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Abstract. Fuzzy Description Logics have been proposed as formalisms
for representing and reasoning about imprecise knowledge by introducing
intermediate truth degrees. Unfortunately, it has been shown that rea-
soning in these logics easily becomes undecidable, when infinitely many
truth degrees are considered and conjunction is not idempotent. In this
paper, we take those results to the extreme, and show that subsumption
in fuzzy EL under Łukasiewicz semantics is undecidable. This provides
the first instance of a Horn-style logic with polynomial-time reasoning
whose fuzzy extension becomes undecidable.

1 Introduction

An important problem for practical AI applications is to represent and reason
with imprecise knowledge in a formal way. Fuzzy Description Logics (FDLs) [3,
18, 22] extend classical DLs with the ideas and tools from Mathematical Fuzzy
Logic to try to achieve this goal. The main premise of fuzzy logics is the use of
more than two truth degrees to allow a more fine-grained analysis of dependencies
between concepts [17]. For instance, a patient having a body temperature of
37.5 ◦C can have a degree of fever of 0.5, whereas a temperature of 39.2 ◦C may
be interpreted as a fever with degree of 0.9. The so-called standard semantics
of fuzzy logics uses the rational numbers in the interval [0, 1] as infinitely many
truth values. Consider the GCI

∃hasDisease.Flu v ∃hasSymptom.Headache u ∃hasSymptom.Fever,

which may occur in a medical ontology like SNOMEDCT.4 The severity of the
symptoms is certainly an indicator for the severity and progression of the disease,
which means that truth degrees can be transferred between concepts. However,
there are different choices of possible semantics for the logical constructors. The
most general semantics are based on triangular norms (t-norms) that are used to
interpret conjunctions [19]. Among these, the most prominent ones are the Gödel,
? Partially supported by DFG in the project BA 1122/19-1 (GoAsQ).
4 http://snomed.org/
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Łukasiewicz, and product t-norms. All (continuous) t-norms can be expressed as
combinations of these three basic ones.

Unfortunately, reasoning in many FDLs becomes undecidable [2,16], with the
prominent exception of those based on the Gödel t-norm [6,12,20]; for a system-
atic overview on this topic, see [1, 7]. In this paper, we study a fuzzy extension
of the light-weight DL EL under the Łukasiewicz t-norm semantics. In previous
work [5], we have already shown that subsumption checking in this logic is at
least ExpTime-hard, but the precise complexity remained unclear. The results
in [7] suggest the presence of a negation operator as the culprit for undecidabil-
ity. However, the minimum expressivity necessary to trigger undecidability was
still unknown. Using the framework developed in [7], we show that negation is
not needed for undecidability; plain EL immediately becomes undecidable when
endowed with the Łukasiewicz t-norm.

2 Preliminaries

In this section, we briefly recall the extension of EL under Łukasiewicz semantics,
denoted by Ł-EL. Let NI, NC, and NR be countable sets of individual, concept,
and role names, respectively. Ł-EL concepts are built from these sets through
the grammar rule C,D ::= > | A | C u D | ∃r.C, where A ∈ NC and r ∈ NR.
That is, the syntax of Ł-EL concepts is the same as for classical EL.

Semantically, Ł-EL differs from EL by considering all the values in the in-
terval [0, 1] as truth degrees. These degrees are managed with the help of the
Łukasiewicz t-norm (∗Ł) and its residuum (⇒Ł), which are defined for every
x, y ∈ [0, 1] by:

x ∗Ł y := max{0, x+ y − 1},
x⇒Ł y := min{1, 1− x+ y}.

Some important properties of these operators are given the in following propo-
sition (see [19] for details).

Proposition 1. For all x, y, x′, y′ ∈ [0, 1], it holds that

(a) x ∗Ł y = 1 iff both x = 1 and y = 1;
(b) if x ≤ x′ and y ≤ y′, then x ∗ y ≤ x′ ∗ y′;
(c) if x ∗Ł x ≤ x ∗Ł x ∗Ł x, then either x ≤ 1

2 or x = 1;
(d) x⇒Ł y = 1 iff x ≤ y;
(e) 1⇒Ł y = y;
(f) x⇒Ł y = sup{z ∈ [0, 1] | x ∗Ł z ≤ y}.
(g) x⇒Ł 0 = 1− x.

A (fuzzy) interpretation is a pair I = (∆I , ·I) where ∆I is a non-empty set,
called the domain, and ·I is a fuzzy interpretation function that assigns

– to each individual name a ∈ NI an element aI ∈ ∆I ,
– to each concept name A ∈ NC a fuzzy set AI : ∆I → [0, 1], and



– to each role name r ∈ NR a fuzzy relation rI : ∆I ×∆I → [0, 1].

This function is extended to arbitrary concepts by setting, for all x ∈ ∆I ,

>I(x) := 1,

(C uD)I(x) := CI(x) ∗Ł DI(x),

(∃r.C)I(x) := sup
y∈∆I

rI(x, y) ∗Ł CI(y).

Notice that, according to this semantics, the concepts C and C u C are not
equivalent. We will exploit this fact in the following sections, and often use
the abbreviation Cm, m ≥ 1, for the m-ary conjunction; i.e. C1 := C and
Cm+1 := Cm uC. We then have that (Cm)I(x) = max{0,m ·CI(x)− (m− 1)}.

Fuzzy interpretations are often restricted to be witnessed [18], which means
that for every existential restriction ∃r.C and x ∈ ∆I there is an element y ∈ ∆I

such that (∃r.C)I(x) = rI(x, y) ∗Ł CI(y). This follows the intuition that an
existential restriction actually forces the existence of a single individual that
satisfies it, instead of infinitely many that only satisfy the restriction in the limit.
In classical DLs, this property is always satisfied. We also adopt this restriction in
the following, and whenever we speak of an interpretation, we implicitly assume
that it is witnessed. Likewise, all reasoning problems we investigate are restricted
to the class of witnessed interpretations.

In FDLs, axioms are usually assigned a minimum degree of truth to which
they must be satisfied. Hence, (fuzzy) general concept inclusions (GCIs) are of
the form 〈C v D ≥ p〉, where C and D are concepts and p ∈ (0, 1]. A fuzzy
interpretation I satisfies this axiom if CI(x)⇒ DI(x) ≥ p holds for all x ∈ ∆I .
A TBox is a finite set of GCIs, and a fuzzy interpretation I satisfies a TBox
if it satisfies every axiom in it. A crisp GCI is of the form 〈C v D ≥ 1〉, and
we usually abbreviate such an axiom by 〈C v D〉, which has the semantics that
CI(x) ≤ DI(x) for all x ∈ ∆I (see Proposition 1(d)). We also use 〈C ≡ D〉
as a short-hand for the two axioms 〈C v D〉 and 〈D v C〉. Our goal is to
analyze the computational complexity of deciding subsumption in fuzzy DLs. A
concept C is subsumed by a concept D with respect to a TBox T if every fuzzy
interpretation I that satisfies T also satisfies the GCI 〈C v D〉.

We show that subsumption in Ł-EL is undecidable, using the framework
from [7]. Since that framework considers a different reasoning problem, as a first
step, we show that ontology consistency is undecidable in Ł-EL if we additionally
use equality assertions. In this setting, an ontology is a finite set of GCIs and
equality assertions of the form 〈a:C = p〉, where C is a concept, p ∈ [0, 1], and
a ∈ NI. An ontology O is consistent if there is an interpretation that satisfies
all its GCIs, and satisfies CI(aI) = p for each 〈a:C = p〉 in O. For disambigua-
tion, we use the notation Ł-EL= to refer to this modified setting. In contrast
to classical EL and Ł-EL, not every Ł-EL= ontology is consistent, even though
negation and bottom concept are absent in this logic. The reason is that equality
in assertions can be viewed as a kind of negation; to see this, consider the simple
ontology {〈a:> = 0.5〉}. Interestingly, we can show that consistency in Ł-EL= is
undecidable, even if all GCIs are restricted to be crisp.



In Section 5, we show how to modify this result to apply it to subsumption
in Ł-EL (without equality assertions, but with non-crisp GCIs). This is the first
instance of undecidability for a fuzzy description logic that does not allow for
any negation constructor (and not even ⊥). Indeed, the required expressivity is
a consequence of the properties of the Łukasiewicz t-norm itself.

3 A General Framework for Undecidability

As we will use the framework originally presented in [7] for proving undecidability
of FDLs, we recall the necessary definitions. To be precise, we present a slightly
adapted version that suffices for the scope of this paper. For the full details
of the general framework, we refer the reader to the original work. According
to this framework, undecidability of an FDL can be shown by proving that
it satisfies several properties, which together allow to construct an ontology
that simulates an instance of the undecidable Post Correspondence Problem
(PCP) [21]. For this purpose, we consider an arbitrary but fixed instance P of
the PCP, which consists of pairs (v1, w1), . . . , (vn, wn) of words over an alphabet
Σ = {1, . . . , s} for a natural number s > 1. The problem is to find a solution
of P, which is a finite sequence of the form i1 . . . ik ∈ {1, . . . , n}∗ such that
v1vi1 . . . vik = w1wi1 . . . wik .5 For any ν ∈ {1, . . . , n}∗, we denote these words
by vν and wν , respectively.

The first requirement of the framework is to provide an encoding function
enc : Σ∗0 → [0, 1] that allows us to represent words over the alphabet Σ0 := Σ∪{0}
as truth degrees. For this encoding function to be valid (see [7, Definition 11]),
there must exist two words uε, u+ ∈ Σ∗0 such that every candidate solution
ν ∈ {1, . . . , n}∗ satisfies the following properties:

– The word uε · u|ν|+ belongs to {ε} ∪ ΣΣ∗0, that is, it does not start with 0.
– Setting p = enc(vν), q = enc(wν), and m = enc(uε · u|ν|+ ), we have

vν 6= wν iff min{p⇒ q, q ⇒ p} ≤ m.

This means that one can use the encoding of uε ·uc+ to check the (in)equality
of any two words vν , wν belonging to a candidate solution ν of length c.

Based on this encoding function, the following canonical model IP of P is used
to encode the search tree for a solution of P, as illustrated in Figure 1:

– the domain ∆IP := {1, . . . , n}∗ contains all candidate solutions for P;
– we set aIP := ε for a distinguished individual name a that denotes the root

node of the search tree;
– V IP (ν) := enc(vν) and W IP (ν) := enc(wν) represent the words vν and wν ,

respectively, of the candidate solution at a node ν ∈ {1, . . . , n}∗;
– V IPi (ν) := enc(vi) and W IPi (ν) := enc(wi) for i ∈ {1, . . . , n} encode the

words vi and wi, respectively, at every node of the search tree;
5 Without loss of generality, we can restrict to solutions that start with v1 and w1.



V : enc(v1),
W : enc(w1),
M : enc(uε)

V : enc(v1v1),
W : enc(w1w1),
M : enc(uεu+)

...

r1

V : enc(v1v2),
W : enc(w1w2),
M : enc(uεu+)

...

V : enc(vν),
W : enc(wν),

M : enc(uε · u|ν|
+ )

V : enc(vνv1),
W : enc(wνw1),

M : enc(uε ·u|ν|+1
+ )

r1

V : enc(vνvn),
W : enc(wνwn),

M : enc(uε ·u|ν|+1
+ )

rn

r2

V : enc(v1vn),
W : enc(w1wn),
M : enc(uεu+)

...

rn

a

· · ·

· · ·

Fig. 1. The canonical model IP for an instance P of the PCP (taken from [7]).

– MIP (ν) := enc(uε · u|ν|+ ) and MIP+ (ν) := enc(u+) encode the words used to
compare vν and wν ;

– rIPi (ν, νi) := 1 and rIPi (ν, ν′) := 0 for ν′ 6= νi are used to distinguish the
successors in the search tree;

– HIP (ν) := h holds an auxiliary constant value h ∈ [0, 1] everywhere.

Strictly speaking, this construction is slightly different from the one described
in [7], since the original construction does not contain the concept name H. It
is easy to show, however, that this change does not affect the correctness of the
approach.

The following property expresses that the logic is capable of constructing the
canonical model.
The Canonical Model Property :
There is an ontology OP such that every model I of OP admits a mapping
g : ∆IP → ∆I that satisfies

AIP (ν) = AI(g(ν)) and HI(g(ν)) = h

for every A ∈ {V,W,M,M+} ∪
⋃n
i=1{Vi,Wi} and ν ∈ {1, . . . , n}∗.

In other words, the ontology OP required by this property enforces that
the canonical model can be embedded into every interpretation satisfying it.
As shown in [7, Theorem 12], the canonical model property is implied by the
following four simpler properties, which are used, in that order, to initialize



the values of the concept names at the root node, to enforce the existence
of the ri-successors, to construct the encodings of the next candidate solu-
tions (vνi, wνi) by concatenation, and to transfer these encodings along the
ri-connections to the successors.
The Initialization Property :
Let C be a concept, a ∈ NI, and u ∈ Σ∗0. There is an ontology O such that for
every model I of O it holds that CI(aI) = enc(u).

The Successor Property :
Let r ∈ NR. There is an ontology O such that for every model I of O and every
x ∈ ∆I with HI(x) = h there is a y ∈ ∆I with rI(x, y) = 1 and HI(y) = h.

The Concatenation Property :
Let u ∈ Σ∗0, and C and Cu be concepts. There is an ontology O and a concept
nameD such that for every model I of O and every x ∈ ∆I , if CIu (x) = enc(u)
and CI(x) = enc(u′) for some u′ ∈ {ε} ∪ ΣΣ∗0, then DI(x) = enc(u′u).

The Transfer Property :
Let C,D be concepts and r ∈ NR. There is an ontology O such that for every
model I of O and every x, y ∈ ∆I , if HI(x) = h, rI(x, y) = 1, HI(y) = h,
and CI(x) = enc(u) for some u ∈ Σ∗0, then DI(y) = enc(u).

In a logic satisfying these four properties, it is possible to create an on-
tology OP whose models all embed the search tree for a solution of a PCP
instance P. To obtain undecidability, one further needs to guarantee that the
existence of such a solution can be decided. We achieve this through the following
property, which intuitively states that no node of the search tree is a solution;
thus, the ontology is inconsistent if and only if P has a solution [7, Theorem 13].
The Solution Property :
IP can be extended to a model of OP , and there is an ontology O such that:

1. For every model I of OP ∪ O and every ν ∈ {1, . . . , n}∗,

min
{
V I(g(ν))⇒W I(g(ν)), W I(g(ν))⇒ V I(g(ν))

}
≤MI(g(ν)).

2. If for every ν ∈ {1, . . . , n}∗ we have

min
{
V IP (ν)⇒W IP (ν), W IP (ν)⇒ V IP (ν)

}
≤MIP (ν),

then IP can be extended to a model of OP ∪ O.

4 Consistency is Undecidable

We now consider Ł-EL=, and verify that it satisfies all the properties introduced
in the previous section. Thus, as explained before, ontology consistency in this
logic is undecidable.



Encoding function. To encode the words for the PCP, we use the function

enc(u) := 1− 1
2

(
0.←−u

)
,

where ←−u is the word u written in reverse and interpreted as a sequence of digits
in base s+1, and 0.←−u is the number represented by this sequence of digits when
written after the decimal point. For example, if s = 9, then we have enc(1) = 0.95
and enc(81) = 0.91. It is an important property of this function that the encoding
of every word is always strictly greater than 1

2 ; that is, enc(u) ∈ (0.5, 1] for all
words u.

To see that this encoding function is valid, consider an instance P of the
PCP, and let k be the maximal length of any word vi, wi appearing in P. Choose
uε := 1 · 0k—that is, the word consisting of the digit 1 followed by k zeros—and
u+ := 0k. It can be verified as in [7, Lemma 14] that the two required conditions
hold. In particular, if vν 6= wν , then these words must differ in one of the first
K := (|ν|+ 1)k symbols. Thus, either enc(vν) > enc(wν), and hence

enc(vν)⇒ enc(wν) = 1 + 1
20.←−vν − 1

20.←−wν ≤ 1− 1
20.
←−−−
1 · 0K = enc

(
uε · u|ν|+

)
,

or else enc(vν) < enc(wν) and enc(wν)⇒ enc(vν) ≤ enc
(
uε · u|ν|+

)
.

Initialization property. This property follows trivially from the availability of
equality assertions in Ł-EL=: we can simply set O := {〈a:C = enc(u)〉}.

Successor property. For this, we choose h := 1
2 as the constant for the concept

name H, and consider the ontology {〈H ≡ G2〉, 〈G v ∃r.G〉, 〈∃r.H v H〉}. Since
we assume that HI(x) = 1

2 , the first axiom yields that GI(x) = 3
4 . Then, by

the second axiom and the assumption that our interpretations are witnessed,
we find an element y ∈ ∆I such that 3

4 ≤ rI(x, y) ∗Ł GI(y). By the third
axiom, rI(x, y) ∗Ł (G2)I(y) ≤ (∃r.H)I(x) ≤ HI(x) = 1

2 . Since ∗Ł is monotone
(Proposition 1(b)), we get

rI(x, y) ∗Ł (G2)I(y) ≤ 1
2 = 3

4 ∗Ł
3
4 ≤ r

I(x, y) ∗Ł rI(x, y) ∗Ł (G2)I(y) (1)

This implies that rI(x, y) = 1, since otherwise we would have

rI(x, y) ∗Ł
(
rI(x, y) ∗Ł (G2)I(y)

)
≤ rI(x, y) ∗Ł 1

2 = max{0, rI(x, y)− 1
2} <

1
2 ,

in contradiction to (1). From this, we obtain HI(y) = (G2)I(y) = 1
2 , as required.

Concatenation property. Consider O := {〈C ′(s+1)|u| ≡ C〉, 〈D ≡ C ′ u Cu〉},
where C ′ is a fresh auxiliary concept name. Let I be a model of O and x ∈ ∆I

such that CIu (x) = enc(u) and CI(x) = enc(u′) for some u′ ∈ {ε}∪ΣΣ∗0. Suppose
first that u′ 6= ε. Then from the first axiom it follows that both CI(x) and C ′I(x)

belong to the interval (0, 1), and hence C ′I(x) = 1 − (s+1)−|u|

2 0.
←−
u′ . If u /∈ {0}∗,

then
DI(x) = 1− 1

20.←−u − (s+1)−|u|

2 0.
←−
u′ = enc(u′u).



Otherwise, CIu (x) = 1 and thus DI(x) = C ′I(x) = enc(u′u). If u′ = ε, then
CI(x) = 1 which implies that C ′I(x) = 1 by Proposition 1(a), and hence
DI(x) = enc(u) = enc(εu).

Transfer property. Consider concepts C,D, a role name r, and let C be a
fresh concept name. For every model I of 〈H ≡ C u C〉 and every x ∈ ∆I with
HI(x) = 1

2 and CI(x) = enc(u) ∈ ( 1
2 , 1], we get

CI(x) + CI(x)− 1 = HI(x) = 1
2 ,

and hence CI(x) = 3
2 − CI(x) ∈ and CI(x) = 3

2 − CI(x). That is, C sim-
ulates an involutive negation of C. Since HI(y) = 1

2 , we can similarly use
the axiom 〈H ≡ D u D〉 to simulate the involutive negation of D at y, i.e.
DI(y) = 3

2 −D
I(y).

Consider now the axioms 〈∃r.D v C〉 and 〈∃r.D v C〉. The first axiom
implies that DI(y) = rI(x, y) ∗Ł DI(y) ≤ (∃r.D)I(x) ≤ CI(x). From the
second axiom, we similarly get that 3

2 −D
I(y) = DI(y) ≤ CI(x) = 3

2 − C
I(x),

and thus DI(y) = CI(x) = enc(u).
We obtain the required ontology OP by collecting all the axioms introduced

for the four properties described above.

Solution property. The first part of this property, namely that IP can be
extended to a model of OP , can easily be verified as in [7]. The remaining two
conditions again require a more intricate proof. Consider the ontology

O := {〈X2 v X3〉, 〈H ≡ X uX〉, (2)

〈X2 u V vW uM〉, (3)

〈X2 uW v V uM〉} (4)

SinceHI(g(ν)) = 1
2 , the canonical model property implies that for every model I

of (2) it holds that XI(g(ν)) ∈ { 1
2 , 1} and XI(g(ν)) ∈ { 1

2 , 1} (see Proposi-
tion 1(c)). Furthermore, X and X complement each other, i.e. XI(g(ν)) = 1

2 iff
XI(g(ν)) = 1.

Let I be a model of OP ∪ O and ν ∈ {1, . . . , n}∗. If XI(g(ν)) = 1, then the
axiom (3) implies that V I(g(ν)) ≤W I(g(ν)) ∗Ł MI(g(ν)), while (4) is trivially
satisfied since (X2)I(g(ν)) = 0. Consider again K = (|ν|+1)k from above. Since
|wν | ≤ K, we have

W I(g(ν)) ∗Ł MI(g(ν)) = 1− 1
20.←−wν − 1

20.
←−−−
1 · 0K ∈ ( 1

2 , 1).

Since ∗Ł is strictly increasing in that interval, for any z > MI(g(ν)) we know
that W I(g(ν)) ∗ z > V I(g(ν)). By Proposition 1(f), we obtain

W I(g(ν))⇒ V I(g(ν)) = sup{z ∈ [0, 1] |W I(g(ν)) ∗Ł z ≤ V I(g(ν))}
≤ inf{z ∈ [0, 1] | z > MI(g(ν))} = MI(g(ν)).



Dually, if XI(g(ν)) = 1
2 , then V

I(g(ν))⇒W I(g(ν)) ≤MI(g(ν)). Thus,

min{V I(g(ν))⇒W I(g(ν)), W I(g(ν))⇒ V I(g(ν))} ≤MI(g(ν)).

Assume now that min{V IP (ν) ⇒ W IP (ν),W IP (ν) ⇒ V IP (ν)} ≤ MIP (ν),
and let I be an extension of IP that satisfiesOP . We show that I can be extended
to satisfy O. We only need to provide the adequate interpretation of the concept
names X and X on the elements ν ∈ {1, . . . , n}∗. If V IP (ν)⇒W IP (ν) = 1, we
set XI(ν) := 1, which requires X

I
(ν) := 1

2 and trivially satisfies (4). We must
then have W IP (ν)⇒ V IP (ν) ≤MIP (ν), which shows that (3) is also satisfied.
In the remaining case, setting XI(ν) := 1

2 yields the desired result.
Undecidability now follows from [7, Theorem 13]; note that in the above

constructions we used only crisp GCIs.

Theorem 2. Ontology consistency in Ł-EL= is undecidable. This undecidability
result holds even if all GCIs are crisp.

We emphasise here that Theorem 2 improves on previous undecidability re-
sults for fuzzy DLs, where the presence of some kind of negation concept con-
structor was always required.

5 Subsumption is Undecidable

We now turn our attention to the problem of deciding subsumption between two
concepts. Notice first that we can use the results from the previous section to
show directly that subsumption in Ł-EL= is undecidable. Indeed, consider an
arbitrary Ł-EL= ontology O and let A be a concept name not appearing in O.
Then, > is subsumed by A w.r.t. O iff O is inconsistent. We are interested,
however, in the problem of deciding subsumption w.r.t. a TBox, without any
assertions.

We now use Theorem 2 to show that subsumption in Ł-EL is also undecidable.
Notice first that in the construction from Section 4, the equality assertions are
only used for the initialization property. In the overall proof of undecidability
from [7], this property is used to ensure that a can serve as the root of the search
tree for P, which requires initializing the interpretation of several concept names
at a (see Figure 1). Using this insight, we show that undecidability arises already
if only one equality assertion is allowed in the ontology OP . It suffices to show
that the initialization property can be obtained using one fixed equality assertion.
However, in the following we also use a single non-crisp GCI.

Lemma 3. Given a concept C and u ∈ Σ∗0, there exists a TBox T such that for
every model I of T ∪ {〈a:Y = 1

2 〉} it holds that C
I(aI) = enc(u).

Proof. For any model I of T0 := {〈Y 2 v Y 3〉, 〈> v H ≥ 1
2 〉, 〈H ≡ Y u Y 〉}

and 〈a:Y = 1
2 〉, it holds that 1

2 ≤ HI(aI) ≤ (Y u Y )I(aI) ≤ Y I(aI) = 1
2 . In

particular, this initializes the concept name H as desired. In addition, we have



that Y I(aI) = 1. To ensure CI(aI) ∈ enc(u), let T := T0 ∪ {〈H ≡ A(s+1)|u|〉,
〈Y 2 u C ≡ Y 2 u A←−u 〉}, where A is an auxiliary concept name. The first axiom
implies that (s+1)|u|(AI(aI)−1)+1 = 1

2 , and thus AI(aI) = 1− 1
2(s+1)|u|

. Since

(Y 2)I(aI) = 1, the second axiom entails that either CI(aI) and (A
←−u )I(aI)

are both equal to 1, or CI(aI) = (A
←−u )I(aI) < 1. If u ∈ {0}∗, then A

←−u is
equivalent to >, and hence we get CI(aI) = 1 = enc(u). Otherwise, we obtain
CI(aI) = (A

←−u )I(aI) = 1− 1
20.←−u = enc(u).

We have hence re-proven the canonical model property and obtained unde-
cidability of consistency in Ł-EL= with only one equality assertion (〈a:Y = 1

2 〉).
We now use this to prove undecidability of subsumption in Ł-EL.6 Consider

the ontology OP used in the new proof of undecidability of Ł-EL=, and define
TP := OP \ {〈a:Y = 1

2 〉}. Due to the axioms 〈Y 2 v Y 3〉, 〈H ≡ Y u Y 〉, and
〈> v H ≥ 1

2 〉, the interpretation of Y in a model of TP is always in { 1
2 , 1}. Hence,

OP is consistent iff > is not subsumed by Y w.r.t. TP (since in the latter case
there must be a model I of TP such that Y I(x) = 1

2 for some domain element
x ∈ ∆I , i.e. x can serve the function of aI).

Theorem 4. Subsumption in Ł-EL is undecidable.

Interestingly, this provides the first known instance of a Horn-like logic allow-
ing for polynomial-time reasoning, whose fuzzy extension becomes undecidable.

6 Discussion and Related Work

While the results presented in Theorems 2 and 4 are significant by themselves, it
is possible to generalize their proofs to infinitely many other continuous t-norms.
Specifically, subsumption in ∗-EL is undecidable for every t-norm ∗ that contains
the Łukasiewicz t-norm, i.e. is isomorphic to ∗Ł on some interval [a, b] ⊆ [0, 1],
(see [19] for details). For the special case of t-norms starting with the Łukasiewicz
t-norm (where a is equal to 0) the proofs can be easily adapted by scaling the
encoding function to [0, b] and replacing 1

2 by b
2 . We can then use the following

result from [9, Theorem 13] to extend this result to arbitrary intervals [a, b]: If
∗ is isomorphic to ∗1 on [0, c] and to ∗2 on [c, 1], then subsumption in ∗-EL is
at least as hard as subsumption in ∗2-EL. Since any t-norm ∗ that contains ∗Ł
can be decomposed into ∗1 and ∗2 as above such that ∗2 starts with ∗Ł [19], this
shows that subsumption in fuzzy EL is undecidable for all such t-norms ∗.

These arguments similarly apply to ontology consistency in ∗-EL= with crisp
GCIs; that is, consistency in all these logics is undecidable. Hence, we have
significantly strengthened an undecidability result from [7], which states that
∗-NEL is undecidable if ∗ starts with ∗Ł, where N denotes the presence of the
negation constructor � with the semantics (�C)I(x) := CI(x)⇒ 0 (see Propo-
sition 1(g)). However, the proof used in that previous work requires only crisp
assertions of the form 〈a:C = 1〉.
6 Notice that we are removing the equality assertions at this step.



We now briefly discuss some related work dealing with other semantics for
fuzzy DLs.

Product t-norm. In contrast, for the product t-norm defined by x ∗Π y := x·y, on-
tology consistency in Π-NEL with crisp assertions is decidable. It is still unknown,
however, whether equality assertions make consistency in Π-EL= or Π-NEL=

undecidable. The same question remains open for t-norms that contain ∗Π (but
not ∗Ł). As a partial result, we can adapt our undecidability proof to show that
Π-ELU= becomes undecidable, where the semantics of the additional disjunction
constructor is defined as (C t D)I(x) := 1 − (1 − CI(x)) · (1 − DI(x)). This
also slightly strengthens previous results from [7], where this was shown for the
negation constructor (¬C)I(x) := 1− CI(x) (but again with crisp assertions).7

Gödel t-norm. According to a known classification of continuous t-norms [19],
the only continuous t-norm that we have not yet discussed is the Gödel t-norm
(or minimum t-norm), defined as x ∗G y := min{x, y}. In this case, it is known
that reasoning EL and even very expressive FDLs is still decidable, and has the
same complexity as reasoning in the underlying classical DLs [6, 12,20].

Finitely valued t-norms. A lot of research has been undertaken on fuzzy exten-
sions of DLs with finitely valued t-norms, where the domain of truth degrees is
restricted to a finite subset of [0, 1], usually of the form {0, 1

n , . . . ,
n−1
n , 1} for

some n ≥ 2. In such logics, decidability can be established by either simulat-
ing the fuzzy semantics by classical ontologies, or by employing multi-valued
extensions of classical reasoning algorithms such as automata- or tableau-based
approaches [4, 8, 10,11,13–15].

Open problems. The results in this paper show that infinitely-valued fuzzy se-
mantics can make reasoning even in fairly inexpressive logics undecidable. Al-
though the boundaries of decidability and undecidability in fuzzy DLs have been
extensively mapped, there are a few remaining open problems. A problem that
remains open from this work is whether undecidability in Ł-EL requires fuzzy
GCIs. In addition, other inexpressive DLs like FL0 or members of the DL-Lite
family may provide examples where reasoning remains decidable, despite the use
of intermediate truth degrees.
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