
Query Rewriting for DL-Lite with n-ary Concrete Domains

Franz Baader and Stefan Borgwardt
Faculty of Computer Science

Technische Universität Dresden, Germany
firstname.lastname@tu-dresden.de

Marcel Lippmann
TNG Technology Consulting GmbH

Unterföhring, Germany
marcel.lippmann@tngtech.com

Abstract
We investigate ontology-based query answering
(OBQA) in a setting where both the ontology and
the query can refer to concrete values such as num-
bers and strings. In contrast to previous work on
this topic, the built-in predicates used to compare
values are not restricted to being unary. We intro-
duce restrictions on these predicates and on the on-
tology language that allow us to reduce OBQA to
query answering in databases using the so-called
combined rewriting approach. Though at first sight
our restrictions are different from the ones used
in previous work, we show that our results strictly
subsume some of the existing first-order rewritabil-
ity results for unary predicates.

1 Introduction
Ontology-based query answering (OBQA) (see, e.g., [Ortiz,
2013] for an overview) extends query answering in databases
in two directions. On the one hand, in OBQA it is not as-
sumed that the available data are complete, and thus facts that
are not present are assumed to be unknown rather than false
(no closed world assumption [CWA]). On the other hand, an
ontology can be used to state background knowledge about
the data and to translate between vocabularies (e.g., user-
oriented versus system-oriented). Nevertheless, if the query
and ontology languages are suitably restricted, then OBQA
can be reduced to classical query answering in databases.

As the query language, one usually considers (unions
of) conjunctive queries ((U)CQs) (i.e., select-project-join
queries) in this setting. If the ontology language belongs
to the so-called DL-Lite family of Description Logics (DLs)
[Calvanese et al., 2007; Artale et al., 2009], then the on-
tology can often be compiled into the query, which can
then be evaluated over the unchanged data using the CWA
[Calvanese et al., 2007; 2011]. If this approach is fea-
sible, then one says that the query language is first-order
(FO) rewritable w.r.t. the ontology language. FO rewritabil-
ity implies that OBQA then has the same data complexity
as query answering in databases, AC0. For settings where
the data complexity of OBQA is no longer in AC0 (e.g.,
if the DL EL is used as ontology language), the combined
rewriting approach, in which both the query and the data

are changed, has turned out to be useful [Lutz et al., 2009;
Kontchakov et al., 2011]. In case the data can be rewritten in
polynomial time, this yields polynomial data complexity.

Real-world datasets frequently contain concrete data val-
ues (such as numbers and strings), and database queries use
built-in predicates on these values to formulate restrictions on
the tuples to be selected. When adopting concrete data values
and built-in predicates for the OBQA setting, it makes sense
to employ them not only in the query, but also in the ontology.
In ontology languages based on DLs, one then talks about
DLs with concrete domains [Baader and Hanschke, 1991;
Lutz, 2003]. In addition to concepts and roles (i.e., unary
and binary predicates on the abstract domain), such DLs em-
ploy attributes (i.e., binary relations between the abstract and
the concrete domain) to assign concrete values to individuals,
and concrete predicates (corresponding to built-in predicates
in databases) to formulate constraints on these values.

Motivated by OBQA applications, several authors have
introduced dialects of DL-Lite and CQs with concrete do-
mains [Poggi et al., 2008; Savković and Calvanese, 2012;
Artale et al., 2012]. However, like the standard Web On-
tology Language OWL 2,1 these extensions of DL-Lite with
concrete domains consider only unary predicates on data val-
ues, which can be used to constrain a single value, but cannot
require relationships between different values. With unary
predicates one can, for example, express that the systolic
blood pressure of a patient is >120 and the diastolic blood
pressure is >80, but setting the systolic blood pressure into
a relationship with the diastolic one requires a binary predi-
cate. In this work, we lift this restriction, i.e., we define an
extension of DL-Lite with concrete domains that may have
predicates of arbitrary arity, and show that—for concrete do-
mains satisfying certain properties—CQs with built-in predi-
cates from the concrete domain allow for a combined rewrit-
ing w.r.t. ontologies formulated in this new language. For
example, using an appropriate binary predicate we can then
express that the pulse pressure, i.e., the difference between
the systolic and the diastolic blood pressure, is 50.

We do not assume that attributes are functional, but our
logic can express (local) functionality (e.g., a patient can have
only one systolic blood pressure). We also show that concrete
domains satisfying our restrictions are closed under disjoint

1see https://www.w3.org/TR/owl2-overview/

union and product. Using the product of two domains (one
for pressure values and one for time), we can compare mea-
surements at different time points; e.g., ask for patients whose
systolic blood pressure increased by 20 in 30 seconds.

In addition to our combined rewriting approach, we also
show that the FO rewritability results for the DL-Lite vari-
ant with unary concrete predicates in [Savković and Cal-
vanese, 2012] follow from our results. Basically, we show
that (i) concrete domains with unary predicates satisfying the
restrictions in [Savković and Calvanese, 2012] can be turned
into ones satisfying our restrictions, and (ii) in the unary case
our combined rewriting boils down to an FO rewriting. The
results in [Artale et al., 2012] are orthogonal to ours since
they are restricted to the unary case, but allow for more ex-
pressiveness on the DL side. In contrast to our work and
[Savković and Calvanese, 2012; Artale et al., 2012], in [Poggi
et al., 2008] queries do not contain built-in predicates. Fi-
nally, in [Hernich et al., 2017] the authors also consider a
setting with non-unary concrete domains, but where the data
complexity is CO-NP-hard in general. They then investigate
for which kinds of queries this complexity goes down to P.
In contrast, our goal is to find restrictions that ensure com-
bined rewritability, and thus polynomial data complexity, for
all queries. Detailed proofs of our results can be found in
[Baader et al., 2017].

2 Concrete Domains
We first introduce the general notion of concrete domains,
and then restrict it such that it fits our purpose. A concrete
domain D consists of (i) a non-empty set ∆D of values, (ii) a
collection of predicates Πi with associated aritiesmi contain-
ing the special unary predicate >D, and (iii) interpretations
ΠDi ⊆ (∆D)

mi for all predicates, where (>D)D = ∆D.
Let NV be a set of variables. A D-formula φ is a Boolean

combination ofD-atoms Π(v1, . . . , vm), where Π is anm-ary
predicate and v1, . . . , vm ∈ ∆D ∪ NV. The set of variables
in φ is denoted by Var(φ). A D-conjunction (D-disjunction)
is a conjunction (disjunction) of D-atoms. The set solV (φ)
of solutions for a D-formula φ, where V ⊇ Var(φ), consists
of all variable assignments f : V → ∆D satisfying φ in D
(using the standard notion of satisfaction in a relational struc-
ture). The D-formula φ is satisfiable if solVar(φ)(φ) 6= ∅,
and it implies the D-formula ψ if solV (φ) ⊆ solV (ψ), where
V := Var(φ) ∪ Var(ψ).

In the DL literature, concrete domains are usually required
to satisfy additional properties that are tailored to the rea-
soning problems under consideration. For example, in or-
der to obtain decidability of standard DL reasoning prob-
lems such as subsumption, Baader and Hanschke [1991] re-
quire the concrete domain to be decidable, which in our set-
ting means that satisfiability of D-conjunctions and impli-
cations between D-conjunctions must be decidable. In the
context of concrete domain extensions of EL, this require-
ment is tightened by Baader et al. [2005] to decidability in
polynomial time. However, to obtain polynomiality of sub-
sumption, one additionally needs to require that the concrete
domain is convex, i.e., whenever a D-conjunction implies a
(non-empty) D-disjunction, then it should also imply one of

its disjuncts. The papers [Savković and Calvanese, 2012;
Artale et al., 2012] among other things requireD to be unary,
which means that all its predicates must be unary.

Our combined rewritability results depend on the concrete
domain D to be cr-admissible, i.e., polynomial, convex, and
satisfying the following additional properties:

• D has equality: it contains all unary predicates =d with
d ∈ ∆D, which are interpreted as {d}, as well as a binary
predicate =, interpreted as {(d, d) | d ∈ ∆D}.

• D is functional: for any m-ary predicate Π, d ∈ ∆D, and
i, 1 ≤ i ≤ m, the formula Π(v1, . . . , vm) ∧ =d(vi) has at
most one solution.

• D is constructive: for all D-conjunctions φ and D-disjunc-
tions ψ with solV (φ) \ solV (ψ) 6= ∅, an element of this set
can be computed in polynomial time.

The following concrete domains are known to be polyno-
mial and convex [Baader et al., 2005]:

• DQ: The set Q of rational numbers with the unary pred-
icates >DQ , =q , and >q (interpreted as {x | x > q}),
and binary predicates = and +q (with the interpretation
{(x, y) | x = q + y}), for any q ∈ Q.

• DΣ∗ : The set Σ∗ of words over an alphabet Σ with
the predicates >DΣ∗ , =w, =, and concw (interpreted as
{(x, y) | x = w · y}), for any w ∈ Σ∗.

Both can also be shown to be functional and constructive,
and hence cr-admissible. Moreover, we can show that the
class of cr-admissible concrete domains is closed under dis-
joint union and product of concrete domains, which allows us
to construct more complex domains without losing the above
properties. For example, the product DQ×DQ can be used to
model measurements that are associated with time stamps.
Unary Concrete Domains. The paper [Savković and Cal-
vanese, 2012] about query answering in DL-Lite with unary
concrete domains D imposes the following restriction.2

(infinitediff) For any D-conjunction φ and D-disjunction ψ,
whenever |solV (φ)| > 1 and solV (φ) * solV (ψ′) for
every D-atom ψ′ in ψ (where V := Var(φ) ∪ Var(ψ)),
then the cardinality of solV (φ) \ solV (ψ) is infinite.

The original definition actually does not include the condi-
tion |solV (φ)| > 1. However, it is easily checked that the
constructions and results of [Savković and Calvanese, 2012]
remain valid under our weaker version of (infinitediff). In our
setting, this modification is useful to accommodate the pred-
icates =d, whose presence would otherwise contradict (in-
finitediff). To show that our results apply to the setting from
[Savković and Calvanese, 2012], first note that one can add
equality predicates to D without destroying (infinitediff).

Lemma 2.1. For any unary concrete domainD satisfying (in-
finitediff), the concrete domainD′ obtained fromD by adding
the predicates = and =d (d ∈ ∆D) still satisfies (infinitediff).

Surprisingly, in our setting (infinitediff) and convexity are
equivalent, though they have been introduced for different

2The other restrictions in that paper, (infinite) and (opendomain),
are simply special cases with ψ = false and φ = true, respectively.

purposes in [Savković and Calvanese, 2012] and [Baader et
al., 2005], respectively. In general, convexity is a weaker re-
striction since it does not force non-singleton predicates to be
infinite. But in the presence of the predicates =d we can show
equivalence. In fact, if solV (φ) \ solV (ψ) is finite, then one
can use the predicates =d to construct a counterexample to
convexity. In contrast to the previous lemma, this result is not
restricted to unary concrete domains.
Lemma 2.2. A concrete domain D containing the predi-
cates =d (d ∈ ∆D) is convex iff it satisfies (infinitediff).

As a further step towards showing that our results imply
the ones in [Savković and Calvanese, 2012], observe that ev-
ery unary concrete domain D is trivially functional. We will
argue in Section 6 that, for unary concrete domains D, we
(i) need decidability only for unary predicates (not for =), and
(ii) do not need polynomiality or constructivity of D. In con-
trast, in the presence of predicates of higher arity, the pred-
icates =d, functionality, and constructivity are essential for
our combined rewriting approach (see Section 6).

Convexity is necessary for our rewritability results both in
the general and in the unary case. In fact, these results im-
ply polynomial data complexity. If the concrete domain is
not convex, then answering conjunctive queries that can re-
fer to concrete domain predicates is CO-NP-hard in the data
complexity (and hence neither FO nor combined rewritable,
unless P=NP), even in the unary case [Savković, 2011;
Savković and Calvanese, 2012; Artale et al., 2012].

3 The Ontology Language
For any cr-admissible concrete domain D, we introduce the
logic DL-Lite(HF)

core (D), a common extension of DL-Lite(HF)
core

and DL-LiteA [Artale et al., 2009; Poggi et al., 2008].
Syntax. Let NC, NR, NA, and NI denote disjoint sets of con-
cept, role, attribute, and individual names. Roles R and con-
cepts B are defined as

R ::= P | P− B ::= > | A | ∃R | ∃U1, . . . , Um.Π,

where P ∈ NR, A ∈ NC, U1, . . . , Um ∈ NA, and Π is an
m-ary predicate of D. A TBox (or ontology) is a finite set of
inclusions X1 v X2, disjointness constraints disj(X1, X2),
functionality constraints funct(R), and attribute range con-
straints B v ∀U1, . . . , Um.Π where X1 and X2 are both ei-
ther concepts, roles, or attribute names. As usual, role names
occurring in functionality constraints are not allowed to oc-
cur on the right-hand side of inclusions [Artale et al., 2009].
In contrast to DL-Lite(HF)

core , we do not explicitly have role
(a)symmetry or (ir)reflexivity axioms here; they can, how-
ever, be simulated as described in [Artale et al., 2009].

An ABox is a finite set of concept assertions A(a), role
assertions P (a, b), and attribute assertions U(a, d), where
a, b ∈ NI and d ∈ ∆D. A knowledge base (KB) K := 〈A, T 〉
consists of a TBox T and an ABox A that uses only the con-
cept, role, and attribute names occurring in T .
Semantics. The semantics is the standard one [Poggi et al.,
2008], based on interpretations (∆I , ·I) that assign distinct
elements aI ∈ ∆I to all individual names, sets CI ⊆ ∆I

to concepts, binary relations on ∆I to roles, and relations

UI ⊆ ∆I × ∆D to attribute names. For example, the in-
terpretation of an attribute restriction ∃U1, U2.Π is a set that
contains all e ∈ ∆I for which there are d1, d2 ∈ ∆D with
(d1, d2) ∈ ΠD, (e, d1) ∈ UI1 , and (e, d2) ∈ UI2 . The seman-
tics of axioms is also standard; e.g., an interpretation satisfies
a disjointness constraint disj(X1, X2) if XI1 ∩XI2 = ∅. The
models of a KB K are those interpretations satisfying all its
axioms, and K is consistent if it has a model.
Other DL-Lite Logics. Our logic extends those from [Poggi
et al., 2008; Savković and Calvanese, 2012]. In fact, the miss-
ing functionality restrictions on attributes can be expressed
using attribute range constraints for binary equality. On top of
that, we even allow functional attributes to occur on the right-
hand sides of inclusions. In contrast to [Artale et al., 2012],
we do not support number restriction on roles or attributes.
But we can at least simulate conjunctions in inclusions via
the concrete domain. For example, B1 uB2 v B3 can be ex-
pressed by B1 v ∃U1.=d, > v ∃U2.>D, B2 v ∀U1, U2.=,
and ∃U2.=d v B3, where U1, U2 are fresh attribute names,
and d is a fresh constant.
Example 3.1. The DL-Lite(HF)

core (DQ) TBox

{∃age.=60 v ∃maxHR.=160, ∃maxHR, hr.+5 v Alert}

says that the maximum heart rate for persons aged 60 is 160,
and that for any person an alert should be raised when the
measured heart rate rises to only 5 below the maximum heart
rate. A corresponding ABox contains actual data such as

{Patient(p1), age(p1, 60), hr(p1, 155),

Patient(p2), hr(p2, 155), maxHR(p2, 180)},

which implies the assertion Alert(p1), but not Alert(p2).
This example illustrates a prominent advantage of attribute

restrictions using predicates of arity greater than 1. Here, they
allow us to express an alert by comparing the current mea-
surement with a maximum value. Using unary predicates,
one could express hard-coded limits like ∃hr.>180 v Alert,
but not comparisons with an (age-dependent) maximum rate,
unless one writes a huge (finite) case distinction.

As in OWL 2 QL, but in contrast to many DL-Lite dialects,
we allow qualified attribute restrictions on the left-hand side
of inclusions. This is possible without causing undecidability
(as in [Baader and Hanschke, 1991; Lutz, 2002]) since they
only refer to values for a single abstract domain element.

4 Conjunctive Queries with Built-ins
Let NV be a set of variables, partitioned into object vari-
ables NOV and concrete domain variables NCV. A conjunc-
tive query (CQ) φ is of the form (~x,~v) ← ψ(~y, ~w), where
~x, ~y are vectors over NOV, ~v, ~w are vectors over NCV, the vari-
ables ~x,~v are included in ~y, ~w, andψ(~y, ~w) is a conjunction of
atoms of the formsA(x) (concept atom),R(x, y) (role atom),
U(x, v) (attribute atom), x = y (object equality atom), or
Π(v1, . . . , vm) (value comparison atom). In addition to vari-
ables, atoms may also contain constants from NI and ∆D at
appropriate places. The variables in ~x,~v are the distinguished
variables of φ; all others are nondistinguished. A CQ is called
Boolean if ~x and ~v are empty. We write α ∈ φ to denote that

α is an atom occurring in the CQ φ. The set terms(φ) consists
of the elements of NI, ∆D, and NV occurring in φ.

An interpretation I satisfies a Boolean CQ φ (I |= φ)
if there is a homomorphism of φ into I, i.e., a function
π : terms(φ)→ ∆I ∪∆D that maps object variables into ∆I

and concrete domain variables into ∆D, preserves the inter-
pretations of individual names and concrete values, and satis-
fies all atoms of φw.r.t. ·I and ·D. A KBK entails φ (K |= φ)
if every model ofK also satisfies φ. A potential answer a to a
CQ φ : (~x,~v)← ψ(~y, ~w) w.r.t. K maps ~x to individual names
fromK and ~v to ∆D. A certain answer to φ w.r.t.K is a tuple
of the form a(~x,~v), where a is a potential answer for which
K entails a(φ) : ()← ψ(a(~y, ~w)). The set of certain answers
to φ w.r.t. K is denoted by cert(φ,K). Similarly, for an inter-
pretation I, the set ans(φ, I) contains all tuples a(~x,~v) where
a is a potential answer to φ w.r.t. K such that I |= a(φ).
Rewritability. A CQ φ is FO rewritable (or, equivalently,
UCQ rewritable; see [Bienvenu et al., 2013]) w.r.t. a TBox T
if there is a finite set ΦT of CQs such that for every consistent
KB K = 〈A, T 〉 we have

cert(φ,K) =
⋃
φ′∈ΦT

ans(φ′, I(A)),

where I(A) is the finite interpretation that satisfies exactly
the assertions in A. One can view I(A) as a (closed-world)
database over which the union of the CQs in ΦT (called a
rewriting of φ w.r.t. T) is evaluated. The CQ φ is com-
bined rewritable w.r.t. T if the above property holds with
I(K) instead of I(A), where I(K) is a finite interpretation
that is constructed from A and T in polynomial time. Since
database queries can be evaluated in AC0 [Abiteboul et al.,
1995], FO rewritability yields a data complexity in AC0, and
combined rewritability raises this to P.
Safety. We follow the approach used in databases and as-
sume that concrete domain predicates are built-in predicates
of the database system, i.e., their full (possibly infinite)
extensions are known [Klug, 1988; Brisaboa et al., 1998;
Afrati et al., 2006; Savković and Calvanese, 2012]. Although
this means that the interpretation I(K) is not finite anymore,
i.e., not a database, for so-called domain-independent queries
it suffices to check satisfiability of D-conjunctions, which is
usually implemented by using a dedicated solver, e.g., for in-
teger arithmetic. Domain-independence requires that the an-
swers should not depend on the chosen domain ∆D of avail-
able values, but only on the values used inK [Abiteboul et al.,
1995]. To ensure this condition in our setting, we restrict our-
selves to safe queries, as in [Savković and Calvanese, 2012;
Afrati et al., 2006]. A concrete domain variable v in a CQ φ
is safe if it occurs in φ in an atom of the form

a) U(x, v) for some U ∈ NA and object variable x, or

b) =d(v) for some d ∈ ∆D.

The CQ φ is safe if all its concrete domain variables are safe.
A variable v that occurs in an atom U(x, v) in φ is bound
to x (in φ). Condition b) is not essential for our results, since
such variables can be replaced by constants, but it is more
convenient for formulating the rewriting in Section 6. Apart
from ensuring domain-independence, we can show that safety
is a necessary condition for combined rewritability (unless

P=NP). In fact, in DL-Lite(HF)
core (D{a}∗), non-safe CQs can ex-

press that an attribute value starts with letter a. Together with
=ε, one can thus simulate truth values by using “empty word”
versus “non-empty word,” which can then be employed to ex-
press the satisfaction of propositional formulas.

Lemma 4.1. In DL-Lite(HF)
core (D{a}∗), entailment of (non-

safe) Boolean CQs is CO-NP-hard in data complexity.

5 Canonical Models
Usually, rewritability results are proved using the notion of
canonical models of knowledge bases. Given a KB K, a
canonical model IK is a model of K with the property that
ans(φ, IK) = cert(φ,K) holds for all CQs φ. Unfortunately,
such canonical models need not exist, even for unary D.

Example 5.1. Consider the simple DL-Lite(HF)
core (DQ) KB

K = 〈{A(a)}, {A v ∃U.>0}〉. A canonical model IK of K
must satisfy (aIK , q) ∈ UIK for some q > 0. But then the
safe Boolean CQ φq : () ← ∃v.U(a, v) ∧>q/2(v) is satisfied
in IK, but not entailed by K.

Savković and Calvanese [2012] try to solve this problem
by selecting the “most general” q that does not satisfy any
D-atoms except those implied by >0(q). They choose q > 0
such that “for any m predicates Π1, . . . ,Πm in DQ such that(⋃m

i=1 Π
DQ

i

)
((>0)DQ it holds that q /∈

(⋃m
i=1 Π

DQ

i

)
”

[Savković and Calvanese, 2012, page 725]. For a given
choice of Π1, . . . ,Πm, such a value q must exist due to (in-
finitediff). However, regardless of the value of q, the CQ φq
remains a counterexample. Hence, this construction is incor-
rect already for the unary predicates >q , q ∈ Q, contrary to
the claim in [Savković and Calvanese, 2012, Example 2].

To overcome this problem, we weaken the requirements on
the canonical model by considering only those CQs that use
concrete domain predicates from a fixed, finite set of predi-
cates. This solves the issue in Example 5.1 since there are in-
finitely many predicates >q/2, q ∈ Q, and thus not all CQs φq
satisfy this restriction. For ease of presentation, we assume in
the following that all CQs use only the concrete domain pred-
icates from T . We call such CQs T -restricted. Similarly, we
can assume as usual that all other symbols occurring in φ also
occur in T . This does not affect the complexity of query an-
swering, but in practice restricts the kind of queries a user can
ask over a given KB, which is usually fixed in advance.
Abstract Interpretations. Here we cannot describe our con-
struction in detail, but only explain the general ideas. First,
we build an abstract canonical model IK of the KBK, where
attributes may use variables as place-holders for actual val-
ues, and sets of D-atoms are used to constrain the possi-
ble solutions for these variables. This is constructed using
chase rules extending the ones in [Calvanese et al., 2007],
and is very similar to the universal pre-models in [Hernich
et al., 2017]. In this process, the attribute restrictions from
the TBox are translated into D-atoms over the variables oc-
curring in IK. For example, if in IK it already holds that
(e, v1) ∈ UIK and (e, v2) ∈ V IK , and > v ∀U, V.Π occurs
in K, then we add the constraint Π(v1, v2) to IK. We denote
by I∗A the initial part of this model, which is constructed by
applying the chase rules only to the individual names fromA.

In the next step, we construct a canonical solution fK for
all variables in IK, i.e., one that satisfies all constraints, but
does not unnecessarily satisfy any of the “relevant” D-atoms
(defined similarly to RT ∪ RT ,2 in the next section). As
in [Savković and Calvanese, 2012; Artale et al., 2012], the
convexity of D is crucial for this construction, but we also
need functionality here (see [Baader et al., 2017] for details).
In our combined rewriting approach, the finite interpretation
fK(I∗A), which is obtained from the abstract interpretation
I∗A by replacing all variables by their value under fK, plays
the role of I(K) in the definition of combined rewritability.

6 Rewriting CQs with Built-in Predicates
To obtain our rewriting, we extend the approach of [Cal-
vanese et al., 2007; Poggi, 2006; Savković and Calvanese,
2012]. The idea is to construct the rewriting ΦT of the initial
CQ φ w.r.t. the TBox T by iterative application of several op-
erators (called reduce, split, inferT , and inferD). Variants of
the two basic operators reduce and inferT have first been used
in [Calvanese et al., 2007; Poggi, 2006]. The former tries to
unify atoms in CQs, while the latter applies the TBox inclu-
sions as rewrite rules. Intuitively,A v B ∈ T means that any
certain answer to A(x) is also a certain answer to B(x), and
hence A(x) is included in the rewriting of B(x). We extend
inferT to deal with attribute range restrictions, which behave
similarly. A special case of this extension can be found in
[Savković and Calvanese, 2012].

Two new operators deal with concrete domain predicates of
higher arity. The operator split can “split” two occurrences of
a concrete domain variable into separate variables, as long as
they are restricted to the same value by a predicate =d; this is
needed for technical reasons (see [Baader et al., 2017]). The
operator inferD behaves like inferT , but takes care of impli-
cations in the concrete domain instead of the abstract domain.
The Basic Operators. ΦT is the result of iteratively applying

step(Φ) := Φ∪reduce(Φ)∪split(Φ)∪ inferT (Φ)∪ inferD(Φ)

to the initial set {φ}, until we reach a fixed-point. We define

reduce(Φ) := {σ(φ′) | φ′ ∈ Φ, σ ∈ subst(φ′)},

where subst(φ′) contains all substitutions of variables by
terms from φ′. The set split(Φ) contains all CQs obtained
from any φ′ ∈ Φ with =d(v) ∈ φ′ by replacing one other
occurrence of v with a fresh variable v′ and adding the atom
=d(v

′). Before we introduce the infer operators, we want to
illustrate them on an example.

Example 6.1. Consider the KB K = 〈A, T 〉 from Exam-
ple 3.1 and the CQ φ : (x) ← Alert(x) that asks for all pa-
tients with alerts. The only certain answer to φ w.r.t. K is p1.
To obtain this answer without referring to the TBox T , we
have to apply several rewriting steps.

First, inferT applies the inclusion ∃maxHR, hr.+5 v Alert
by replacing Alert(x) by the left-hand side of the axiom:

(x)← maxHR(x, v) ∧ hr(x,w) ∧+5(v, w).

Note that the existential quantifiers in the inclusion are made
explicit by introducing fresh nondistinguished variables v, w.

In DQ, it holds that =160(v) ∧=155(w) implies +5(v, w).
Hence, inferD replaces +5(v, w) by the former two atoms:

(x)← maxHR(x, v) ∧=160(v) ∧ hr(x,w) ∧=155(w).

This step introduces the predicate =155, which is not present
in φ or T . To avoid an infinite rewriting, we obviously have
to restrict the implications that can be applied in this way.

Since the maximum heart rate is 160 for all patients that
are 60 years old, we can again apply inferT to obtain

(x)← age(x, u) ∧=60(u) ∧ hr(x,w) ∧=155(w).

Evaluating this query over A yields the expected answer p1.
Based on this intuition, we define the operator

inferT (Φ) := {σ(φ′′) | φ′ ∈ Φ, φ′ →T φ′′, σ ∈ subst(φ′′)},
where the relation φ′ →T φ′′ holds for two safe CQs φ′, φ′′
if one of the following cases applies:
• There exist an atom X2(~x) in φ′ and X1 v X2 in T such

that φ′′ is obtained by replacing X2(~x) with X1(~x). Here,
(∃R)(x) stands for R(x, y), where y is a nondistinguished
unique variable, and (∃U1, . . . , Um.Π)(x) abbreviates the
set of atoms {U1(x, v1), . . . , Um(x, vm),Π(v1, . . . , vm)},
where v1, . . . , vm are unique nondistinguished variables.
We also allow that X2(~x) comprises only a subset of these
atoms, as long as it includes at least one attribute atom.

• There exist Π(v1, . . . , vm) in φ′ and B v ∀U1, . . . , Um.Π
in T such that φ′′ is obtained by replacing Π(v1, . . . , vm)
with the atoms B(x), U1(x, v1), . . . , Um(x, vm), where x
is an object variable of φ′.

As in previous rewriting algorithms, this operator does not in-
troduce new object variables (except if they occur only once).
Concrete Domain Implications. The operator inferD is
based on a similar relation →D on safe CQs. A first naive
idea would be to define φ′ →D φ′′ as follows:
• There is an atom Π(v1, . . . , vm) in φ′ that is implied by

a D-conjunction ψ such that φ′′ is obtained by replacing
Π(v1, . . . , vm) byψ and adding atomsU(x, v) for the fresh
variables v in ψ (where U occurs in T and x occurs in φ′).

The new attribute atoms ensure safety of the resulting CQ.
However, without further restrictions, this operation may
yield an unbounded number of new atoms and variables, and
hence an “infinite FO rewriting”. To avoid this, we introduce
a bound on the number of concrete domain variables occur-
ring in CQs: we only allow nT concrete domain variables
bound to each object variable x, where nT is the number of
occurrences of attribute names on the right-hand side of in-
clusions in T . This is becuase only such inclusions can cause
new values to be created in the canonical model, and hence
nT is the maximal number of values relevant for reasoning
about the concrete values of a fixed domain element. We fur-
ther restrict the CQs to the set RT of concrete domain pred-
icates occurring in T , and hence call a CQ bounded if all its
value comparison atoms are of the form
(B1) Π(v1, . . . , vm), where Π ∈ RT and the variables

among v1, . . . , vm are bound to at most one object vari-
able x. In the set of all such atoms Π(v1, . . . , vm), there
may occur only nT concrete domain variables bound to
the same x.

We amend the definitions of inferT and inferD by allowing
only bounded CQs (e.g., new atoms U(x, v) do not bind v to
two different variables). Note that this restriction may be tem-
porarily violated, as long as it can be restored by an immedi-
ate application of a substitution (see the definition of inferT).

Unfortunately, this is still not enough to obtain the desired
rewriting. The reason is that the initial CQ φ itself need not
satisfy (B1). In particular, it may contain value comparison
atoms whose variables are bound to different object variables.
However, due to the functionality of D, such atoms can only
be implied by the TBox if all of their variables already sat-
isfy atoms of the form =d(v). It remains to find a finite set of
values d that are relevant in these situations. It turns out that
it suffices to consider such values d that are implied by some
set of atoms of the form (B1). More precisely, we collect in
RT ,1 all predicates =d for which =d(v) is implied by a con-
junction ψ using only predicates from RT and at most nT
variables. Since D is polynomial and constructive, we can,
for all such (finitely many) conjunctions ψ, compute a solu-
tion for each of their variables v, and check whether this is
the only possible solution for v. We obtain RT ,2 by a similar
construction, but now allowing all predicates in RT ∪ RT ,1
to occur in the conjunctions ψ (see [Baader et al., 2017] for
details). We now relax the definition of boundedness by al-
lowing also the following kinds of value comparison atoms:
(B2) Atoms from φ, possibly after applying reduce or split.
(B3) Atoms of the form =d(v), where =d ∈ RT ,2.
In →D, we now allow atoms of the form (B2) to be rewrit-
ten into atoms satisfying either (B1) or (B3) (possibly after
applying a substitution). Atoms of the form (B3) cannot be
rewritten further. This concludes the description of ΦT .
Correctness. We can show that, if the CQ φ is safe, then
every CQ in ΦT is safe and bounded, from which we obtain
that ΦT is finite. Moreover, this rewriting is correct in the
sense that, for any consistent KB K = 〈A, T 〉, we have

cert(φ, 〈A, T 〉) =
⋃
φ′∈ΦT

ans(φ′, I∗A),

where I∗A is the finite abstract interpretation that can be con-
structed from A and T in polynomial time (see Section 5).

In order to obtain an actual combined rewriting, the last
step is to replace the abstract interpretation I∗A by an ordi-
nary finite interpretation, i.e., a database. We use the canon-
ical solution fK described in Section 5 to obtain the desired
finite interpretation by instantiating all variables in I∗A. To
construct this solution, we need to solve polynomial-sizedD-
conjunctions over the predicates in RT ∪ RT ,2 (plus some
others) and the constants in A, which is possible in polyno-
mial time since D is polynomial and constructive. Using the
resulting finite interpretation fK(I∗A) as I(K), we can show
that ΦT satisfies the definition of combined rewritability.
Theorem 6.2. If D is cr-admissible, safe and T -restricted
CQs are combined rewritable w.r.t. DL-Lite(HF)

core (D) TBoxes
T , and the rewritings are computable.

This shows that the entailment problem for safe Boolean
CQs in DL-Lite(HF)

core (D) is in P in data complexity. From a
practical point of view, this result allows us to combine an off-
line (polynomial) computation of the database fK(I∗A) with
an on-line rewriting of incoming queries.

So far, we have ignored the side condition thatK should be
consistent, since query answering over an inconsistent KB is
meaningless. As usual, KB consistency can be checked by an
off-line test (see [Baader et al., 2017]).

Unary Concrete Domains. We again consider the special
case of a unary, decidable concrete domain D satisfying (in-
finitediff), as in [Savković and Calvanese, 2012]. Recall from
Section 2 that adding the equality predicates does not affect
(infinitediff). Since neither T nor φ contain =, for →D it
suffices to decide implications that do not contain this pred-
icate; moreover, the unary predicates =d do not affect de-
cidability. Furthermore, (infinitediff) implies convexity, and
D is trivially functional. The two remaining properties of
cr-admissibility, polynomiality and constructivity, are only
needed to construct RT ,2 and the canonical solution fK. In
[Baader et al., 2017], we define a weaker notion of bounded-
ness without RT ,2 that suffices for unary concrete domains,
and show that one can directly use I(A) instead of fK(I∗A).

Theorem 6.3. If D is unary, decidable, and satisfies (in-
finitediff), then safe and T -restricted CQs are FO rewritable
w.r.t. DL-Lite(HF)

core (D) TBoxes T , and the rewritings are com-
putable.

This extends the results of [Savković and Calvanese, 2012]
to a more expressive ontology language, and adds the missing
condition of T -restrictedness.

7 Conclusion
Our combined rewritability result for CQs with built-in pred-
icates over DL-Lite(HF)

core (D) ontologies establishes for the
first time a polynomial data complexity for query answer-
ing w.r.t. ontologies formulated in an ontology language with
n-ary concrete domains. These results subsume the ones of
[Savković and Calvanese, 2012] for the case of unary con-
crete domains, and they are orthogonal to the results in [Her-
nich et al., 2017]. In the latter work, the data complexity is in
general CO-NP, and the authors investigate for which queries
this goes down to P. Until now, our focus was on showing
rewritability and complexity results. To be useful in practice,
the size of the rewriting needs to be reduced, e.g., by inves-
tigating whether more concise rewritings [Kontchakov et al.,
2010] or alternative target languages [Rosati and Almatelli,
2010] can be employed in our setting. Instead of considering
all possible implications in the concrete domain, it may also
be possible to realize the operator inferD by a dedicated solv-
ing engine for the concrete domain. In addition to consider-
ing minor extensions, like allowing for concrete domain vari-
ables and predicates in the ABox as in [Lutz, 2002], we will
also try to extend the language by local identification con-
straints (keys) [Calvanese et al., 2008] and functional roles
on the right-hand side of inclusions, and investigate whether
FO rewritability holds in the general case.

Acknowledgments
This work was supported by DFG in the CRC 912 (HAEC)
and the project BA 1122/19-1 (GoAsQ).

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Afrati et al., 2006] Foto Afrati, Chen Li, and Prasenjit Mi-
tra. Rewriting queries using views in the presence of arith-
metic comparisons. Theor. Comput. Sci., 368(1-2):88–123,
2006.

[Artale et al., 2009] Alessandro Artale, Diego Calvanese,
Roman Kontchakov, and Michael Zakharyaschev. The DL-
Lite family and relations. J. Artif. Intell. Res., 36:1–69,
2009.

[Artale et al., 2012] Alessandro Artale, Vladislav Ryzhikov,
and Roman Kontchakov. DL-Lite with attributes and
datatypes. In Proc. of the 20th Eur. Conf. on Artificial In-
telligence (ECAI), pages 61–66, 2012.

[Baader and Hanschke, 1991] Franz Baader and Philipp
Hanschke. A scheme for integrating concrete domains into
concept languages. In Proc. of the 12th Int. Joint Conf. on
Artificial Intelligence (IJCAI), pages 452–457, 1991.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the EL envelope. In Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI),
pages 364–369, 2005.

[Baader et al., 2017] Franz Baader, Stefan Borgwardt, and
Marcel Lippmann. Query rewriting for DL-Lite with n-
ary concrete domains (extended version). LTCS-Report
17-04, TU Dresden, Germany, 2017. see https://lat.inf.tu-
dresden.de/research/reports.html.

[Bienvenu et al., 2013] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: A study through disjunctive datalog, CSP, and MM-
SNP. In Proc. of the 32nd Symp. on Principles of Database
Systems (PODS), pages 213–224, 2013.

[Brisaboa et al., 1998] Nieves R. Brisaboa, Héctor J. Her-
nández, José R. Paramá, and Miguel R. Penabad. Contain-
ment of conjunctive queries with built-in predicates with
variables and constants over any ordered domain. In Proc.
of the 2nd East Eur. Symp. on Advances in Databases and
Information Systems (ADBIS), pages 46–57, 1998.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. Au-
tom. Reas., 39(3):385–429, 2007.

[Calvanese et al., 2008] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Path-based identification constraints in de-
scription logics. In Proc. of the 11th Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning (KR),
pages 231–241, 2008.

[Calvanese et al., 2011] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco

Ruzzi, and Domenico Fabio Savo. The MASTRO system
for ontology-based data access. Sem. Web, 2:43–53, 2011.

[Hernich et al., 2017] André Hernich, Julio Lemos, and
Frank Wolter. Query answering in DL-Lite with datatypes:
A non-uniform approach. In Proc. of the 31st AAAI Conf.
on Artificial Intelligence (AAAI), pages 1142–1148, 2017.

[Klug, 1988] Anthony Klug. On conjunctive queries con-
taining inequalities. J. ACM, 35(1):146–160, 1988.

[Kontchakov et al., 2010] Roman Kontchakov, Carsten Lutz,
David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to query answering in DL-Lite.
In Proc. of the 12th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR), pages 247–257,
2010.

[Kontchakov et al., 2011] Roman Kontchakov, Carsten Lutz,
David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to ontology-based data access. In
Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence
(IJCAI), pages 2656–2661, 2011.

[Lutz et al., 2009] Carsten Lutz, David Toman, and Frank
Wolter. Conjunctive query answering in the description
logic EL using a relational database system. In Proc. of
the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI),
pages 2070–2075, 2009.

[Lutz, 2002] Carsten Lutz. The Complexity of Descrip-
tion Logics with Concrete Domains. PhD thesis, RWTH
Aachen, Germany, 2002.

[Lutz, 2003] Carsten Lutz. Description logics with concrete
domains - a survey. In Advances in Modal Logic 4 (AiML),
pages 265–296. King’s College Publications, 2003.

[Ortiz, 2013] Magdalena Ortiz. Ontology based query an-
swering: The story so far. In Proc. of the 7th Alberto
Mendelzon Int. Workshop on Foundations of Data Man-
agement (AMW), 2013.

[Poggi et al., 2008] Antonella Poggi, Domenico Lembo,
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati. Linking data to ontologies. J.
Data Semant., X:133–173, 2008.

[Poggi, 2006] Antonella Poggi. Structured and Semi-
Structured Data Integration. PhD thesis, Università degli
Studi di Roma “La Sapienza” and Université de Paris Sud,
Italy/France, 2006.

[Rosati and Almatelli, 2010] Riccardo Rosati and Alessan-
dro Almatelli. Improving query answering over DL-Lite
ontologies. In Proc. of the 12th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR), pages
290–300, 2010.

[Savković and Calvanese, 2012] Ognjen Savković and Die-
go Calvanese. Introducing datatypes in DL-Lite. In Proc.
of the 20th Eur. Conf. on Artificial Intelligence (ECAI),
pages 720–725, 2012.

[Savković, 2011] Ognjen Savković. Managing data types in
ontology-based data access. Master’s thesis, Free Univer-
sity of Bozen-Bolzano, Italy, 2011.

