
Reasoning on Context-Dependent Domain Models

Stephan Böhme1? and Thomas Kühn2 ?

1 Institute for Theoretical Computer Science, Technische Universität Dresden,
stephan.boehme@posteo.de

2 Software Technology Group, Technische Universität Dresden,
thomas.kuehn3@tu-dresden.de

Abstract Modelling context-dependent domains is hard, as capturing
multiple context-dependent concepts and constraints easily leads to in-
consistent models or unintended restrictions. However, current semantic
technologies not yet support reasoning on context-dependent domains.
To remedy this, we introduced ConDL, a set of novel description logics
tailored to reason on contextual knowledge, as well as JConHT, a ded-
icated reasoner for ConDL ontologies. ConDL enables reasoning on the
consistency and satisfiability of context-dependent domain models, e.g.,
Compartment Role Object Models (CROM). We evaluate the suitability
and efficiency of our approach by reasoning on a modelled banking ap-
plication and measuring the performance on randomly generated models.

1 Introduction

Modelling current information systems is hard, as they are characterised by
increased context-dependence. They not only require domain analysts to cap-
ture multiple context-dependent concepts, but also to specify the particular con-
straints and requirements found in each context. The latter, however, can easily
lead to an inconsistent model or unintended restrictions. Thus, it becomes im-
perative for domain analysts to reason on context-dependent domain models to
uncover implicit or unsatisfiable specifications. While reasoning on classical do-
main modelling languages, e.g., ER [9] and UML [21], is possible, as [4,25,1] have
shown, both lack the formal semantics required to make them suitable for formal
reasoning. More importantly, classical domain modelling languages are unable
to capture context-dependent concepts and constraints, hence, researchers have
focused on more advanced modelling languages, e.g., [13,10,18,12,14] (see [16] for
detailed surveys). We focus on the Compartment Role Object Model (CROM) [17]
that directly supports the formal specification of context-dependent domains.
Although CROM provides a formal model, due to a lack of tool support this
model is not amenable for reasoning. Thus, we aim at transforming a CROM
to a viable logical formalism. Description Logics (DLs) are a well-known family
of knowledge representation formalisms that have a formal semantics and allow
for defining a variety of reasoning services. DLs can model application domains

? Both authors were supported by the DFG in the RTG 1907 (RoSI).

in a well-structured way. Yet, classical DLs lack expressive means to formalise
context-dependent domains, i.e., express context dependent knowledge. To over-
come their deficits, Contextualised DLs (ConDLs) were introduced in [6], a set
of novel description logics especially tailored for reasoning on contextual know-
ledge. This paper utilizes ConDL to reason on CROMs. In particular, we describe
a mapping from CROM to ConDL that preserves the semantics of the modelled
domain. Moreover, we introduce the first reasoner dedicated to contextualised
DL ontologies, JConHT. JConHT can check the consistency and satisfiability of
context-dependent domain models. As a result, we show that ConDL is not only
suitable to encode CROM domain models, but also allows for efficient checking
of inconsistencies and unintended restrictions. We demonstrate this by reasoning
on a modelled banking application and measuring the reasoner’s performance on
randomly generated models.

The paper is structured accordingly. Sect. 2 introduces a running example
and formal definition of both CROM and ConDL. Afterwards, Sect. 3 presents
our approach to reasoning on CROMs utilizing ConDL. Accordingly, Sect. 4
introduces JConHT, the first reasoner for ConDLs. To evaluate our approach,
Sect. 5 showcases its suitability and measures its performance. In conclusion,
Sect. 6 discusses related approaches and Sect. 7 summarises our results.

2 Basic Notions

Running Example. Before diving into the definitions of CROM and ConDL, we
model a small banking application, extracted from [17]. Fig. 1 depicts an example
model of a Bank that employs at least one Consultant and provides banking ser-
vices to Customers, who own CheckingAccounts and SavingsAccounts. They can
issue money transferals (denoted MoneyTransfer), such that each transferal be-
longs to one customer and a customer issued an initial transferal. Consultants
advise one or more customers. However, the advises relationship is constrained
to be irreflexive, to prohibit self advising consultants. Besides that, Transactions
are specified to orchestrate the transfer of money between exactly two Accounts
by means of the roles Source and Target, such that there is a unique Target
counterpart for each Source. This is ensured by the one-to-one cardinality of
the trans relation. Additionally, the Participants role group with 1..1 cardinality
enforces that one account cannot be Source and Target in the same Transaction.
Finally, Persons can play the roles Consultant and Customer ; Companies only
Customer. Similarly, Accounts either the role of CheckingAccount or SavingsAc-
count in the context of a bank, as well as Source and Target in the context of
transactions. Henceforth, this domain model will serve as our running example.
CROM in a Nutshell. The Compartment Role Object Model (CROM) was
introduced in [17] to model dynamic, context-dependent domains. It introduces
compartment types to represent a reified context, i.e., containing role types and
relationship types. Natural types, in turn, fulfil role types in multiple compart-
ment types.3

3 A detailed ontological foundation of these kinds is provided in [17].

Bank Transaction

Account

trans1 1

BankAccounts (1..1)

Person Company

own_ca1 0..*

own_sa

1..*

0..*

1..1
Participants (1..1)

0..*

1..*

1..*

advises

0..*

1..*

Natural Type Fills-RelationCompartment Type

RSTCardN CardM
RoleGroup

(n..m)

Card

issues

1

1..*

Role Type

Consultant MoneyTransfer
Source Target

Customer

0..*

CheckingAccount

SavingsAccount

Figure 1. Bank example

Definition 1 (Compartment Role Object Model). Let NNT, NRT, NCT,
and NRST be mutual disjoint sets of Natural Types, Role Types, Compartment
Types, and Relationship Types, respectively. Then, M = (NNT,NRT,NCT,NRST,
fills, parts, rel) is a Compartment Role Object Model (CROM), where fills ⊆
(NNT ∪ NCT) × NRT is a relation, parts : NCT → P(NRT) and rel : NRST →
(NRT × NRT) are total functions. A CROM is well-formed if it holds that:

∀RT∈NRT ∃T ∈(NNT ∪ NCT) : (T,RT)∈fills (1)
∀CT ∈NCT : parts(CT) 6= ∅ (2)

∀RT∈NRT ∃!CT ∈NCT : RT∈parts(CT) (3)
∀RST ∈NRST : rel(RST)=(RT1, RT2) ∧ RT1 6=RT2 (4)

∀RST ∈NRST ∃CT ∈NCT : rel(RST)=(RT1, RT2) ∧ RT1, RT2∈parts(CT) (5)

In detail, fills denotes that rigid types can play roles of a certain role type, parts
is a partition of the set of role types wrt. the compartment type they participate
in, and rel captures the two role types at the respective ends of each relationship
type. The well-formedness rules ensure that the fills relation is surjective (1);
each compartment type has a nonempty, disjoint set of role types as its parts
(2, 3); and rel maps each relationship type to exactly two distinct role types of
the same compartment type (4, 5). Accordingly, a CROM can be constructed
for the banking application, depicted in Fig. 1

Example 2 (Compartment Role Object Model). Let B = (NNT,NRT,NCT,NRST,
fills, parts, rel) be the model of the bank, where the components are defined as:4

NNT := {Person,Company,Account} NRT := {Customer,CA, SA,Source, . . . }
NCT := {Bank,Transaction} NRST := {own_ca, own_sa, advises, issues, trans}
fills := {(Person,Customer), (Account, Source), (Transaction,MoneyTransfer), . . . }

parts := {Bank→{Consultant,Customer,CA, SA,MoneyTransfer}, . . . }
rel := {trans→(Source,Target), own_ca→(Customer,CA), . . . }

4 SA and CA are abbreviations for SavingsAccount and CheckingAccount, respectively.

Unsurprisingly, B is a well-formed CROM and directly encodes the context-
dependent concepts of the banking domain. Likewise, a CROM instance features
naturals, roles, compartments and relationships.

Definition 3 (Compartment Role Object Instance). LetM = (NNT,NRT,
NCT, RST, fills, parts, rel) be a well-formed CROM and N , R, and C be mutual
disjoint sets of Naturals, Roles and Compartments, respectively. Then a Com-
partment Role Object Instance (CROI) ofM is a tuple i = (N,R,C, type, plays,
links), where type : (N → NNT)∪ (R→ NRT)∪ (C → NCT) is a labeling function,
plays ⊆ (N ∪ C) × C × R a relation, and links : NRST × C → P(R × R) is a
total function. Moreover, O := N ∪ C denotes the set of all objects in i. To be
compliant to the modelM the instance i must satisfy the following conditions:

∀(o, c, r)∈plays : (type(o), type(r))∈fills ∧ type(r)∈parts(type(c)) (6)
∀(o, c, r), (o, c, r′) ∈plays : r 6=r′ ⇒ type(r) 6= type(r′) (7)

∀r∈R ∃!o∈O ∃!c∈C : (o, c, r)∈plays (8)
∀RST ∈NRST ∀c∈C ∀(r1, r2)∈ links(RST , c) : (_, c, r1), (_, c, r2)∈plays (9)
∀RST ∈NRST ∀c∈C ∀(r1, r2)∈ links(RST , c) : rel(RST)=(type(r1), type(r2)) (10)

The type function assigns a distinct type to each instance, plays identifies the
objects (either natural or compartment) playing a certain role in a specific com-
partment, and links captures the roles currently linked by a relationship type in
a certain compartment. A compliant CROI guarantees the consistency of both
the plays relation and the links function with the modelM.5 Axiom (6), (7) and
(8) restrict the plays relation, such that it is consistent to the types defined in
the fills relation and the parts function, an object is prohibited to play instances
of the same role type multiple times in the same compartment, and each role has
one distinct player in one distinct compartment, respectively. In contrast, Ax-
iom (9) and (10) ensure that the links function only contains those roles, which
participate in the same compartment c as the relationship and whose types are
consistent to the relationship’s definition in the rel function.

Admittedly, neither Def. 1 nor 3 captures the context-dependent constraints,
showcased in Fig. 1. Hence, we introduce three context-dependent constraints,
i.e., role groups, occurrence constraints and relationship cardinalities.

Definition 4 (Syntax of Role Groups). The set of Role Groups RG is the
smallest set, such that (i) every role type RT ∈ NRT is a role group, and (ii) if
B is a role group and m..n ∈ Card, then (B,n..m) is also a role group, where
Card ⊂ N × (N ∪ {∞}) with i ≤ j (elements are written as i..j). A role group
contained in another one is denoted nested.

Definition 5 (Semantics of Role Groups). Let i = (N,R,C, type,plays, links)
a CROI compliant to M, c ∈ C a compartment, and o ∈ O an object. The
semantics is defined by the evaluation function (·)Ico : RG → {0, 1}: aIco = 1 iff
a ∈ NRT ∧ ∃(o, c, r) ∈ plays : type(r) = a or a ≡ (B,n..m) ∧ n ≤

∑
b∈B b

Ico ≤ m.
5 In contrast to [17], our definition excludes empty counter roles ε.

Role groups constrain the set of roles an object o is allowed to play simultaneously
in a certain compartment c. In case a is a role type, rtI

c
o checks whether o plays

a role of type rt in c. If a is a role group (B,n..m), it checks whether the sum
of the evaluations for all b ∈ B is between n and m. Accordingly, the following
role groups directly correspond to their graphical representation in Fig. 1:

BankAccounts :=({CA, SA}, 1..1) Participants :=({Source,Target}, 1..1)

Next, the Constraint Model is defined to collect all constraints imposed on a
particular CROMM.

Definition 6 (Constraint Model). LetM = (NNT,NRT,NCT,NRST, fills, parts,
rel) be a well-formed CROM. Then C = (rolec, card) is a Constraint Model over
M, where rolec : NCT → P(Card × RG) and card : NRST → (Card × Card) are
total functions.

In detail, rolec collects the set of root role groups for each compartment type
combined with a cardinality limiting the occurrence of role groups in each com-
partment. Moreover, card assigns a cardinality to each relationship type. Notably,
all these constraints are defined context-dependent, i.e., no constraint crosses the
boundary of a compartment type. Similar to the CROM B, the corresponding
constraint model is easily derived, from Fig. 1:

Example 7 (Constraint Model). Let B be the bank model from Example 2. Then
CB = (rolec, card) is the constraint model with the following components:

rolec := {Bank→{(1..∞,Consultant), (1..∞,BankAccounts)},
Transaction→{(1..1,Participants)}}

card := {own_ca→(1..1, 0..∞), own_sa→(1..∞, 0..∞), issues→(1..1, 1..∞),

advises→(0..∞, 1..∞), trans→(1..1, 1..1)}

Finally, the validity of a given CROI is defined wrt. a constraint model.

Definition 8 (Validity). Let M = (NNT,NRT,NCT,NRST, fills, parts, rel) be a
well-formed CROM, C = (rolec, card) a constraint model onM, and i = (N,R,C,
type, plays, links) a CROI compliant to M. Then i is valid with respect to C iff
the following conditions hold:

∀c∈C ∀(i..j, a)∈ rolec(type(CT)) : i ≤
(∑

o∈Oc
aI

c
o
)
≤ j (11)

∀(o, c, r)∈plays ∀(_, a) ∈ rolec(type(c)) : type(r)∈atoms(a)⇒ aI
c
o = 1 (12)

∀c∈C ∀RST ∈NRST : rel(RST)=(RT1, RT2) ∧ card(RST)=(i..j, k..l) ∧(
∀r2∈Rc

RT2
: i ≤

∣∣pred(RST , c, r2)
∣∣ ≤ j) ∧(

∀r1∈Rc
RT1

: k ≤
∣∣succ(RST , c, r1)

∣∣ ≤ l) (13)

Here, atoms : RG → P(NRT) recursively computes all role types within a given
role group. Moreover, Rc

RT := {r ∈ R | (o, c, r) ∈ plays ∧ type(r) = RT} de-
notes the set of roles of type RT played in a compartment c. Furthermore,
pred(RST , c, r) := {r′ |(r′, r)∈ links(RST , c)} and succ(RST , c, r) := {r′ |(r, r′)∈
links(RST , c)} collects all predecessors respectively successors of a given role r
w.r.t. a given RST .

Table 1. Syntax and Semantics of SHOIQJSHOIQK

syntax semantics

inverse object property R− {(e, d) ∈ ∆×∆ | (d, e) ∈ RIc}
object negation ¬C ∆ \ CIc
object conjunction C uD CIc ∩DIc
obj. existential restriction ∃R.C {d∈∆ | there is some e∈CIc with (d, e)∈RIc}
object nominal {a} {aIc}
object at-most restriction 6nS.C {d ∈ ∆ |]{e ∈ CIc | (d, e) ∈ SIc} ≤ n}

object concept inclusion C v D CIc ⊆ DIc
object concept assertion C(a) aIc ∈ CIc
object property assertion R(a, b) (aIc , bIc) ∈ RIc
object property inclusion R v S RIc ⊆ SIc
object transitivity axiom Trans(R) RIc is transitive.

inverse meta property P− {(e, d) ∈ C× C | (d, e) ∈ PJ }
meta negation ¬E C \ EJ
meta conjunction E u F EJ ∩ FJ
meta existential restriction ∃P.E {d ∈ C | there is some e∈EJ with (d, e)∈PJ }
meta nominal {u} {uJ }
meta at-most restriction 6nQ.E {d ∈ C |]{e ∈ EJ | (d, e) ∈ QJ } ≤ n}
referring concept JαK {d ∈ C | Id |= α}

meta concept inclusion E v F EJ ⊆ FJ
meta concept assertion E(u) uJ ∈ EJ
meta property assertion T (u, v) (uJ , vJ) ∈ TJ
meta property inclusion R v S RIc ⊆ SIc
meta transitivity axiom Trans(R) RIc is transitive.

α

RO

B

RM

Each axiom verifies a particular set of constraints. Axiom (11) and (12) valid-
ate the occurrence and fulfilment of role groups, respectively. In essence, only
those objects (naturals or compartments) are checked that play a corresponding
role in the constrained compartment, and there are enough of such objects in
that compartment. In contrast, (13) checks whether relationships respect the
imposed cardinality constraints. In conclusion, the formal model easily captures
the context-dependent concepts and constraints. Moreover, it allows for check-
ing the well-formedness of CROMs and validity of CROIs. Yet, due to a lack of
tool support, this formal model is not viable for verifying the consistency of a
constrained CROM, thus, requiring a more suitable formalism for reasoning.
Contextualised Description Logics. The ConDLs we use in this paper were
first introduced in [6]. We shortly recall the relevant definitions and refer the
reader to [2] for a thorough introduction to DLs. ConDLs consist of two levels.
On the meta level knowledge about contexts can be represented, e.g. their relation
to each other, on object level knowledge within contexts can be stated.

Definition 9 (Syntax of SHOIQJSHOIQK). Let OC, OP, OI, MC, MP, MI

be non-empty, pairwise disjoint sets of concept names, property names and
individual names of the object level and the meta level, respectively.

An object property6 is either some R ∈ OP or an inverse object property
R− for R ∈ OP. An object RBox RO is a finite set of property inclusion axioms
R v S and transitivity axioms Trans(R), where R and S are object properties. For
R ∈ OP, we define Inv(R) := R− and Inv(R−) := R, and assume that R v S ∈
RO iff Inv(R) v Inv(S) ∈ RO and that Trans(R) ∈ RO iff Trans(Inv(R)) ∈ RO.
An object property R is called simple if Trans(S) /∈ RO for each Sv*R, where v*
is the reflexive-transitive closure of v. The set of object concepts is inductively
defined starting from object concept names A ∈ OC, using the constructors in
the first part of Table 1, where a, b ∈ OI, n ∈ N, R is a object property, S is a
simple object property and C, D are object concepts. The second part of Table 1
shows how object axioms are defined.

A meta property, the meta RBox RM and to be called simple are defined
analogously to the object level. The set of meta concepts is inductively defined
starting from meta property names P ∈ MP and meta concept names B ∈ MC,
using the constructors in the third part of Table 1, where u, v ∈ MI, n ∈ N, PQ
is a meta property, Q is a simple meta property, E, F are meta concepts and
α is an object concept inclusion, concept assertion or property assertion. The
fourth part of Table 1 shows how meta axioms are defined.

A SHOIQJSHOIQK ontology O is a triple O = (B,RM,RO), where B is a
finite set of meta concept inclusions, concept assertions or property assertions,
RM is a meta RBox and RO is an object RBox.

We use the usual abbreviations for the object level: C t D (disjunction) for
¬(¬C u ¬D), > (top concept) for A t ¬A, where A ∈ OC is arbitrary but fixed,
⊥ (bottom concept) for ¬>, ∀S.C (value restriction) for ¬∃S.¬C, >nS.C (at-
least restriction) for ¬(6n−1S.C), and =nS.C (exact restriction) for (>nS.C) u
(6nS.C). Abbreviations for the meta level are used analogously.

To be able to express context independent knowledge, we have the sets of rigid
concepts OCR ⊆ OC and rigid properties OPR ⊆ OP which must be interpreted the
same in all contexts. Furthermore, we employ the constant domain assumption,
i.e. all contexts speak about the same object domain, and the rigid individual
assumption, i.e. individuals are always the same. The semantics of ConDLs are
defined in a model-theoretic way.

Definition 10 (Semantics of SHOIQJSHOIQK). A nested interpretation
is a tuple J = (C, ·J , ∆, (·Ic)c∈C), where C and ∆ are non-empty sets (called
contexts and (object) domain), ·J is a mapping assigning a set BJ ⊆ C to every
B ∈ MC, a binary relation PJ ⊆ C× C to every P ∈ MP and a context uJ ∈ C
to every u ∈ MI, and for every c ∈ C, ·Ic is a mapping assigning a set AIc ⊆ ∆
to every A ∈ OC, a binary relation RIc ⊆ ∆×∆ to every R ∈ OP and a domain
element aIc ∈ ∆ to every a ∈ OI such that for all c, c′ ∈ C we have xIc = xIc′

for every x ∈ OI ∪ OCR ∪ OPR. The functions ·Ic and ·J are extended to object
and meta properties and concepts, respectively, as shown in Table 1, where]X
denotes the cardinality of the set X.
6 To avoid confusion with roles in CROM, the term property is used for binary relations
instead.

Moreover, J (Ic) satisfies an meta axiom (object axiom), denoted by J |= β
(Ic |= α), if the condition in the fourth (second) part of Table 1 holds, J satisfies
B (RM) if J satisfies all axioms in B (RM), J satisfies RO if Ic satisfies all
axioms in RO for all c ∈ C, and J satisfies O if it satisfies B, RM and RO. O is
consistent if there exists a nested interpretation that satisfies O. The consistency
problem is the problem of deciding whether a given ontology is consistent.

SHOIQJSHOIQK is a suitable candidate to encode both the context-dependent
concepts and constraints of CROM. It permits, for instance to encode that in
every context every role must have a player, as: > v

q
ART v =1plays−.>

y
.

Utilizing SHOIQJSHOIQK, it becomes feasible to automatically map CROM
domain models to a DL ontology.

3 Reasoning on Role-Based Models

To verify the consistency and satisfiability of CROM domain models, it is neces-
sary to encode both the underlying semantics as well as the context-dependent
concepts and constraints in ConDL axioms. This mapping must preserve valid-
ity, i.e. the ConDL ontology is consistent if and only if there exists a CROI that
is compliant with the CROM and valid w.r.t. the constraint model. Henceforth,
we highlight our encoding scheme and prove that it preserves the semantics.

In general, compartment types are modelled as concepts on the meta level;
whereas playing roles, relationships and constraints are modelled within a com-
partment on the object level. Thus, we introduce o-concepts for natural types
and role types, as well as a special o-property plays. Accordingly, the fills relation
is transformed into domain and range axioms for plays. Relationship types are
intuitively modelled as o-properties between two played roles. Role groups are
handled like roles with an additional axiom stating that “playing” a role group is
equivalent to fulfilling the constraints specified in that role group. Furthermore,
if an object plays an atom of a non-nested role group, that object must fulfill
the role group. For occurrence constraints a fresh individual name counter and
an o-property counts is introduced and each played role or fulfilled role group
is connected to this counter. Thus, both occurrence constraints and relationship
cardinalities can be represented as qualified number restriction. Special consid-
eration is needed for compartments that play roles within other compartments.
Even though establishing a one-to-one link between an element on the object
level and one on the meta level is impossible, for consistency it is only relevant
if the compartment type of the nested compartment is instantiable. Hence, we
consider the o-concepts NCT′ , e.g. compartments which play roles on the object
level, denoted as o-compartments, as copies of the m-concepts NCT.

Ontologically, natural types would be captured as rigid concepts and their
fields as rigid properties, since that information does not change within contexts.
In our setting, rigidity has no influence on the consistency, and neglecting it
decreases the computational complexity exponentially in the size of the input.
Admittedly, the case with rigid names can be handled quite similar. In summary,
we consider the following concept, property and individual names:

Table 2. Mapping for occurring types and the CROMM.

> v
⊔

CT∈NCT
CT (14)∧

CT1,CT2∈NCT
CT1 6=CT2

CT 1 v ¬CT 2 (15)
> v

q
AO ≡

⊔
NT∈NNT

NT t
⊔

CT ′∈NCT′
CT ′

y
(16)

> v
q
ART ≡

⊔
RT∈NRT

RT
y

(17)
> v

l
T1, T2∈NNT∪NCT′∪NRT,T1 6=T2

JT1 v ¬T2K (18)
> v J> v AO tART tARG t {counter}K (19)

> v JAO v ¬ARTK u JAO v ¬ARGK u JART v ¬ARGK
u J¬(AO tART tARG)(counter)K

(20)

> v
l

RT∈NRT
JAO v 61plays.RTK (21)

> v
q
ART v =1plays−.>

y
(22)

> v J∃plays.> v AOK (23)
> v J> v ∀plays.(ART tARG)K (24)∧

CT ′∈NCT′
¬

q
CT ′u ∃plays.> v ⊥K v ∃nested.CT (25)

> v
l

RT∈NRT

q
∃plays.RT v

(⊔
(T,RT)∈fills

T
)y

(26)∧
CT∈NCT

CT v
q
ART v

⊔
RT∈parts(CT)

RT
y

(27)∧
RST∈NRST,rel(RST)=(RT1,RT2)

> v J∃RST .> v RT1K u J> v ∀RST .RT2K (28)

– NCT ⊆ MC since every compartment type is a m-concept,
– nested ∈ MP to assure the existence of compartments that play roles,
– NNT ∪NCT′ ∪NRT ⊆ OC since every natural type, every o-compartment type

and every role type is an o-concept,
– plays ∈ OP to express the plays-relation,
– NRST ⊆ OP since every relationship type is an o-property,
– counter ∈ OI and counts ∈ OP to express the occurrence constraints, and
– AO, ART, ARG ∈ OC for, resp., all objects eligible of playing roles, i.e. naturals

and o-compartments, all played roles, and all instances of role groups.

Henceforth, the mapping is trisected, first describing how types are encoded,
then how fills and rel are mapped and finally how constraints are represented.

Encoding CROM Types. Table 2 (first segment) summarises the encoding of
the underlying semantics of a given CROMM. On the meta level, we assure that
every context belongs to exactly one compartment type (Eq. (14), (15)). Within
every context, every natural, o-compartment and role belongs to exactly one type
(Eq. (16), (17), (18)). On the object level, every element is a role, a natural, an
o-compartment, a role group instance or the individual counter (Eq. (19), (20)).
Every natural or o-compartment can only play one RT-role in each context and
each role must be played by someone (Eq. (21), (22)). We formalise a general
domain and range restriction for plays. Only naturals or o-compartments can play
something, and only roles or role group instances can be played (Eq. (23), (24)).
Finally, if an o-compartment plays a role in some context, the o-compartment

Table 3. Mapping for constraint model C and for assertions.

> v
q
ARG ≡

⊔
RG∈RG(C)RG

y
(29)

> v
l

RG1, RG2∈RG(C),RG1 6=RG2
JRG1 uRG2 v ⊥K (30)

> v
q
ARG v >1plays−.> u61plays−.>

y
(31)

> v
l

RG∈RG(C) JAO v 61plays.RGK (32)

> v
l

RG∈RG(C),
RG=({A1,...,An},k,l)

J∃plays.RG ≡ (>kplays.(A1 t. . .tAn))

u(6lplays.(A1 t. . .tAn))K
(33)

> v
l

RG∈RG>C

q
∃plays.

(⊔
RT∈atom(RG)

RT
)
v ∃plays.RG

y
(34)

> v
q
ART tARG v =1counts−.{counter}

y
(35)∧

(k..l,RG)
∈occur(CT),
CT∈NCT

CT v J(>kcounts.RG)(counter)K u J(6lcounts.RG)(counter)K (36)

> v
l

RST∈NRST,
rel(RST)=(RT1,RT2),
card(RST)=(i..j,k..l)

JRT1 v >kRST .> u6lRST .>K
u

q
RT2 v >iRST

−.> u6jRST
−.>

y (37)

must also exist as context (Eq. (25)). After encoding the general knowledge
about types, we succinctly map a specific CROMM to ConDL axioms.

Mapping CROM M. The fills relation restricts which natural or compart-
ment types can play which role types. Hence, a role type has as plays pre-
decessors only naturals or o-compartments of types which fill that role type
(Eq. (26)). In conjunction with Eq. (24), we know that all plays successors of
naturals or o-compartments of a specific type are either instances of a role type
that are filled by that type or instances of a role group. Thus, the axiom > vd

T∈NNT∪NCT′ JT v ∀plays.(ARGt
⊔

(T,RT)∈fills RT)K is entailed. Since in a compliant
CROI the plays-relation respects parts, only RT-roles with RT ∈ parts(CT) exist
in a CT -context (Eq. (27)). Analogous to fills restricting the domain and range
of plays, the rel-function restricts these for each relationship type (Eq. (28)).
Due to Eq. (14), (17), (18) and (27) as well as the fact that parts’ codomain is
a partition of NRT, in any context that is not in CT there are no roles of a type
the participates in CT . Thus, the following axiom is entailed for all CT ∈ NCT:
¬CT v

q⊔
RT∈parts(CT)RT v ⊥

y
.

Including the Constraint Model C. Let C be a constraint model, let RG(C)
be the set of all complex role groups occurring in C, and let RG>(C) ⊆ RG(C) be
the subset of non-nested role groups. Analogous to roles, role groups are disjoint,
every instance of a role group must be played by some object and every object
can either fulfill or not fulfill a role group (Eq. (29), (30), (31), (32)). Complex
role groups are treated like role types. An object “plays” an instance of a role
group if it fulfills that role group (Eq. (33)). Furthermore, if an object plays a
role whose type is an atom of a non-nested role group, the object must also fulfill
that role group (Eq. (34)). To capture the occurrence constraints we enforce all
roles and role group instances to be connected to counter via counts and state
concept assertions for counter which must hold in the respective compartment
type (Eq. (35), (36)). Cardinality constraints restrict the number of roles that
are related to a role via a relationship type (Eq. (37)).

Preserving Semantics. After presenting the mapping we establish the main
result of this section. For a CROM M and a constraint model C, let K be the
pair (M, C). Then, the ConDL ontology OK is the set of Axiom (14) to (37).
The next theorem establishes the desired relationship between K and OK.

Theorem 11. Let K be the pair (M, C) withM being a well-formed CROM and
C a compliant constraint model. Then, there exists a CROI that is compliant with
M and valid w.r.t. C iff OK is consistent.

The proof is a straight forward application of the axioms3. Checking consist-
ency is quite general in the sense that many other questions can be reduced to
the consistency problem. With the expressive means of ConDL assertions, for
instance, we can also check whether a specific compartment type is instantiable,
a certain role type is playable or two roles can be linked via some relationship
type. Apart from that a reasoner that is capable of processing such ontologies is
also needed to use the mapping in practice.

4 JConHT - A SHOIQJSHOIQK Reasoner

Also due to highly optimised reasoners, DLs have been successfully established.
In order to reuse an existing reasoner, we convert the consistency problem in
ConDL to classical reasoning tasks. In [6], a reduction into two separate decision
problems is shown. Firstly, reasoning on the meta level, and secondly, checking
whether the object level is consistent in each context. For several reasons we
base our implementation on the hypertableau reasoner HermiT [19,11]. A model
construction-based reasoner is necessary since we need information about the
appearing o-axioms when reasoning on the meta level. Besides that HermiT is
implemented in Java and according to the ORE Report [20] the most perfomant,
model-based reasoner in the discipline OWL DL Consistency.

For brevity, we omit the details of the hypertableau algorithm here. The
sound, complete and terminating algorithm that we construct on the basis of
hypertableau is shown in Alg. 1. Here, C is the set of DL clauses, A the ABox
obtained in the clausification of O and Ki is the object ontology for the world
ci which collects all o-axioms in A′ that are asserted to hold in ciand all other
o-axioms as negated axioms (see Def. 11 of [6] for details). Krig is defined analog-
ously to Ki, but using the renaming technique as single ontology for all worlds.

The second step of the preprocessing, i.e. the repletion, is necessary to en-
sure completeness of Alg. 1. The hypertableau algorithm avoids the unnecessary
non-determinism which is usually introduced by the GCI-rule in tableau al-
gorithms [19]. But this optimisation disguises some implicit contradictions in the
DL clauses. Consider Cex = {J¬A(a)K(x)→ C(x),> → C(x) ∨ JA v ⊥K(x)} and
Aex = {¬C(s)}. Here, only JA v ⊥K(s) would be derived and the ontology seems
to be consistent. Let J be a model, then we have s ∈ (¬C)J , s ∈ JA v ⊥KJ

and s /∈ J¬A(a)KJ which, by the semantics of ConDL, implies s ∈ JA(a)KJ .
This contradicts JA v ⊥K(s) and (Cex,Aex) is indeed inconsistent. To make these
implicitly negated o-axioms visible, we introduce the repletion of C.

Algorithm 1: Algorithm for checking consistency with hypertableau
Input : SHOIQJSHOIQK-ontology O
Output: true if O is consistent, false otherwise
Preprocessing (results in (C,A)):
1. Elimination of transitivity axioms, normalisation, clausification
2. Repletion of DL-clauses

Let (T, λ) be any derivation for (C,A).
A := {A′ | there exists a leaf node in (T, λ) that is labelled with A′}
for A′ ∈ A do

if A′ is clash-free then
if O contains rigid names then

if Krig := (OA′ ,RO
′) is consistent then

return true
else

Let {c1, . . . , ck} be the individuals occurring in A′
if Ki := (Oci ,RO) is consistent for all 1 ≤ i ≤ k then

return true

return false

Definition 12 (Repletion of DL-Clauses). Let C be a set of DL-clauses. The
repletion of C is obtained from C by adding the DL-clause > → JαK(x)∨ J¬αK(x)
for each o-axiom JαK occurring in C.

A drawback of the repletion is the high amount of non-determinism it introduces,
but it is only necessary if o-axioms occur in the antecedent of a DL-clause.
Apparently only Ax. (25), i.e. only if compartments play roles, introduces such
o-axioms in the antecedent. Therefore, only then the repletion is necessary when
reasoning on CROMs. Arguably, when constraints are omitted, CROM can be
mapped to a less expressive ConDL, which further reduces the reasoning time.

5 Case Studies

Implicit Knowledge in the Banking Domain. Let us consider our run-
ning example. Instead of writing down all axioms of the respective ontology
OBank, we will rather point out those inferences that uncover hidden restric-
tions. In detail, we first inspect the Bank compartment type and its internal
role types, role groups, and relationship types. Omitting general axioms, the
Axioms (38) to (43) are contained in the ontology. Consequently, in any inter-
pretation J that satisfies OBank with c ∈ BankJ , Ax. (38) and (39) entail the
existence of an element in CheckingAccountIc or SavingsAccountIc . Due to (40)
and (41), there must be some element “owning a CA or SA”, which, by (42)
and (43), must be in CustomerIc . As a result, Ax. 44 is entailed, i.e. the occur-
rence constraint for Customer is essentially 1..∗. Similarly, when investigating
the Transaction compartment type, we infer Ax. (45) to (48). For instance, as-
sume there is a d ∈ TransactionJ . By (45) and (46), we infer the existence of
exactly one element in SourceId or TargetId . However, due to (47) and (48),

Table 4. ConDL axioms of the banking example

Bank v J(>1counts.BankAccounts)(counter)K (38)
> v J∃plays.BankAccounts ≡ =1plays.(CheckingAccount t SavingsAccount)K (39)
> v JSavingsAccount v >1own_sa−.>K (40)
> v JCheckingAccount v >1own_ca−.>K (41)
> v J∃own_sa.> v CustomerK (42)
> v J∃own_ca.> v CustomerK (43)

Bank v J(>1counts.Customer)(counter)K (44)

Transaction v J(=1counts.Participants)(counter)K (45)
> v J∃plays.Participants ≡ =1plays.(Source t Target)K (46)
> v JSource v =1trans.>K u JTarget v =1trans−.>K (47)
> v J∃trans.> v SourceK u J∃trans−.> v TargetK (48)

Transaction v ⊥ (49)

> v JCustomer v >1issues.>K (50)
> v J∃issues−.> v MoneyTransferK (51)
> v J∃plays.MoneyTransfer v Transaction′K (52)

¬JTransaction′ u ∃plays.> v ⊥K v ∃nested.Transaction (53)

there must also be an element in TargetId or SourceId , respectively. It follows
that ParticipantsId contains two elements, which contradicts (45). In conclusion,
Ax. 49 is entailed, i.e. Transaction is not instantiable, due to the occurrence con-
straint of the Participants role group. With this knowledge, we can further reason
on the Bank compartment type. Due to (44) and (50) to (52), there must be an
element in MoneyTransferIc playing an element in Transaction′Ic . Thus, by (53),
there must be a context c2 connected to c via nested with c2 ∈ Transaction.
Yet, this contradicts (49). In consequence, the banking domain model is indeed
inconsistent, due to a small modelling error in an occurrence constraints.

Performance Evaluation of JConHT. To investigate the performance of
our approach, we conducted a set of benchmarks to test both the translation
to a contextualised DL ontology (Sect. 3) as well as the subsequent reasoning
with JConHT (Sect: 4). Hence, we developed a generator for CROM to cre-
ate pseudo-random domain models of increasing complexity. Then, these models
are transformed to the corresponding OWL ontology, and finally tested for con-
sistency using our reasoner. Notably though, we focus on the execution time
of JConHT, as the transformation time is polynomial bounded in the input size
(i.e. O(n2)) and negligible small. We investigated in the impact of three variables
on the performance: (a) number of relationship types defined and constrained
per compartment type, (b) number of role groups introduced per compartment
type, and (c) a Boolean indicating whether compartment types can play roles.
Our experiments generates random CROM models of stepwise increased com-
plexity, varying each of these variables. The generator itself utilises a pseudo-

5 10 15 20 25 30 35
100

101

102

103
t in s

n

0 n/2 n

(a) Variation of] RSTs.

5 10 15 20 25 30 35
100

101

102

103
t in s

n

0 n/2 n

(b) Variation of] RGs.

5 10 15 20 25
100

101

102

103
t in s

n

c = ⊥ c = >

(c) Flat vs. nested CTs.

Figure 2. Average execution times of JConHT for benchmark ontologies.

random number generator (initialised with a given seed s), to create CROM
models of size n, i.e., a domain model with n natural types and n compartment
types with n role types each, such that each role type is filled by two player
types (either natural or compartment type). Additional parameters determine
the number of relationship types m between two distinct role types for each
compartment (a), the number of role groups k of two random role types for
each compartment (b), and a Boolean c indicating that compartment types are
eligible as player types (c). The constraint model is generated accordingly, by
assigning random cardinalities to the occurrence of role types and role groups, to
role groups, as well as to the ends of relationships. Notably though, the set of car-
dinalities is limited Card := {0..0, 0..1, 0..∞, 1..1, 1..∞}. Utilizing this generator,
we can individually test the performance impact of each of the variables.

We generated CROM domain models with k ∈ {0, n/2, n} relationship types
for (a) andm ∈ {0, n/2, n} role groups for (b). To investigate nested compartment
types (c), CROMs were created with c ∈ {⊥,>} whereas k = n/2 relationship
types and m = n/2 role group. In each case, we generated, transformed, and
verified CROM domain models with n = 5, 10, 15, . . . until the reasoner threw
an out-of-memory exception. We repeated this process for each configuration,
i.e., generating 100 models for each configuration with seed s, 1 ≤ s ≤ 100, and
calculate the average execution time of the reasoner to decide consistency.7

Fig. 2 sums up the impact of each variable on JConHT’s performance. As
ConDL’s reasoning time is exponential in the size of n, the time axis is log-
arithmic. In fact, Fig. 2a and Fig. 2b illustrates the impact of constrained re-
lationships and role groups, respectively. The baseline for both is a configur-
ation without relationship cardinalities and role groups, i.e., only occurrence
constraints. We found that the number of constrained relationships has a lower
performance impact than the number of role groups. This is unsurprising, as
role groups can represent arbitrary propositional logic formulae [17]. Thus, role
groups become unsatisfiable easily. In turn, Fig. 2c indicates a significant per-
formance penalty of nested compartment types are present. While reasoning on

7 The tests were performed on a 3.3GHz i5-2500 quad core with 12GB heap size
dedicated to an openjdk-8-jre (build 1.8.0) running on an Ubuntu 16.04.

CROMs with n/2 role groups and relationship types is tractable, permitting com-
partment types to play roles quickly leads to a state space explosion, i.e. only
models of size n ≤ 10 could be checked. This is due to Axiom (25), requiring
the addition of repletion clauses, and thus, introducing a large amount of non-
determinism. In sum, our performance evaluation indicates that variable (c),
nested compartment, has the highest performance impact, whereas the inclusion
of role groups (b) and constrained relationships (a) has comparatively small im-
pact. Besides that, we identified the heap size as a limiting factor, especially,
when reasoning on more complex or nested models. When dealing with an aver-
age number of relationship types and role groups without nested compartments,
however, reasoning was feasible for domain models of size n ≤ 25.

6 Related Work

In the past, several approaches for formal frameworks to reason on UML arose,
e.g. [7,24,4,25,1], from which we adopted some ideas, e.g. to model attributes
of a UML class with DL properties and multiplicities of associations with coun-
ters [7]. In general, UML lacks expressive power to model context-dependent
domains and while some approaches extended UML in this regard [23,10,12],
there semantics is usually more ambiguous. In contrast, CROM has both a well-
defined and formal semantics [17]. As classical DLs cannot properly formalise
contextual knowledge, many different approaches and extensions of DLs have
been proposed, e.g. [22,3,15,8]. Yet, many were tailored to different goals, e.g.,
to support context-specific reuse of ontologies. On one side, in most cases they
have a different understanding of contexts, e.g. defined as set of attribute-value
declarations for given dimensions [22]. Consequently, except a coverage relation,
one can hardly express any other knowledge about contexts, such as their rela-
tional structure, rendering them insufficient to model CROMs. Similarily, in [5]
a multidimensional data model is introduced with the same restrictions. On the
other side, ALCALC [15] formalizes contexts as formal objects with properties
and relational structure, resulting in a similar two-dimensional DL that permits
object knowledge to transcend through contexts. Yet, this leads to a double ex-
ponential time complexity and, in the presence of rigid roles, to undecidability.

7 Conclusion

To cope with context-dependent knowledge of today’s Information Systems, ad-
vanced domain models permitting formal validation are indispensable. We en-
abled reasoning on context-dependent domain models by mapping CROM to
the contextualized description logic SHOIQJSHOIQK for which the dedicated
reasoner JConHT can efficiently decide consistency. We showcased the semantic-
ally correctness, suitability and performance of our approach. In future, we will
map additional constraints and further optimize both our mapping and JConHT.

References

1. Ahmad, M.A., Nadeem, A.: Consistency checking of UML models using description
logics: A critical review. In: Proc. ICET’10. pp. 310–315 (2010)

2. Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2nd edn. (2007)

3. Baader, F., et al.: Context-dependent views to axioms and consequences of se-
mantic web ontologies. Journal of Web Semantics 12, 22–40 (2012)

4. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1-2), 70–118 (2005)

5. Bertossi, L.E., Milani, M.: The ontological multidimensional data model in quality
data specification and extraction. In: Proc. BICOD’17. pp. 126–130 (2017)

6. Böhme, S., Lippmann, M.: Decidable description logics of context with rigid roles.
In: Proc. FroCoS’15. pp. 17–32 (2015)

7. Calì, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: A formal framework for
reasoning on UML class diagrams. In: Proc. ISMIS’02. pp. 503–513 (2002)

8. Ceylan, I.I., Peñaloza, R.: The bayesian ontology language BEL. Journal of Auto-
mated Reasoning 58(1), 67–95 (2017)

9. Chen, P.P.S.: The entity-relationship model toward a unified view of data. ACM
Transactions on Database Systems (TODS) 1(1), 9–36 (1976)

10. Genovese, V.: A meta-model for roles: Introducing sessions. In: Proc. Ws. on Roles
and Relationships in OOP, Multiagent Systems, and Ontologies. pp. 27–38 (2007)

11. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An OWL 2
reasoner. Journal of Automated Reasoning 53(3), 245–269 (2014)

12. Guizzardi, G., Wagner, G.: Conceptual simulation modeling with Onto-UML. In:
Proc. Winter Simulation Conference. p. 5 (2012)

13. Halpin, T.: Object-role modeling (ORM/NIAM). In: Handbook on architectures
of information systems, pp. 81–103. Springer (2006)

14. Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena approach.
In: Specification, Algebra, and Software, pp. 359–381. Springer (2014)

15. Klarman, S., Gutiérrez-Basulto, V.: Description logics of context. Journal of Logic
and Computation 26(3), 817–854 (2016)

16. Kühn, T., et al.: A metamodel family for role-based modeling and programming
languages. In: Proc. SLE’14. pp. 141–160 (2014)

17. Kühn, T., et al.: A combined formal model for relational context-dependent roles.
In: Proc. SLE’15. pp. 113–124 (2015)

18. Liu, M., Hu, J.: Information networking model. In: ER’09, pp. 131–144 (2009)
19. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.

Journal of Artificial Intelligence Research 36, 165–228 (2009)
20. Parsia, B., et al.: The OWL reasoner evaluation (ORE) 2015 competition report.

In: Proc. SSWS’15, co-located with ISWC’15. pp. 2–15 (2015)
21. Rumbaugh, J., Jacobson, R., Booch, G.: The Unified Modelling Language Refer-

ence Manual. Addison-Wesley, 1st edn. (1999)
22. Serafini, L., Homola, M.: Contextualized knowledge repositories for the semantic

web. Journal of Web Semantics 12, 64–87 (2012)
23. Sheng, Q.Z., et al.: Contextuml: A UML-based modeling language for model-driven

development of context-aware web services. In: Proc. ICMB’05. pp. 206–212 (2005)
24. Simmonds, J., Straeten, R.V.D., Jonckers, V., Mens, T.: Maintaining consistency

between UML models using description logic. L’Objet 10(2-3), 231–244 (2004)
25. Simmonds, J., et al.: A tool based on DL for UML model consistency checking.

Int. J. of Software Eng. and Knowledge Eng. 18(6), 713–735 (2008)

	Reasoning on Context-Dependent Domain Models

