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Abstract The work in this paper is motivated by a privacy scenario in
which the identity of certain persons (represented as anonymous individ-
uals) should be hidden. We assume that factual information about known
individuals (i.e., individuals whose identity is known) and anonymous
individuals is stored in an ABox and general background information is
expressed in a TBox, where both the TBox and the ABox are publicly
accessible. The identity problem then asks whether one can deduce from
the TBox and the ABox that a given anonymous individual is equal to a
known one. Since this would reveal the identity of the anonymous indi-
vidual, such a situation needs to be avoided. We first observe that not all
Description Logics (DLs) are able to derive any such equalities between
individuals, and thus the identity problem is trivial in these DLs. We
then consider DLs with nominals, number restrictions, or function de-
pendencies, in which the identity problem is non-trivial. We show that in
these DLs the identity problem has the same complexity as the instance
problem. Finally, we consider an extended scenario in which users with
different rôles can access different parts of the TBox and ABox, and we
want to check whether, by a sequence of rôle changes and queries asked
in each rôle, one can deduce the identity of an anonymous individual.

1 Introduction

In order to illustrate the privacy scenario sketched in the abstract, assume that
you are asked to perform a survey regarding the satisfaction of employees with
the management of a company. Since the boss of the company is known not
to respond well to criticism, the employees insist that you perform the survey
such that the identity of persons voicing criticism cannot be deduced by the
boss. Thus, you let the employees use a pseudonym when answering the survey.
However, the survey does ask some personal data from the participants, and
you are concerned that the boss can use the provided answers, in combination
with the employee database and general knowledge about how things work in the
company, to deduce that a certain pseudonym corresponds to a specific employee.
For example, assume that in the survey the anonymous individual x states that
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she is female and has expertise in logic and privacy. The boss knows that all
employees with expertise logic belong to the formal verification task force and
all employees with expertise privacy belong to the security task force. In addition,
the employee database contains the information that the members of the first
task force are John, Linda, Paul, Pattie and of the second Jim, John, Linda,
Pamela. Since Linda is the only female employee belonging to both task forces,
the boss can deduce that Linda hides behind the pseudonym x. The question is
now whether you can use an automated system to check whether such a breach
of privacy can occur in your survey.

The purpose of this paper is to show that ontology reasoners can in principle
be used for this purpose. We assume that both the information provided in the
survey and the employee database are represented in a DL ABox A, where the
employees from the database are represented as known individuals in A and
the pseudonyms used in the survey are represented as anonymous individuals
in A. Background information (such as disjointness of the concepts Male and
Female, or the connection between expertise and task forces) are represented in
a DL TBox T . In order to detect a breach of privacy, we then need to check
whether the ontology O consisting of T and A implies an identity between
some anonymous individual x and a known individual a. We call the underlying
reasoning task the identity problem for O, x, and a.

In Section 2 we formally introduce the identity problem and show that, for a
large class of DLs, this problem is trivial in the sense that no identities between
distinct individuals can be deduced from consistent ontologies formulated in
these DLs. Not surprisingly, this class consists of the DLs that are fragments of
first-order logic without equality. In Section 3, we introduce three DLs for which
the identity problem is non-trivial, i.e., the DL ALCO [14], where nominals
allow us to derive identities; ALCQ [11], where number restrictions allow us
to derive identities; and CFDnc [22], where functional dependencies allow us
to derive identities. In Section 4 we show that the identity problem can be
reduced in polynomial time to the instance problem, and that for the three
DLs mentioned above this actually yields an optimal procedure w.r.t. worst-
case complexity. Section 5 considers the identity problem in the context of rôle-
based access control [13] to ontologies. Basically, we assume that a user rôle r̂ is
associated with access to a subset Or̂ of the ontology.1 While having rôle r̂, the
user can access Or̂ through queries, and can then store the result in a view Vr̂. In
a setting where rôles can dynamically change, the user may have collected (and
stored) a sequence of views for different rôles. The question is then whether it
is possible to derive the identity of an anonymous individual with a known one
using these views. We will show that answering this question can be reduced to
the identity problem investigated in the previous sections.

Similar privacy scenarios have been considered for databases [4], but also in
the context of ontology-based data access [8,18,7]. In particular, [18] introduces
a setting with sub-ontologies and views that is similar to what we consider in

1 To distinguish user rôles from DL roles, we write them with “ô” and also denote
specific such rôles with letters with a hat.



Section 5. However, the main difference between these works and ours is that we
concentrate on hiding the identity of an anonymous individual with a known one.
In contrast, the other works are trying to hide properties of known individuals,
i.e., the membership of an individual (or a tuple of individuals) in the answers
to certain queries.

A preliminary version of this paper was presented at the Description Logic
Workshop [1].

2 The Identity Problem

We assume that the reader is familiar with the basic notions of Description
Logics, as e.g. introduced in [2,3]. We denote the set of concept names by NC ,
the set of role names by NR, and the set of individual names by NI . Using the
constructors of the given DL, one can then build concept descriptions over a
given set of concept and role names. TBoxes and ABoxes are assumed to be
defined in the standard way: TBoxes are finite sets of general concept inclusions
(GCIs) of the form C v D, for concept descriptions C,D; and ABoxes are finite
sets of assertions of the form C(a) and r(a, b), where C is a concept description,
r is a role name, and a, b are individual names. An ontology is of the form
O = (T ,A) where T is a TBox and A is an ABox. The semantics of DLs is
defined as usual by considering first-order interpretations I, which consist of a
non-empty domain ∆I and assign concept names A with subsets AI of ∆I , role
names r with binary relations rI on ∆I , and individual names a with elements
aI of ∆I . Note, however, that we do not make the unique name assumption
(UNA) for individual names, i.e., different individual names may be interpreted
by the same element of the interpretation domain. The semantics of the concept
constructors then allows us to assign subsets CI of ∆I to concept descriptions.
The interpretation I is a model of the ontology O = (T ,A) if it satisfies all the
GCIs in T and assertions in A, i.e., CI ⊆ DI for all C v D in T , aI ∈ CI for
all C(a) in A, and (aI , bI) ∈ rI for all r(a, b) in A. The ontology O is consistent
if it has a model.

The identity problem asks whether two individuals are equal w.r.t. a given
ontology. Since anything (also identities) follows from an inconsistent ontology,
we consider this problem only for the case where the ontology is consistent.

Definition 1. Let a, b ∈ NI be distinct individual names and O a consistent
ontology. Then a is equal to b w.r.t. O (denoted by O |= a

.
= b) iff aI = bI for

all models I of O. The identity problem for O, a, b asks whether O |= a
.
= b.

Not all DLs are able to derive equality of individuals. We call those that can
DLs with equality power.

Definition 2. L is a description logic without equality power if there is no
consistent ontology O formulated in L and two distinct individual names a, b ∈
NI such that O |= a

.
= b. Otherwise we say that L has equality power.



It is well-known (see, e.g., Chapter 6 in [2]) that many DLs can be trans-
lated into first-order predicate logic (FOL). Basically, concept names and role
names are translated into unary and binary predicates, respectively, and complex
concept descriptions are translated into FOL formulas with one free variable. In-
dividual names are translated into constant symbols and TBoxes and ABoxes
into closed formulas. For the translation of some DLs, FOL without equality is
sufficient whereas for others equality is needed.

Theorem 1. If the DL L can be translated into FOL without equality, then it
is a DL without equality power.

Proof. Let O = (T ,A) be a consistent ontology of L and a, b ∈ NI be two
distinct individual names. We must show that O 6|= a

.
= b. According to our

assumption on L, there is an FOL formula φ not containing the equality symbol
that is equivalent to O. Consequently, it is sufficient to show that φ 6|= a = b
according to the semantics of FOL, where the equality symbol = is interpreted
as equality. Since O is consistent, the formula φ is satisfiable.

Using well-known approaches and results regarding FOL [6], we can transform
φ into a formula φ′ in Skolem form containing additional function symbols such
that (i) φ is satisfiable iff φ′ is satisfiable, and (ii) any model of φ′ is a model of φ.
Thus, φ′ is satisfiable and since it is in Skolem form it has a Herbrand model IH .
Since φ′ does not contain equality, distinct terms (and thus in particular distinct
constants) are interpreted by distinct elements in IH . Finally, we know that IH
is also a model of φ, which shows that there is a model of φ in which a and b are
not interpreted by the same domain element. This proves φ 6|= a = b. ut

As a consequence of this theorem, we conclude that the basic DL ALC [16]
(see below) and its fragments, but also more expressive DLs such as SRI (see
the Appendix in [3]), do not have equality power, and thus the identity problem
is trivial for these DLs.

3 Three DLs with Equality Power

In this section, we introduce three DLs that are able to derive equalities between
individuals, and for which thus the identity problem is non-trivial. The first two
DLs are ALCO, which extends ALC by nominals, and ALCQ, which extends
ALC by qualified number restrictions. Recall that concept descriptions C,D of
ALC are defined using the following syntax rules:

C,D ::= ⊥ | > | A | ¬C | C uD | ∀r.C | ∃r.C,

where A ∈ NC and r ∈ NR. The semantics of these concept constructors are
defined as follows:

– ⊥I := ∅, >I := ∆I ;
– (C uD)I := CI ∩DI , (C tD)I := CI ∪DI , (¬C)I := ∆I \ CI ;
– (∀r.C)I := {d ∈ ∆I | ∀e ∈ ∆I .(d, e) ∈ rI ⇒ e ∈ CI};



– (∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I .(d, e) ∈ rI ∧ e ∈ CI}.

Nominals can be used to generate singleton concepts from individual names: if
a ∈ NI , then {a} is a concept description of ALCO, whose semantics is defined as
{a}I := {aI}. Qualified number restrictions are of the form >n r.C and 6n r.C,
with associated semantics

– (>n r.C)I = {d ∈ ∆I | there are at least n elements e ∈ ∆I with (d, e) ∈ rI
and e ∈ CI};

– (6n r.C)I = {d ∈ ∆I | there are at most n elements e ∈ ∆I with (d, e) ∈ rI
and e ∈ CI}.

The third DL, called CFDnc [22], derives its equality power from so-called
functional dependencies. Instead of roles, this logic uses attributes, which are
interpreted as total functions. We use the symbol NA to denote the set of all
attributes, replacing the set NR. Concept descriptions C,D of CFDnc are defined
using the following syntax rules:

C,D ::= A | ¬A | C uD | ∀Pf.C | A : Pf1, . . . , Pfk → Pf,

where A ∈ NC , k ≥ 1, and the path functions Pf, Pfi are words in N∗A with the
convention that the empty word is denoted by id. A concept description of the
form A : Pf1, . . . , Pfk → Pf is called a path functional dependency (PFD). In
CFDnc there is an additional restriction on PFDs to ensure that reasoning in
this logic is polynomial: for any PFD of the form above there is an i, 1 ≤ i ≤ k
such that

1. Pf is a prefix of Pfi, or
2. Pf = Pf′f for f ∈ NA and Pf′ is a prefix of Pfi.

Note that PFDs whose right-hand side Pf has length ≤ 1 trivially satisfy this
restriction.

The interpretation of attributes as total functions is extended to path func-
tions by using composition of functions and interpreting id as the identity func-
tion. The semantics of atomic negation (¬A) and conjunction (C uD) is defined
in the same way as in ALC. For the constructors involving path functions, it is
defined as follows:

(∀Pf.C)I := {d ∈ ∆I | PfI(d) ∈ CI},

(A : Pf1, . . . , Pfk → Pf)I :=

{d ∈ ∆I | ∀e ∈ AI .

 ∧
1≤i≤k

PfIi (d) = PfIi (e)

⇒ PfI(d) = PfI(e)}

A TBox T in CFDnc consists of a finite set of inclusion dependencies A v C, and
an ABox A consists of a finite set of concept assertions A(a) and path function
assertions Pf1(a) = Pf2(b), where A ∈ NC , C is a CFDnc concept description,
a, b ∈ NI , and Pfi ∈ N∗A.



Theorem 2. The DLs ALCO, ALCQ, and CFDnc have equality power.

This theorem is an immediate consequence of the following three examples, which
each shows for the respective DL that it can derive equality between different
individuals.

Example 1. Here we formulate the example from the introduction in the DL
ALCO. Let O = (T ,A) where

T := {∃expertise.{LOGIC} v VerTF, ∃expertise.{PRIVACY} v SecTF,
VerTF v {JOHN} t {LINDA} t {PAUL} t {PATTIE},
SecTF v {JIM} ∪ {JOHN} ∪ {LINDA} ∪ {PAMELA}, Female v ¬Male},

A := {Female(x), expertise(x, LOGIC), expertise(x,PRIVACY),
Female(LINDA),Female(PATTIE),Female(PAMELA),
Male(JOHN),Male(JIM),Male(PAUL)}.

It is easy to see that O |= x
.
= LINDA since x’s expertise implies that she belongs

to both the verification and the security task force, but the only female employee
belonging to both is Linda.

For the sake of brevity, we use abstract examples to show that ALCQ and
CFDnc have equality power. It would, however, be easy to provide intuitive
examples also for these two DLs.

Example 2. Consider the ALCQ ontology O = (T ,A) where

T := {A v 6 1 r.B} and A := {A(a), r(a, b), r(a, x), B(a), B(x)}.

Obviously, we have O |= x
.
= b.

Example 3. Consider the CFDnc ontology O = (T ,A) where

T := {A v A : f → id} and A := {A(a), f(a) = b, A(x), f(x) = b}.

Since both x and a belong to A and have the same value b for the path function
f , the path functional dependency in T implies that they must be equal, i.e., we
have O |= x

.
= a.

Theorem 2 together with Theorem 1 implies that the DLs ALCO, ALCQ,
and CFDnc cannot be expressed in FOL without equality. We leave it to the
reader to come up with translations of nominals, qualified number restrictions,
and path functional dependencies into FOL with equality.

4 The Complexity of the Identity Problem

In this section, we first show that the identity problem can be polynomially
reduced to the instance problem for all DLs with equality power. Note that the
instance problem is one of the basic inference problems for DLs, and thus instance
checking facilities are available in most DL reasoners. Given an ontology O, a
concept description C, and an individual name a, we say that a is an instance
of C w.r.t. O (written O |= C(a)) if aI ∈ CI holds for all models I of O.



Lemma 1. Let L be a DL with equality power, O = (T ,A) an L ontology and
a, b two distinct individual names. If B is a concept name not occurring in O,
then we have

O |= a
.
= b iff (T ,A ∪ {B(a)}) |= B(b).

Proof. The direction from left to right is trivial. We show the other direction
by contraposition. Thus, assume that O 6|= a

.
= b. Let I be a model of O such

that aI 6= bI . Let I ′ be the interpretation that coincides with I on all role
names, individual names, and concept names different from B. For B we define
BI

′
:= {aI}. Since B does not occur in O, the interpretation I ′ is still a model

of T and A, and it satisfies B(a) by our definition of BI
′
. However, it does not

satisfy B(b) since bI
′
= bI 6= aI does not belong to BI

′
. ut

This lemma shows that the identity problem is at most as complex as the instance
problem for all DLs with equality power that allow instance assertions for concept
names in the ABox. Since the instance problem is polynomial for CFDnc [22],
this implies that also the identity problem is polynomial for this DL. In [22] it is
mentioned that P-hardness of the consistency problem for CFDnc ontologies is
an easy consequence of P-hardness of satisfiability of propositional Horn formulas
[5]. We now show that the same is true also for the identity problem.

Theorem 3. The identity problem is P-complete for CFDnc ontologies.

Proof. We already know that the problem is in P. To show P-hardness, we reduce
Horn-SAT to the identity problem. Recall that a Horn-formula φ is a finite set
of clauses of the form

(a) p1 ∧ . . . ∧ pn → p0 where n > 0 and p0, . . . , pn are propositional variables;
(b) → p0, which states that the propositional variable p0 must be true;
(c) p1∧ . . .∧pn → for n > 0 propositional variables p1, . . . , pn, which states that

p1, . . . , pn cannot be true at the same time.

Given φ, we construct a CFDnc-ontology Oφ = (Tφ,Aφ) as follows. For every
propositional variable p occurring in φ we introduce a functional role fp as well
as individuals cp, dp. In addition, we introduce the functional role f⊥ and the
individuals c⊥, d⊥ and a, b. Intuitively, we encode truth of the propositional
variable p as equality of the individuals cp and dp, and inconsistency as equality
of c⊥ and d⊥. Clauses of the form (a) and (c) are encoded using path functional
dependencies in the TBox and clauses of the form (b) as path function assertions
in the ABox. To be more precise, we define:

Tφ := {A v A : fp1 , . . . fpn → fp0 | p1 ∧ . . . ∧ pn → p0 ∈ φ}
{A v A : fp1 , . . . fpn → f⊥ | p1 ∧ . . . ∧ pn → ∈ φ}

A := {A(a), A(b)} ∪
{fp(a) = cp, fp(b) = dp | p ∈ var(φ)} ∪ {f⊥(a) = c⊥, f⊥(b) = d⊥} ∪
{cp0 = dp0 | → p0 ∈ φ}.

where A is a concept name. The ontology constructed this way satisfies the
syntactic restrictions on CFDnc ontologies. Moreover, it can be constructed in
logarithmic space since it can simply be read off the representation of φ.



By definition, the assertions cp0 = dp0 enforce equality of these individuals
iff φ contains a clause → p0 of the form (b). The path functional dependencies
in Tφ can then be used to derive further equalities according to the clauses of
the form (a) and (c) in φ. It is thus easy to see that equality of the individuals
cp and dp can be derived from O iff φ implies that the propositional variable
p must be set to true. Consequently, deriving an equality of the individuals c⊥
and d⊥ indicates that a clause p1 ∧ . . . ∧ pn → of the form (c) in φ is violated.
In fact, deriving c⊥ = d⊥ is only possible if there is such a clause of the form (c)
in φ and the equalities cpi = dpi (i = 1, . . . , n) have already been derived.

Using this intuition, it is then easy to prove the following claim:

φ is unsatisfiable iff O |= c⊥=̇d⊥,

which states correctness of our reduction, and thus establishes P-hardness of the
identity problem in CFDnc. ut

For ALCO and ALCQ, the instance problem is ExpTime-complete [14,21].
Thus, we obtain exponential-time upper bounds for the identity problem in these
DLs. To show that these upper bounds are optimal, we basically prove that there
are polynomial-time reductions of the instance problem in ALC to the identity
problem in these logics. In fact, the instance problem is already ExpTime-hard
for the common sub-logic ALC of ALCO and ALCQ [15]. Before introducing
these reductions and proving that they are correct, we have to deal with a
subtlety that shows up in these proofs.

Note that, inALC, we can assume without loss of generality that any instance
relationship that does not follow from an ontology can be refuted by a model of
cardinality greater than 1.

Lemma 2. Let O = (T ,A) be an ALC ontology, C an ALC concept description,
and a an individual name. If O 6|= C(a), then there is a model I of O such that
aI 6∈ CI and |∆I | ≥ 2.

Proof. This follows from the fact that models of ALC ontologies are closed under
disjoint union (see [3], Theorem 3.8). In fact, if O 6|= C(a), then there is a model
I of O such that aI 6∈ CI . However, this model could have cardinality 1. If we
take the disjoint union J = I1 ] I2 of I with itself, then the cardinality of ∆J
is twice the cardinality of ∆I , and thus at least 2. Theorem 3.8 in [3] says that
J is a model of T . Regarding the ABox, we assume that all individual names
occurring in A are interpreted in J by their interpretation in the renaming I1
of I. Using Lemma 3.7 in [3], it is easy to see that this ensures that J is also a
model of A. ut

Note that this lemma does not hold for ALCO ontologies. For example, O =
({> v {a}}, ∅) has only models of size 1, and O 6|= A(a). This is the reason why
we use the DL ALC rather than the more expressive logics ALCO or ALCQ in
our reductions.



Lemma 3. Let L ∈ {ALCO,ALCQ}, O be an ALC ontology, C an ALC concept
description, and a an individual name. Then we can construct in polynomial time
an L ontology O′ and individuals a′, b′ such that

O |= C(a) iff O′ |= a′
.
= b′.

Proof. Let O = (T ,A). We consider the two DLs separately.

1.) L = ALCO:
We define O′ := (T ∪ {C v ∀r.{b′}},A ∪ {r(a, a′), r(a, b′)}), where a′, b′ are
distinct individual names and r is a role name such that a′, b′, r do not occur
in O. The direction from left to right is again trivial. The other direction
is shown by contraposition. Let I be a model of O such that aI 6∈ CI . By
Lemma 2, we can assume without loss of generality that the domain of I
contains at least two distinct elements d1 6= d2. We construct an interpre-
tation I ′ that coincides with I on all concept, role, and individual names
occurring in O, and thus is also a model of O. In addition, I ′ interprets r
as rI

′
:= {(aI , d1), (aI , d2)} and the new individual names as a′I

′
:= d1 and

b′I
′
:= d2. By construction, I ′ satisfies the assertional part of O′. To see

that it also satisfies the GCI C v ∀r.{b′}, note that aI = aI
′
is the only

element of I ′ that has successors w.r.t. the role r. Since it does not belong to
CI = CI

′
, the elements of CI

′
trivially satisfy the value restriction ∀r.{b′}.

Thus, I ′ is a model of O′ in which the individuals a′, b′ are interpreted by
different elements, which shows O′ 6|= a′

.
= b′.

2.) L = ALCQ:
We define O′ := (T ∪ {C v 6 1 r.>},A ∪ {r(a, a′), r(a, b′)}), where a′, b′
are distinct new individuals and r is a new role name not occurring in O.
The direction from left to right is again trivial. To show the other direction,
assume that I is a model of O such that aI 6∈ CI . Again, we assume without
loss of generality that the domain of I contains at least two distinct elements
d1 6= d2. We construct an interpretation I ′ in the same way as in case
1. above. Also, the argument why I ′ is a model of O′ in which a′, b′ are
interpreted by different elements is identical to the one above. ut

As an easy consequence of Lemma 1 and Lemma 3 we obtain the exact
complexity of the identity problem in ALCO and ALCQ. In fact, Lemma 1
yields ExpTime upper bounds. To show that Lemma 3 indeed yields ExpTime
lower bounds, we need to take into account the fact that we have defined the
identity problem with only consistent ontologies as possible input. In fact, since
the consistency problem can be reduced to the instance problem in ALC, it
could potentially be the case that the reason for the ExpTime-hardness of the
instance problem comes from the hardness of consistency only. However, we will
show now that this is not the case, i.e., we show that ExpTime-hardness of the
instance problem in ALC also holds if we consider the instance problem only for
consistent ALC ontologies O.

Lemma 4. The instance problem w.r.t. consistent ALC ontologies is ExpTime-
hard.



Proof. We show this by a reduction of the (un)satisfiability problem for ALC-
concepts w.r.t. TBoxes, which is also known to be ExpTime-complete ([3], The-
orem 5.13). Recall that C is satisfiable w.r.t. T iff there is a model I of T
satisfying CI 6= ∅.

Thus, let C be an ALC concept description and T an ALC TBox. We can
assume without loss of generality that T consists of a single GCI > v D for an
ALC concept description D (see [3], page 117). Note that T may actually be
inconsistent.

Given C and D, we now construct a consistent ALC ontology OC,D =
(TC,D, ∅) as follows:

TC,D := {B v ∃r.(C uA), A v D} ∪ {A v ∀s.A | s occurs in C,D},

where A,B are concept names not occurring in C,D and r is a role name not
occurring in C,D. It is easy to see that OC,D is consistent. In fact, any inter-
pretation I with AI = BI = ∅ is obviously a model of TC,D. Thus, to prove the
lemma it is sufficient to show that the following holds (for an arbitrary individual
name a):

C is satisfiable w.r.t. {> v D} iff OC,D 6|= ¬B(a).

First, assume that OC,D 6|= ¬B(a). This means that there is a model I of OC,D

that interprets B as a non-empty set. Then the first GCI ensures that there is an
element d0 of A that also belongs to C. In addition, all the elements connected
via roles occurring in C,D with d0 also belong to A, and thus to D because of
the second GCI. Consequently, if we restrict I to these elements, we obtain a
model of > v D in which d0 belongs to C. This shows that C is satisfiable w.r.t.
{> v D}.

Conversely, assume that I is a model of {> v D} with d0 ∈ CI . Then I can
easily be extended to a model of TC,D in which a belongs to B by (i) introducing
an additional element d belonging to B, (ii) interpreting a as d, (iii) interpreting
r as {(d, d0)}, and (iv) putting d0 as well as all the elements reachable from it
into A. ut

In addition, if O is a consistent ALC ontology, then so are the ontologies
O′ constructed from it in the proof of Lemma 3. Thus, Lemma 3 together with
Lemma 4 yields the matching ExpTime lower bounds for the identity problem
in ALCO and ALCQ.

Theorem 4. The identity problem is ExpTime-complete for ALCO and ALCQ
ontologies.

For the three DLs with equality power considered in this paper, the identity
problem has the same complexity as the instance problem. A natural question to
ask is whether this is always the case. A simple example shows that the answer
to this question is negative. In fact, let ALC= be the DL ALC, with the only
difference that ALC= ABoxes may contain equality assertions a .

= b between
individual names. It is easy to see that the identity problem in this DL is non-
trivial, but it can be solved in polynomial time. In fact, to check whether a



consistent ALC= ontology implies an equality a .
= b, we only need to construct

the reflexive, transitive, and symmetric closure of the explicitly stated equalities.
However, since ALC is a sub-logic of ALC=, the instance problem in this DL is
ExpTime-hard (and it is easy to show that it is also in ExpTime).

One may also wonder whether the complexity of the instance problem can
be transferred to the identity problem also for DLs where the instance prob-
lem has a higher complexity than ExpTime. For example, the DL ALCOIQ,
which extends both ALCO and ALCQ and additionally allows the use of in-
verse roles, has a NExpTime-complete satisfiability problem [20], even w.r.t. the
empty TBox. This implies that the instance problem w.r.t. consistent ALCOIQ
ontologies is coNExpTime-complete. In fact, the ALCOIQ concept description
C is unsatisfiable iff (∅, ∅) |= ¬C(a) (for a new individual name a), which shows
coNExpTime-hardness also w.r.t. consistent ontologies. The complexity upper
bound follows from the NExpTime upper bound of satisfiability in C2, i.e., two-
variable fragment of first-order logic with counting quantifiers [12].

Since ALCOIQ contains ALCO, it has equality power and can force models
to have cardinality 1. Lemma 1 implies that the identity problem in ALCOIQ
is in coNExpTime. Regarding hardness, the reductions employed in the proof
of Lemma 3 can in principle both be used since the constructors employed in
them are available in ALCOIQ. However, Lemma 3 uses an ALC ontology O
in the reduction, which yields only an ExpTime lower bound. Simply using an
ALCOIQ ontology instead does not work since the proof depends on the fact
that O has models refuting the instance relation of cardinality at least 2. How-
ever, by looking at the NExpTime-hardness proof for satisfiability in ALCOIQ
in [20], it is easy to see that the following modified instance problem is also
coNExpTime-hard for consistent ALCOIQ ontologies: is a an instance of C in
all models of O of cardinality ≥ 2? Thus, one can without loss of generality
restrict the attention to models of cardinality ≥ 2 when reducing the instance
problem for ALCOIQ to the identity problem for this logic.

Theorem 5. The identity problem is coNExpTime-complete for ALCOIQ on-
tologies.

5 The View-based Identity Problem

In this section, we will adapt the approach of [18,17] for view-based information
hiding such that it can formalize the rôle-based access control scenario sketched
in the introduction. We assume that ontologies are written using some DL L
with equality power.

To define what kind of information is to be hidden, we divide the set of
individual names into the disjoint sets NAI and NKI consisting of anonymous
and known individuals, respectively. As before, we do not make the unique name
assumption for these individuals. Given an anonymous individual x ∈ NAI and
an ontology O, we define the identity of x w.r.t. O as

idn(x,O) := {b ∈ NKI | O |= x
.
= b}.



Note that b, b′ ∈ idn(x,O) implies that O |= b′
.
= b. Thus, if the cardinality

of idn(x,O) is greater 1, this does not mean that x is equal to one of these
individuals, but rather that it is equal to all of them (and thus that all of them
are equal). We say that x is a hidden if idn(x,O) = ∅.

In the rôle-based access control scenario we assume that there is a “large”
input ontology OI that is always consistent, but users can only see a part of
it depending on which rôle they currently have. More formally, we assume that
there is a finite set of user rôles R, and that playing the rôle r̂ ∈ R gives access
to a subset Or̂ ⊆ OI of the input ontology. Here “access” does not mean that a
user with rôle r̂ can download the ontology Or̂. Instead, the users can ask queries
to Or̂, where a subsumption query is of the form C v D for concept descriptions
C,D and a retrieval query is of the form C for concept descriptions C or r for
role names r.

Definition 3. Let OI be the input ontology, Or̂ ⊆ OI the ontology accessible by
users with rôle r̂ ∈ R, and q be a query. The answer to q w.r.t. r̂, denoted by
ans(q, r̂), is defined as follows:

– ans(q, r̂) := {true}, if q = C v D and Or̂ |= C v D,
– ans(q, r̂) := ∅, if q = C v D and Or̂ 6|= C v D,
– ans(q, r̂) := {a ∈ NI | Or̂ |= C(a)}, if q = C,
– ans(q, r̂) := {(a, b) ∈ NI ×NI | Or̂ |= r(a, b)}, if q = r.

Since Or̂ ⊆ OI , positive answers to queries, i.e., ans(C v D, r̂) = {true},
a ∈ ans(C, r̂), or (a, b) ∈ ans(r, r̂), imply that this subsumption, instance, or
role relationship also holds in OI . In contrast, negative answers do not tell us
anything about what holds in OI since the inclusion may be strict. Answers to
queries w.r.t. rôle r̂ can be stored in a view.

Definition 4. A view is a total function V : dom(V )→ 2NI∪2NI×NI∪{{true}}
where the view definition dom(V ) is a finite set of queries and V (q) is a finite
set for all q ∈ dom(V ). This view is a view for r̂ ∈ R (written r̂ |= V ) if
V (q) = ans(q, r̂) holds for all q ∈ dom(V ). The size of the view V is defined as∑
q∈dom(V ) size(q) · |V (q)|, where the size of a query q is obtained in an obvious

way from the sizes of the concepts/roles defining it.

In a setting where user rôles can dynamically change, a user may successively
play rôles r̂1, r̂2, . . . , r̂k, in each rôle r̂i generating (and storing) a view Vr̂i for r̂i
by asking queries. The question is now whether these views can be used to find
out the identity of a given anonymous individual x ∈ NAI . Assume that the user
wants to know whether there is a b ∈ NKI such that b ∈ idn(x,OI). However, the
user cannot access OI as a whole, all she knows is that the positive answers to
the queries in the views Vr̂i are justified by subsets of OI . Consequently, instead
of one (unknown) ontology OI , the user needs to consider all possible ontologies,
i.e., all ontologies that are compatible with the positive answers in the views.

Definition 5. The ontology P is a possible ontology for the sequence of views
Vr̂1 , . . . , Vr̂k if P is consistent and compatible with all positive answers in these
views, where P is compatible with



– Vr̂i(C v D) = {true} if P |= C v D,
– a ∈ Vr̂i(C) if P |= C(a), and (a, b) ∈ Vr̂i(r) if P |= r(a, b).

We denote the set of all possible ontologies for Vr̂1 , . . . , Vr̂k with Poss(Vr̂1 , . . . , Vr̂k).
The certain identity of x w.r.t. Vr̂1 , . . . , Vr̂k is defined as

cert_idn(x, Vr̂1 , . . . , Vr̂k) :=
⋂

P∈Poss(Vr̂1
,...,Vr̂k

)

idn(x,P).

We say that x is hidden w.r.t. Vr̂1 , . . . , Vr̂k if cert_idn(x, Vr̂1 , . . . , Vr̂k) = ∅.

Since OI ∈ Poss(Vr̂1 , . . . , Vr̂k), we know that b ∈ cert_idn(x, Vr̂1 , . . . , Vr̂k)
implies that b ∈ idn(x,OI). Thus, if cert_idn(x, Vr̂1 , . . . , Vr̂k) 6= ∅, the iden-
tity of x in OI is no longer hidden. Conversely, if cert_idn(x, Vr̂1 , . . . , Vr̂k) = ∅,
then for all b ∈ NKI there is a P ∈ Poss(Vr̂1 , . . . , Vr̂k) such that P 6|= x

.
= b.

Since, according to the information available to the user, OI could be this P,
she cannot conclude for any b ∈ NKI that OI |= x

.
= b. This shows that

cert_idn(x, Vr̂1 , . . . , Vr̂k) = ∅ indeed corresponds to the fact that the views
Vr̂1 , . . . , Vr̂k do not disclose the identity of x.

Since the set Poss(Vr̂1 , . . . , Vr̂k) consists of infinitely many ontologies, the
definition of cert_idn(x, Vr̂1 , . . . , Vr̂k) does not directly yield an approach for
computing this set. We will now show that we can reduce this computation to
the identity problem for the canonical ontology of Vr̂1 , . . . , Vr̂k . Basically, this
ontology consists of the GCIs, concept assertions, and role assertions obtained
from the positive answers in the views.

Definition 6. The canonical ontology C(Vr̂1 , . . . , Vr̂k) of Vr̂1 , . . . , Vr̂k is defined
as C(Vr̂1 , . . . , Vr̂k) := (T ,A) where

T := {C v D | Vr̂i(C v D) = {true} for some i, 1 ≤ i ≤ k}
A := {C(a) | a ∈ Vr̂i(C) for some i, 1 ≤ i ≤ k} ∪

{r(a, b) | (a, b) ∈ Vr̂i(r) for some i, 1 ≤ i ≤ k}.

Note that the size of C(Vr̂1 , . . . , Vr̂k) is linear in the sum of the sizes of the views
Vr̂1 , . . . , Vr̂k .

Since C(Vr̂1 , . . . , Vr̂k) consists of all positive answers in the views Vr̂1 , . . . , Vr̂k ,
it clearly implies them, and thus C(Vr̂1 , . . . , Vr̂k) ∈ Poss(Vr̂1 , . . . , Vr̂k). Con-
versely, every ontology P ∈ Poss(Vr̂1 , . . . , Vr̂k) implies all these positive answers,
and thus all the GCIs, concept assertions, and role assertions in C(Vr̂1 , . . . , Vr̂k).
This implies that every consequence of C(Vr̂1 , . . . , Vr̂k) is also a consequence ofP.

Theorem 6. Given views Vr̂1 , . . . , Vr̂k and an anonymous individual x ∈ NAI ,
we have cert_idn(x, Vr̂1 , . . . , Vr̂k) = idn(x, C(Vr̂1 , . . . , Vr̂k)).

Proof. First assume that b ∈ cert_idn(x, Vr̂1 , . . . , Vr̂k). Then we have P |= x
.
= b

for all P ∈ Poss(Vr̂1 , . . . , Vr̂k). Since C(Vr̂1 , . . . , Vr̂k) ∈ Poss(Vr̂1 , . . . , Vr̂k), this
yields C(Vr̂1 , . . . , Vr̂k) |= x

.
= b, and thus b ∈ idn(x, C(Vr̂1 , . . . , Vr̂k)).



Conversely, assume b ∈ idn(x, C(Vr̂1 , . . . , Vr̂k)), and thus C(Vr̂1 , . . . , Vr̂k) |=
x
.
= b. We must show that, for all P ∈ Poss(Vr̂1 , . . . , Vr̂k), we have P |= x

.
=

b. This is an immediate consequence of the fact that all the consequences of
C(Vr̂1 , . . . , Vr̂k) are also consequences of P. ut

This theorem shows that, to check whether x is hidden w.r.t. Vr̂1 , . . . , Vr̂k ,
it is sufficient to compute idn(x, C(Vr̂1 , . . . , Vr̂k)). In case the employed ontology
language L allows for unrestricted GCIs, concept assertions, and role assertions,
the set idn(x, C(Vr̂1 , . . . , Vr̂k)) can clearly be computed using an algorithm that
solves the identity problem for L ontologies a polynomial number of times. Note
that this applies to the DLs ALCO, ALCQ, and ALCOIQ considered in the
previous sections, but not to CFDnc since there GCIs and concept assertions
need to satisfy certain restrictions.

Corollary 1. For L ∈ {ALCO,ALCQ} we can check in exponential time whether
an anonymous individual x is hidden w.r.t. views Vr̂1 , . . . , Vr̂k . For L = ALCOIQ,
this problem can be solved in NExpTime.

The ExpTime upper bound for ALCO and ALCQ is obvious. For ALCOIQ,
one considers all the (polynomially many) known individuals a1, . . . , ap. Using
a NExpTime procedure for the complement of the identity problem, one then
checks whether x is not identical to a1. The non-successful paths of this non-
deterministic computation stop with failure whereas the successful ones continue
with the same test for a2, etc. It is easy to see that this yields the desired
NExpTime procedure. In fact, any path of this procedure has only exponential
length, and a successful path indicates that inequality with x holds for all known
individuals.

6 Conclusions and Future Work

In this paper, we have provided some initial definitions and results regarding
the identity problem in DL ontologies, i.e., the question whether the ontology
implies that a given anonymous individual is equal to a known individual. We
have also considered a more involved rôle-based access control scenario where
users can access parts of the ontology depending on their rôle. In a setting where
users can change rôles dynamically, the question is then whether, by changing
rôles and asking queries in these rôles, the user can find out the identity of an
anonymous individual although this may not be possible for a single rôle. We
have shown how to use the identity problem to address this question.

Until now, we have only investigated how to find out whether the identity of
an anonymous individual is disclosed in a certain situation. We have not consid-
ered what to do when this is the case. One possibility would be to additionally
anonymize the available information, e.g., by replacing some of the known indi-
viduals in assertions by new anonymous ones, similar to what is done in [9].

Another direction for future research could be to look at k-anonymity [19]
rather than identity. In principle, our identity problem is concerned with 1-



anonymity, i.e., we want to avoid that one can deduce from the given infor-
mation that an anonymous individual belongs to a singleton set consisting of
only one known individual. In many applications, one also wants to ensure that
the set of known individuals to which the anonymous one is known to belong
has a large enough cardinality, i.e., one > k. Of course, in this setting additional
anonymization (as mentioned above) is also relevant in cases where k-anonymity
is not given.

Finally, we intend to consider cases where the information about known and
anonymous individuals holds only with a certain probability, e.g., using ontolo-
gies with subjective probability as introduced in [10]. In this setting, equality
can also only be derived with a certain probability, and one might want to keep
the probability of derived identities low enough.
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