
Language equations for approximate matching in the

Description Logic FL0

Franz Baader and Pavlos Marantidis∗

firstname.lastname@tu-dresden.de

Theoretical Computer Science, TU Dresden, Germany

Abstract

Both matching and unification in the Description Logic FL0 can be reduced to solving
certain formal language equations. In previous work, we have extended unification in FL0

to approximate unification, and have shown that approximate unification can be reduced to
approximately solving language equations. An approximate solution of a language equation
need not make the languages on the left- and right-hand side of the equation equal, but
close w.r.t. a given distance function. In the present paper, we consider approximate
matching. We show that, for a large class of distance functions, approximate matching is
in NP. We then consider a particular distance function d1(K,L) = 2−n, where n is the
length of the shortest word in the symmetric difference of the languages K,L, and show
that w.r.t. this distance function approximate matching is polynomial.

1 Introduction and previous work

Matching is the special case of unification where one of the sides to be unified has no variables
and thus remains unchanged under substitutions. In Description Logics (DLs), matching con-
cepts against patterns (concepts with variables) was introduced to help filter out unimportant
aspects of complicated concepts appearing in large industrial knowledge bases [4]. Unification of
patterns was suggested as a means to detect redundancies in ontologies, by finding different con-
cepts that may potentially stand for the same intuitive notion [3]. For the DL FL0, unification
and matching have been investigated in detail in [3]. From an equational theory point of view,
this is unification and matching modulo the equational theory ACUIh of a binary associative,
commutative, and idempotent function symbol with a unit and several homomorphisms. It was
shown in [3] that both problems can be reduced to solving certain formal language equations.
In particular, matching can be reduced to formal language equations of the following form:
given finite languages (sets of words) V0, U0, U1, . . . , Un we want to know whether there exist
finite languages X1, . . . , Xn such that

U0 = V0 ∪ V1 ·X1 ∪ · · · ∪ Vn ·Xn (1)

where “·” stands for concatenation of languages. A solution of such an equation is an assignment
σ of languages to the variables Xi such that the above equation holds as equality of languages.
An assignment is called finite if all the languages σ(Xi) are finite. A finite assignment that is
a solution is called a matcher. In other words, matching in FL0 reduces to checking whether
equations of the form (1) have a matcher. Baader and Narendran [3] showed that this problem
is decidable in polynomial time by proving that (1) has a matcher iff the assignment

θ(Xi) :=
⋂
v∈Vi

v−1U0 (i = 1, . . . , n)

∗Supported by DFG Graduiertenkolleg 1763 (QuantLA).

Language equations for approximate matching in the Description Logic FL0 Baader and Marantidis

is a solution of (1). It is easy to see that computing θ and checking whether it actually is a
solution can be done in polynomial time.

As an example, consider the equation

{a, ab, abb} = {a, ab} ·X.

Following the procedure above, for n = 1, U0 = {a, ab, abb}, V0 = ∅ and V1 = {a, ab} we
have that a−1U0 = {ε, b, bb}, (ab)−1U0 = {ε, b} and thus θ(X) := {ε, b, bb} ∩ {ε, b} = {ε, b}.
Immediately, it can be verified that {a, ab} · θ(X) = {a, ab, abb} holds as equality, and thus θ is
a solution.

On the other hand, for the equation

{ab} = {a, ab} ·X

working as before we obtain a−1U0 = {b}, (ab)−1U0 = {ε} and thus θ(X) := {b} ∩ {ε} = ∅.
Since {a, ab} · θ(X) 6= {ab}, this problem does not have a solution.

In [1], matching in extensions of FL0 by the bottom concept, atomic negation, and number
restrictions was considered. The problem again reduces to solving language equations of a
form similar to (1), but now using a restricted form of infinite languages. In this setting, one
can again construct a candidate solution similar to θ above, but now checking whether this
assignment is indeed a solution becomes more involved. For this purpose, the authors of [1]
introduce so-called tree-like automata, which can be used to realize this test in polynomial time.

Recently, approximate unification was introduced in order to increase the recall of classical
unification [2], i.e., find substitutions that are “almost” unifiers rather than exact unifiers.
Approximate unification in FL0 can again be reduced to solving formal language equations,
but now approximately. An approximate solution of such an equation does not make the left-
and right-hand sides of the equation equal, but instead close w.r.t. a distance function on
languages.

In [2], a language distance is defined to be a metric on the set of languages over the given
alphabet Σ, i.e., a function d : 2Σ∗ × 2Σ∗ → [0,∞) satisfying the properties

(M1) d(K,L) = 0 ⇐⇒ K = L

(M2) d(K,L) = d(L,K)

(M3) d(K,M) ≤ d(K,L) + d(L,M).

A common approach to define a language distance function is to “measure” the size of the
symmetric difference of the input languages [6, 5, 2], i.e., define d(K,L) := m(K 4 L) where
K 4 L := (K \ L) ∪ (L \K) and m is an appropriate function. This way, (M2) is guaranteed
to hold. If m is actually a measure (in the mathematical sense), (M3) holds as well, (since
K 4M ⊆ K 4 L ∪ L4M). (M1) corresponds to the requirement that m(L) = 0 iff L = ∅.

An interesting example of such a language distance introduced in the literature [2, 5, 6] is
the function

d1(K,L) := 2−n,

where n = min { |w| : w ∈ K 4 L }. The intuition underlying this distance is that differences
between the two languages are less important if they occur for longer words. The function
considers the length n of the shortest word in the symmetric difference of the input languages
and yields 2−n as distance, which becomes smaller if n gets larger. Approximate unification
in FL0 w.r.t. d1 (or rather, w.r.t. the concept distance induced by this language distance) was
shown to be of the same complexity as exact unification, i.e., ExpTime-complete [2].

2

Language equations for approximate matching in the Description Logic FL0 Baader and Marantidis

2 Approximate matching

In the present paper, we consider approximate matching rather than approximate unification
in FL0. To this purpose, we need to solve language equations of the form (1) approximately.
We will first show that this problem is in NP for a wide class of distances, and then prove that,
for d1, we can even get a polynomial-time algorithm.

Definition 1 (Approximate language matching). Given an equation of the form (1), the ap-
proximate language matching problem w.r.t. the language distance d with threshold p ∈ Q asks
whether there exists a finite assignment σ such that

d(U0, V0 ∪ V1 · σ(X1) ∪ · · · ∪ Vn · σ(Xn)) < p.

Such an assignment, if one exists, is called an approximate matcher. A (not necessarily
finite) assignment that satisfies the above inequality is called an approximate solution.

w.r.t. d1 with threshold 2−2 we have that the assignment σ1(X) = {b} is an approximate
matcher while σ2(X) = ∅ is not, since

d1({ab}, {a, ab} · σ1(X)) = d1({ab}, {ab, abb}) = 2−3 < 2−2 while

d1({ab}, {a, ab} · σ2(X)) = d1({ab}, ∅) = 2−2 6< 2−2.

Furthermore, any assignment σ with {b} ⊆ σ(X) ⊆ {a, b}∗ \ {ε, a} is an approximate solution
for the same threshold.

Since we want to show complexity results, the size of a problem has to be defined formally.
As usual, we use |w| to denote the length of a word w. Note however that we will use the same
notation for denoting the cardinality of a set S. The size ‖L‖ of a language L is the sum of
the lengths of all its words. The size of an approximate language matching problem is the sum
of the sizes of the languages U0, V0, V1, . . . , Vn plus the number of bits required for representing
the threshold p. The size of an assignment σ, with σ(Xi) = Li, is defined to be the sum of the
sizes of the languages L1, . . . , Ln.

Following standard notation in the literature of formal languages, we will omit “·” when we
refer to concatenation. Furthermore, the left quotient of L ⊆ Σ∗ w.r.t. v ∈ Σ∗ is defined to be
v−1L = {w ∈ Σ∗ | vw ∈ L}. The set of words over Σ of length ./ m is Σ./m = {w ∈ Σ∗ | |w| ./
m}, where ./ ∈ {≤,≥}.

In this section, we prove that, for language distances that satisfy the property

K 4 L ⊆M 4N =⇒ d(K,L) ≤ d(M,N), (2)

the existence of an approximate solution implies the existence of an approximate matcher of
polynomial size. If the distance is computable in polynomial time, this yields an NP-algorithm
for deciding the approximate matching problem. Property (2) holds for all language distance
functions of the form d(K,L) = m(K 4 L) where m is a measure.

Assume that we are given an equation of the form (1), a distance d satisfying property (2),
and a threshold p. Let σ be an approximate solution, with σ(Xi) = Mi for every i = 1, . . . , n.
The following two observations suffice to prove our result:

1. Let m = max{|w| : w ∈ U0}. Then σ′ with σ′(Xi) = σ(Xi)∩Σ≤m is also an approximate
matcher. Obviously, introducing words that are longer than the longest word in U0

only adds words to the right hand side of the equation (1), and thus to the symmetric
difference. By (2), removing such words cannot increase the distance value. Consequently,
if there is an approximate solution, then there also is one whose words have length at most
m ≤ ‖U0‖.

3

Language equations for approximate matching in the Description Logic FL0 Baader and Marantidis

2. Every word w ∈ σ(Xi) introduces a set of words Sw := Vi{w} on the right-hand side.
There are two possibilities: either Sw∩ (U0 \V0) 6= ∅ or Sw ⊆ V0∪ (Σ∗ \U0). In the second
case, we can simply omit w from σ(Xi) and get the same or lower distance between the
left- and the right-hand side. As for the first case, there are at most |Suf(U0)| many
such words w, where Suf(L) = {u ∈ Σ∗ : ∃w ∈ L.∃v ∈ Σ∗.vu = w}. Note that
|Suf(L)| ≤ ‖L‖+ |L|, which is linearly bounded by the size of L.

Lemma 2. Assume that d is a language distance function satisfying property (2). An approxi-
mate matching problem w.r.t. d has an approximate solution iff it has an approximate matcher
of size at most quadratic in the size of the problem.

By guessing an assignment of polynomial size and then checking in polynomial time whether
it actually is an approximate matcher for the given threshold value, we obtain an NP-algorithm
for approximate matching.

Theorem 3. Given an equation of the form (1), a threshold p, a distance d satisfying property
(2), the approximate matching problem is decidable in NP.

3 Approximate Matching w.r.t. d1

For the language distance d1, we can actually get a better complexity result: the approximate
matching problem is decidable in polynomial time.

Since d1 is monotone w.r.t. the symmetric difference of the input languages, it suffices to
check whether there is an approximate solution. In the positive case, Lemma 2 then guarantees
the existence of an approximate matcher of polynomial size. Looking at the definition of d1,
it is easy to see that, if the input languages agree on all words of length up to m − 1, their
distance is at most 2−m. More generally, we have the following:

Lemma 4. Let K,L be languages over Σ and p ≤ 2−m, m ∈ N. Then,

d1(K,L) < p ⇐⇒ K ∩ Σ≤m = L ∩ Σ≤m ⇐⇒ K ∪ Σ≥m+1 = L ∪ Σ≥m+1.

As an easy consequence of this lemma, we obtain:

Proposition 5. Given an equation of the form (1), the assignment σ(Xi) = Li is an approxi-
mate solution w.r.t. d1 with threshold p ≤ 2−m+1 iff U0∪Σ≥m = V0∪V1L1∪ · · ·∪VnLn∪Σ≥m,
i.e., iff it is a solution of the equation

U0 ∪ Σ≥m = V0 ∪ V1X1 ∪ · · · ∪ VnXn ∪ Σ≥m. (3)

Reflecting on the equation {ab} = {a, ab}X w.r.t. d1 with threshold p = 2−2 we have that

{ab} ∪ Σ≥3 = {ab, abb} ∪ Σ≥3 = {a, ab}σ1(X) ∪ Σ≥3,

thus verifying again that σ1 is an approximate solution. In fact, for any assignment σ with
{b} ⊆ σ(X) ⊆ {a, b}∗ \ {ε, a} it holds that

{ab} ∪ Σ≥3 = {a, ab}σ1(X) ∪ Σ≥3.

Meanwhile,
{ab} ∪ Σ≥3 6= ∅ ∪ Σ≥3 = {a, ab}σ2(X) ∪ Σ≥3,

4

Language equations for approximate matching in the Description Logic FL0 Baader and Marantidis

since σ2 is not an approximate solution.
By Proposition 5, finding an approximate solution w.r.t. d1 with p ≤ 2−m+1 for the equation

of the form (1) reduces to finding a solution for the equation (3). Adapting the technique used
in [3] for matching in FL0, we get the following result.

Lemma 6. An equation of the form (3) has a solution iff

σ(Xi) = Li :=
⋂
v∈Vi

(
v−1(U0 ∪ Σ≥m)

)
is a solution.

Proof. The if direction is trivial.
For the only-if direction, assume that τ(Xi) = Mi is a solution of (3). We want to show

that
U0 ∪ Σ≥m = V0 ∪ V1L1 ∪ · · · ∪ VnLn ∪ Σ≥m. (4)

Obviously, the equation holds for all words of length at least m. Suppose that w ∈ U0 and
|w| < m. Since τ is a solution, either w ∈ V0 or w ∈ ViMi for some i ∈ {1, . . . , n}. In the
first case, there is nothing more to show. In the second case, there are words v0 ∈ Vi, u ∈ Mi

s.t. w = v0u. Since τ is a solution, for every word v ∈ Vi it holds that vu ∈ U0 ∪ Σ≥m. Thus
u ∈

⋂
v∈Vi

v−1(U0 ∪ Σ≥m) = Li, which proves language inclusion in one direction.

For the other direction, since there is a solution, it holds that V0 ⊆ U0 ∪ Σ≥m. Thus it
suffices to prove that ViLi ⊆ U0 ∪ Σ≥m. Assume that w ∈ ViLi. This means that w = v0` for
some v0 ∈ Vi and ` ∈ Li. Thus we get

` ∈
⋂
v∈Vi

v−1(U0 ∪ Σ≥m) =⇒ ` ∈ v0
−1(U0 ∪ Σ≥m) =⇒ v0` ∈ U0 ∪ Σ≥m,

which completes the proof.

Applying the above lemma to our running example, we obtain

σ(X) : = a−1({ab} ∪ {a, b}≥3) ∩ (ab)−1({ab} ∪ {a, b}≥3)

= ({b} ∪ {a, b}≥2) ∩ ({ε} ∪ {a, b}≥1)

= ({b} ∪ {a, b}≥2) = {a, b}∗ \ {ε, a},

which we have already seen that is an approximate solution.
Checking in polynomial time whether the assignment from Lemma 6 is actually a solution

can be done by using tree-like automata (see [3] for details). Overall, we obtain the following
for d1.

Theorem 7. Given an equation of the form (1), the approximate matching problem w.r.t. d1

with threshold p is decidable in polynomial time.

4 Future work

We will investigate whether the NP-upper bound stated in Theorem 3 is sharp, i.e., whether
there are language distances in the introduced class for which the approximate matching prob-
lem is NP-hard. We are also interested in finding non-trivial language distances other than d1

for which approximate matching is polynomial. As mentioned above, matching in the extensions
of FL0 investigated in [1] reduces to solving language equations that involve infinite languages.
Hence, we would like to investigate whether the results of this paper can be extended to such
equations.

5

Language equations for approximate matching in the Description Logic FL0 Baader and Marantidis

References

[1] Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description logics. J. of Logic
and Computation 9(3), 411–447 (1999)

[2] Baader, F., Marantidis, P., Okhotin, A.: Approximate unification in the description logic FL0. In:
JELIA-16. Lecture Notes in Computer Science, vol. 10021, pp. 49–63. Springer (2016)

[3] Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of Symbolic Com-
putation 31(3), 277–305 (2001)

[4] Borgida, A., McGuinness, D.L.: Asking queries about frames. In: Proc. of the 5th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR’96). pp. 340–349 (1996)

[5] Kephart, D.E.: Topology, morphisms, and randomness in the space of formal languages. Ph.D.
thesis, University of South Florida (2005)

[6] Vianu, V.: The Bodnarchuk metric space of languages and the topology of the learning space. In:
Mathematical Foundations of Computer Science 1977, Proceedings. pp. 537–542 (1977)

6

	Introduction and previous work
	Approximate matching
	Approximate Matching w.r.t. d1
	Future work

