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Received: date / Accepted: date

Abstract Fuzzy description logics (FDLs) have been

introduced to represent concepts for which membership

cannot be determined in a precise way, i.e., where in-

stead of providing a strict border between being a mem-

ber and not being a member, it is more appropriate

to model a gradual change from membership to non-

membership. First approaches for reasoning in FDLs

where based either on a reduction to reasoning in clas-

sical description logics (DLs) or on adaptations of rea-

soning approaches for DLs to the fuzzy case. However,

it turned out that these approaches in general do not

work if expressive terminological axioms, called general

concept inclusions (GCIs), are available in the FDL.

The goal of this project was a comprehensive study

of the border between decidability and undecidability

for FDLs with GCIs, as well as determining the exact
complexity of the decidable logics. As a result, we have

provided an almost complete classification of the decid-

ability and complexity of FDLs with GCIs.

Keywords Knowledge Representation and Reason-

ing · Vagueness · Fuzzy Description Logics

1 Introduction

Fuzzy description logics have been studied for over two

decades, with the aim of providing logic-based knowl-

edge representation and reasoning algorithms capable
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of dealing with imprecise knowledge. They have been

employed to this end in various applications, ranging

from image analysis [35] and ambient intelligence [37] to

software design [36]. These applications are supported

by numerous tools for constructing and reasoning with

FDL ontologies [11,12,14,50,58,61].

In FDLs, the classical binary truth values true and

false are extended to more than two or even infinitely

many truth values. Starting with [52, 60], a whole va-

riety of tableau-based reasoning algorithms were devel-

oped for such logics. In addition to these extensions of

classical DL algorithms, new methods based on crispi-

fication, i.e., a reduction to reasoning in classical DLs,

were proposed, which are, however, restricted to finitely

valued FDLs.

It came as a big surprise when it was pointed out

in [9] that several of the existing tableau-based algo-

rithms for infinitely valued FDLs were not sound. The

main culprit turned out to be the presence of termi-

nological cycles induced by general concept inclusions

(GCIs), and the resulting loss of the finite model prop-

erty. Reasoning in several FDLs was later found to be

undecidable when allowing GCIs [6,7,33,34]. This raised

serious questions about the decidability of FDLs in gen-

eral, which until then had been taken for granted.

The goal of this project was a detailed complexity

analysis of the landscape of fuzzy description logics in

order to delimit the undecidable logics from the decid-

able ones. This task was complicated by the large num-

ber of FDLs available. Starting from the known decid-

able and undecidable special cases, we aimed to derive

general conditions for proving (un)decidability of large

classes of FDLs, in particular in the presence of GCIs.

In case of decidability, we also wanted to determine the

precise computational complexity.
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2 Fuzzy Description Logics

Description logics (DLs) [4] are a family of logics whose

members are determined by the constructors and ax-

ioms they use to model the knowledge of an application

domain. Concept constructors are employed to build

concepts, which are expressions describing sets of do-

main elements with common properties. Roles describe

binary relations between objects and are used within

concept constructors. Assertional axioms state proper-

ties of named individuals, while terminological axioms

formulate general knowledge that holds for all domain

elements. Reasoning can be used to obtain additional

knowledge about the domain under consideration. In

this paper, we consider consistency as the main reason-

ing task; this task corresponds to deciding whether a

given ontology (i.e., a collection of axioms) has a model.

The syntax of an FDL is based on that of a classical

DL; however, beyond the choice of constructors and ax-

ioms, the definition of an FDL has additional degrees of

freedom. While all FDLs use more than two truth val-

ues, one can choose whether these are represented by all

rational numbers in the interval [0, 1] (infinitely valued

semantics), or a finite set of truth degrees arranged in

a lattice (finitely valued semantics). In the former case,

FDLs can use either the Zadeh semantics [62] to inter-

pret the constructors, or a semantics based on a (con-

tinuous) triangular norm (t-norm) [38,39], of which un-

countably many exist. Since the latter semantics do not

preserve all classical equivalences between constructors,

it makes sense to consider additional constructors, e.g.,

an implication constructor in addition to the standard

conjunction and negation; moreover, different negation

functions have been proposed in the literature on FDLs.

FDLs also allow more degrees of freedom w.r.t. the form

of axioms. Often, fuzzy axioms allow to formulate lower

bounds on the truth degree of a given classical axiom,

but some of our results also apply to crisp ontologies,

where only the lower bound 1 is used. Additionally, ax-

ioms are sometimes allowed to fix the exact truth degree

of an assertion, or compare the truth degrees of two as-

sertions. The final choice concerns the class of interpre-

tations considered for reasoning. Beside standard (or

general) models, which are defined in a straightforward

way by “fuzzifying” the classical semantics, witnessed

models were proposed in [39], which yield a more intu-

itive semantics for some constructors.

3 Results

We have shown undecidability for large classes of FDLs.

Many of these FDLs are undecidable even if the ontol-

ogy is crisp; hence, undecidability emerges solely from

the fuzzy semantics and not from the ability to state

truth degrees other than true and false. As in the first

undecidability results [6, 7] for FDLs, our proofs are

based on reductions of the Post Correspondence Prob-

lem (PCP). To complement these results, we devel-

oped tableau- and automata-based reasoning methods

for less expressive FDLs, e.g. based on finitely valued or

the infinitely valued (but still relatively simple) Gödel

t-norm semantics. In the latter case, we had to develop

new techniques since surprisingly many Gödel FDLs

turned out to lack the finite model property.

Overall, our decidability and undecidability results

cover most of the FDLs with t-norm-based semantics,

as long as the underlying DL contains at least EL and

some kind of negation constructor. Not surprisingly, all

FDLs with finitely valued semantics that we have inves-

tigated are decidable. For most of the decidable FDLs,

we obtained tight complexity bounds.

For the DLs EL and FL0, which do not have nega-

tion, we obtained several results, although the overall

picture remains incomplete. Reasoning in EL is Exp-

Time-hard for many choices of t-norms, as opposed to

the P-completeness observed in the classical case. A

matching ExpTime upper bound was shown only for

finitely valued semantics. The complexity of reasoning

in fuzzy FL0 under Gödel semantics does not increase

in comparison to the classical case.

3.1 Undecidability Results: More Details

From the first undecidability proofs [6, 7, 33], we ex-

tracted criteria for an FDL to be able to express solv-

ablity of a PCP instance. Basically, the logic must be
able to express the search tree for a solution. This tree

consists of nodes labeled with pairs (u, v) of words rep-

resenting a candidate solution of the PCP. A solution

is found when one node with label (w,w) is found.

In FDLs we encode words as numbers in the in-

terval [0, 1] to simulate this search tree. The precise

encoding depends on the fuzzy semantics considered.

The framework proposed in [25] and extended in [15,19]

identifies five properties specifying structures that can

be expressed by the constructors and axioms of a given

FDL. Intuitively, these properties are: (i) all models can

be forced to contain an element that encodes the root

of the search tree; (ii) two words can be concatenated

to construct the next candidate solution; (iii) new ele-

ments can be created to represent the child nodes of a

given node; (iv) values can be transferred from nodes in

the tree to their child nodes; and (v) the equality of two

encodings of words can be expressed. These properties

together imply undecidability of consistency in an FDL.

We then identified several large classes of FDLs that
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Table 1 Undecidability of consistency in FDLs

NEL NAL IEL SROIQ ELC IALC

crisp  L(0,b)  L(0,b)  L(0,b)  L(0,b) Π,  L Π,  L(0,b)

≥  L(0,b)  L(0,b)  L(0,b)  L(0,b) ⊗ ⊗
=  L(0,b) Π,  L(0,b) ⊗ ⊗ ⊗ ⊗

satisfy each of these properties. For example, property

(iii) always holds when dealing with witnessed mod-

els. Similarly, property (iv) is satisfied in EL augmented

with value restrictions.

Overall we obtain the undecidability results shown

in Table 1 for FDLs over witnessed models. All the re-

sults hold for crisp terminologies. The first row con-

siders completely crisp ontologies, i.e., where the as-

sertional part is also crisp; in the second row, lower

bounds on the degrees of assertions can be specified;

and in the third row, exact values for such degrees can

be stated. On the horizontal axis, we consider differ-

ent combinations of constructors: the extension NEL
of EL with the residual negation, the extension NAL
of NEL with value restrictions, the extension IEL of

NEL with implication, the very expressive extension

SROIQ of IEL that underlies the standard ontology

language OWL 2, the extension ELC of EL with invo-

lutive negation, and the extension IALC of ELC with

value restrictions and implication. An entry Π denotes

that the resulting FDL becomes undecidable when we

consider the Product t-norm for the semantics,  L(0,b)

denotes undecidability for a large class of t-norms that

includes the  Lukasiewicz t-norm ( L), and ⊗ indicates

undecidability for all (continuous) t-norms except the

Gödel t-norm. Most results follow from the basic unde-

cidable cases we identified [19]:

– NEL with crisp ontologies and  L[0,b]-t-norms,

– IEL with equality assertions and any t-norm except

the Gödel t-norm,

– ELC with ≥-assertions and any t-norm except the

Gödel t-norm, and

– ELC with crisp ontologies and the Product t-norm.

In [2], it was further shown that NAL with equality as-

sertions and the Product t-norm is undecidable. These

results subsume all previously known undecidable cases

[6,7,33], and prove undecidability of all logics for which

correct tableau algorithms had been claimed to exist,

but shown to be incorrect due to the lack of the fi-

nite model property. In [2], we discuss in depth the

issues caused by infinitely valued semantics for exist-

ing tableau methods for FDLs, and highlight how the

undecidability results exploit these weaknesses.

As described in the next section, most of these re-

sults are in fact tight, i.e., decidability holds for all other

t-norms (shown in Table 1 by a gray background). In

particular, all FDLs using the Gödel t-norm are decid-

able, even when they use both residual and involutive

negation [22]. This covers most expressive DLs in use to-

day, and leaves open only the special cases at the lower

left and the upper right corners of Table 1. Regarding

the former, it seems possible to extend the undecid-

ability result of [2] to a larger class of t-norms, but a

full classification remains open. In the latter case, it is

arguable whether fuzzy semantics using the involutive

negation, but none of the three basic t-norms Gödel,

 Lukasiewicz, or Product, make sense, and whether these

open cases should be pursued further.

3.2 Decidability Results: More Details

We identified two main classes of decidable FDLs. The

first concerns FDLs that use t-norms outside of the class

 L[0,b], restricted to ≥-assertions, and without involutive

negation. We have shown in [17] that the semantics of

such logics degenerates to the underlying classical se-

mantics. That is, if we remove all fuzzy degrees from

a fuzzy ontology, the result is consistent in the classi-

cal sense iff the original ontology is consistent under the

fuzzy semantics. This trivially yields the same complex-

ity bounds as for the underlying classical DLs. These

results hold even for very expressive DLs like SROIQ
(under the mentioned restrictions) [19]. It should be

noted, however, that this reduction works only for de-

ciding consistency; for other reasoning problems, decid-

ability is still an open problem.

The second class of decidable FDLs are ones with

the Gödel t-norm. Before our work, it was generally

assumed that Gödel FDLs have the finite model prop-

erty, and in particular the finitely valued model prop-

erty, where reasoning can be restricted without loss of

generality to models using only finitely many degrees

of truth. The reason for this assumption was the strong

similarity to the Zadeh semantics, which has these prop-

erties [53]. We have shown in [18] that this assumption

is wrong; under Gödel semantics, the finitely valued

model property fails already for extensions of EL with

either value restrictions or the implication constructor.

While the lack of the finite model property in other

FDLs led to undecidability, we were able to show that

the Gödel t-norm preserves decidability. We observed

that the precise truth degrees used in models do not

matter, but only the order relations among them. Thus,

it suffices to consider abstract models, which specify

only a total order on the values relevant for the con-

sistency of the ontology. Based on this abstraction, we

developed an automata-based reasoning approach [18],

which is closely related to the approach for finitely val-

ued FDLs described in Section 3.3 below.
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We have also combined the automata approach with

the crispification method typically used for finitely val-

ued FDLs [30]. While applicable to relatively expressive

DLs, this approach depends on the tree model prop-

erty, which does not hold in SROIQ [59], but in its

sublogics SRIQ, SROQ, and SROI [32]. The com-

bined approach allowed us to show that, in most cases,

the complexity of reasoning remains the same as the

one for the underlying classical DLs.

By lifting the tableau algorithm of [41,42] to our or-

der abstraction, we extended our decidability results to

SROIQ with Gödel semantics [22]. In contrast to pre-

vious tableau algorithms dealing with GCIs, ours uses a

correct blocking condition that is based on a finite rep-

resentation of possibly infinite models. Our algorithm

is related to the technique for Zadeh semantics pre-

sented in [51], but considers infinitely many values, and

supports non-crisp concept and role inclusions. To deal

with the latter, we developed a fuzzy generalization of

the automata-based technique from [42].

3.3 Finitely Valued FDLs

We investigated the complexity of FDLs with finitely

valued semantics. Although lattice-based semantics had

been proposed before [54], most research in this direc-

tion focused on finite total orders. The crispification

approach, which was developed for such FDLs, did not

provide precise complexity bounds due to a blow-up in

the size of the resulting classical ontology [10,13].

Our own work on this topic started with an auto-

mata-based construction that allowed us to show tight
complexity bounds for a variety of finitely valued FDLs

[23, 26, 29, 31]. We have shown consistency to be in

ExpTime for DLs up to SHOI (ExpTime-hardness

already holds in the classical case [49]). When the ter-

minology is restricted to being acyclic and all transitive

roles are crisp, the classical complexity of PSpace in

these DLs does not increase under finitely valued se-

mantics. These results use the PSpace on-the-fly con-

structions from [5]. Using tableau methods and pre-

completion [40], we were able to transfer these com-

plexity results also to other reasoning problems [24,28].

These approaches do not work for reasoning tasks

like answering (fuzzy) conjunctive queries (CQs) over

fuzzy ontologies. Answering CQs w.r.t. ontologies is an

important extension of the classical problem of CQ an-

swering in databases, which has recently received con-

siderable attention [8, 47]. For FDLs, several fuzzy ex-

tensions of CQs have been proposed [48,56,57]. In [21,

43], we have extended the crispification approach to an-

swer fuzzy CQs in finitely valued FDLs. Notably, [21]

presents a pre-processing step that avoids the exponen-

tial blow-up of previous methods, yielding tight com-

plexity bounds in many cases. We also showed that

some previous crispification approaches are incorrect

for number restrictions. An evaluation of a prototype

implementation of our approach on top of DeLorean [11]

demonstrates that the pre-processing effectively reduces

the size of the resulting ontologies, and thus answering

fuzzy CQs becomes feasible under finitely valued se-

mantics. A different approach for fuzzy CQ answering

for the inexpressive FDL DL-Lite was developed inde-

pendently in [45]. There, the rewriting approach from

classical DL-Lite is extended to its Gödel variant, and

conditions under which this technique yields correct re-

sult also for other t-norms are investigated.

3.4 Fuzzy Extensions of Inexpressive DLs

The final area we considered were fuzzy extensions of

inexpressive DLs, like EL and FL0. In these logics, con-

sistency is trivial, and hence research focuses on decid-

ing subsumption between concepts.

For the Gödel t-norm, it was known that the com-

plexity of subsumption in EL remains P-complete [3,44].

In contrast, we showed a co-NP lower bound for a large

class of t-norms including the  Lukasiewicz t-norm [27],

using a reduction from the (complement of the) ver-

tex cover problem. In [16] we further raised this lower

bound to ExpTime, even for finitely valued extensions

of EL. For fuzzy EL based on finitely valued variants

of the  Lukasiewicz t-norm, this means that subsump-

tion reasoning is ExpTime-complete [26], and together

with [44] we obtain a complete characterization of the

complexity of fuzzy extensions of EL with finite t-norms.

However, the precise complexity remains open for the

infinitely valued  Lukasiewicz and Product t-norms.

In FL0, subsumption is ExpTime-complete already

in the classical case [3]. Hence, by the results of Sec-

tion 3.2, the fuzzy variant of FL0 with the Gödel t-norm

has the same complexity. We showed that, when re-

stricting to cyclic terminologies, the complexity of the

Gödel extension of FL0 reduces to PSpace, while for

acyclic terminologies it belongs to co-NP [20]. To show

these results, we employed a weighted generalization of

the automata construction used in the classical case [1].

4 Outlook

While this project has substantially increased the state

of research regarding decidability and complexity of

FDLs, there remain a number of open issues. For in-

stance, the picture of decidability and complexity for
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the case of general models is not as clear as the one de-

scribed for witnessed models in Table 1, although some

results have been obtained [15]. Extensions of FDLs

with concrete domains [46, 55] and other non-logical

constructors need also to be studied in more detail. Nev-

ertheless, our results provide an important map of the

complexity landscape of fuzzy description logics, which

can aid researchers and modeling experts alike in choos-

ing a fuzzy description logic suitable for their needs.

Since some of the reasoning algorithms are exten-

sions of the classical ones used in current DL reasoners,

it is conceivable that these reasoners can be adapted

to deal with FDLs, at least under finitely valued or

Gödel semantics. Tableau algorithms that can deal with

GCIs under Zadeh semantics have already been imple-

mented [14, 50]. Providing tableau reasoners for differ-

ent fuzzy semantics will help to speed up the adoption

of FDLs for modeling purposes in applications.
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38. P. Hájek. Metamathematics of Fuzzy Logic, volume 4 of
Trends in Logic. Kluwer, 1998.
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