP
2 -

hard and the subsumption and the instance problem are ΣP
2 -hard,

with respect to acyclic τEL(deg) TBoxes.

4.2 A PSpace upper bound

We now present a PSpace procedure that decides satisfiability of con-
cepts of the form α1 � ¬α2 w.r.t. an acyclic τEL(deg) TBox T̂ ,
where α1, α2 ∈ N

̂T
d . The restriction to defined concepts is without

loss of generality since every τEL(m) concept Ĉ correctly defined
w.r.t. T̂ can be equivalently replaced with a fresh concept name α

̂C ,
by adding α

̂C

.
= Ĉ to Tτ .

As mentioned earlier, by using unfolding, we can reduce this prob-
lem to satisfiability of the concept u

̂T (α1) � ¬u
̂T (α2). Therefore,

the application of Lemma 9 yields that α1 � ¬α2 is satisfiable in T̂
iff there exists an interpretation I over N ̂T

pr ∪ NR such that:

[u
̂T (α1)]

I\[u
̂T (α2)]

I �=∅ and |ΔI | ≤ s(u
̂T (α1)) · s(u ̂T (α2))

Since the sizes of u
̂T (α1) and u

̂T (α2) may be exponential in the size
s(T̂ ) of T̂ , this provides us with an exponential bounded model prop-
erty, and hence an NExpTime upper bound for satisfiability. How-
ever, the construction used to prove Lemma 9 in [2] provides addi-
tional information about I, which allows us to improve on this upper
bound:

• I is tree-shaped,
• the depth of its description tree TI is bounded by:

rd(u
̂T (α1)) + rd(u

̂T (α2)), (9)

• the element d0 ∈ ΔI corresponding to the root of TI satisfies

d0 ∈ [u
̂T (α1) � ¬u

̂T (α2)]
I .

Fortunately, unfolding increases the role depth only polynomially,
and thus the depth (9) of TI is polynomial in s(T̂ ). Thus, despite its
size, one can non-deterministically generate and explore I in a top-
down manner, while keeping the used space polynomial in s(T̂ ). Let
d≥0 and b>0 be natural numbers. Then, each run ρ of the procedure
Gen described below generates a tree-shaped interpretation Iρ over
N

̂T
pr ∪ NR, such that |ΔIρ | ≤ b and the depth of TIρ is not greater

than d.

1: procedure Gen(d : N, b : binary)
2: b := b− 1
3: non-deterministically choose a subset P of N ̂T

pr

4: if (d �= 0) and (b �= 0) then

5: for all r ∈ NR do

6: non-deterministically choose 0 ≤ br ≤ b
7: b := b− br
8: for all 1 ≤ i ≤ br do

9: non-deterministically choose 0 ≤ bir ≤ b
10: b := b− bir
11: Gen(d− 1, bir + 1)
12: end for

13: end for

14: end if

15: end procedure

Note that each recursive call decreases the value of d, and there-
fore it is a terminating procedure executing at most d nested re-
cursive calls. Moreover, as evidenced by the parameter declaration
b : binary, Gen uses the binary representation of the value b (simi-
larly for the variables br and bir). Finally, the set of variables br and
bir can be reduced to two variables since they are only used within
the scope of the for loops. Therefore, each run of Gen uses space
polynomial in d and the number of bits needed to represent b.

The general idea of the procedure is as follows: each recursive
call represents an individual of ΔIρ and the recursion tree lays out
the tree-shaped form of Iρ. The set P contains the primitive concept
names that a domain element is an instance of, the number br stands
for the number of r-successors, and bir means that the interpretation
rooted at the i-th r-successor has at most bir+1 elements. Figure 2
shows a run ρ of Gen and its induced interpretation Iρ. In fact, up
to isomorphism �, every interpretation satisfying the size and depth
constraints imposed by b and d is generated by such a run.

P = {A,B}
br = 1, b1r = 1
bs = 1, b1s = 0

P = {A}
br = 1, b1r = 0

P = {B}

P = {}

ρ : Iρ: d0 : {A,B}

d1 : {A}

d3 : {B}

r

r

d2 : {}

s

Figure 2. A run ρ of Gen on (2, 4) and its induced interpretation Iρ.

Lemma 21 Let d ≥ 0 and b > 0 be two natural numbers. For all
tree-shaped interpretations I over N

̂T
pr ∪ NR with |ΔI | ≤ b and

depth ≤ d, there is a run ρ of Gen on (d, b) such that I�Iρ.
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Lemma 21 ensures that, by choosing d as in (9) and b as
s(u

̂T (α1))·s(u ̂T (α2)), the set of runs of Gen on (d, b) covers a set of
interpretations that suffices to find out whether u

̂T (α1)�¬u ̂T (α2) is
satisfiable. Hence, it remains to see how to check for a run ρ of Gen,
whether d0 ∈ [u

̂T (α1)�¬u ̂T (α2)]
Iρ . Fortunately, the unique exten-

sion of Iρ satisfying T̂ (recall Proposition 14) can actually be com-
puted along the run ρ. In fact, since Iρ is tree-shaped, this extension
can be computed in a bottom-up manner. Therefore, by doing that we
can then simply check whether d0 ∈ (α1)

Iρ and d0 �∈ (α2)
Iρ .

To simplify this task, we extend the normal form for EL TBoxes
presented in [1] to acyclic τEL(deg) TBoxes. A TBox T̂ = (Tτ , T )

is said to be normalized iff T is in normal form, and α
.
= Ĉα ∈ Tτ

implies that Ĉα has the following structure:

P̂1 � . . . � P̂k � ∃r1.β1 � . . . � ∃rn.βn (10)

where k, n ≥ 0, P̂j is either of the form A∈N
̂T
pr or E∼t with E ∈

NT
d , and β1, . . . , βn ∈ N

̂T
d . As shown in [4], there is a polynomial

translation of acyclic τEL(deg) TBoxes into normalized ones that
preserves inferences such as satisfiability and subsumption. Thus, we
can restrict our attention to TBoxes in normal form. Assuming that
T̂ is normalized, we can transform Gen into a function Gen+ that
returns, for each run ρ, a pair (Ex, D) such that

Ex = {α | α ∈ N
̂T
d and d0 ∈ αIρ} (11)

and D : NT
d → [0, 1] satisfies

D(E) = degIρ(d0, uT (E)). (12)

Checking whether d0∈AIρ for A∈N
̂T
pr is easy by using the set P .

Hence, according to (10), the computation of Ex relies on computing
D and verifying if d0 has an ri-successor di in Iρ such that di ∈
(βi)

Iρ . The latter can be done based on the following observations:

• Each successor e of d0 is the root of an interpretation Iρe induced
by a run ρe corresponding to a recursive call triggered by ρ.

• The description tree TIρe
is the one rooted at e in TIρ .

This means that the set Exe computed by ρe is also correct for e in
the context of Iρ. Therefore, all the needed information to compute
Ex comes in the sets Exe returned by ρe. To avoid storing (possibly)
exponentially many sets Exe, Gen constructs a binary relation z :

NR × N
̂T
d such that: (r, α) ∈ z iff there exists e ∈ ΔIρ satisfying

(d0, e)∈rIρ and e∈αIρ . The same idea can be used to compute D
for d0, based on the sets De returned by the recursive calls. In [4] we
show in detail how to extend Gen to Gen+ and show that the tuples
(Ex, D) computed by Gen+ are correct, i.e., they satisfy (11) and
(12). Thus, the final non-deterministic algorithm testing satisfiability
of α1 � ¬α2 w.r.t. T̂ looks as follows.

Based on the correctness of the computed tuple (Ex, D), it is easy
to show that Algorithm 1 is sound and complete. Moreover, since b is
stored in binary, each run of it uses space polynomial in the size of T̂ .
Hence, satisfiability and non-subsumption are in NPSpace. By Sav-
itch’s theorem [14] and since PSpace is closed under complement,
we thus obtain the following results.

Theorem 22 In τEL(deg), satisfiability and subsumption w.r.t.
acyclic τEL(deg) TBoxes are in PSpace.

The PSpace upper bound carries over to reasoning w.r.t. acyclic
τEL(deg) knowledge bases. In this setting, the interesting reasoning

Algorithm 1 Satisf. of α1 � ¬α2 w.r.t. acyclic τEL(deg) TBoxes.

Input: An acyclic τEL(deg) TBox T̂ and α1, α2 ∈ def(T̂ ).
Output: “yes”, if α1 � ¬α2 is satisfiable in T̂ , “no” otherwise.

1: b := s(u
̂T (α1)) · s(u ̂T (α2)) // b is stored in binary

2: d := rd(u
̂T (α1)) + rd(u

̂T (α2))
3: (Ex, D) := Gen+(d, b)
4: if α1 ∈ Ex and α2 �∈ Ex then

5: return “yes”
6: end if

7: return “no”

tasks are consistency and instance checking. These two reasoning
tasks can be reduced to consistency of a knowledge base of the form
(T̂ ,A∪ {¬α(a)}) where a ∈ NI and α ∈ N

̂T
d . A PSpace procedure

to decide this task can be obtained by extending the ideas used to
design Gen+ and Algorithm 1. The specific details showing how this
can be achieved are contained in [4].

Theorem 23 In τEL(deg), consistency and instance checking w.r.t.
acyclic τEL(deg) knowledge bases are in PSpace.

5 CONCLUSION

We have introduced a notion of acyclic TBoxes for τEL(m) such
that unfolding still works both from the syntactic and the semantic
point of view. For the special case of τEL(deg), we have investi-
gated the complexity of reasoning w.r.t. such acyclic TBoxes. In con-
trast to the case of EL, in τEL(deg) the presence of acyclic TBoxes
increases the complexity.

Regarding future research, we will try to close the gap between
ΠP

2 /ΣP
2 and PSpace. Unfortunately, it is not clear to us how the con-

struction employed in the hardness proof could be extended to higher
levels of the polynomial hierarchy, let alone to PSpace. Conversely,
it is also not clear how to generate and test an exponentially large
model on some fixed level of the polynomial hierarchy. Another in-
teresting and non-trivial problem is to extend our approach to more
general forms of TBoxes (e.g., GCIs). As demonstrated by the se-
mantic problems for unrestricted sets of concept definitions shown in
this paper, naive extensions will probably lead to unintuitive results.
For example, we have seen that, embedded in a threshold concept, a
concept name and its definition need not lead to the same result. We
have overcome this problem by modifying the graded membership
function using unfolding. For TBoxes that are not acyclic, or do not
even consist of concept definitions, this simple solution is not possi-
ble. Other interesting open problems are, for instance, to provide an
intuitive semantics for nested threshold operators, and to apply our
approach of approximately defining concepts to other DLs.
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