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Abstract

We consider ontology-based query answering in a setting where some of the data are nu-
merical and of a probabilistic nature, such as data obtained from uncertain sensor readings.
The uncertainty for such numerical values can be more precisely represented by continu-
ous probability distributions than by discrete probabilities for numerical facts concerning
exact values. For this reason, we extend existing approaches using discrete probability
distributions over facts by continuous probability distributions over numerical values. We
determine the exact (data and combined) complexity of query answering in extensions of
the well-known description logics EL and ALC with numerical comparison operators in this
probabilistic setting.
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1 Introduction

Ontology-based query answering (OBQA) has recently attracted considerable attention since it
dispenses with the closed world assumption of classical query answering in databases and thus
can deal with incomplete data. In addition, background information stated in an appropriate
ontology can be used to deduce more answers. OBQA is usually investigated in a setting where
queries are (unions of) conjunctive queries and ontologies are expressed using an appropriate
Description Logic (DL). Depending on the expressiveness of the DL, the complexity of query
answering may vary considerably, starting with data complexity (i.e., complexity measured in
the size of the data only) of AC0 for members of the DL-Lite family [9, 2] to P for DLs of the EL
family [31], all the way up to intractable data complexity for expressive DLs such as ALC and
beyond [18].

In many application scenarios for OBQA, however, querying just symbolic data is not su�cient.
One also wants to be able to query numerical data. For example, in a health or �tness monitoring
application, one may want to use concepts from a medical ontology such as SNOMED CT [17]
or Galen [32] to express information about the health status of a patient, but also needs to
store and refer to numerical values such as the blood pressure or heart rate of this patient.
As an example, let us consider hypertension management using a smartphone app [24]. What
constitutes dangerously high blood pressure (HBP) depends on the measured values of the
diastolic pressure, but also on other factors. For example, if a patient su�ers from diabetes, a
diastolic blood pressure above 85 may already be classi�ed as too high, whereas under normal
circumstances it is only considered to be too high above 90. This could, for example, be
modelled as follows by an ontology:

∃diastolicBloodPressure.>90 v PatientWithHBP (1)

∃�nding.Diabetes u ∃diastolicBloodPressure.>85 v PatientWithHBP (2)

Note that we have used a DL with concrete domains [6] to refer to numerical values and
predicates on these values within concepts. While there has been quite some work on traditional
reasoning (satis�ability, subsumption, instance) in DLs with concrete domains [27], there is
scant work on OBQA for such DLs. To the best of our knowledge, the only work in this direction
considers concrete domain extensions of members of the DL-Lite family [3, 34, 4, 20]. In



1 INTRODUCTION 3

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 70  75  80  85  90  95  100

p
ro

b
a
b

ili
ty

 d
e
n
si

ty

diastolic blood pressure

Figure 1: Measured blood pressure as normal distribution.

contrast, we consider concrete domain extensions of EL and ALC and determine the (combined
and data) complexity of query answering.

However, the main di�erence to previous work is that we do not assume the numerical values in
the data to be exact. In fact, a value of 84.5 for the diastolic pressure given by a blood pressure
sensor does not really mean that the pressure is precisely 84.5, but rather that it is around 84.5.
The actual value follows a probability distribution�for example a normal distribution with
expected value 84.5 and a variance of 2 as shown in Figure 1�which is determined by the
measured value and some known variance that is a characteristic of the employed sensor. We
can represent this in the knowledge base for example as follows:

�nding(otto, f1) Diabetes(f1) diastolicBloodPressure(otto) ∼ norm(84.5, 2)

From this information, we can derive that the minimal probability for the patient Otto to
have high blood pressure is slightly above 36%, which might be enough to issue a warning. In
contrast, if instead of using a probability distribution we had asserted 84.5 as the exact value
for Otto's diastolic blood pressure, we could not have inferred that Otto is in any danger.

Continuous probability distributions as used in this example also emerge in other potential
applications of OBQA such as in robotics [37], tracking of object positions in video analytics [39],
and mobile applications using probabilistic sensor data [15], to name a few. The interest in
continuous probability distributions is also re�ected in the development of database systems
that support these [36].

In addition to using continuous probability distributions for sensor values, we also consider dis-
crete probability distributions for facts. For example, it might be that the �nding f1 for Otto
is diabetes only with a certain probability. While OBQA for probabilistic data with discrete
probability distributions has been considered before for DL-Lite and EL without concrete do-
mains [14, 22, 12], as well as for datalog [11], OBQA for probabilistic data with both discrete
and continuous probability distributions is investigated here for the �rst time. A rather expres-
sive combination we consider is the DL ALC extended with a concrete domain in which real
numbers can be compared using the (binary) predicates > and =. A less expressive combination
we consider is the DL EL extended with a concrete domain in which real numbers can be com-
pared with a �xed number using the (unary) predicates >n for n ∈ R. Since OBQA for classical
knowledge bases (i.e., without probabilities) in these two DLs has not been investigated before,
we �rst determine their (data and combined) complexity of query answering. When considering
probabilistic KBs with continuous probability distributions (modelled as real-valued functions),
the resulting probabilities may be numbers without a �nite representation. To overcome this
problem, we de�ne probabilistic query entailment with respect to a given precision parameter.
To allow a reasonable complexity analysis, we de�ne a set of feasibility conditions for proba-
bility distributions, based on the complexity theory of real functions [23], which capture most
typical probability distributions that appear in practical applications. For probabilistic KBs
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that satisfy these conditions, we give tight bounds on the complexity of probabilistic query
answering w.r.t data and combined complexity for all considered DLs.

Detailed proofs for all results can be found in the appendix.

2 Description Logics with Numerical Domains

We recall basic DLs with concrete domains, as introduced in [6], and give complexity results
for classical query answering.

A concrete domain is a tuple D = (∆D,ΦD), where ∆D contains objects of the domain, and ΦD
contains predicates Pn with associated arity n and extension PDn ⊆ ∆n

D. Let Nc, Nr, NcF and
Ni be pair-wise disjoint sets of names for concepts, roles, concrete features and individuals,
respectively. Let NaF ⊆ Nr be a set of abstract feature names. Concrete features are partial
functions that map individuals to a value in the concrete domain. Abstract features are func-
tional roles and their use in feature paths does not harm decidability [26]. A feature path is an
expression of the form u = s1s2 . . . sng, where si ∈ NaF , 1 ≤ i ≤ n, and g ∈ NcF . ALC(D)
concepts are de�ned as follows, where A ∈ Nc, s ∈ Nr, u and u′ are feature paths, Pn ∈ ΦD is
a predicate of arity n, and C1 and C2 are ALC(D) concepts:

C := > | A | ¬C1 | C1 u C2 | ∃s.C1 | ∃(u1, . . . , un).Pn | u↑.

Additional concepts are de�ned as abbreviations: C1 t C2 = ¬(¬C1 u ¬C2), ∀s.C = ¬∃s.¬C,
and ⊥ = ¬>. If a concept uses only the constructors >, A, C1uC2, ∃s.C1 and ∃(u1, . . . , un).Pn
and no abstract features, it is an EL(D) concept. The restrictions for EL(D) concepts ensure
polynomial time complexity for standard reasoning tasks. Speci�cally, as done in [5], we disallow
abstract features, since axiom entailment in EL with functional roles is ExpTime-hard [5].

A TBox is a �nite set of general concept inclusion axioms (GCIs), which are of the form C v D,
where C and D are concepts. A classical ABox is a �nite set of assertions, which are of the
forms A(a), s(a, b) and g(a, d), where a, b ∈ Ni, A ∈ Nc, s ∈ Nr, g ∈ NcF and d ∈ ∆D. We
call GCIs and assertions collectively axioms. A knowledge base (KB) K is a pair (T ,A) of a
TBox T and an ABox A. Given a KB K, we denote by sub(K) the subconcepts occurring in K.
Let L be a DL, then a TBox/KB that uses only L concepts is a L TBox/L KB.

The semantics of EL(D) and ALC(D) is de�ned in terms of interpretations. An interpretation
is a tuple I = (∆I , ·I) consisting of a set of domain elements ∆I and an interpretation function
·I . The interpretation function ·I maps individual names to elements of ∆I , concept names to
subsets of ∆I , concrete features to partial functions ∆I → ∆D, and role names to subsets of
∆I ×∆I s.t. for all s ∈ NaF , sI is a partial function. The extension of ·I to feature paths is
(s1 . . . sng)I = gI ◦ sIn ◦ . . . ◦ sI1 , and to (complex) concepts is:

>I = ∆I (¬C)I = ∆I \ CI (C1 u C2)I = CI1 ∩ CI2
(∃s.C)I = {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ sI ∧ y ∈ CI}

(∃(u1, . . . , un).P )I = {x ∈ ∆I | (uI1 (x), . . . , uIn(x)) is de�ned and in PD}
(u↑)I = {x ∈ ∆I | uI(x) is unde�ned }.

An axiom α is true in an interpretation I, in symbols I |= α, if α = C v D and CI ⊆ DI ,
α = C(a) and aI ∈ CI , α = s(a, b) and (aI , bI) ∈ sI , or α = g(a, n) and gI(a) = n. An
interpretation I is a model of a TBox (an ABox), if all GCIs (assertions) in it are true in I. An
interpretation is a model of a KB K = (T ,A), if it is a model of T and A. A KB is satis�able
i� it has a model. Given a KB K and an axiom α, we say α is entailed in K, in symbols K |= α,
i� I |= α in all models I of K.
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The particular concrete domain to be used needs to be selected carefully, in order to obtain a
decidable logic with reasonable complexity bounds. Speci�cally, axiom entailment with TBoxes
already becomes undecidable if ∆D = N and ΦD can express incrementation, as well as equality
between numbers and with 0[28]. However, by restricting the predicates to basic comparison
operators, decidability cannot only be retained, but an increase of complexity for common
reasoning tasks can be avoided when adding such concrete domains to the logic. To pursue
this as a goal, we concentrate on two concrete domains that allow for standard reasoning in P
and ExpTime, respectively. The �rst concrete domain is R = {R,ΦR} investigated in [25],
where ΦR contains the binary predicates {<,=, >} with the usual semantics, and the unary
predicates {<r,=r, >r | r ∈ R}, where for ⊕ ∈ {<,=, >}, the extension is de�ned as ⊕R

r =
{r′ ∈ R | r′⊕r}. This concrete domain allows for axiom entailment in ExpTime, while even
small extensions lead to undecidability [25]. The second concrete domain is R> = {R,ΦR>},
where ΦR> = {>r | r ∈ R}. Since polynomial time reasoning requires the concrete domain to
be convex [5], we consider this convex concrete domain.

Example 1. The axioms in the introduction only use predicates from R> and are in the logic
EL(R>). Feature paths and the more expressive concrete domain R allow to compare di�erent
values referred to by concrete features. The following more �exible de�nition of HBP patients
compares their diastolic blood pressure (BP) with the maximal diastolic blood pressure assigned
to their age group:

∃(diastolicBP, belongsToAgeGroup maxDiastolicBP).> v PatientWithHBP.

2.1 Queries

We recall atomic, conjunctive and unions of conjunctive queries. Let Nv be a set of variables
disjoint from Nc, Nr, NcF and Ni. An atom is of the form C(x) or s(x, y), where C is a
concept, s ∈ Nr, x, y ∈ Nv ∪ Ni. A conjunctive query (CQ) q is an expression of the form
∃x1, . . . , xn : a1 ∧ . . . ∧ am, where x1, . . . , xn ∈ Nv and a1, . . . , am are atoms. The variables
x1, . . . , xn are the existentially quanti�ed variables in q, the remaining variables in q are the
free variables in q. If a CQ contains only one atom, it is an atomic query (AQ). A union of
conjunctive queries (UCQ) is an expression of the form q1 ∨ . . . ∨ qn, where q1, . . . , qn are CQs
with pairwise-disjoint sets of variables. The existentially quanti�ed/free variables of a UCQ
are the existentially quanti�ed/free variables of its disjuncts. We call AQs, CQs and UCQs
collectively queries. A query is Boolean if it has no free variables.

Given an interpretation I and a Boolean CQ q, q is true in I, in symbols I |= q, i� there is
a mapping π that maps variables in q to domain elements in I and each a ∈ Ni to aI such
that for every atom A(x) in q, π(x) ∈ AI , and for every atom s(x, y) in q, (π(x), π(y)) ∈ sI . A
Boolean UCQ is true in I i� one of its disjuncts is true in I. Finally, given a KB K = (T ,A)
and a Boolean query q, q is entailed by K, in symbols K |= q, if I |= q in every model of K. The
query entailment problem is to decide whether a given Boolean query is entailed by a given KB.

The query answering problem is to �nd a substitution from the free variables in the query to
individual names such that the resulting Boolean query is entailed by the KB. Because this
problem can be polynomially reduced to query entailment, it is typical to focus on the query
entailment problem, which is a decision problem, when analysing computational complexity.
We follow the same route in this paper.

Note that according to our de�nition, concrete features cannot be used outside of concepts in
a query. Therefore, our queries can only express relations between concrete features that can
be captured by a concept in our language. For example, the FOL formula

∃y1, y2, z1, z2 : s1(x, y1) ∧ g1(y1, z1) ∧ s2(x, y2) ∧ g2(y2, z2) ∧ z1 < z2.
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EL(R>) ALC(R)
AQs UCQs AQs UCQs

Data complexity P P coNP coNP

Combined Complexity P NP ExpTime ExpTime

Table 1: Complexity of classical query entailment.

can be captured the query ∃(s1g1, s2g2).<(x), but only given s1, s2 ∈ NaF , g1, g2 ∈ NcF , and <
is a predicate of the concrete domain.

Example 2. In a KB with patient records, the following query can be used to retrieve a list
of doctors who diagnosed their patients with high blood pressure.

∃y, z : hasPatient(x, y) ∧ �nding(y, z) ∧ observed(x, z) ∧ HighBloodPressure(z)

2.2 Complexity of Classical Query Entailment

We give tight complexity bounds for query entailment for the introduced DLs. To the best
of our knowledge, the complexity of query answering for the logics studied here has not been
considered in the literature before. We focus on the DLs EL(R>) and ALC(R), since EL(R) has
the same expressive power as ALC(R) [5], and ALC(R>) already has matching lower bounds
from ALC to our upper bounds for ALC(R). We further assume values from the concrete
domain to be represented in binary. Our complexity analysis only concerns knowledge bases
that have a �nite representation, which by this assumption are those in which each number can
be represented with a �nite number of bits. When analysing complexity of query entailment,
we distinguish between combined and data complexity, where in combined complexity, the size
of the complete input is taken into consideration, while for data complexity, everything but the
ABox is �xed.

An overview of the complexities is shown in Table 1. Since the corresponding lower bounds are
the same for CQs as for UCQs, we do not include CQs. Matching lower bounds are already
known for the DLs EL and ALC [35, 33, 10], so that adding the respective concrete domains
does not increase the complexity of query answering for these logics. We show in theappendix
how to reduce query entailment in EL(R>) to query entailment of EL KBs, following a technique
from [26, Section 2.4]. For ALC(R), the results are based on and match results from [25],[26,
Section 6.2], and [29], which concern the combined complexities of SHIQ(R) TBox satis�ability
and ALC(R) KB satis�ability, as well as the combined complexity of query entailment in SHQ∩.

3 Probabilistic Knowledge Bases with Continuous Proba-
bility Distributions

We want to represent both, discrete probabilities of assertions and continuous probability dis-
tributions of values of concrete features. As we can simply assign a probability of 1 to assertions
that are certain, there is no need to handle certain assertions separately. A discrete probability
assertion assigns a minimal probability to a classical assertion. This corresponds to the ap-
proach taken by tuple-independent probabilistic database systems [13], where probabilities are
assigned to database and to ipABoxes introduced in [22]. For example, the fact that �Otto has
a �nding that is Diabetes with a probability of at least 0.7� is expressed by the two assertions
�nding(otto, f1) : 1 and Diabetes(f1) : 0.7.

Note that discrete probability assertions state a lower bound on the probability, rather than the
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actual probability, and that statistical independence is only assumed on this lower bound. This
way, it is consistent to have the assertions A(a) : 0.5, B(a) : 0.5 together with the axiom A v B
in the knowledge base. Under our semantics, the probability of B(a) is then higher than 0.5,
since this assertion can be entailed due to two di�erent, statistically independent statements in
the ABox. Namely, we would infer that the probability of B(a) is at least 0.75 (compare also
with [22]).

While for symbolic facts, assigning discrete probabilities is su�cient, for numerical values this
is not necessarily the case. For example, if the blood pressure of a patient follows a continuous
probability distribution, the probability of it to have any speci�c value is 0. For this reason, in
a continuous probability assertion, we connect the value of a concrete feature with a probability
density function. This way, the fact that �the diastolic blood pressure of Otto follows a normal
distribution with an expected value of 84.5 and a variance of 2� can be expressed by the
assertion diastolicBloodPressure(otto) ∼ norm(84.5, 2). In addition to a concrete domain D, the
DLs introduced in this section are parametrised with a set P of probability density functions
(pdfs), i.e, Lebesgue-integrable functions f : A→ R+, with A ⊆ R being Lebesgue-measurable,
such that

∫
A
f(x) dx=1 [1].

Example 3. As a typical set of probability density functions [1], we de�ne the set Pex

that contains the following functions, which are parametrised with the numerical constants
µ, ω, λ, a, b ∈ Q, with λ > 0 and a > b:

normal distribution with mean µ and variance ω:
norm(µ, ω) : R→ R+, x 7→ 1√

2πω
e−(x−µ)2/2ω,

exponential distribution with mean λ:
exp(λ) : R+ → R+, x 7→ λe−λx,

uniform distribution between a and b:
uniform(a, b) : [a, b]→ R+, x 7→ 1

b−a .

Next, we de�ne probabilistic KBs, which consist of a classical TBox and a set of probability
assertions.

De�nition 1. Let L ∈ {EL(R>),ALC(R)} and P be a set of pdfs. A probabilistic LP ABox is a
�nite set of expressions of the form α : p and g(a) ∼ f , where α is an L assertion, p ∈ [0, 1]∩D,1
g ∈ NcF , a ∈ Ni, and f ∈ P. A probabilistic LP KB is a tuple K = (T ,A), where T is an L
TBox and A is a probabilistic LP ABox. If P = ∅, K and A are called discrete, and if P 6= ∅,
they are called continuous.

3.1 Semantics of Probabilistic Knowledge Bases

As typical for probabilistic DLs and databases, we de�ne the semantics using a possible worlds
semantics. In probabilistic systems that only use discrete probabilities, the possible world
semantics can be de�ned based on �nite sets of non-probabilistic data sets, the possible worlds,
each of which is assigned a probability [13, 22, 30]. The probability that a query q is entailed then
corresponds to the sum of the probabilities of the possible worlds that entail q. If continuous
probability distributions are used, this approach is insu�cient. For example, if the KB contains
the assertion diastolicBP(p) ∼ norm(84.5, 2), the probability of diastolicBP(p, x) should be 0
for every x ∈ R. Therefore, we cannot obtain the probability of diastolicBP(p) > 85 by just
adding the probabilities of the possible worlds that entail diastolicBP(p, x) for some x > 85. To

1Here, the set D ⊆ R denotes the dyadic rationals, that is, the set of all real numbers that have a �nite
number of bits after the binary point.
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overcome this problem, we assign probabilities to (possibly uncountable) sets of possible worlds,
rather than to single possible worlds. Speci�cally, we de�ne the semantics using continuous
probability measure spaces [1]. A measure space is a tuple M = (Ω,Σ, µ) with Σ ⊆ 2Ω and
µ : Σ→ R such that

1. Ω ∈ Σ and Σ is closed under complementation, countable unions and countable intersec-
tions,

2. µ(∅) = 0, and

3. µ(
⋃
E∈Σ′) =

∑
E∈Σ′ µ(f) for every countable set Σ′ ⊆ Σ of pair-wise disjoint sets.

If additionally µ(Ω) = 1, M is a probability measure space.

We de�ne a probability measure space MA = (ΩA,ΣA, µA) that captures the relevant prob-
abilities in a probabilistic ABox A, similar to how it is done in [22] for discrete probabilistic
ABoxes. For this, we introduce the three components ΩA, ΣA and µA one after another. For
simplicity, we assume all pdfs f : A → R ∈ P to be extended to the full real line by setting
f(x) = 0 for all x ∈ R \A.

Given a probabilistic ABox A, the set of possible worlds for A, in symbols ΩA, consists of all
classical ABoxes w such that for every g(a) ∼ f ∈ A, w contains g(a, x) for some x ∈ R, and
for every axiom α ∈ w, either α : p ∈ A, or α is of the form g(a, x) and g(a) ∼ f ∈ A. For
w ∈ ΩA, we write w |= g(a)⊕x, x ∈ R, ⊕ ∈ {<,≤,=,≥, >}, i� w |= g(a, y) and y⊕x. We
write w |= g(a)⊕h(b) i� w |= g(a, y), h(b, z) and y⊕z. We abbreviate w |= g(a) ≥ x, g(a) ≤ y
by w |= g(a) ∈ [x, y]. The event space over ΩA, in symbols ΣA, is now the smallest subset
ΣA ⊆ 2ΩA that satis�es the following conditions:

1. ΩA ∈ ΣA,

2. for every α : p ∈ A, {w ∈ ΩA | α ∈ w} ∈ ΣA,

3. for every g(a) ∼ f ∈ A, x ∈ R, {w ∈ ΩA | w |= g(a) < x} ∈ ΣA,

4. for every g1(a1) ∼ f1, g2(b) ∼ f2 ∈ A, {w ∈ ΩA | w |= g1(a) < g2(b)} ∈ ΣA, and

5. ΣA is closed under complementation, countable unions and countable intersections.

The conditions ensure that for every query q and TBox T , the set of possible worlds w such
that (T , w) |= q is included in ΣA. To complete the de�nition of the measure space, we now
assign probabilities to these sets via the measure function µA. This function has to respect the
probabilities expressed by the discrete and continuous probability assertions in A, as well as
the assumption that these probabilities are statistically independent. We de�ne µA explicitly
for sets of possible worlds that are selected by the assertions in them, and by upper bounds on
the concrete features occurring in continuous probability assertions. By additionally requiring
that Condition 3 in the de�nition of measure spaces is satis�ed for µA, this is su�cient to �x
the probability for any set in ΣA.

Given a probabilistic ABox A, we denote by cl-ass(A) = {α | α : p ∈ A} the classical assertions
occurring in A. A bound set for A is a set B of inequations of the form g(a) < x, x ∈ R,
where g(a) ∼ f ∈ A and every concrete feature g(a) occurs at most once in B. Given a set
E ⊆ cl-ass(A) of assertions from A and a bound set B for A, we de�ne the corresponding
set ΩE,BA of possible worlds in ΩA as

ΩE,BA = {w ∈ ΩA | w ∩ cl-ass(A) = E , w |= B}.
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The probability measure space for A is now the probability measure spaceMA = (ΩA,ΣA, µA),
such that for every E ⊆ cl-ass(A) and every bound set B for A,

µA(ΩE,BA ) =
∏

α:p∈A
α∈E

p ·
∏

α:p∈A
α6∈E

(1− p) ·
∏

g(a)∼f∈A
g(a)<x∈B

∫ x

−∞
f(y) dy.

As shown in the appendix, this de�nition uniquely determines µA(W ) for allW ∈ ΣA, including
for sets such as W = {w ∈ ΩA | w |= g1(a) < g2(b)}. The above product is a generalisation of
the corresponding de�nition in [22] for discrete probabilistic KBs, where in addition to discrete
probabilities, we take into consideration the continuous probability distribution of the concrete
features in A. Recall that if a concrete feature g(a) follows the pdf f , the integral

∫ x
−∞ f(y) dy

gives us the probability that g(a) < x.

Since we have now �nished the formal de�nition of the semantics of probabilistic ABoxes, we can
now de�ne the central reasoning task studied in this paper. As in Section 2.1, we concentrate
on probabilistic query entailment rather than on probabilistic query answering. The latter is
a ranked search problem that can be polynomially reduced to probabilistic query entailment
as in [22]. Based on the measure space MA, we de�ne the probability of a Boolean query q
in a probabilistic KB K = (T ,A) as PK(q) = µA({w ∈ ΩA | (T , w) |= q}). Note that due
to the open-world assumption, strictly speaking, PK(q) corresponds to a lower bound on the
probability of q, since additional facts may increase the value of PK(q).

Di�erent to [22] and classical approaches in probabilistic query answering, because P contains
real functions, PK(q) is in general a real number, and as such not �nitely representable. In
practice, it is typical and usually su�cient to compute approximations of real numbers. To
capture this adequately, we take the required precision of the probability PK(q) as additional
input to the probabilistic query entailment problem. For a real number x ∈ R and n ∈ N, we
use the notation 〈x〉n to refer to an n-bit approximation of x, that is, a real number such that
|〈x〉n − x| < 2−n. Note that, while we do not enforce it, generally n bits after the binary point
are su�cient to identify 〈x〉n. We can now state the main reasoning problem studied in this
paper.

De�nition 2. The probabilistic query entailment problem is the problem of computing, given
a probabilistic KB K, a Boolean query q and a natural number n in unary encoding, a number
x s.t. x = 〈PK(q)〉n.

Since the precision parameter n determines the size of the result, we assume it in unary encoding.
If we would represent it in binary, it would already take exponential time just to write the result
down.

4 Feasibility Conditions for PDFs

Up to now, we did not put any restrictions on the set P of pdfs, so that a given set P could easily
render probabilistic query entailment uncomputable. In this section, we de�ne a set of feasibil-
ity conditions on pdfs that ensure that probabilistic query entailment is not computationally
harder than when no continuous probability distributions are used. We know from results in
probabilistic databases [13], that query entailment over probabilistic data is #·P-hard. Note
that integration of pdfs over bounded intervals can be reduced to probabilistic query answering.
Namely, if g(a) ∼ f ∈ A, we have P(∅,A)((∃g.>r)(a)) =

∫∞
r
f(x) dy for all r ∈ R. Our feasibility

conditions ensure that the complexity of approximating integrals does not dominate the overall
complexity of probabilistic query entailment.
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We �rst recall some notions from the complexity theory of real functions by Ker-I Ko [23],
which identi�es computability of real numbers x ∈ R and functions f : A → R, A ⊆ R,
with the computability of n-bit approximations 〈x〉n and 〈f(x)〉n, where n is given in unary
encoding. Since real function arguments have no �nite representation in general, computable
real functions are modelled as function oracle Turing machines Tφ(x), where the oracle φ(x)
represents the function argument x and can be queried for n-bit approximations 〈x〉n in time
linear in c+ n, where c is the number of bits in x before the binary point. Given a precision n
in unary encoding on the input tape, Tφ(x) then writes a number 〈f(x)〉n on the output tape.
This formalism leads to a natural de�nition of computability and complexity of real numbers
and real functions. Namely, a real number x ∈ R is P-computable i� there is a polynomial time
Turing machine that computes a function φ : N 7→ D s.t. φ(n) = 〈x〉n. A function f : A → R,
A ⊆ R, is P-computable i� there is a function oracle Turing machine Tφ(x) as above that
computes for all x ∈ A a function ψ : N 7→ D with ψ(n) = 〈f(x)〉n in time polynomial in n and
the number of bits in x before the binary point.

An important property of P-computable functions f that we use in the next section is that
they have a monotone and polynomial modulus of continuity (modulus), that is, a monotone,
polynomial function ωf : N→ N s.t. for all n ∈ N and x, y ∈ [2−n, 2n], |x−y| < 2−ωf (n) implies
|f(x)− f(y)| < 2−n [21, 23, Chapter 3].

Approximating integrals
∫ 1

0
f(x) dx ofP-computable functions f : [0, 1]→ R is #·P-complete [23,

Chapter 5]. To be able to integrate over unbounded integrals in #·P, we introduce an additional
condition.

De�nition 3. A probability density function f is #·P-admissible i� it satis�es the following
conditions:

1. f is P-computable, and

2. there is a monotone polynomial function δf : N→ N such that for all n ∈ N:

1−
∫ 2δf (n)

−2δf (n)
f(x) dx < 2−n.

Condition 2 allows us to reduce integration over unbounded integrals to integration over
bounded integrals: to obtain a precision of n bits, it is su�cient to integrate inside the in-
terval [−2δf (n), 2δf (n)]. Note that as a consequence of Condition 1, there is also a polynomial
ρf : N → N s.t. for all x ∈ [−2δf (n), 2δf (n)], f(x) < 2ρf (n). Otherwise, approximations of f(x)
would require a number of bits that is not polynomially bounded by the number of bits in x
before the binary point, and could thus not be computed in polynomial time. We call δf and ρf
respectively bounding function and range function of f . In the following, we assume that for
any set P of #·P-admissible pdfs, their moduli, bounding functions and range functions are
known.

The above properties are general enough to be satis�ed by most common pdfs. Speci�cally, we
have the following lemma for the set Pex de�ned in Example 3:

Lemma 1. Every function in Pex is #·P-admissible.

5 Complexity of Probabilistic Query Answering

We study the complexity of probabilistic query answering for KBs with #·P-admissible pdfs.
As often in probabilistic reasoning, counting complexity classes play a central role in our study.
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However, strictly speaking, these are de�ned for computation problems for natural numbers.
To get a characterisation for probabilistic query answering, we consider corresponding counting
problems. Their solutions are obtained by, intuitively, shifting the binary point of an approx-
imated query probability to the right to obtain a natural number. We �rst recall counting
complexity classes following [19].

De�nition 4. Let C be a class of decision problems. Then, #·C describes the class of functions
f : A→ N such that

f(x) =
∥∥{y | R(x, y) ∧ |y| < p(|x|)

}∥∥
for some C-decidable relation R and polynomial function p.

Relevant to this section are the counting complexity classes #·P, #·NP and #·coNP. The
class #·P is also called #P. The following inclusions are known: #·P ⊆ #·NP ⊆ #·coNP ⊆
FPSpace [19].

In order to characterise the complexity of probabilistic query answering using counting classes,
we consider corresponding counting problems, inspired by [23, Chapter 5] and [13]. For a
function f : A→ D, we call g : A→ N a corresponding counting problem if g(x) = 2p(x)f(x) for
all x ∈ A, where p : A→ N and p can be computed in unary in polynomial time.2

For discrete probabilistic KBs, the above de�nition allows us to give a complexity upper bound
for a counting problem corresponding to probabilistic query entailment in a quite direct way.
Without loss of generality, we assume that queries contain only concept names as concepts. If
K = (T ,A) is discrete, the probability measure space MA has only a �nite set ΩA of possible
worlds, and each possible world w ∈ ΩA has a probability µA({w}) that can be represented
with a number of bits polynomial in the size of the input. We use this to de�ne a relation
R as used in De�nition 4. Let bK be the maximal number of bits used by any probability
µA({w}), w ∈ ΩA. De�ne the relation R by setting R((K, q, n), (w, d)) for all w ∈ ΩA, d ∈ N
s.t. (T , w) |= q and d < 2bK · µA({w}), where K = (T ,A). One easily establishes that
〈PK(q)〉n = 2−bK · ‖{y | R((K, q, n), y)}‖ for any n ∈ N. (Note that our �approximation� is
always the precise answer in this case.) For discrete KBs, we thus obtain a complexity upper
bound of #·C for the corresponding counting problem de�ned by g(K, q, n) = 2bK · PK(q),
where C is the complexity of classical query entailment.

In order to transfer this approach to continuous probabilistic KBs, we de�ne a discretisation
of continuous probability measure spaces based on the precision parameter n and the TBox T .
Namely, given a probabilistic KB K = (T ,A) and a desired precision n, we step-wise modify
the measure space MA into an approximated measure space Ma

K,n = (ΩaK,n,Σ
a
K,n, µ

a
K,n) such

that (i) the size of each possible world w ∈ ΩaK,n is polynomially bounded by |K| + n, (ii) for
each w ∈ ΣaK,n, µ

a
K,n({w}) can be computed precisely and in time polynomial in |K| + n, and

(iii) it holds µaK,n({w ∈ ΩaK,n | (T , w) |= q}) = 〈PK(q)〉n for every query q. Real numbers occur
in MA in concrete feature values and in the range of µA, and have to be replaced by numbers
with a polynomially bounded number of bits. We proceed in three steps: (1) we �rst reduce
the number of bits that occur before the binary point in any concrete feature value, (2) we then
reduce the number of bits that occur after the binary point in any concrete feature value, and
(3) we �nally reduce the number of bits in the range of µA.

We de�ne C = {gi(ai) ∼ fi ∈ A} as the set of continuous probability assertions in K and
F = {fi | gi(ai) ∼ fi ∈ C} as the relevant pdfs in K. We also set nv = ‖C‖ and nc as the
number of unary concrete domain predicates in K.

Step 1: Reduce the number of bits before the binary point. Because every function

2Note that the counting complexity classes considered here are all closed under this operation. To see this,
consider f and g characterized by the relations R and R′ s.t. R′ = {(x, y#z) | R(x, y), z ∈ {0, 1}∗, |z| = p(x)}.
Clearly, g(x) = 2p(x)f(x).
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f ∈ F has a monotone polynomial bounding function, we can obtain a function δ : N→ N s.t.
for every pdf f ∈ F and every n′ ∈ N, we have

1−
∫ 2δ(n

′)

−2δ(n′)
f(x) dx < 2−n

′
.

The �rst step is to remove all possible worlds w in which for some g(a) ∼ f ∈ C, we have
w 6|= g(a) ∈ [−2δ(nv+n), 2δ(nv+n)]. Note that for each g(a) ∼ f ∈ A, the probability of g(a) to
lay outside this interval is 2−nv−n. Based on this, one can show that for the resulting measure
space M1 = (Ω1,Σ1, µ1), we have |µA(ΩA) − µ1(Ω1)| < 2−n−1. This restricts also the overall
error on the probability of any query. Therefore, we have a remaining error of 2−n−1 that we
can make in subsequent steps. Note that the number of bits before the binary point in any
concrete feature value is now polynomially bounded by the input.

Step 2: Reduce the number of bits after the binary point. Intuitively, in this step we
�replace� each possible world w ∈ Ω1 by a possible world w′ that is obtained by �cutting o�� in
all concrete feature values all digits after a certain position after the binary point, preserving its
probability. First, we specify the maximum number m of digits after the binary point we keep.
Similar as for the bounding function δ, we can obtain a polynomial function ω that is a modulus
of all functions f ∈ F , and a polynomial function ρ that is a range function of all functions
f ∈ F . Let k = ρ(nv + n) be the highest number of bits before the binary point in the range
of any pdf in the remaining interval [−2δ(n+nv), 2δ(n+nv)], and set l = nv + δ(nv + n) + 2 + n.
Based on k, l and ω, we de�ne the maximal precision m by

m = dlog2(nv(nv + nc)) + k + n+ 3 + ω(l)e .

The motivation behind this de�nition will become clear in the following. For now, just notice
that m is polynomially bounded by |K|+ n.

In the approximated measure space M2 = (Ω2,Σ2, µ2), Ω2 contains all worlds from Ω1 in
which each concrete feature value has at most m bits after the binary point. To preserve the
probabilities, we de�ne a function Ω2→1 : Ω2 → 2Ω1 that maps each possible world w ∈ Ω2 to
the possible worlds in Ω1 that have been �replaced� by w. Ω1→2 is de�ned as

Ω2→1(w) = {w′ ∈ Ω1 |w ∩ cl-ass(A) = w′ ∩ cl-ass(A),

∀g(a, x) ∈ w, g(a) ∼ f ∈ C : w′ |= g(a) ∈ [x, x+ 2−m]}.

The measure function µ2 is now de�ned by

µ2({w}) = µ1(Ω2→1(w)).

This transformation a�ects the probability of concepts such as ∃(g1, g2).> and ∃g.>r, because
the probability that two concrete features have the same value, or that a concrete feature has a
value occurring in some unary domain predicate, increases. One can show that this probability
is bounded by nv(nv +nc) · 2−m+k+1. By de�nition, m > log2(nv(nv +nc)) + k+n+ 3, so that
the error created in this step is bounded by 2−n−2.

Step 3: Reduce the number of bits in the probabilities. Each possible world M2 can
be �nitely represented and has a size that is polynomially bounded in the size of the input.
However, the probabilities for each possible world are still real numbers. We �rst explain how
we approximate the probabilities for a single concrete feature. For an assertion gi(ai) ∼ fi ∈ C,
and a number x ∈ R with m bits after the binary point, we have µ2({w ∈ Ω2 | w |= g(a) =

x}) =
∫ x+2−m

x
fi(y) dy. To discretise this probability, we make use of the modulus ω of the pdfs

used in K. Recall that, by the de�nition of a modulus, for any precision n′ ∈ N and two real
numbers x, y ∈ [2−n

′
, 2n

′
], |x− y| < 2−ω(n′) implies |fi(x)− fi(y)| < 2−n

′
. By construction, we



5 COMPLEXITY OF PROBABILISTIC QUERY ANSWERING 13

EL(R>)P ALC(R)P
AQs UCQs AQs UCQs

Data complexity #·P #·P #·coNP #·coNP
Combined Complexity #·P #·NP ExpTime ExpTime

Table 2: Complexities of counting problems corresponding to prob. query entailment.

have m > ω(l), and hence, for x ∈ [2−l, 2l] and y ∈ [x, x+ 2−m], we have |fi(x)− fi(y)| < 2−l.

Consequently, the integral
∫ x+2−m

x
fi(y) dy can be approximated by the product 2−m · 〈fi(x)〉l,

and we have ∣∣∣∣∣
∫ x+2−m

x

fi(y) dy − 2−m · 〈fi(x)〉l

∣∣∣∣∣ < 2−m−l.

There are 2δ(nv+n)+1+m di�erent values per concrete feature in our measure space, so that an
error of 2−m−l per approximated interval introduces a maximal error of 2−n−nv−1 for each
concrete feature value (recall l = nv + δ(nv + n) + 2 + n). If we approximate all pdfs this way,
for similar reasons as in Step 1, we obtain a maximal additional error of 2−n−2 for any query.

Based on these observations, we de�ne the �nal discretised measure space. Speci�cally, we
de�ne the measure space Ma

K,n = (ΩaK,n,Σ
a
K,n, µ

a
K,n), where ΩaK,n = Ω2 and µaK,n is speci�ed by

µaK,n({w}) =
∏
α:p∈A
α∈w

p ·
∏
α:p∈A
α6∈w

(1− p) ·
∏

g(a)∼f∈A
g(a,x)∈w

2−m〈f(x)〉l.

Note that µaK,n({w}) can be evaluated in polynomial time, and can be represented with at most
2 + na · nb + nv · (m+ l) bits, where na is the number of discrete probability assertions and nb
the maximal number of bits in a discrete probability assertion.

Given a probabilistic KB K and a precision n ∈ N, we call the measure space Ma
K,n constructed

above the n-approximated probability measure space for K. We have the following lemma.

Lemma 2. Let K = (T ,A) be a probabilistic KB, q a query, n ∈ N and Ma
K,n the n-

approximated probability measure space for K. Then,
µaK,n({w ∈ ΩaK,n | (T , w) |= q}) = 〈PK(q)〉n.

Note that one can test in polynomial time whether a given possible world is in ΩaK,n, and
compute its probability in polynomial time. Using the observations from the beginning of this
section, together with the complexity results in Table 1, we can establish the upper bounds
for data and combined complexity shown in Table 2 on counting problems corresponding to
probabilistic query answering, which already hold for discrete probabilistic KBs without con-
crete domain. To the best of our knowledge, only the data complexity for query answering in
probabilistic EL has been considered in the literature before [22], while the other results are
new. For the ExpTime upper bounds, note that the approximated measure space has at most
exponentially many elements, and can thus be constructed and checked in exponential time.

Hardness for all complexities already holds for discrete probabilistic KBs, so that continuous,
#·P-admissible probability distributions do not increase the complexity of probabilistic query
answering. A general #·P-lower bound follows from the corresponding complexity of proba-
bilistic query entailment in probabilistic databases [13], while for the combined complexities in
ALC(R)P , the lower bound follows from the non-probabilistic case. For the remaining com-
plexities, we provide matching lower bounds for the corresponding counting problems in the
appendix using appropriate reductions. Speci�cally, we show #·NP-hardness w.r.t. combined
complexity under subtractive reductions in the case of UCQ entailment in EL, and #·coNP-
hardness w.r.t data complexity under parsimonious reductions in the case of AQ entailment in
ALC [16].
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6 Conclusion

When numerical data are of an uncertain nature, such as data obtained by sensor readings
or video tracking, they can often be more precisely represented using continuous probability
distributions than using discrete distributions. While there is work on OBQA for discrete prob-
abilistic KBs in DL-Lite and EL [22], this is the �rst work that considers KBs with concrete
domains and continuous probability distributions. For our complexity analysis, we devised
a set of feasibility conditions for probability distributions based on the complexity theory of
real functions, which captures most typical distributions one might encounter in realistic ap-
plications. We show that under these conditions, continuous probability distributions do not
increase the complexity of probabilistic query entailment. Using a similar technique as in [23,
Chapter 5], our results can likely be extended to a wider class of probability distributions, where
the requirement of P-computability is weakened to polynomial approximability.

For light-weight description logics, it is often possible to rewrite queries w.r.t the ontology, so
that they can be answered directly by a corresponding database system. As there are proba-
bilistic database systems like Orion 2.0 that support continuous probability distributions [36],
query rewriting techniques for continuous probabilistic KBs could be employed in our setting
as well. For more expressive DLs, a practical implementation could be based on a less �ne-
grained representation of measure spaces, for which relevant intervals for each concrete feature
value are determined based on the concrete domain predicates in the TBox. Probabilities could
then be computed using standard algorithms for numerical integration. It might also be worth
investigating whether Monte-Carlo approximations can be used for practical implementations.
However, as observed in [22], this might be hard to accomplish already for discrete probabilis-
tic EL KBs. Another basis for practical implementations could be approximation techniques
developed for other logical frameworks involving continuous probability distributions, such as
the one presented in [7].
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A Classical Query Entailment

A.1 Query Entailment in EL(R>)

We investigate the complexity of query entailment in classical EL(R>) KBs. For this, we show
that query entailment in EL(R>) can be reduced to query entailment in EL using a polynomial
transformation, so that known complexity results for query entailment in EL can be transferred.
Note that EL(R>) concepts contain no abstract features, and therefore also no feature chains.
Hence, concrete domain predicates only occur in subconcepts of the form ∃g.>n. The transfor-
mation applies to both the KB and the query, and proceeds as follows, where concept names
Eg>n are fresh.

1. Replace every subconcept ∃g.>n by Eg>n.

2. For every Eg>n and Eg>m introduced this way s.t. n > m, add the GCI Er>n v Er>m.

Let K be an EL(R>) KB and q a query, and let K′ and q′ be the EL KB and the query resulting
from the above transformation. To see that K 6|= q implies K′ 6|= q, one easily establishes that,
by interpreting the fresh concepts appropriately, every model I of K can be extended to a model
I ′ of K′ such that I ′ |= q′ i� I |= q. To show that also K′ 6|= q implies K 6|= q, let I ′ be a model
of K′. Let n1, ..., nm be the numbers occurring in number restrictions in K such that ni < ni+1

for all 1 ≤ i ≤ m. Now, process all pairs (x,Eg>ni) of domain elements x ∈ ∆I
′
and introduced

concepts Eg>ni such that (i) x ∈ (Eg>ni)
I′ and (ii) there is no j > i with x ∈ (Eg>nj )

I′ . For
each such pair, set gI(x) = ni+ni+1

2 if i < m, and set gI(x) = ni + 1 otherwise. One easily
establishes that I is a model of K, and that I |= q i� I ′ |= q′. We obtain that K 6|= q i�
K′ 6|= q′, and therefore that query entailment in EL(R>) can be polynomially reduced to query
entailment in EL.

Based on the results in [5, 33] for respectively axiom entailment and UCQ entailment in EL
KBs, we thus obtain the following completeness results.

Theorem 1. Deciding entailments of AQs and UCQs in classical EL(R>) KBs is P-complete
in data complexity, and respectively P- and NP-complete in combined complexity.

A.2 Query Entailment in ALC(R)

Due to the feature chains, such a direct reduction is not possible for ALC(R). Instead, the
procedure presented in [29] for answering CQs in SHQ KBs can be used to decide query
entailment. This method exploits the fact that SHQ has the forest model property, which
allows to decide query entailment by deciding consistencty of a series of extensions of the original
knowledge base by so-called spoilers, which are constructed based on di�erent rewritings and
partitionings of the query. When each extension is unsatis�able, the query is entailed. The
spoilers have to be formulated in the DL SHQ∩, which extends SHQ by role conjunctions,
since di�erent roles can connect to the same individual in a query. As the size of each spoiler
is polynomially bounded, and there are at most exponentially many spoiler, the authors obtain
an ExpTime upper bound on CQ-entailment w.r.t. combined complexity. Note that in order
to decide whether a query is not entailed, it is su�cient to non-deterministically guess one such
spoiler, for which satis�ability can be checked in NP data complexity, so that we obtain a data
complexity of coNP for query entailment. Regarding UCQs, we note that K 6|= q1 ∨ q2 i�
K 6|= q1 and K 6|= q2. We can therefore decide whether a UCQ is not entailed using an NP
procedure that guesses one spoiler for each conjunct of the UCQ one after another, so that
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UCQ entailment remains in coNP w.r.t data complexity and in ExpTime w.r.t. combined
complexity.

While, due to the concrete domain, ALC(R) is not a sublanguage of SHQ, ALC(R) also has the
forest-tree model property. Since furthermore according to our de�nition of queries concrete
features are only referred to within concepts in a query, the method can be used without
modi�cations to decide query entailment forALC(R) knowledge bases. However, for this we need
to decide satis�ability of KBs that use role conjunctions. It can shown using little modi�cations
of the proofs in [25] for ExpTime-completeness of SHIQ(R) TBox satis�ability, and the proofs
in [26, Section 6.2] for ExpTime-completeness of a less expressive version of ALC(R), that
satis�ability of ALC(R)∩ KBs can be decided in ExpTime combined and NP data complexity,
which are the same complexities as for SHQ. The details of these adaptations given in the
following two subsections. We thus have the following result.

Theorem 2. UCQ-entailment in ALC(R) knowledge bases is coNP-complete in data complex-
ity and ExpTime-complete in combined complexity.

A.3 Satis�ability of ALC(R)∩ TBoxes

For the logic SHIQ(R), it is shown in [25] that TBox satis�ability is in ExpTime. More
precisely, the authors consider a slightly more expressive extension with the numerical domain,
which also allows for expressions of the form ∀rg1, g2.P and ∃rg1, g2.P , where P is a concrete
domain predicate, r can be any role and g1, g2 ∈ NcF . Note that longer paths are still only
allowed to be used in existential restrictions and with only abstract features as roles. To make
the following simpler, we assume that the same constructs are allowed in ALC(R). In addition,
we extend our logic by role conjunctions de�ned next.

We denote by ALC(R)∩ the extension of ALC(R) with role conjunctions, that is, we allow role
expressions of the form r1 ∩ . . . ∩ rn, n > 0, where r1, . . . , rn ∈ Nr. Role expressions can
occur anywhere in ALC(R)∩ where roles can occur in ALC(R). Given a set R of role names
{r1, . . . , rn}, we may abbreviate the role conjunction r1 ∩ . . . ∩ rn by

⋂
R.

We present a decision procedure for ALC(R)∩ that very closely follows the one presented in [25].
This reasoning procedure assumes TBoxes to consist of a single concept inclusion of the form
> v CT , where CT is in a normal form de�ned next. A concept C is in negation normal form
(NNF), if every negation symbol in C occurs in front of a concept name. C is in path normal
form (PNF) if

1. it is in negation normal form,

2. for all subconcepts of the form ∃u.⊕r, ⊕ ∈ {<,=, >}, we have u ∈ NcF , and

3. for all subconcepts of the forms ∃(u, v).⊕ and ∀(u, v).⊕, ⊕ ∈ {<,=, >}, v is of the form
g2, g2 ∈ NcF , and u is either of the form g1 or Rg1, where g1 ∈ NcF and R is a role name
or a role conjunction.

A TBox is in PNF if it is of the form > v CT , where CT is in PNF.

As shown in [25], every TBox can be polynomially transformed into PNF using a structural
transformation on paths, that is, by introducing fresh concrete features that are de�ned to be
equivalent to their path counter parts. The transformed TBox in PNF is polynomial in size of
the input TBox. In the following, we assume all TBoxes T to be in PNF.

The reasoning procedure is based on an abstraction of models called Hintikka trees, which we
now introduce step by step.
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For a concept C, we denote by C the NNF of ¬C. We de�ne the concept closure ccl(T ) of a
TBox T as {C,C | C ∈ sub(T )} ∪ {>}. A Hintikka set t for T = {> v CT } is any subset
t ⊆ ccl(T ). A Hintikka set t is consistent with T if it satis�es the following:

• CT ∈ t,

• ¬A ∈ t i� A 6∈ t for all A ∈ ccl(T ) ∩Nc,

• C uD ∈ t only if C,D ∈ t,

• C tD ∈ t only if C ∈ t or D ∈ t, and

• > ∈ t.

A constraint system is a set of inequations of the forms x⊕r and x⊕y, where x, y are variables,
r ∈ R and ⊕ ∈ {<,=, >}. The solution of a constraint system E is a mapping from variables
to real numbers such that every inequation in E is satis�ed. A Hintikka label for T is a tuple
(t, ω, E), where t is a Hintikka set for T , ω ⊆ Nr and E a constraint system that contains the
following inequations:

• xg⊕r for every ∃g.⊕r ∈ t, ⊕ ∈ {<,=, >},

• xg1⊕xg2 for every ∃(g1, g2).⊕ ∈ t, ⊕ ∈ {<,=, >},

• at least one inequation of the form xg1⊕xg2 , ⊕ ∈ {<,=, >} for every pair of variables xg1 ,
xg2 occurring in E , and

• At least one inequation of the form xg⊕r, ⊕ ∈ {<,=, >}, for every variable xg in E and
every number r that occurs in a concept ∃d.⊗r ∈ sub(T ),⊗ ∈ {<,=, >}.

A Hintikka label (t, ω, E) for T is consistent i� t is consistent with T and E has a solution.

Hintikka labels represent domain elements and their concrete features in an interpretation.
The set ω identi�es the incoming role edges to these domain elements. The more complex
interactions with other domain elements are captured by an abstraction called Hintikka tuples.

De�nition 5. Let bT be the number of subconcepts of the form ∃R.C and ∃Rg1, g2.⊕ occurring
in ccl(CT ): bT = ‖{C ∈ sub(CT ) | C = ∃R.D or C = ∃Rg1, g2.⊕}‖. A Hintikka tuple
(T0, . . . , TbT ) for T is a bT + 1-tuple of Hintikka labels Ti = (ti, ωi, Ei) for T such that

• If ∃
⋂
R.C ∈ t0, then there exists an index i, 0 < i ≤ bT , such that R ⊆ ωi and C ∈ ti.

• If ∀
⋂
R.C ∈ t0, then for all i, 0 < i ≤ bT , such that R ⊆ ωi, also C ∈ ti.

• For all s ∈ NaF , there is at most one i, 0 < i ≤ bT , such that s ∈ ωi.

The constraint system induced by a Hintikka tuple consists of the inequations in E0, together
with the following inequations:

1. xig⊕r for every xg⊕r ∈ Ei and 0 < i ≤ bT

2. xig1⊕xig2 for every xg1⊕xg2 ∈ Ei and 0 < i ≤ bT .

3. xig1⊕xg2 , for every ∃
⋂
Rg1, g2.⊕ ∈ t0 and some i with 0 < i ≤ bT and R ⊆ ωi.

4. xig1⊕xg2 , for every ∀
⋂
Rg1, g2.⊕ ∈ C and i such that 0 < i ≤ bT and R ⊆ ωi.
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A Hintikka tuple is consistent i� the Hintikka set in every Hintikka label is consistent and the
constraint system induced by the Hintikka tuple has a solution.

Intuitively, consistent Hintikka tuples represent model fragments that contain a root domain
element and its successors. The sets ωi contain the roles that lead from the root domain element,
represented by T0, to the domain elements represented by Ti. This way, Hintikka tuples contain
a labelling of roles to successors. A Hintikka tuple does not necessarily represent a situation
where a domain element is connected to bT other domain elements, because there may be labels
Ti = (ti, ωi, Ei) in the tuple for which ωi = ∅.

A Hintikka tree for T is a bT -ary tree H = (V,E) such that V is a set of Hintikka labels and for
each v ∈ V and its direct successors {vi | (v, vi) ∈ E}, the tuple (v, v0, . . . vbT −1) is a consistent
Hintikka tuple for T . Note that, even though H does not have labelled edges, we can obtain
such a labeling based on the role sets ωi in each Hintikka label.

Given a Hintikka tree (V,E), we can obtain a corresponding constraint system by combining the
constraint systems induced by all Hintikka tuples and renaming the variables accordingly. As
shown in [25] for Hintikka trees without role conjunctions, if all Hintikka tuples are consistent,
this constraint system always has a solution. Clearly role conjunctions have no impact on this
result, so that it also holds for our case. Therefore, it is always possible to construct a model
for T based on a Hintikka tree for T . It follows that T is satis�able i� T has a Hintikka tree.

In order to determine satis�ability of ALC(R) TBoxes, it su�ces to determine whether there
exists a Hintikka tree for it. The existence of such a tree can be decided using type elimination.
For this, we use an abstraction of Hintikka trees that we call Hintikka structure.

De�nition 6. A Hintikka structure for T is a setH of consistent Hintikka tuples for T such that
for every tuple (T0, . . . TbT ) ∈ H and every i ≤ bT , there exists a Hintikka tuple (T ′0, . . . T

′
bT

) ∈ H
such that Ti = T ′0.

It is easy to verify that a Hintikka tree exists for a TBox T i� there exists a non-empty Hintikka
structure for T . In order to determine whether T is satis�able, it is su�cient to check whether
there exists a Hintikka structure for T . We �rst argue that the number of Hintikka tuples for T
is exponentially bounded in the size of T . The size of ccl(T ) is linear in the size of T and
so is bT . The number of di�erent Hintikka sets for T is exponentially bounded, because it is
restricted to the subsets of ccl(T ) and the number of combinations of concrete features and
numbers that occur explicitly in T . Since bT is linear in the size of T , the number of Hintikka
tuples for T is exponentially bounded as well.

The existence of a Hintikka structure can now be decided using the following ExpTime type
elimination procedure.

1. Construct the set H of all Hintikka tuples for T

2. While possible, remove from H a Hintikka tuple that serves as a counter example for H
being a Hintikka structure.

3. If the procedure terminates with an empty set, return �Unsatis�able�, otherwise, return
�Satis�able�.

The second step requires time polynomial in |H| per iteration, since deciding consistency of
a constraint system is in P, and we have to check at most |H| other Hintikka tuples in this
step. Because in every iteration step, we remove one Hintikka tuple, and H contains at most
exponentially many elements, the complete procedure runs in exponential time.

Theorem 3. Deciding satis�ability of ALC(R)∩ TBoxes is ExpTime-complete.
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As a side-result, we consider a special case of concept satis�ability with respect to a TBox,
which will come in handy in the next section.

Lemma 3. Let C be a concept of the form A1 u . . . uAn u C ′, where A1, . . . , An ∈ Nc and C ′
is any ALC(R)∩ concept, and let T be an ALC(R)∩ ontology. Then, whether C ′ is satis�able
w.r.t. T can be decided in time exponential in |C|+ |T |, and polynomial in n.

Proof. We can adapt the above algorithm such that it starts from a di�erent set of Hintikka
sets. Namely, we consider only the Hintikka sets {t, t ∪ {A1, . . . , An} | t ∈ ccl(C ′) ∪ ccl(T )}
when constructing the initial set of Hintikka labels. Note that this set of types is twice as
big as the set of types we would usually consider, so that its size is independent of n. We
then perform the algorithm as before and return �satis�able� i� the method terminates with
a Hintikka structure that contains a Hintikka label with a Hintikka set t ⊇ {A1, . . . , An, C

′}.
The number of Hintikka labels, and consequently of elimination steps taken, is exponential in
|C|+ |T |, but independent on n, while the time required in each step is polynomial in n. Hence
the algorithm runs in time polynomial in n. It is sound, since in the case of a successful run,
we can construct a model I from the Hintikka structure such that there is a domain element
a ∈ ∆I with a ∈ (A1 u . . . u An u C ′)I . For completeness, assume we have a model I of T
with a ∈ CI for some a ∈ ∆I . Then, there must be a consistent Hintikka set t such that
C ′, A1, . . . , An ∈ t and a ∈ DI for every D ∈ t. Starting from a, we can inductively construct
a Hintikka tree, which correspondingly implies the existence of a Hintikka structure obtainable
by the presented algorithm.

A.4 Satis�ability of ALC(R)∩ Knowledge Bases

To show that satis�ability of ALC(R)∩ KBs can also be decided in ExpTime combined complex-
ity, and in NP w.r.t. data complexity, we modify the decision procedure from [26, Section 6.2]
for ALC(R) KBs without unary domain predicates to support full ALC(R)∩.

The method from [26, Section 6.2] uses a tableau to nondeterministically construct an ABox
precompletion, on which it then uses a decision procedure for ALC(R) concept satis�ability,
where again the input is asssumed to be in PNF. paths.

The precompletions generated by the algorithm use in addition to the assertions introduced
in the preliminaries also assertions of the form C(a), where C can be a complex concept, and
make use of variables for concrete feature values. These variables occur in assertions of the form
g(a, x), g ∈ NcF , x ∈ Nv, and in statements of the form x1⊕x2, x1, x2 ∈ Nv, ⊕ ∈ {<,=, >}
with the obvious semantics. In order to extend the approach for unary predicates, we further
allow assertions of the form x⊕r, where ⊕ ∈ {<,=, >} and r ∈ R.

The precompletion calculus is show in Figure 2, in which we marked rules that di�er to the
original calculus with an asterisk. All non-deterministic steps are don't know non-deterministic
steps, while the order in which rules are applied is don't care non-determinism. The rules R∃f
and R∀ are generalisations of corresponding rules from [26] for role conjunctions, while R∃f '
takes additional care of role conjunctions in existential role restrictions involving abstract fea-
tures. The rules Rc1', Rc2' and Rch' are the unary-predicate versions of Rc1, Rc1 and Rch.

For a ∈ Ni and precompletion ABoxA, use con(A, a) to denote the reduction concept
d
C(a)∈A C.

A precompletion ABox A has a clash if for some a ∈ Ni, con(A, a) is unsatis�able in T , or if
the set of inequations x1⊕x2, x⊕r ∈ A form an unsatis�able constraint system. The algorithm
returns �satis�able� if there exists a precompletion ABox saturated by the calculus that does
not contain a clash, and otherwise it returns �unsatis�able�.

The rules Rch and Rch' ensure that for each individual and each concrete feature, the re-
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Ru If (C1 u C2)(a) ∈ A and C1(a), C2(a) 6∈ A, then A := A ∪ {C1(a), C2(a)}.

Rt If (C1 t C2)(a) ∈ A and {C1(a), C2(a)} ∩ A = ∅, then A := A ∪ {Ci(a)} for some
non-deterministically picked i ∈ {1, 2}.

? R∃f If (∃
⋂
R.C)(a) ∈ A, r ∈ R ∩NaF and r(a, b) ∈ A, set A := A ∪ {C(b)}.

? R∃f ' If (∃ ∩ R.C)(a) ∈ A, r ∈ R ∩ NaF , s ∈ R, r(a, b) ∈ A and s(a, b) 6∈ A, then
A := A ∪ {s(a, b)}.

? R∀ If (∀
⋂
R.C)(a) ∈ A and r(a, b) ∈ A for all r ∈ R, then A := A ∪ {C(b)}.

Rc1 If (∃g1, g2.⊕)(a) ∈ A, gi(a, xi) ∈ A for i ∈ {1, 2} and x1⊕x2 6∈ A, then A :=
A ∪ {x1⊕x2}.

Rc2 If (∃fg1, g2.⊕)(a), f(a, b) ∈ A and there are no x1, x2 ∈ Nv s.t.

• g1(b, x1) ∈ A,
• g2(a, x2) ∈ A, and
• x1⊕x2 ∈ A,

then A := A ∪ {g1(b, x1), g2(a, x2), x1⊕x2}, where x1 and x2 are fresh.

Rc3 Symmetric to Rc2 but for (∃g1, fg2.⊕)(a) ∈ A.

Rch If g1(a, x1), g2(a, x2) ∈ A and {(∃g1, g2.<,∃g1, g2.=,∃g1, g2.>} ∩ A = ∅, then A :=
A ∪ {∃g1, g2.⊕} for some non-deterministically picked ⊕ ∈ {<,=, >}.

? Rc1' If ∃g.⊕r(a) ∈ A and and g(a, x) ∈ A, then A := A ∪ {x⊕r}.

? Rc2' If ∃g.⊕r(a) ∈ A and there is no y ∈ Nv with g(a, y) ∈ A, then A :=
A ∪ {g(a, x), x⊕r}, where x is fresh.

? Rch' If g(a, x) ∈ A, r ∈ R occurs in T and {(∃g.>r)(a), (∃g.=r)(a), (∃g.<r)(a)}∩A = ∅,
then A := A ∪ {(∃g.⊕r)(a) for some non-deterministically picked ⊕ ∈ {<,=, >}.

RT If C v D ∈ T and (¬C tD)(a) 6∈ A, then A := A ∪ {(¬C tD)(a)}.

Rfe If f(a, b), f(a, c) ∈ A for b 6= c and f ∈ NaF , replace b in A by c

Rge If g(a, x1), g(a, x2) ∈ A for x1 6= x2 and g ∈ NcF , replace x1 in A by x2

Figure 2: ABox precompletion calculus for ALC(R).
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lationships to any number occurring in the TBox, as well as to other concrete features, are
determined. This makes sure that, if con(A, a) has a model, the values of the concrete features
of a are within the bounds that occur in relation with other individuals in the ABox, so that
we can �plug in� theses models in order to build a model based on a precompletion ABox.

One easily veri�es that the modi�ed rules do not a�ect the complexity of the algorithm, so that
it still runs in ExpTime w.r.t combined complexity. Concerning data complexity, recall that our
input only contains concepts which are concept names. One easily veri�es that the size of any
precompletion ABox is polynomially bounded by the size of the input ABox [26, Lemma 6.24].
Inspection of the rules shows that the only elements in con(A, a) that are not introduced due
to the TBox are concept names A for which A(a) ∈ A, as well as concepts of the form ∃g1, g2.⊕
and ∃g.⊕r, ⊕ ∈ {<,=, >}. Therefore, con(A, a) is of the form C1u . . .uCnuC ′, where each Ci
does not contain nested concepts, and n is linearly bounded by A. Using Lemma 3, it follows
that the satis�ability of each reduction concept can be decided in time polynomial in the size of
the ABox, though in exponential time w.r.t. to the complete KB. We obtain that the algorithm
runs in NP w.r.t. data complexity.

Theorem 4. Satis�ability of ALC(R)∩ KBs is decidable in ExpTime w.r.t. combined com-
plexity and in NP w.r.t. data complexity.

B Probabilistic Query Entailment

B.1 Semantics of Probabilistic Knowledge Bases

We show that the de�nition of probability measure spaces for probabilistic ABoxes provided in
Section 3.1 is indeed a de�nition, by showing that the measure function µA is uniquely de�ned
for every ABox A.

Lemma 4. For every probabilistic ABox A, the measure function µA is uniquely de�ned.

Proof. Let A be a probabilistic knowledge base, and let M1
A = (ΩA,ΣA, µ1) and M2

A =
(ΩA,ΣA, µ2) be two probability measure spaces for A that satisfy the conditions given in
Section 3.1. We show that then, for all W ∈ ΣA, µ1(W ) = µ2(W ). One can easily verify that
for sets A ∈ ΣA that satisfy Conditions 1�3 in the de�nition of event spaces over ΩA, as well as
any set that can be obtained by countably many set operations on these, µ1(A) and µ2(A) are
uniquely determined by these conditions. Speci�cally, for all sets of possible worlds W ∈ ΣA
satisfying g(a) ∈ [x, y] for some g ∈ NcF , a ∈ Ni, x, y ∈ R ∪ {−∞,∞}, and all sets that can
be obtained using countable set operations on these, we have µ1(W ) = µ2(W ). It remains to
show that also for sets W ∈ ΣA of possible worlds that satisfy Condition 4, that is, that satisfy
g1(a) < g2(b), g1, g2 ∈ NcF , a, b ∈ Ni, we have µ1(W ) = µ2(W )

Claim 1. For all g1(a) ∼ f1, g2(b) ∼ f2 ∈ A, µ1(g1(a) < g2(b)) = µ2(g1(a) < g2(b)).

Proof of claim. Let A = {w ∈ ΩA | w |= g1(a) < g2(b)}. We have to show µ1(A) = µ2(A). The
proof is by contradiction. Assume µ1(A) 6= µ2(A). Then, there exists n ∈ N such that |µ1(A)−
µ2(A)| > 2−n. We can divide ΩA into 2n subsets of equal probability 2−n by partitioning the
range of g(a). Namely, there is a sequence x1, . . . , x2n−1 of real numbers such that

µ1(g1(a) ≤ x1) = µ1(g1(a) ∈ (xi, xi+1])

= µ1(g1(a) > x2n−1)

= 2−n
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A

B

g1(a)

g2(b)

Figure 3: Illustration of the sets A and B in the proof for Lemma 4.

for all 0 < i < 2n − 1. Similarly, there is a sequence y1, . . . , y2n−1 of real numbers such that

µ1(g2(b) ≤ y1) = µ1(g2(b) ∈ (yi, yi+1])

= µ1(g2(b) > x2n−1)

= 2−n

for all 0 < i < 2n − 1.

Given a set of statements α1, . . . , αm, let W (α1, . . . αm) = {w ∈ ΩA | w |= α1, . . . , αm}. We
de�ne a set B ⊆ ΩA of possible worlds as follows:

B = W (g1(a) < x1, g2(b) < y1)

∪
⋃

1<i,j<2n−1,
[xi,xi+1]∩[yj ,yj+1]6=∅

W (g1(a) ∈ [xi, xi+1], g2(b) ∈ [yj , yj+1])

∪W (g1(a) > x2n+1−1, g2(b) > x2n+1−1).

The sets A and B are illustrated in Figure B.1. Clearly, B ∈ ΣA. It is further easy to verify
that each square in the �gure that is a part of B has an assigned probability of (2−n)2 for
both measure functions. We therefore obtain that that µ1(B) = µ2(B) = 2n · (2−n)2 = 2−n.
If we consider the set A \ B, we see that this set can be obtained by countable set operations
on elements in ΣA that satisfy Conditions 1�3 (that is, without using A). As observed at the
beginning of this proof, this implies that µ1(A \ B) = µ2(A \ B). From this, we obtain the
following bounds on the di�erence between µ1(A) and µ2(A):

|µ1(A)− µ1(A)| = |(µ1(A \B) + µ1(A ∩B))− (µ2(A \B) + µ2(A ∩B))|
= |µ1(A ∩B)− µ2(A ∩B)|
≤ max(µ1(A ∩B), µ2(A ∩B))

≤ max(µ1(B), µ2(B))

= µ1(B)

= 2−n

We have |µ1(A) − µ2(A)| ≤ 2−n, which contradicts |µ1(A) − µ2(A)| > 2−n. Hence, there
cannot be any natural number n ∈ N such that |µ1(A) − µ2(A)| > 2−n, so that we have
µ1(A) = µ2(A). �
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It follows that for any set A satisfying Conditions 1�5 in the de�nition of the event space
ΣA over A, we have µ1(A) = µ2(A), so that the probability measure space for A is uniquely
de�ned.

B.2 Feasibility Conditions for PDFs

We show that the set Pex of pdfs from Example 3 is #·P-feasible. For this, we �rst show that
every function in Pex is P-computable.

Lemma 5. Every function in Pex is P-computable.

Proof. The functions in Pex use as constants rational numbers, as well as the real constants e
and π, and are further composed of the following basic operations: square-root, subtraction,
multiplication, division by a constant and exponentiation. We recall feasibility results for the
involved real numbers and basic computations from [8, 21]. e and π, square-root, subtraction
and multiplication are all P-computable. Furthermore, exponentiation ex is P-computable if x
is restricted to negative numbers. The function f : x 7→ 1

x is not P-computable, however, given
any two numbers x, y ∈ D in binary representation, xy can be approximated in time polynomial
in the number of bits in x and y [8]. Using the de�nition of P-computability of real functions
using function oracles, one can easily establish that any function that can be composed of a
constant number of P-computable functions and constants is P itself. We can thus establish
that every function in P is P-computable:

1. uniform(a, b) : [a, b]→ R+ only uses division by constants, which is P-computable.

2. exp(λ) : [0,∞]→ R+ uses multiplication by constants and exponentiation with a negative
value, and is thus P-computable.

3. norm : R → R+ uses the real constants e and π, subtraction, division by constants,
multiplication and exponentiation. The exponential has as exponent −(x−µ)2/2ω, which
is always negative, so that again we obtain P-computability.

Note further that in each case, the complexity is polynomial not only in n, but also in the
constants involved. We obtain that all functions in Pex can be approximated in time polynomial
both the precision and their representation.

Lemma 1. Every function in Pex is #·P-admissible.

Proof. By Lemma 5, every function in Pex is P-computable. For Condition 2, note that the
functions uniform(a, b) have a bounded domain, so that the condition is trivially satis�ed.

For the other functions, note that
∫ −2δ(n)

−∞ ex dx = e−2δ(n)

. Since both functions are single
exponential and bounded, it easily follows that these functions also satisfy Condition 2. We
obtain that every function in Pex is #·P-admissible.

B.3 Complexity Upper Bounds

We �rst show a general lemma on products of probabilities with errors.

Lemma 6. Let N = {p1, . . . , pn} ∈ 2[0,1] and m > n. Then,

•
∏
pi∈N (pi + 2−m) ≤

(∏
pi∈N pi

)
+ 2−m+n−1, and
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•
∏
pi∈N (pi − 2−m) ≥

(∏
pi∈N pi

)
− 2−m+n−1.

Proof. We only prove the �rst part of the lemma, as the second one can be proved analogously.
The proof is by induction on the number of elements in N .

Base Case N = {p1}. Then, n = 1 and p1 + 2−m = p−m+1−1
1 directly follows.

Inductive Step Assume Nn = {p1, . . . , pn} ∈ 2[0,1] and∏
pi∈Nn

(pi + 2−m) ≤
∏

pi∈Nn

pi + 2−m+n−1.

Let pn+1 ∈ [0, 1] and Nn+1 = Nn ∪ {pn+1}. We establish the upper bound on the error
for Nn+1.

∏
pi∈Nn+1

(pi + 2−m) =

 ∏
pi∈Nn

(pi + 2−m)

 · (pn+1 + 2−m)

≤

 ∏
pi∈Nn

pi

+ 2−m+n−1

 · (pn+1 + 2−m)

=

 ∏
pi∈Nn+1

pi

+ 2−m+n−1 · pn+1 +

 ∏
pi∈Nn

pi

 · 2−m + 2−2m+n−1

Because pi ∈ [0, 1],
(∏

pi∈Nn pi

)
∈ [0, 1] and 2−m ≥ 2−2m−n−1, we can simplify

∏
pi∈Nn+1

(pi + 2−m) ≤

 ∏
pi∈Nn+1

pi

+ 2−m+n−1 + 2 · 2−m

≤

 ∏
pi∈Nn+1

pi

+ 2−m+n−1 + 2−m+1.

Furthermore, since n > 1, 2−m+n−1 ≥ 2−m+1, and therefore

∏
pi∈Nn+1

(pi + 2−m) ≤

 ∏
pi∈Nn+1

pi

+ 2 · 2−m+n−1

=

 ∏
pi∈Nn+1

pi

+ 2−m+(n+1)−1.

This concludes the proof.

For a given input K = (T ,A) and n, we now follow the three steps for constructing the
approximated measure space Ma

K,n, and show that each of the constructed measure spaces M1,
M2 and Ma

K,n satis�es the given error bounds on P (K, q) for any query q. In the following, for
a query q and ? ∈ {1, 2, a}, we use the notation µ?(q) as an abbreviation for µ?({w ∈ Ω?A |
(T , w) |= q}), where µ? ∈ {µ1, µ2, µ

a
K,n}. Note that, while in the main text we only specify

the set of possible worlds explicitly, we assume the event spaces Σ1, Σ2 and ΣaK,n to be de�ned
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analogously to how it is done in Section 3.1, and the measure functions µ1, µ2 and µaK,n to be
extended to be extended to measure functions that satisfy the conditions for measure spaces.
Even though the approximated measure spaces are not probability measure spaces in the strict
sense, for simplicity, we still speak of probabilities when speaking of values of the measure
functions. Recall further that we assume w.l.o.g. all queries to only contain concepts A that
are concept names.

The �rst lemma is a direct result of Lemma 6 and the de�nition of #·P-feasible pdfs.

Lemma 7 (Step 1). For every query q, we have

|µ1(q)− µ(q)| < 2−n−1.

Proof. The maximal error produced in this step corresponds to the probability in MA that
any concrete feature value is outside the interval [−2max(δ(nv+n)), 2δ(nv+n)]. For each concrete
feature, this probability is maximally 2−nv−n. Therefore, the probability of all concrete feature
values to be inside [−2max(c,δ(nv+n)), 2max(c,δ(nv+n))] is bounded by

µ1(Ω1) ≥ (1− 2−nv−n)nv .

By Lemma 6, we thus have µ1(Ω1) ≥ 1− 2−n−1. Because we only removed possible worlds, we
have for any any query q that |µ1(q)− µ(q)|.

Lemma 8 (Step 2). For every query q, we have

|µ2(q)− µ1(q)| < 2−n−2.

Proof. Because f(x) < 2k for all f ∈ P and x ∈ R, for every concrete feature g(a) with
g(a) : f ∈ C and every real number x ∈ R, we have

µA({w ∈ Ω1 | w |= g(a) ∈ [x, x+ 2−m]}) =

∫ x+2−m

x

f(y) dy < 2k−m.

Therefore, for a real number x ∈ [−2δ(nv+n), 2δ(nv+n)] with m bits after the binary point, we
have µ2(g(a) = x) < 2k+1−m. The probability in M2 of any concrete feature value from C to
have a value in occurring in a unary domain predicate inK is therefore bounded by nvnc·2k+1−m.
The probability of any two distinct concrete feature values from C to have the same value is
bounded by n2

v · 2k+1−m. Therefore, we obtain as upper bound on the error for any query q:

|µ2(q)− µ1(q)| ≤ nv(nv + nc) · 2k+1−m.

By construction, we have m > log2(nv(nv + nc)) + n+ k + 3, and hence

|µ2(q)− µ1(q)| ≤ 2−n−2.

Lemma 9 (Step 3). For every query q, we have

|µaK,n(q)− µ2(q)| < 2−n−2.

Proof. From the observations in the main text, we have for every g(a) ∼ f ∈ C and x, y ∈ R,
|µaK,n(g(a) ∈ [x, y]) − µ2(g(a) ∈ [x, y])| < 2−nv−n−1. From Lemma 6, we therefore obtain
|µaK,n(Ω2) − µ2(Ω2)| < 2−n−2. Since this restricts the error also for every subset of Ω2, we
obtain |µaK,n(q)− µ2(q)| < 2−n−2 for every query q.

Lemma 2 is now a direct consequence of Lemmata 7�9.
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Lemma 2. Let K = (T ,A) be a probabilistic KB, q a query, n ∈ N and Ma
K,n the n-

approximated probability measure space for K. Then,

µaK,n({w ∈ ΩaK,n | (T , w) |= q}) = 〈PK(q)〉n.

It only remains to show that using the approximated measure spaces, we can de�ne a counting
problem corresponding to probabilistic query entailment that is in in #·C, where C is the cor-
responding complexity of query entailment in the non-probabilistic case. As this corresponding
problem will be used in the next sections to prove the lower bounds, we de�ne it here formally:

De�nition 7. The counting variant of probabilistic query entailment is the problem to compute
the function g that maps tuples (K, q, n) of a KB K, a query q and a precision n in unary to a
natural number such that

g(K, q, n) = 2bK,n · 〈PK(q)〉n,

where bK,n is the maximal number of bits used in any probability in the n-approximated measure
space Ma

K,n for K.

Note that bK is polynomial in |K|+n, so that De�nition 7 �ts the de�nition of a corresponding
counting problem as de�ned in Section 5.

Theorem 5. Let L ∈ {EL(R>),ALC(R)}, Q ∈ {AQ,UCQ} and C be the combined/data com-
plexity of Q-entailment in classical L KBs. Then, the combined/data complexity of the counting
variant of probabilistic Q-entailment in probabilistic L-knowledge bases is in #·C.

Proof. Let L, Q and C be as in the theorem. Based on the approximated measure spacesMa
K,n,

we de�ne a binary relation R between tuples (K, q, n) of a KB K, a query q and a natural num-
ber n in unary encoding, and tuples (w, d) of possible worlds w ∈ ΩaK,n and natural numbers
d ∈ R in binary encoding. Let bK,n be the (polynomial) number of bits required to repre-
sent the probability of a single possible world in Ma

K,n. The relation R contains all tuples
((K, q, n), (w, d)) such that

1. w ∈W a
K,n,

2. d < 2bK · µaK,n({w}), and

3. w |= q.

Conditions 1 and 2 can be checked in polynomial time, while Condition 3 can be checked in C.
Furthermore, each |(w, d)| is polynomially bounded by |K|+n. Hence, R ful�ls all requirements
to show inclusion in #·C, if we can show that it correctly captures probabilistic query entailment.
Namely, we claim that

2bK,n · 〈P (K, q)〉n = ‖{y | R((K, q, n), y)}‖.

Clearly, for any w ∈ ΩaK,n, we have

2bK,n · µaA,n({w}) = ‖{d | R((K, q, n), (w, d)}‖.

µaK,n(q) corresponds to the sum of all possible worlds w ∈ ΩaK,n s.t. w |= q, so that we obtain

2bK,n · µaK,n(q) = ‖{y | R((K, q, n), y)}‖.

From this, our claim directly follows by Lemma 2.
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B.4 Hardness of UCQ-Entailment in EL w.r.t Combined Complexity

We give a #·NP-lower bound under subtractive reductions for the combined complexity of the
counting variant of probabilistic UCQ entailment in EL KBs. In fact, we show the stronger
result on hardness for the counting variant of probabilistic CQ entailment in EL KBs. Turing
reductions are generally too powerful to make meaningful hardness statements for a counting
complexity class #·C, if C is a complexity class larger P in the polynomial hierarchy. In fact, if
C is in the polynomial hierarchy, every problem in #·C can be reduced to #·P under polynomial
1-Turing reductions [38]. Therefore, to make a meaningful statement on hardness for #·NP,
we need a more restricted form of reduction that can distinguish between di�erent levels of the
polynomial counting hierarchy. For this reason, we use subtractive reduction.

Given a binary relation R, we denote by R(x) the set R(x) = {y | R(x, y)}, and by #·R the
counting problem associated with R, which is to compute ‖R(x)‖ given x. We can now de�ne
subtractive reductions after [16].

De�nition 8. A counting problem #·R reduces to another counting problem #·S under strong
subtractive reductions i� there are polynomially computable functions f and g such that for all
words x

1. S(g(x)) ⊆ S(f(x)), and

2. ‖R(x)‖ = ‖S(f(x))‖ − ‖S(g(x))‖.

Subtractive reduction is the transitive closure of strong subtractive reduction.

Subtractive reductions were introduced in [16] as a reduction method for the complexity classes
#·Πp

n, which are not closed under polynomial 1-Turing reductions, but are closed under sub-
tractive reductions. The counting complexity classes #·Σpn (which includes #·NP) are not
closed under subtractive reductions, in the sense that any problem in #·Πp

n can be reduced to
#·Σpn under subtractive reductions. However, because we have #·Σpn−1 ⊆ #·Πp

n−1 ⊆ #·Σpn for
all n > 0, subtractive reductions are restricted enough to di�erentiate di�erent levels of the
polynomial hierarchy. Speci�cally, since we already showed inclusion in #·NP for the count-
ing variant of probabilistic UCQ entailment in EL KBs, and #·P is closed under subtractive
reductions, subtractive reductions are su�cient for our purpose to show completeness in #·NP.

Theorem 6. W.r.t. combined complexity, the counting variant of probabilistic CQ entailment
in probabilistic EL KBs is #·NP-complete under subtractive reductions.

Proof. #·NP-inclusion follows from Theorem 5, so that we only need to show hardness under
subtractive reductions. The prototypical #·NP-complete problem is the following: given a
propositional formula φ(x0, . . . , xn) in CNF and a naturalm < n, count the number of satisfying
assignments of the QBF-formula ∃xm . . . xn : φ(x0, . . . xn) [16]. To show #·NP-hardness under
subtractive reductions, we provide a strong subtractive reduction of this problem to probabilistic
CQ entailment in EL KBs.

Let φ(x0, . . . , xn) be a CNF-formula with clauses c1, . . . , cl and m < n. We construct a discrete
probabilistic KB Kφ and two queries q1

φ, q
2
φ such that the maximum number of bits after the

binary point in any probability in the measure space MKφ is m, the number of satisfying
assignments of ∃xm . . . xn : φ is

2m · 〈PKφ(q1
φ)〉m − 2m · 〈PKφ(q2

φ)〉m,

and furthermore, for every possible world w ∈ ΩKφ , w |= q2
φ implies w |= q1

φ. The latter property
ensures that Condition 1 in De�nition 8 is ful�lled for our reduction.
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For every variable xi with i ≥ m, we add the assertions B(x+
i ) : 1, B(x−i ) : 1. For every variable

xi with i < m, we add the assertions B+(x+
i ) : 0.5, B−(x−i ) : 0.5. The TBox contains the

axioms B+ v B and B− v B. Intuitively, B marks which truth assignments to xi are available.
For each clause ci ∈ φ and each variable xj in ci, we add as(ci, x

+
j ) if xj ∈ ci and as(ci, x

−
j )

if ¬xj ∈ ci. Note that m bits are su�cient to represent any probability in the corresponding
measure space MKφ .

Let qc = ∃x1, . . . , xn : Bi(xi) be a query that is entailed in all possible worlds in which an
assignment is available for each variable. Our queries q1

φ and q2
φ are now de�ned as follows:

q1
φ = qc ∧ ∃x1, . . . , xl :

∧
1≤i≤l

as(ci, xi) ∧ B(xi)

q2
φ = q1

φ ∧ ∃x : B+(x) ∧ B−(x).

q1
φ is satis�ed in all possible worlds in which a satisfying truth-assignment is available, but also
in those possible worlds in which more than one truth-assignment is available per free variable.
Therefore, we de�ne the query q2

φ that is satis�ed in those possible worlds which entail q1
φ and

in which for at least one free variable two truth values are available. One easily veri�es that
the inputs (Kφ, q1

φ, n) and (Kφ, q2
φ, n) can both be constructed from φ in polynomial time, that

for every possible word q in the associated measure space, w |= q2
φ implies w |= q1

φ, and that the
number of satisfying assignments of ∃xm . . . xn : φ(x0, . . . , xn) equals 2m ·PKφ(q1

φ)−2m ·PKφ(q2
φ).

We obtain that the counting variant of probabilistic CQ entailment in EL KBs is #·NP-hard
under subtractive reductions w.r.t combined complexity .

B.5 Hardness of AQ-Entailment in ALC w.r.t. Data Complexity

While in the last section, we showed hardness under subtractive reductions, in order to distin-
guish #·NP and #·coNP, we need an even more restricted reduction, since every problem in
#·coNP can be reduced to #·NP using subtractive reductions. We therefore use the most re-
stricted reduction for counting problems, which is parsimonious reduction [38]. A parsimonious
reduction from one counting problem to another is a polynomial reduction that preserves the
number of solutions.

Lemma 10. W.r.t. data complexity, the counting variant of probabilistic AQ-entailment in
probabilistic ALC KBs is #·coNP-complete under parsimonious reductions.

Proof. Since inclusion in #·coNP follows from Theorem 5, we only need to show #·coNP-
hardness under parsimonious reductions. The prototypical #·coNP-complete problem is the
following: given a 3DNF-formula φ(x0, . . . , xn) and m < n, count the number of satisfying
assignments of ∀xm . . . xn : φ(x0, . . . , xn). We de�ne a probabilistic KB Kφ = (T∀,Kφ) such
that the number of satisfying assignments of ∀xm . . . xn : φ(x0, . . . , xn) corresponds to 2m ·
〈PKφ(A(f))〉m.

We �rst de�ne the Abox Aφ. For every variable xi, we add the assertion hasVar(f, xi). For
every variable xi where i ≥ m, we add the assertion Q(xi) : 1, while for every variable xi where
i < m, we add the assertions True(xi) : 0.5 and False(xi) : 0.5.

To allow for a concise presentation of the following assertions, we de�ne three mappings rli,
i ∈ {1, 2, 3}, that map a literal l to a role based on their polarity: rxi = pi, r

¬x
i = ni. Aφ

contains for each clause ci = l1 ∧ l2 ∧ l3 ∈ φ the following assertions:

hasClause(f, ci) : 1

rl11 (ci, var(l1)) : 1 rl22 (ci, var(l2)) : 1 rl33 (ci, var(l3)) : 1
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Note that at most m bits are required to represent any probability in MAφ . The TBox T∀
contains the following axioms to de�ne truth of 3DNF-clauses and -formulae.

Q v (True t False) u ¬(True u False)
∃n1.False u ∃n2.False u ∃n3.False v True

∃n1.False u ∃n2.False u ∃p3.True v True

...

∃p1.True u ∃p2.True u ∃p3.True v True

∃hasClause.True v True

The concept A for the atomic query is de�ned as follows:

True u ∀hasVar.(True t False) u ¬∃hasVar.(True u False) v A

The concept de�nition makes sure that A(f) is entailed exactly in those possible worlds which
(1) correspond to an assignment that makes the formula true (2) assigns every variable xi with
i < m at least one truth value, and (3) assigns every variable xi with i < m at most one truth
value. Correspondingly, the number of satisfying assignments of ∀xm . . . xn : φ(x0, . . . , xn)
corresponds to 2m · 〈PKφ(A(f))〉m. Note that the size of Aφ is polynomial in the size of
φ(x0, . . . , xn), while the size of T∀ is independent of φ(x0, . . . , xn). We obtain that the data
complexity of the counting problem corresponding to probabilistic AQ-entailment in ALC KBs
is #·coNP-complete under parsimonious reductions.
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