
A New Description Logic with Set Constraints
and Cardinality Constraints on Role Successors?

Franz Baader

Theoretical Computer Science, TU Dresden
franz.baader@tu-dresden.de

Abstract. We introduce a new description logic that extends the well-
known logic ALCQ by allowing the statement of constraints on role suc-
cessors that are more general than the qualified number restrictions of
ALCQ. To formulate these constraints, we use the quantifier-free frag-
ment of Boolean Algebra with Presburger Arithmetic (QFBAPA), in
which one can express Boolean combinations of set constraints and nu-
merical constraints on the cardinalities of sets. Though our new logic is
considerably more expressive than ALCQ, we are able to show that the
complexity of reasoning in it is the same as in ALCQ, both without and
with TBoxes.

1 Introduction

Description Logics (DLs) [2] are a well-investigated family of logic-based knowl-
edge representation languages, which are frequently used to formalize ontologies
for application domains such as biology and medicine [9]. To define the impor-
tant notions of such an application domain as formal concepts, DLs state nec-
essary and sufficient conditions for an individual to belong to a concept. These
conditions can be Boolean combinations of atomic properties required for the
individual (expressed by concept names) or properties that refer to relationships
with other individuals and their properties (expressed as role restrictions). For
example, the concept of a man (i.e., a non-female human) that has a wife and
only daughters can be formalized by the concept description

Human u ¬Female u ∃spouse.Female u ∀child.Female,

which uses the concept names Human and Female and the role names spouse and
child as well as the concept constructors conjunction (u), negation (¬), value
restriction (∀r.C), and existential restriction (∃r.C). Number restrictions can
express to how many individuals, possibly with certain properties, an element of
the concept is related to for a given role. For example, the concept of a woman
that has two daughters, three sons, and no other children can be formalized as

Human u Female u (> 2 child.Female) u (> 3 child.¬Female) u (6 5 child).

? Partially supported by DFG within the Research Unit 1513 Hybris.

The first two number restrictions in this concept description are called qualified
since they restrict the number of role successors belonging to certain concepts,
whereas the last number restriction is unqualified since it is concerned with all
role successors. Number restrictions have been used as concept constructors for
DLs for a long time, but first only in the unqualified variant [4,11]. Qualified
number restrictions were first introduced and investigated in [10], but it took
almost a decade before the exact complexity of reasoning in the DL ALCQ,
which has all the concept constructors introduced in the above examples, could
be determined [18]. In fact, the tableau-algorithm for deciding the satisfiability
of an ALCQ concept described in [10] generates n new individuals to satisfy
a qualified at-least restriction >n r.C. If we assume binary rather than unary
representation of numbers (i.e., the size of n in a number restriction is assumed
to be log n rather than n), then this clearly generates exponentially many indi-
viduals, and thus the algorithm needs exponential space. The PSpace algorithm
described in [18] does not keep n successors in memory at the same time. In-
stead, it uses appropriate book-keeping of the number of successors (represented
in binary) and comparisons of numbers to determine a clash between at-least and
at-most restrictions. In order to improve the performance of reasoners for DLs
with qualified number restrictions, also more sophisticated numerical reasoning
approaches (such as linear integer programming) have been employed (see, e.g.,
[8,5,7]).

More expressive number restrictions have been introduced in [3]. On the
one hand, that paper considers number restrictions on complex roles, i.e., roles
that are constructed from role names using operations on binary relations such
as intersection and composition. For example, using role intersection within a
number restriction, one can describe presidents that employ at least one relative:

President u (> 1 related u employs).

On the other hand, the paper introduces symbolic number restrictions, in which
variables can be used in place of explicit numbers. This allows one to express,
e.g., that someone has more daughters than sons without specifying the actual
number of them:

Human u ↓α((>α child.Female) u ¬(>α child.¬Female)),

where ↓α says that there must exist such a cardinality α. Unfortunately, both
extensions on their own already lead to undecidability of reasoning if they are
added to a DL that is closed under all Boolean operations.

In the present paper, we propose a new DL strictly extending ALCQ, which
we call ALCSCC.1 Among other things, this DL can describe some of the con-
cepts expressible in the DLs introduced [3], but not in ALCQ. Nevertheless,
reasoning in our new DL is not only decidable, but of the same complexity as
reasoning in ALCQ. The basic idea underlying the definition of this logic is the
1 The name ALCSCC for our new DL indicates that it extends the basic DL ALC with
set and cardinality constraints rather than just qualified number restrictions.

following. A DL concept expresses under what conditions an individual d be-
longs to the concept. On the one hand, these conditions refer to concept names
to which d must or must not belong. On the other hand, they state conditions
on the individuals that are related to d via some role. For example, the value
restrictions ∀r.C says that the set of r-successors of d is contained in the set
of elements of C. Thus, such a value restriction states an inclusion constraint
between sets. Number restrictions enforce cardinality constraints on sets. For ex-
ample, the qualified number restriction >n r.C says that the cardinality of the
set obtained by intersecting the set of r-successors of d with the set of elements
of C has cardinality at least n. We now integrate into our DL a logic that can
express set constraints (such as inclusion constraints) and numerical constraints
regarding the cardinality of sets. This logic is called QFBAPA, which stands for
the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic. Ba-
sically, the Boolean algebra part of this logic can be used to build set expressions
and the Presburger arithmetic part can state numerical constraints. Both parts
are linked by the cardinality function. It has been shown in [12] that satisfiabil-
ity of QFBAPA formulae is an NP-complete problem. Our PSpace algorithm for
deciding the satisfiability of ALCSCC concept descriptions (see Section 5) and
our ExpTime algorithm for deciding satisfiability in ALCSCC w.r.t. TBoxes (see
Section 6) use the NP decision procedure for satisfiability of QFBAPA formulae
as subprocedure.

Ohlbach and Koehler [13] have introduced a DL that also allows for Boolean
set terms and arithmetic constraints on the cardinality of role successors. The
expressiveness of their logic is somewhat different from ours (see Section 7). The
major difference to our work is, however, that Ohlbach and Koehler give only
decidability results and no complexity results. In addition, they only consider
satisfiability of concept descriptions, whereas we also consider satisfiability w.r.t.
TBoxes consisting of general concept inclusions (GCIs). In fact, we show in
Section 6 that also w.r.t. GCIs the complexity of the satisfiability problem in
ALCSCC is the same as in ALCQ, i.e., ExpTime-complete.

2 Preliminaries

Before defining ALCSCC in Section 3, we briefly introduce ALCQ and QFBAPA.
Given disjoint finite sets NC and NR of concept names and role names,

respectively, the set of ALCQ concept descriptions is defined inductively:

– all concept names are ALCQ concept descriptions;
– if C,D are ALCQ concept descriptions, r ∈ NR, and n is a non-negative in-

teger, then ¬C (negation), CtD (disjunction), CuD (conjunction), >n r.C
and 6n r.C (qualified number restrictions) are ALCQ concept descriptions.

An ALCQ GCI is of the form C v D where C,D are ALCQ concept descriptions.
An ALCQ TBox is a finite set of ALCQ GCIs.

The semantics of ALCQ is defined using the notion of an interpretation. An
interpretation is a pair I = (∆I , ·I) where the domain ∆I is a non-empty set,

and ·I is a function that assigns to every concept name A a set AI ⊆ ∆I and
to every role name r a binary relation rI ⊆ ∆I ×∆I . This function is extended
to ALCQ concept descriptions as follows:

– (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \ CI ;
– (>n r.C)I = {x ∈ ∆I | there are at least n y ∈ ∆I with (x, y) ∈ rI and
y ∈ CI};

– (6n r.C)I = {x ∈ ∆I | there are at most n y ∈ ∆I with (x, y) ∈ rI and
y ∈ CI}.

The interpretation I is a model of a TBox T if it satisfies CI ⊆ DI for all
GCIs C v D ∈ T . Given an ALCQ concept description C, we say that C is
satisfiable if there is an interpretation I such that CI 6= ∅. Analogously, C is
satisfiable w.r.t. the TBox T if there is a model I of T such that CI 6= ∅. Two
ALCQ concept descriptions C,D are equivalent (written C ≡ D) if CI = DI

holds for all interpretations I. Other inference problems such as subsumption can
be reduced to satisfiability, which is why we concentrate on it. The introduced
notions (GCI, TBox, model, satisfiability, and equivalence) can of course also be
used for DLs other thanALCQ, and in particular for the DLALCSCC introduced
in the next section.

The DL ALC differs from ALCQ in that it has existential restrictions (∃r.C)
and value restrictions (∀r.C) as constructors in place of qualified number restric-
tions. It is a sublogic of ALCQ since these two constructors can be expressed
using qualified number restrictions: ∃r.C ≡ > 1 r.C and ∀r.C ≡ 6 0 r.¬C.

Let us now briefly introduce the logic QFBAPA (more details can be found
in [12]). In this logic one can build set terms by applying Boolean operations
(intersection, union, and complement) to set variables as well as the constants ∅
and U . Set terms s, t can then be used to state inclusion and equality constraints
(s = t, s ⊆ t) between sets. Presburger Arithmetic (PA) expressions are built
from integer variables, integer constants, and set cardinalities |s| using addition
as well as multiplication with an integer constant. They can be used to form
numerical constraints of the form k = `, k < `,N dvd `, where k, ` are PA ex-
pressions, N is an integer constant, and dvd stands for divisibility. A QFBAPA
formula is a Boolean combination of set and numerical constraints.

A solution σ of a QFBAPA formula φ assigns a finite set σ(U) to U , subsets
of σ(U) to set variables, and integers to integer variables such that φ is satisfied
by this assignment. The evaluation of set terms, PA expressions, and set and
numerical constraints w.r.t. σ is defined in the obvious way. For example, σ
satisfies the numerical constraint |s ∪ t| = |s| + |t| for set variables s, t if the
cardinality of the union of the sets σ(s) and σ(t) is the same as the sum of
the cardinalities of these sets. Note that this is the case iff σ(s) and σ(t) are
disjoint, which we could also have expressed using the set constraint s ∩ t ⊆ ∅.
A QFBAPA formula φ is satisfiable if it has a solution.

3 Syntax and semantics of ALCSCC

Basically, the DL ALCSCC has all Boolean operations as concept constructors
and can state constraints on role successors using the expressiveness of QFBAPA.

Given a finite set of set symbols T with {∅,U}∩ T = ∅, set terms over T are
defined inductively as follows:

– the symbols ∅ and U are set terms;
– every set symbol is a set term;
– if s, t are set terms, then so are s ∪ t, s ∩ t, and sc.

Cardinality terms over T are also defined inductively:2

– every non-negative integer N is a cardinality term;
– if s is a set term, then |s| is a cardinality term;
– if k, ` are cardinality terms, then so are k+` and N ·` for every non-negative

integer N .

Set constraints over T are of the form s = t, s ⊆ t or their negation for set terms
s, t. Cardinality constraints over T are of the form k = `, k < `, k ≤ `, N dvd `
or their negation for cardinality terms k, ` and a non-negative integer N > 0.

Given a set ∆I and a mapping ·I that maps

– ∅ to ∅I = ∅,
– U to a finite subset UI of ∆I , and
– every symbol σ in T to a subset σI of UI ,

we extend this mapping to set terms and cardinality terms as follows:

– (s ∪ t)I = sI ∪ tI , (s ∩ t)I = sI ∩ tI , and (sc)I = UI \ sI ,
– |s|I = |sI |,
– (k + `)I = kI + `I and (N · `)I = N · `I .

This mapping satisfies

– the set constraint s = t if sI = tI , and its negation if sI 6= tI ,
– the set constraint s ⊆ t if sI ⊆ tI , and its negation if sI 6⊆ tI ,
– the cardinality constraint k = ` if kI = `I , and its negation if kI 6= `I ,
– the cardinality constraint k < ` if kI < `I , and its negation if kI ≥ `I ,
– the cardinality constraint k ≤ ` if kI ≤ `I , and its negation if kI > `I ,
– the cardinality constraint N dvd ` if there is a non-negative integer M such

that N ·M = `I , and its negation if there is no such M .

Given disjoint finite sets NC and NR of concept names and role names, respec-
tively, we define the set of ALCSCC concept descriptions by induction:

– every concept name is an ALCSCC concept description;
– if C,D are ALCSCC concept descriptions, then so are C uD,C tD,¬C;

2 In contrast to PA expressions, we do not have integer variables here and numerical
constants must be non-negative.

– if c is a set constraint or a cardinality constraint over a finite set of symbols
consisting of role names and ALCSCC concept descriptions, then succ(c) is
an ALCSCC concept description.

As usual, we will use > (top) and ⊥ (bottom) as abbreviations for A t ¬A and
A u ¬A, respectively.

An interpretation of NC and NR consists of a non-empty set ∆I and a
mapping ·I that maps

– every concept name A ∈ NC to a subset AI of ∆I ;
– every role name r ∈ NR to a binary relation rI over ∆I such that every

element of ∆I has only finitely many r-successors, i.e., the set

rI(d) := {e ∈ ∆I | (d, e) ∈ rI}

is finite for all d ∈ ∆I .

The interpretation function ·I is inductively extended to ALCSCC concept de-
scriptions as follows:

– (C tD)I := CI ∪DI , (C uD)I := CI ∩DI , and (¬C)I = ∆I \ CI ;
– succ(c)I := {d ∈ ∆I | the mapping ·Id satisfies c},

where ·Id maps ∅ to ∅I = ∅, U to UI = rsI(d), where

rsI(d) :=
⋃

r∈NR

rI(d),

and the concept descriptions and role names occurring in c to subsets of UI

as follows: CId := CI ∩ rsI(d) for concept descriptions C occurring in c and
rId := rI(d).

Note that ·Id is well-defined since we can assume by induction that CI is already
defined for concept descriptions C occurring in c. In addition, it indeed maps
U to a finite set since rsI(d) is finite due to the facts that (i) NR is finite, and
(ii) every element of ∆I has only finitely many r-successors for all role names
r ∈ NR.

Also note that top and bottom are interpreted as the whole interpretation
domain and the empty set, respectively, i.e. >I = ∆I and ⊥I = ∅.

4 Expressive power

We claim that ALCSCC has the description logic ALCQ [10,18] as sublogic. For
this it is sufficient to show that qualified number restrictions >n r.C and 6n r.C
can be expressed in ALCSCC.

Lemma 1. For all interpretations I we have

(>n r.C)I = succ(|C ∩ r| ≥ n)I and (6n r.C)I = succ(|C ∩ r| ≤ n)I .

As an easy consequence we obtain that reasoning (e.g., subsumption, satisfia-
bility) in ALCSCC is at least as complex as reasoning in ALCQ, i.e., PSpace-hard
without a TBox and ExpTime-hard w.r.t. a TBox. The only thing to take care
of here is that the notion of interpretation defined above is more restrictive than
the one used for ALCQ since in ALCQ individuals are not required to have only
finitely many role successors. However, due to the fact that ALCQ has the finite
model property, we can assume without loss of generality that interpretations
of ALCQ satisfy the finite-role-successors property required in this paper for
interpretations.

We can, however, express things in ALCSCC that cannot be expressed in
ALCQ. For example, we can define the persons that have the same number of
sons as daughter by writing Person u succ(|child ∩Male| = |child ∩ Female|).
Description Logics that can express such restrictions have been introduced in [3],
but due to the use of explicit variables for cardinalities of sets of role successors
in the logic defined in [3], this logic becomes undecidable.

In [3], also number restrictions on complex role expressions are considered,
but again the high expressiveness of the corresponding logics introduced in [3]
often leads to undecidability. We can express weaker versions of such restrictions
in ALCSCC. For example, Employer u succ(|related ∩ employs| ≤ 1) describes
employers that employ at most one relative, and

Employer u succ(2 · |related ∩ employs| < |employs|)

describes employers that employ more no-relatives than relatives. Using divisi-
bility cardinality constraints, we can for example express creatures that have an
even number of legs as Creature u succ(2 dvd |has-limb ∩ Leg |), without having
to specify how man legs the respective creature actually has.

As an example for an inexpressibility proof in ALCQ, we consider a simplified
version of our first example.

Lemma 2. The ALCSCC concept description succ(|r| = |s|) for distinct role
names r, s cannot be expressed in ALCQ.

Proof. Assume that C is an ALCQ concept description such that, for all inter-
pretations I, we have CI = succ(|r| = |s|)I . Let n be a non-negative integer
that is larger than the largest number occurring in a number restriction in C.
Consider an interpretation I with ∆I = {0, 1, 2, . . .} such that

rI = {(0, i) | 1 ≤ i ≤ n} and sI = {(0, n+ i) | 1 ≤ i ≤ n}.

Then 0 ∈ succ(|r| = |s|)I and thus 0 ∈ CI . We change I to I ′ by giving 0 an
additional s-successor, i.e., ∆I′

= ∆I , rI
′
= rI , and sI

′
= sI ∪ {(0, 2n + 1)}.

Then 0 6∈ succ(|r| = |s|)I′
. However, since all the numbers occurring in number

restrictions in C are smaller than n, changing the number of s-successors of 0
from n to n+1 has no impact on whether 0 belongs to C or not. Consequently,
we have 0 ∈ CI′

, and thus CI′ 6= succ(|r| = |s|)I′
, which yields a contradiction

to our assumption that C expresses succ(|r| = |s|). ut

5 Satisfiability of ALCSCC concept descriptions

Recall that the ALCSCC concept description C is satisfiable if there is an inter-
pretation I and an element d ∈ ∆I such that d ∈ CI . We call I a model of C
and d a witness for the satisfaction of C in I.

Since ALCSCC can express ALCQ and thus also ALC, the satisfiability prob-
lem for ALCSCC concept descriptions is PSpace-hard [17]. In this section, we
use the ideas underlying the proof that satisfiability in QFBAPA is in NP [12]
to show a matching upper bound (assuming binary representation of numbers).
For ALCQ such an upper bound was first shown in [18].

A given ALCSCC concept description is a Boolean combination of atoms,
i.e., concept names A and successor constraints succ(c) for set or cardinality
constraints c. Viewing these atoms as propositional variables, we first guess which
of them are true and which are false. In case the guessed assignment does not
satisfy the propositional formula corresponding to C, we fail. Otherwise, the
assignment tells us that there is a way to assign concept names to an individual
such that the part of C that concerns atoms that are concept names is satisfied.
It remains to see whether such an individual can receive role successors such
that the part of C that concerns atoms that are successors constraints can be
satisfied as well. Before showing how this can be done in general, let us consider
a simple example.

Example 1. Let C := (¬A t ¬succ(2 dvd |r|)) u (¬B t succ(|r| = 2 · |s|)).
If we guess that the atoms A and B should be true, then we need to guess that
the atom succ(2 dvd |r|) is false and the atom succ(|r| = 2 · |s|) is true since
otherwise the propositional formula corresponding to C would become false,
leading to failure. Consequently, we need an individual that belongs to A and B
and whose role successors satisfy the constraints ¬(2 dvd |r|) and |r| = 2·|s|. If we
replace the role names r and s in these constraints by set variables Xr and Xs,
respectively, then we obtain the QFBAPA formula ¬(2 dvd |Xr|)∧|Xr| = 2 · |Xs|.
Obviously, this formula is not satisfiable since the second conjunct requires |Xr|
to be even, whereas the first one forbids this.

Now assume that we have guessed that the atom A is false and the atoms
B, succ(2 dvd |r|), and succ(|r| = 2 · |s|) are true. This yields the QFBAPA
formula 2 dvd |Xr| ∧ |Xr| = 2 · |Xs|, which can be satisfied by assigning the set
{d1, d2} to Xr and the set {d2} to Xs. Thus, if we build the interpretation I
with domain {d0, d1, d2} where d0 belongs to B, but not to A, and where d1, d2
are the rI-successors of d0 and d2 is the only sI-successors of d0, then we have
d0 ∈ CI .

When building the QFBAPA formula corresponding to an assignment, we
need to take the semantics of ALCSCC into account, which says that, when
evaluating the successors constraints of a given individual d, the set U must
consist of exactly the role successors of this individual. Consequently, in addition
to the conjuncts induced by the successor constraints on the top-level of C, the
QFBAPA formula must contain the conjunct Xr1 ∪ . . . ∪Xrn = U , where NR =

{r1, . . . , rn}. In the above example, the presence of this conjunct is irrelevant.
The following example shows why it is in general necessary to add this conjunct.

Example 2. Let C := succ(|U| ≥ 1) u succ(r ⊆ ∅) u succ(|s| = 0), where NR =
{r, s}. Then C is unsatisfiable according to our semantics, but the QFBAPA
formula |U| ≥ 1 ∧ Xr ⊆ ∅ ∧ |Xs| = 0 is satisfiable. However, this QFBAPA
formula becomes unsatisfiable if we add the conjunct Xr ∪Xs = U .

Until now, we have considered examples where the successor constraints do
not contain (possibly complex) concept descriptions. If this is the case, an addi-
tional problem needs to be solved, as illustrated by the next example, which is
obtained by modifying Example 1.

Example 3. Let C := (¬At¬succ(2 dvd |D|))u (¬Bt succ(|D| = 2 · |E|)), where
D,E are (possibly complex) ALCSCC concept descriptions. Guessing that the
atom A is false and the atoms B, succ(2 dvd |D|), and succ(|D| = 2·|E|) are true,
we obtain the QFBAPA formula 2 dvd |XD| ∧ |XD| = 2 · |XE | ∧

⋃
r∈NR

Xr = U .
One solution of this formula is the one that assigns {d1, d2} to XD, {d2} to XE ,
and {d1, d2} to all the variables Xr for r ∈ NR.

In contrast to the case considered in Example 1, the existence of such a
solution does not yet show that C is satisfiable. In fact, this solution requires d1
to belong to D, but not to E, whereas d2 must belong to both D and E. This is
only possible if the concept descriptions Du¬E and DuE are satisfiable. Thus,
we need recursive calls of the satisfiability procedures for ALCSCC for these two
inputs. This recursion is well-founded (with a linear recursion depth) since the
nesting depth of successor constraints in D and E (and thus in D u ¬E and
D u E) is by at least one smaller than the nesting depth in C.

Now assume that these recursive calls yield the result that D u¬E is satisfi-
able, but DuE is not. This does not mean that C is unsatisfiable. In fact, there
is also a solution of the above QFBAPA formula that assigns {d1, d2} to XD,
{d3} to XE , and {d1, d2, d3} to all the variables Xr for r ∈ NR. This solution
requires D u ¬E and ¬D u E to be satisfiable. Assuming that this is the case
also for the latter concept description, we can construct an interpretation I con-
taining an element d0 that has the individuals d1, d2, d3 as role successors for all
roles r ∈ NR. The rest of I is a disjoint union of two models of D u ¬E with a
model of ¬D u E, where the respective witnesses are identified with d1, d2, and
d3. By construction, this yields a model of C with witness d0.

Summing up, we have illustrated by the above examples that a guessed as-
signment for the top-level atoms of C either leads to failure (if the propositional
formula corresponding to C is not satisfied by the assignment) or it yields a
QFBAPA formula corresponding to the successor constraints under this assign-
ment. Unsatisfiability of this QFBAPA formula again leads to failure. A solution
for the QFBAPA formula creates recursive calls of the satisfiability procedure,
where the inputs have a smaller nesting depth of successor constraints than C.
In case one of these recursive calls returns “unsatisfiable,” we cannot conclude
that C is unsatisfiable. In fact, it may be the case that another solution of the

QFBAPA formula creates other recursive calls, which may all yield “satisfiable.”
The remaining question is now how to find such a solution in case one exists.

A naive idea could be to add the information that a certain combination of
concepts (i.e., a conjunction of concepts and negated concepts) is unsatisfiable to
the QFBAPA formula. In Example 3, after finding out thatDuE is unsatisfiable,
we could have added the conjunct |XD∩XE | = 0 to ensure that the next solution
does not require DuE to be satisfiable. The problem with this approach is that
the next solution may create another recursive call returning “unsatisfiable,” and
thus an additional conjunct needs to be added (e.g., if ¬D u ¬E turns out to
be unsatisfiable, we need to add |Xc

D ∩Xc
E | = 0), etc. If the top-level successor

constraints of C contain k concept descriptions, then in the worst case a number
of conjuncts that is exponential in k may need to be added to the QFBAPA
formula. Since satisfiability of QFBAPA formulae is NP-complete, testing the
resulting exponentially large QFBAPA formula for satisfiability would require
non-deterministic exponential time and representing the formula would need
exponential space.

In order to stay within PSpace, we use a result from [12], which is the main
tool used there to show that satisfiability in QFBAPA is in NP. Assume that φ
is a QFBAPA formula containing the set variables X1, . . . , Xk. A Venn region
is of the form Xp1

1 ∩ . . . ∩X
pk

k , where pi ∈ {0, 1} for i = 1, . . . , k and X0
i = Xc

i

and X1
i = Xi. It is shown in [12] that, given φ, one can easily compute a number

N whose value is polynomial in the size of φ such that the following holds: φ
is satisfiable iff it has a solution in which ≤ N Venn regions are interpreted by
non-empty sets. In [1] it is shown that this result can actually be strengthened
as follows.

Lemma 3. For every QFBAPA formula φ, one can compute in polynomial time
a number N whose value is polynomial in the size of φ such that the following
holds for every solution σ of φ: there is a solution σ′ of φ such that

– |{v | v Venn region and σ′(v) 6= ∅}| ≤ N , and
– {v | v Venn region and σ′(v) 6= ∅} ⊆ {v | v Venn region and σ(v) 6= ∅}.

We can now continue with the description of our approach. Given a QFBAPA
formula φ induced by our assignment for the top-level atoms of C, we compute
the corresponding number N and then guess ≤ N Venn regions to be interpreted
as non-empty sets. For each of these Venn regions Xp1

1 ∩ . . . ∩X
pk

k , we add the
conjunct |Xp1

1 ∩ . . .∩X
pk

k | ≥ 1 to φ. In addition, we add the conjunct that states
that the union of the guessed Venn regions is equal to U , and thus that all other
Venn regions are empty. The resulting QFBAPA formula ψ has a size that is
polynomial in the size of φ, and thus of C. We then

1. test whether ψ is satisfiable using the NP satisfiability algorithm for QF-
BAPA;

2. for every guessed Venn region, we consider the part that consists of set vari-
ables corresponding to concept descriptions, and recursively test the induced
concept descriptions for satisfiability.

If φ is satisfiable, then there is a solution in which ≤ N Venn regions are in-
terpreted by non-empty sets, and thus the first test is successful for one of the
guessed sets of Venn regions. Due to the construction of ψ, the corresponding
solution interprets all other Venn regions as empty sets. Consequently, it is suf-
ficient to test the concept descriptions considered in 2. for satisfiability. If all
tests are successful then we can construct a model of C as illustrated in Ex-
ample 3. Basically, this model has a witness d0 whose role successors w.r.t. all
roles in NR are determined by the solutions for the set variables corresponding
to roles. These successors are witnesses for the concept descriptions considered
in 2., where the respective models are made disjoint and reproduced as many
times as needed.

Theorem 1. Satisfiability of ALCSCC concept descriptions is PSpace-complete.

Proof. Given an ALCSCC concept description C, the algorithm sketched above
proceeds as follows:

1. It views the atoms (concept names and successor constraints) on the top
level of C (i.e., atoms that are not nested within successor constraints) as
propositional variables, guesses a truth assignment for these variables, and
then checks whether this assignment satisfies the propositional formula cor-
responding to C (where the atoms are replaced by propositional variables).
If this test is negative, then this run of the algorithm fails. Otherwise, it
continues with the next step.

2. The truth assignment for the variables corresponding to successor constraints
induces a QFBAPA formula φ, as described above. We conjoin to this formula
the set constraint Xr1 ∪ . . . ∪ Xrn = U , where NR = {r1, . . . , rn}. For the
resulting formula φ′, we compute the number N that bounds the number of
Venn regions that need to be non-empty in a solution of φ′ (see Lemma 3).
Then we guess ≤ N Venn regions. For each of these Venn regions Xp1

1 ∩ . . .∩
Xpk

k , we add the conjunct |Xp1

1 ∩ . . . ∩X
pk

k | ≥ 1 to φ′. In addition, we add
the conjunct that states that the union of the guessed Venn regions is equal
to U . For the resulting formula ψ, we test whether ψ is satisfiable using the
NP satisfiability algorithm for QFBAPA. If this test is negative, then this
run of the algorithm fails. Otherwise, it continues with the next step

3. For every guessed Venn region v, we consider the part that consists of set
variables XD corresponding to concept descriptions D. We then build a
concept description Cv that contains a conjunct for every set variable XD

occurring in v, where this conjunct is D in case v contains XD and it is ¬D
in case v contains Xc

D. We then apply the algorithm recursively to Cv for
each of the guessed Venn regions v. If one of these applications fails, then
this run of the algorithm fails. Otherwise, this run of the algorithm succeeds.

This algorithm indeed runs in PSpace since

– guessing is harmless due to Savitch’s theorem, which says that PSpace is
equal to NPSpace [6];

– the recursion stack for the recursive calls has linear depth since the nesting
of successor restrictions decreases with each call, and for each concept to be
tested, only polynomially many such calls are creates (since the values of the
numbers N are polynomial in the size of the tested concepts);

– the satisfiability test for QFBAPA formulae is in NP and applied to formulae
of polynomial size.

Regarding soundness (i.e., if the algorithm succeeds, then the input concept
C is indeed satisfiable), we have already sketched above how a model of C can
be obtained from a successful run. Indeed, if Step 1 of the algorithm succeeds,
then we create a witness d0. The truth assignment for the propositional variables
corresponding to concept names tells us, for every concept name A, whether d0
needs to belong to A or not. Regarding the role successors of d0, we consider the
solution for the QFBAPA formula ψ found in Step 2 of the algorithm. Assume
that this solution assigns the finite set {d1, . . . , dm} to the set term U . Then d0
receives the role successors d1, . . . , dm, where the assignments for the set variables
Xr for r ∈ NR tell us which roles connect d0 with these new individuals. Finally,
each di belongs to one of the guessed non-empty Venn regions v, and the recursive
call of the algorithm with input Cv was successful. By induction, we can assume
that this implies the existence of a model Iv of Cv with a witness ev. We create
a disjoint copy of Iv where the witness is replaced by di. Our interpretation I
consists of the disjoint union of these copies, for i = 1, . . . ,m, together with d0,
where d0 is linked by roles to the witnesses d1, . . . , dm as described above. A
simple induction proof over the nesting depth of successor restrictions in C can
be used to show that I is a model of C with witness d0.

To show completeness (i.e., if C is satisfiable, then the algorithm succeeds),
assume that I is a model of C with witness d0. Then the membership and non-
membership of d0 in the top-level atoms of C provides us with a truth assignment
that satisfies the propositional formula corresponding to C. Thus, the first step
of the algorithm succeeds if we guess this assignment. Let d1, . . . , dm be the
finitely many role successors of d0 in I. We can use the membership of these
successors in rI(d0) for r ∈ NR and in DI for concept descriptions D occurring
in successor restrictions on the top-level of C to obtain assignments of subsets of
{d1, . . . , dm} to the set variables Xr and XD. The fact that d0 ∈ CI implies that
the resulting assignment is a solution of the QFBAPA formula φ′ constructed in
Step 2 of the algorithm. However, this solution is not necessarily a solution of one
of the formulae ψ extending φ′ corresponding to the guesses of ≤ N non-empty
Venn regions. In fact, the assignment induced by I may make more than N Venn
regions non-empty. In this case, it cannot solve any of the formulae ψ constructed
in Step 2 of the algorithm. However, since φ′ is solvable, by Lemma 3 it also has
a solution that (i) makes ≤ N Venn regions non-empty, and (ii) only makes
Venn regions non-empty that are also non-empty w.r.t. the solution induced by
I. Thus, we can guess the set of Venn regions that are non-empty in such a
solution. This ensures that the corresponding formula ψ has a solution. Because
of (ii), each of the guessed Venn regions v has a satisfiable concept Cv since these

Venn regions (and the corresponding concepts) are actually populated by one of
the elements d1, . . . , dm of I. ut

6 Satisfiability in ALCSCC w.r.t. GCIs

Recall that the ALCSCC concept description C is satisfiable w.r.t. a TBox T
if there is a model I of T and an element d ∈ ∆I such that d ∈ CI . We call
I a model of C w.r.t. T and d a witness for the satisfaction of C w.r.t. T in
I. ExpTime-hardness of satisfiability in ALCSCC w.r.t. a TBox is an obvious
consequence of the fact that satisfiability w.r.t. a TBox in the sublogic ALC of
ALCSCC is already ExpTime-complete [16]. Thus, it is sufficient to show that
satisfiability w.r.t. a TBox can be decided using only exponential time.

It is well-known that one can assume without loss of generality that the
TBox consists of a single GCI of the form > v D. In fact, the TBox {C1 v
D1, . . . , Cn v Dn} has obviously the same models as the TBox {> v (¬C1 t
D1)u . . .u(¬CntDn)}. Thus, in the following we assume that C0 is an ALCSCC
concept description and T = {> v D0} an ALCSCC TBox. We want to test
whether C0 is satisfiable w.r.t. T .

A simple approach for showing that the satisfiability problem w.r.t. a TBox
in a given DL is in ExpTime is type elimination [14,15]. Basically, given a set
of concept descriptions S, the type of an individual in an interpretation consists
of the elements of S to which the individual belongs. If the set S contains the
concept descriptions C0, D0, then the type of any individual in a model of T
must contain D0. In addition, any witness for the satisfaction of C0 w.r.t. T
must contain C0 in its type. Finally successor constraints occurring in the type
of an individual imply that there exist other individuals whose types satisfy
these constraints. For example, if there is an individual whose type contains the
constraint succ(|r∩C| > 0), which corresponds to the existential restriction ∃r.C,
then there must be an individual in the interpretation whose type contains C.
Type elimination tries to find a collection of types that are exactly the types of a
model I of C0 w.r.t. T by starting with all possible types and eliminating those
that contain successor constraints that cannot be satisfied by the still available
types. For this to work correctly, the set S must contain sufficiently many concept
descriptions. We assume in the following, that S contains all subdescriptions of
C0 and D0 as well as the negations of these subdescriptions.

Definition 1. A subset t of S is a type for C0 and T if it satisfies the following
properties:

– D0 ∈ t;
– for every concept description ¬C ∈ S, either C or ¬C belongs to t;
– for every concept description C uD ∈ S, we have that C uD ∈ t iff C ∈ t

and D ∈ t;
– for every concept description C tD ∈ S, we have that C tD ∈ t iff C ∈ t

or D ∈ t.

Given a model I of T and an individual d ∈ ∆I , the type of d is the set

tI(d) := {C ∈ S | d ∈ CI}.

It is easy to show that the type of an individual in a model of T really satisfies
the conditions stated in the definition of a type.

Intuitively, these conditions take care of the TBox and of the semantics of
the Boolean operation. However, we must also take the successor constraints
into account. Given a type t, the (possibly negated) successor constraints in t
induce a QFBAPA formula φt in the obvious way.3 Obviously, if t = tI(d) for an
individual in a model of T , then the corresponding QFBAPA formula φt has a
solution in which the universal set U consists of all the role successors of d, and
the other set variables are assigned sets according to the interpretations of roles
and concept descriptions in the model. In order to do type elimination, however,
we also need to know which are the non-empty Venn regions in this solution.
Again, it is sufficient to look at solutions for which only a polynomial number of
Venn regions are non-empty.

To be more precise, given a type t, we consider the corresponding QFBAPA
formula φt, and conjoin to this formula the set constraint Xr1 ∪ . . . ∪Xrn = U ,
where NR = {r1, . . . , rn}. For the resulting formula φ′t, we compute the number
Nt that bounds the number of Venn regions that need to be non-empty in a
solution of φ′t (see Lemma 3).

Definition 2. An augmented type (t, V) for C0 and T consists of a type t
for C0 and T together with a set of Venn region V such that |V | ≤ Nt and the
formula φ′t has a solution in which exactly the Venn regions in V are non-empty.

The existence of a solution of φ′t in which exactly the Venn regions in V are
non-empty can obviously be checked (within NP) by adding to φ′t conjuncts
that state non-emptiness of the Venn regions in V and the fact that the union
of these Venn regions is the universal set (see the description of the PSpace
algorithm in the proof of Theorem 1). Another easy to show observation is that
there are only exponentially many augmented types (see [1] for a proof of the
following lemma).

Lemma 4. The set of augmented types for C0 and T contains at most expo-
nentially many elements in the size of C0 and D0 and it can be computed in
exponential time.

Basically, type elimination starts with the set of all augmented types, and
then successively eliminates augmented types whose Venn regions are not re-
alized by the currently available augmented types. To make this more precise,
assume that A is a set of augmented types and that v is a Venn region. The
Venn region v yields a concept description Cv (see the description of the PSpace
algorithm in the proof of Theorem 1), and it is easy to see that Cv is actually
3 This is just like the QFBAPA formula φ obtained from a Boolean valuation in our
PSpace algorithm in the previous section.

a conjunction of elements of S (modulo removal of double negation). We say
that v is realized by A if there is an augmented type (t, V) ∈ A such that every
conjunct of Cv is an element of t.

Theorem 2. Satisfiability of ALCSCC concept descriptions w.r.t. a TBox is
ExpTime-complete.

Proof. Given an ALCSCC concept description C0 and a TBox T = {> v D0},
the type elimination algorithm for deciding satisfiability of C0 w.r.t. T proceeds
as follows:

1. Compute the set S consisting of all subdescriptions of C0 and D0 as well as
the negations of these subdescriptions, and continue with the next step.

2. Based on S, compute the set A of all augmented types for C0 and T , and
continue with the next step.

3. If the current set A of augmented types is empty, then the algorithm fails.
Otherwise, check whether A contains an element (t, V) such that not all the
Venn regions in V are realized by A. If there is no such element (t, V) in A,
then continue with the next step. Otherwise, let (t, V) be such an element,
and set A := A \ {(t, V)}. Continue with this step, but now using the new
current set of augmented types.

4. If A contains an augmented type (t, V) such that C0 ∈ t, then the algorithm
succeeds. Otherwise, the algorithm fails.

This algorithm indeed runs in exponential time since

– Step 1 can obviously be performed in polynomial time;
– according to Lemma 4, Step 2 can be performed in exponential time;
– Step 3 can be iterated only an exponentially number of times since each time

one augmented type is removed, and there are only exponentially many to
start with. Every single execution of Step 3 takes exponential time since at
most exponentially many augmented types and Venn regions need to be con-
sidered when testing whether every Venn region occurring in an augmented
type of A is realized in A;

– in Step 4, at most exponentially many augmented types need to be checked
as to whether their first component contains C0.

Due to space constraints we cannot prove soundness and completeness of the
algorithm here. Complete proofs can be found in [1]. ut

7 Related work and future work

The work most closely related to ours is the one by Ohlbach and Koehler [13],
which also allows for Boolean set terms and arithmetic constraints on the car-
dinality of role successors. On the one hand, this work is more general than
ours in that the authors allow also for bridging functions other than cardinality
from successors sets into the arithmetic domain. Actually, while the authors of

[13] use the cardinality function in most of their examples, the formal problem
specification (Definition 4 in [13]) only requires the bridging functions to satisfy
an additivity axiom (Definition 3 in [13]), which in the case of cardinality says:

If x ∩ y = ∅ then |x ∪ y| = |x|+ |y|.

It is not clear whether reasoning is done w.r.t. all possible bridging functions
satisfying the additivity axiom or w.r.t. specific bridging functions such as car-
dinality.

On the other hand, the set expressions in [13] can only contain roles and
not complex concept descriptions. However, a combination of value restrictions
on subroles and cardinality constraints on these subroles can simulate this ex-
pressiveness. For example, as pointed out in [13], a qualified number restriction
such as >n r.C can be expressed as succ(r′ ⊆ C)u succ(r′ ⊆ r)u succ(|r′| ≥ n),
where r′ is a newly introduced role name.4 Similarly, 6n r.C can be expressed as
succ(r′ ⊆ C)u succ(r∩ r′c ⊆ ¬C)u succ(r′ ⊆ r)u succ(|r′| ≤ n). More generally,
one can replace the concept description C within a successor constraint by the
new role name r′ if one conjoins r′ ⊆ C and r′c ⊆ ¬C to this constraint.

The major difference to our work is, however, that Ohlbach and Koehler
[13] give only decidability results and no complexity results. Due to the fact
that they consider all Venn regions and also resolve Boolean reasoning on the
Description Logic side using disjunctive normal form, the complexity of their
decision procedures is considerably higher than the upper bounds we show. In
addition, they do not consider GCIs in their work. Even without GCIs, the
complexity of the unoptimized procedure in [13] is probably non-deterministic-
exponential since an NP procedure solving the arithmetic constraints is applied
to a potentially exponentially large constraint system.

The emphasis of the current paper was on showing worst-case optimal com-
plexity results, and thus the algorithms as described here cannot directly be
used for implementation purposes. To make the PSpace algorithm more prac-
tical, guessing would need to be replaced by SAT solving. Such an algorithm
would need to combine (similarly to SMT solvers) an efficient SAT solver with
a solver for QFBAPA and with a recursive application of itself. Type elimina-
tion is exponential also in the best case since it first computes an exponential
number of (augmented) types and only then starts the elimination process. In-
stead, one could use an algorithm similar to the practically more efficient version
of the PSpace algorithm just sketched. However, due to the presence of GCIs,
the recursion depth of recursive calls is no longer bounded. Thus, one would
need to ensure termination by an appropriate blocking strategy, similar to what
tableau-based algorithms use. One could also try to design tablau-based satisfia-
bility algorithms, but then needs to be very careful to avoid the problems caused
by the “naive idea” sketched below Example 3 when backtracking.

4 Note that [13] actually uses a different syntax for cardinality restrictions on role
successors. To avoid having to introduce another syntax, we have translated this
into our syntax. The constraint succ(r′ ⊆ C) expresses the value restriction ∀r′.C.

Acknowledgment. The author thanks Viktor Kuncak for helpful discussions
regarding the proof of Lemma 3.

References

1. F. Baader. Concept descriptions with set constraints and cardinality con-
straints. LTCS-Report 17-02, Chair for Automata Theory, Institute for The-
oretical Computer Science, TU Dresden, Germany, 2017. See http://lat.inf.tu-
dresden.de/research/reports.html.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

3. F. Baader and U. Sattler. Expressive number restrictions in description logics. J.
of Logic and Computation, 9(3):319–350, 1999.

4. A. Borgida, R. J. Brachman, D. L. McGuinness, and L. Alperin Resnick. CLASSIC:
A structural data model for objects. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 59–67, 1989.

5. J. Faddoul and V. Haarslev. Algebraic tableau reasoning for the description logic
SHOQ. J. Applied Logic, 8(4):334–355, 2010.

6. M. R. Garey and D. S. Johnson. Computers and Intractability — A guide to
NP-completeness. W. H. Freeman and Company, San Francisco (CA, USA), 1979.

7. V. Haarslev, R. Sebastiani, and M. Vescovi. Automated reasoning in ALCQ via
SMT. In Proc. CADE 2011, volume 6803 of Lecture Notes in Computer Science,
pages 283–298. Springer, 2011.

8. V. Haarslev, M. Timmann, and R. Möller. Combining tableaux and algebraic meth-
ods for reasoning with qualified number restrictions. In Proc. DL 2001, volume 49
of CEUR Workshop Proceedings. CEUR-WS.org, 2001.

9. R. Hoehndorf, P. N. Schofield, and G. V. Gkoutos. The role of ontologies in
biological and biomedical research: A functional perspective. Brief. Bioinform.,
16(6):1069–1080, 2015.

10. B. Hollunder and F. Baader. Qualifying number restrictions in concept languages.
In Proc. KR 1991, pages 335–346, 1991.

11. B. Hollunder, W. Nutt, and M. Schmidt-Schauß. Subsumption algorithms for con-
cept description languages. In Proc. ECAI 1990, pages 348–353, London (United
Kingdom), 1990. Pitman.

12. V. Kuncak and M. C. Rinard. Towards efficient satisfiability checking for Boolean
algebra with Presburger arithmetic. In Proc. CADE 2007, volume 4603 of Lecture
Notes in Computer Science, pages 215–230. Springer, 2007.

13. H. J. Ohlbach and J. Koehler. Modal logics, description logics and arithmetic
reasoning. Artificial Intelligence, 109(1–2):1–31, 1999.

14. V. R. Pratt. Models of program logic. In Proc. FOCS’79, pages 115–122, 1979.
15. S. Rudolph, M. Krötzsch, and P. Hitzler. Type-elimination-based reasoning for the

description logic SHIQbs using decision diagrams and disjunctive datalog. Logical
Methods in Computer Science, 8(1), 2012.

16. K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. IJCAI 1991, pages 466–471, 1991.

17. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1):1–26, 1991.

18. S. Tobies. A PSPACE algorithm for graded modal logic. In Proc. CADE 1999,
volume 1632 of Lecture Notes in Artificial Intelligence, pages 52–66. Springer, 1999.

