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Abstract
We present an ontological framework, based on
preference rankings, that allows users to express
their preferences between the knowledge explicitly
available in the ontology. Using this formalism, the
answers for a given query to an ontology can be
ranked by preference, allowing users to retrieve the
most preferred answers only. We provide a host of
complexity results for the main computational tasks
in this framework, for the general case, and for EL
and DL-Litecore as underlying ontology languages.

1 Introduction
Description logics (DLs) [Baader et al., 2007] are a family of
knowledge representation formalisms that have been success-
fully used for modeling many real-world domains. Important
recent applications include semantic search on the Web and
ontology-based access to data, including Big Data [Giese et
al., 2015]. One crucial reasoning task for the above areas and
other knowledge domains is conjunctive query (CQ) answer-
ing, which corresponds to computing all tuples of individuals
that satisfy some conceptual pattern. One of the issues re-
lated to CQ answering over ontologies is to be able to manage
the large number of potential answers in a structured manner.
Since in standard ontological CQ answering, all answers are
qualitatively indistinguishable, it is, e.g., impossible to filter
the most preferred answers to a given CQ. It is thus important
to extend CQ answering over ontologies with preference cri-
teria, such as preference rankings.

Example 1. A preference ranking may encode Bob’s pref-
erences over sources of information on the Web: Bob is not
a fan of blogs; so, he prefers any non-blog source of infor-
mation over blogs. But when reading blogs, Bob wants more
subjective opinions, so, blogs written by a non-specialist are
preferred over blogs written by a specialist. If Bob reads in-
formation from a non-blog source written by a non-specialist,
then he prefers popular sources over non-popular ones, other-
wise, non-popular sources over popular ones.

In this paper, preference modeling is done via very gen-
eral preference rankings over a collection of possible choices,
with the only restriction (for our computational complex-
ity results) that the rank of each choice is computable in

polynomial time. Indeed, many rankings in information re-
trieval (IR) have this property (see, e.g., [Joachims, 2002]).
Thus, the approach in this paper actually provides very gen-
eral results for combining DLs with IR rankings.

We consider preferences that are directly associated with
the axioms and facts in a knowledge base. Such “absolute”
rankings are actually quite common in practice, in particu-
lar, they are broadly used in Web applications; e.g., Google’s
PageRank is also directly associated with Web pages. We im-
plement this idea by annotating every piece of knowledge
with a context, which intuitively describes the situations in
which this knowledge holds, and by defining a unique prefer-
ence ranking over these contexts. These preferences are then
naturally extended to answers to CQs, allowing users to re-
trieve only the most preferred answers.
Example 2. An ontological knowledge base extracted from
information sources on the Web can be coupled with Bob’s
preferences in Example 1 by annotating ontological axioms
with events, over which we define a suitable preference rank-
ing. Thus, a travel ontology can be associated with contexts,
e.g., to express that popular blogs (b ∧ p) recommend that
an itinerary with a wine destination would work well with
another wine destination, and that specialist blogs (b ∧ s)
say that Sicily is a wine destination, each with a suitable rank.
Then, the answers “Florence”, “Sicily”, and “Bordeaux” for
an ontological query asking for wine and spa destination
may then be ranked as 1, 0.35, and 0, respectively, depend-
ing on the underlying preference ranking.

Annotating the knowledge with contexts has been previ-
ously used successfully in, e.g., probabilistic logic program-
ming [Poole, 1997] and probabilistic databases [Suciu et al.,
2011]. The main benefit of using contexts, rather than pro-
viding a preference ranking directly to the knowledge is that
they provide an easily accessible interface to the knowledge.
Thus, if different users want to express different preferences,
e.g., related to different query circumstances, then they only
need to provide a new preference ranking over the same con-
texts, without modifying the underlying knowledge base.

This paper’s main contributions are briefly as follows:
– We propose ranked ontologies as a novel approach to

modeling the preferences of a user relative to the knowledge
in an ontology. They are based on unique preference rank-
ings, which extend to query answers, so that only the most
preferred answers are given, ordered via their ranks.



– We then provide generic complexity results for deciding k
most preferred answers to a CQ for different types of com-
plexities. We also provide complexity results for this problem
for the lightweight DLs EL and DL-Litecore, which include es-
pecially also tractability and first-order rewritability results.
– We also give generic complexity results for other impor-

tant reasoning problems, namely, for deciding k most pre-
ferred conditional answers, for deciding a lower bound for
the preference degree of a Boolean CQ (BCQ), and for decid-
ing k most preferred worlds. Moreover, we give complexity
results for these problems for EL and DL-Litecore, which in-
clude further tractability and first-order rewritability results.

The rest of this paper is organized as follows. Section 2
defines preference rankings and recalls the basic concepts
of description logics. In Section 3, we introduce ranked on-
tologies. Section 4 provides alternative characterizations for
ranked ontologies and the ranks of BCQs. In Section 5, we
define the main reasoning tasks for these ontologies, while
Section 6 provides tight complexity results for these tasks.
We conclude with a discussion on related work, a summary
of the main results, and an outlook on future work. Due to
space limitations, detailed proofs of all results in this paper
will be given in an extended paper.

2 Preliminaries
In this section, we define preference rankings and briefly re-
call description logics (DLs) [Baader et al., 2007].
Preference Rankings. Given a nonempty finite set V of
Boolean variables, a valuationW of V assigns to eachX ∈V
a truth value among true and false, also abbreviated as X and
¬X , respectively. A valuation U for a set of variables U ⊆V
assigns to each X ∈U a truth value among true and false. We
denote by Ω the set of all valuations of V . A preference rank-
ing over Ω is a function rank : Ω→ [0, 1], which is extended
to any Γ⊆Ω by rank(Γ) = supω∈Γ rank(ω), where “sup”
is the supremum (i.e., the least upper bound). Intuitively,
rank(Γ) represents the degree of preference in Γ. Here, we
only consider rankings on valuations where each rank is com-
putable in polynomial time, which is a property that is shared
by many rankings in IR (see, e.g., [Joachims, 2002]).

Such a polynomial preference ranking is also naturally de-
fined via possibilistic networks (PNs), which compactly en-
code possibility distributions via (possibilistic) independen-
cies encoded in a directed acyclic graph (DAG) [Benferhat et
al., 1999] in a similar way as Bayesian networks [Pearl, 1988;
Darwiche, 2009] compactly encode probability distributions.
Note that despite these similarities, PNs are semantically
and computationally very different from Bayesian networks
(see also Section 7). Note also that PNs are only one example
of encoding polynomial preference rankings.

Example 3. A possibilistic network (PN) P = (G,Φ) over
V consists of a DAG G= (V,E) and a set Φ containing a
conditional possibility distribution rankP(x | pa(x)) for ev-
ery x∈V given pa(x), where pa(x) denotes the parents of
x in G (i.e., the immediate predecessors of x in G). Note
that each conditional possibility distribution rankP(x | pa(x))
consists of one conditional possibility value rankP(x |pa(x))

for each pair of valuations x and pa(x) of x and pa(x),
respectively. Such a PN defines a unique (joint) possi-
bility distribution over the valuations W of V (where x
and pa(x) are matching valuation of x and pa(x), respec-
tively): rankP(W) =

∏
x∈V rankP(x |pa(x)). For example,

Figure 1 shows a possibilistic network P0 over the variables
V0 = {b, s, p}. The tables associated with each node contain
the conditional possibility distributions for this node given its
parents. For example, the node b is associated with an uncon-
ditional possibility distribution, since it has no parents, while
p is associated with a distribution conditional on b and s.
Here, the possibility of, e.g., the valuation {b, s, ¬p} (i.e.,
b= s= true and p= false) is rankP0

({b}) · rankP0
({s}|{b}) ·

rankP0
({¬p}|{b, s}) = 0.7 · 0.5 · 1 = 0.35.

Note also that PNs can be used to compactly encode the
conditional preferences of a user (i.e., statements of the form
“if x holds, then ¬y is preferred over y”) over a finite set
of events [Ben Amor et al., 2014]. Intuitively, for each con-
ditional event, the user provides a possibility degree (i.e.,
a rank) that is proportional to the user’s preference of its oc-
currence. The joint possibility distribution then combines the
ranks of all conditional events to a ranking over the valu-
ations of the variables in V . The following example shows
that the above possibilistic network from Figure 1 in fact rep-
resents the conditional preferences described in Example 1.
For further (and larger) examples of how finite sets of condi-
tional preferences can be encoded as possibilistic networks,
see, e.g., [Ben Amor et al., 2014; Amor et al., 2015].

Example 4. The PN P0 from Figure 1 expresses the prefer-
ences of Bob over sources of information on the Web when
planning his trips. Bob is not a fan of blogs, therefore, he (un-
conditionally) prefers any other source of information than
blogs (¬b) over blogs (b). Bob wants more subjective opin-
ions when reading blogs (b), therefore, he prefers a blog writ-
ten by a non-specialist (¬s) over a blog written by a spe-
cialist (s). Note that these are examples of conditional pref-
erences, where the order between s and ¬s depends on the
choice made for the evaluation of the variable b before. If Bob
reads information not from a blog written by a non-specialist
(¬b¬s), then he prefers a popular source (p) over a non-
popular source (¬p), otherwise, the non-popular source (¬p)
is preferred over popular ones (p). Overall, e.g., {b, s,¬p} is
preferred over {b, s, p} (since 0.7 · 0.5 · 1 > 0.7 · 0.5 · 0.5).

Description Logics. We briefly sketch some basics in de-
scription logics (DLs) [Baader et al., 2007]. In DLs, the
knowledge of an application domain is represented through
an ontology O, which is a finite set of axioms that restrict the
possible interpretations that can be given to the terms used.
Ontologies are usually partitioned into a set of terminolog-
ical axioms (called TBox) that encode the relations between
the different terms used in the knowledge domain, and a set of
assertional axioms (called ABox) that express the knowledge
about specific individuals. The semantics of DLs is given via
interpretations I = (∆I , ·I), where ∆I is a nonempty set,
called domain, and ·I is the interpretation function that de-
scribes how the terms of the ontology are interpreted. A sat-
isfaction relation “|=” defines which interpretations I satisfy
which axioms A, denoted I |=A. We say that I satisfies (or
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b ¬b
0.7 1

s ¬s
b 0.5 1
¬b 1 0.3

p ¬p
b s 0.5 1
b ¬s 1 1
¬b s 0.6 1
¬b ¬s 1 0

Figure 1: Preference ranking P0 encoded via a possibilistic
network (PN) over V0 = {b, s, p}.

is a model of) an ontology O, if I satisfies all axioms in O.
An important reasoning task for DLs is conjunctive query

answering. A conjunctive query (CQ) q(x) is of the form
∃y

∧n
i=1 pi(x,y), where the pi(x,y)’s are atoms over in-

dividual names and two disjoint sets of variables x and y.
A Boolean CQ (BCQ) q is a CQ of the form q(). An answer θ
for a CQ q(x) to an ontology O maps each variable in x to
an individual name such that q(xθ) holds in all models of O.
The answer for a BCQ q to O is true (resp., false), denoted
O |= q, if θ=∅ is an (resp., not an) answer for q to O.

3 Ranked Ontologies
In this section, we introduce ranked ontologies, which are a
novel combination of preference rankings with ontologies.
We consider an arbitrary description logic (DL) [Baader et
al., 2007] as underlying ontology language.
Syntax. A ranked ontology associates every axiom in an on-
tology with a context, encoded by a propositional formula
over a set of variables V , which intuitively describes the situ-
ation in which the axiom is guaranteed to hold. Additionally,
a preference ranking over these contexts is given.

In the sequel, let V be a finite nonempty set of Boolean
variables, and L be a DL. A V -context ϕ is a propositional
formula over V . A V -axiom 〈λ : ϕ〉 in L consists of an ax-
iom λ in L and a V -context ϕ. A V -ontology in L is a fi-
nite set of V -axioms in L. A ranked ontology K= (P,O) in
L over V consists of a preference ranking P over V and a
V -ontology O in L. We often omit the prefix V . As in the
classical case, V -ontologies are partitioned into a (V -)TBox
and a (V -)ABox. Note that classical ontologies are a special
case of V -ontologies, where all V -axioms are of the form
〈λ : >〉 with > denoting true. The restriction of a ranked on-
tology K= (P,O) to a valuationW of the variables in V is
the classical ontologyOW = {λ | 〈λ : ϕ〉 ∈O, W |= ϕ} in L.

Example 5. A ranked ontology K0 = (P0,O0) is given by
the preference ranking P0 encoded in the PN of Figure 1 and
O0 below. Intuitively, it says, e.g., that popular blogs (b ∧ p)
recommend that an itinerary with a wine destination would
work well with another wine destination, and that specialist
blogs (b ∧ s) say that Sicily is a wine destination:

O0 = { 〈∃worksWellWith.WineDest v WineDest : b ∧ p〉 ,
〈WineDest v RelaxDest : ¬b ∨ s〉 ,
〈∃worksWellWith.RelaxDest v SpaDest : ¬s〉 ,
〈RelaxDest v SpaDest : ¬p〉}∪
{〈SpaDest(florence) : s〉 , 〈WineDest(sicily) : b ∧ s〉 ,
〈WineDest(bordeaux) : b ∧ ¬s〉}.

Semantics. We next extend the classical interpretations of
L to additionally evaluate contexts. A contextual interpreta-
tion is a pair (I,W), where I = (∆I , ·I) is a classical in-
terpretation for L, and W is a valuation of V . We say that
(I,W) satisfies (or is a model of) the axiom 〈λ : ϕ〉, denoted
(I,W) |= 〈λ : ϕ〉, if either (i)W 6|= ϕ, or (ii) I |= λ. Notice
that “(i) or (ii)” is equivalent to “W |= ϕ implies I |= λ”: in-
tuitively, λ is only required to hold within the context ϕ. We
say that (I,W) satisfies (or is a model of) a V -ontology O
over L, denoted (I,W) |= O, if it satisfies all axioms in O.

We now define ranked interpretations over contextual ones,
and the satisfaction of ranked ontologiesK= (P,O) in them.
Intuitively, the contexts connect the preference ranking P
to the V -ontology O and thus define a set of ranked inter-
pretations represented by K. Formally, a ranked interpreta-
tion P= (J, rank) consists of a finite set of contextual in-
terpretations J and a ranking rank over I (which assigns
a rank rank((I,W)) to each (I,W) ∈ J). We say that
P is a model of a V -ontology O, if every (I,W) ∈ J
satisfies O; it is a model of P , if for each valuation W ,
max(I,W)∈J rank((I,W)) = rankP(W). We say P is a
model of K= (P,O), denoted P |=K, if it is a model of O
and P . We say K is consistent, if it has at least one model.

Example 6. Consider again the ranked ontology K0 = (P0,
O0) of Example 5. Let I0 = ({d, e, f}, ·I0) be a DL interpre-
tation with florenceI0 = d, sicilyI0 = e, bordeauxI0 = f ,
WineDestI0 = RelaxDestI0 = {d, e, f}, SpaDestI0=∅, and
worksWellWithI0=∅. Then, the contextual interpretation
(I0, {¬b, s, p}) is a model of O0, since florenceI ∈ Wine-
DestI and WineDestI⊆RelaxDestI , while (I0, {¬b, s,¬p})
is not a model of O0, as it does not satisfy 〈RelaxDest v
SpaDest : ¬p〉. A ranked interpretation P= (J, rank) that
satisfies the KB K0 is then given by the singleton set J =
{(I0, {¬b, s, p})} with rank((I0, {¬b, s, p})) = 0.6.

We next define the rank of BCQs q under ranked onto-
logies K= (P,O), which is intuitively the most strict
rank of q under all ranked interpretations P= (I, rank)
that satisfy K. Formally, the rank of q under P =
(I, rank), denoted rankP(q), is defined by rankP(q) =
max(I,W)∈I, I|=q rank((I,W)), while the rank of q underK
is then defined by: rankK(q) = infP|=K rankP(q).

In general, we are not only interested in the rank of a
given BCQ, but also in its rank given some partial knowl-
edge of the current context. Conversely, given a BCQ, we
are also interested in the most preferred source that en-
tails it. For these two tasks, we extend ranks to contexts.
The rank of q and a context ϕ under P= (I, rank), de-
noted rankP(q ∧ ϕ), is defined as follows: rankP(q ∧ ϕ) =
max(I,W)∈I, I|=q,W|=ϕ rank((I,W)), while the rank of q
andϕ underK, denoted rankK(q∧ϕ), is defined by rankK(q∧
ϕ) = infP|=K rankP(q ∧ ϕ). We define the conditional rank
of a query given a context, and of a context given a query,
using the standard product conditioning rule, as follows:

rankK(q|ϕ) = rankK(q ∧ ϕ) / rankK(ϕ), if rankK(ϕ)> 0,

rankK(ϕ|q) = rankK(q ∧ ϕ) / rankK(q), if rankK(q)> 0.



4 Semantic Results
We now provide alternative semantic characterizations for the
consistency of ranked ontologies and for the rank of BCQs
and contexts in consistent ranked ontologies.
Consistency. The following informally shows that a ranked
ontology K over V is consistent iff, for every valuationW of
V with positive rank, the restriction of K toW is consistent.
Theorem 1. A ranked ontology K= (P,O) in L over V is
consistent iff, for every valuationW of V , if rankP(W) > 0,
then OW is consistent.

Thus, the consistency of ranked ontologies in L can be re-
duced to the consistency of classical ontologies inL. As every
ontology in EL is consistent [Baader et al., 2005], the theo-
rem implies that every ranked ontology in EL is consistent.
Example 7. Consider the ranked ontology K1 = (P0,O1)
built in DL-Litecore, where P0 is defined by the PN from
Figure 1, and O1 = {〈WineDest v ¬WineDest : ¬b ∧ ¬p〉,
〈WineDest(florence) : s〉}. For W1 = {¬b, s,¬p}, it holds
that rankP0

(W1) = 1 > 0 (see Figure 1 above). More-
over, the ontology OW1

= {WineDest v ¬WineDest,
WineDest(florence)} is inconsistent. Hence, K1 is
also inconsistent. However, for O2 = {〈WineDest v
¬WineDest : ¬b ∧ ¬p〉, 〈WineDest(florence) : ¬s〉}, the
ranked ontology K2 = (P0,O2) is consistent, although for
W2 = {¬b,¬s,¬p}, the restriction OW2

is inconsistent.
Indeed, for the DL-Lite interpretation I2 = ({d}, ·I2), where
WineDestI2 =∅ and florenceI2 = d, the ranked interpreta-
tion P= (J, rank) given by J= {(I2,W) |W 6= W2}, and
for allW 6=W2, rank((I2,W)) = rankP0

(W) satisfies K2.

Rank. Informally, the next theorem shows that, for consistent
ranked ontologies K, the rank of a BCQ q can be determined
by looking at the restrictions of K that entail q, and that this
result can also be extended to contexts.
Theorem 2. For every consistent ranked ontology K =
(P,O) in L over V , BCQ q, and context ϕ over V :

rankK(q) = maxOW |=q rankP(W), and
rankK(q ∧ ϕ) = maxW|=ϕ,OW |=q rankP(W).

Note that the precondition that the ranked ontology K is
consistent is fundamental for this theorem to hold. Consider,
e.g., the inconsistent ranked ontology K1 from Example 7,
and let q1 = {A(b)}. Then, by definition, since K1 has no
models, rankK1

(q1) = 1 (since it is the infimum of an empty
subset of [0, 1]). However, maxOW |=q1 rankP0

(W) = 0.
A direct consequence of Theorem 2 is that there are finitely

many (at most 2|V | + 2) possible ranks: the rank of a BCQ q
corresponds to rankP(W) for some valuation W of V , or 0
if q is not entailed by any restriction OW , or 1, if the ranked
ontology is inconsistent.

5 Reasoning Tasks
In this section, we formally define the main reasoning tasks
for ranked ontologies, namely deciding whether the rank of a
BCQ is above a threshold (called p-entailment), top-k CQ an-
swering, top-k conditional CQ answering, and computing the
k most preferred worlds for a BCQ.

Table 1: Most preferred answers (resp., worlds) for the CQ
q2(χ) (resp., BCQ q2(χθ0)) to K0 from Example 8.

Worlds θ0 θ1 θ2 rankP0
(W) rankP0

(W|q2(χθ0))

W0 = {b, s, p} × × × 0.175 -
W1 = {b, s,¬p} X X × 0.35 0.35
W2 = {b,¬s, p} × × × 0.7 -
W3 = {b,¬s,¬p} × × × 0.7 -
W4 = {¬b, s, p} × × × 0.6 -
W5 = {¬b, s,¬p} X × × 1 1
W6 = {¬b,¬s, p} × × × 0.3 -
W7 = {¬b,¬s,¬p} × × × 0 -

p-Entailment. The p-entailment problem is informally the
problem of deciding whether the entailed rank of a BCQ
under a ranked ontology is above a given threshold. For-
mally, given a ranked ontology K, a BCQ q, a context ϕ, and
some p∈ (0, 1], decide whether rankK(q ∧ ϕ) ≥ p holds.
Top-k Answers. As for more general CQs q(x) to ranked
ontologies K= (P,O), since P represents preferences, we
are especially interested in most preferred answers, which are
the ones with highest ranks. A top-k answer, where k∈N is
fixed, for q(x) to K is a tuple (θ1, . . . , θk) of different an-
swers θi for q(x) to K such that either (a) θ1, . . . , θl with
l≤ k are the only answers for q(x) to K, or (b) the following
conditions (i) and (ii) hold:
(i) for all i, 1≤ i< k: rankK(q(xθi))≥ rankK(q(xθi+1));
(ii) for no other answer θ: rankK(q(xθk))< rankK(q(xθ)).
As different answers may have the same rank, top-k answers
are not unique, i.e., there may be different tuples satisfying
the properties of a top-k answer, and they may also be empty.
Top-k Conditional Answers. In some cases, we have some
information about the context in which we are currently.
Thus, it is also important to find the answers that are most
preferred, given a context ϕ. A top-k answer, where k∈N is
fixed, for q(x) under a context ϕ to K is a tuple (θ1, . . . , θl)
of l∈{0, . . . , k} different answers θi for q(x) to K such that
either (a) θ1, . . . , θl with l≤ k are the only answers for q(x)
to K, or (b) the following conditions (i) and (ii) hold:
(i) for all i, 1≤ i<k: rankK(q(xθi)|ϕ)≥ rankK(q(xθi+1)|ϕ);
(ii) for no other answer θ: rankK(q(xθk)|ϕ)<rankK(q(xθ)|ϕ).
As rankK(ϕ) is a constant factor for all rankK(q(xθi)|ϕ), it
is sufficient to compare the ranks of all rankK(q(xθi) ∧ ϕ).
k Most Preferred Worlds. Similarly to finding k most pre-
ferred answers to a CQ, we may also be interested in finding k
most preferred valuations for a BCQ. Intuitively, they are the
best k sources for a BCQ, i.e., they are the k most preferred
arguments for justifying a BCQ. Given a BCQ q, a ranked
ontology K over V , a fixed k∈N, and different propositional
valuationsWi, 1≤ i≤ k over V , we say thatW1, . . . ,Wk are
k most preferred worlds for q to K, if (i) and (ii) hold:

(i) for all i, 1≤ i< k: rankK(Wi|q) ≥ rankK(Wi+1|q);

(ii) for no other valuationW: rankK(Wk|q)<rankK(W|q).

Example 8. Consider again the ranked ontology K0 = (P0,
O0) of Example 5 and the CQ q2(χ) = WineDest(χ)∧
SpaDest(χ). Then, three possible answers for q2 to K0 exist:
θ0 = {χ/florence}, θ1 = {χ/sicily}, and θ2 = {χ/bordeaux},



Table 2: Complexity of the ranked extension of EL (all entries
without “in” are completeness results).

Problem data KB ranking combined
p-entailment in P in P NP NP

top-k (conditional) answers in P in P ∆p
2 ∆p

2

k most preferred worlds in P in P CONP CONP

Table 3: Complexity of the ranked extension of DL-Litecore
(all entries without “in” are completeness results).

Problem data KB ranking combined

p-entailment in AC0 NLOGSPACE NP NP

top-k (conditional) answers in AC0 in P ∆p
2 ∆p

2

k most preferred worlds in AC0 in coNLOGSPACE CONP CONP

having the ranks

rankP0
(q2(χθ0)) = max {rankP0

(W1), rankP0
(W5)} = 1,

rankP0(q2(χθ1)) = rankP0(W1) = 0.35, and
rankP0

(q2(χθ2)) = rankP0
(∅) = 0,

respectively; see Table 1. Note that θ2 has the rank 0, as K0

does not entail q2(χθ2) in any valuation. It is easy to see from
the table that (θ0, θ1) is a top-2 answer, and thatW5 andW1

are the two most preferred worlds for q2(χθ0).

6 Complexity Results
In this section, we provide complexity results for ranked on-
tologies, both generic ones and for the special cases of the
lightweight DLs EL [Baader et al., 2005] and DL-Litecore
[Calvanese et al., 2007; Artale et al., 2009].

As for the complexity of query answering in DLs, one usu-
ally considers some parts of the input as fixed. In particular,
one speaks of the data (resp., KB) complexity when only the
size of the ABox (resp., the whole ontology) is considered,
and of the combined complexity when also the query is part
of the input. Note that, in our framework, the ontology is en-
riched with a ranking, but the two are rather decoupled by the
use of contexts. In fact, the size of the ranking does not usu-
ally grow proportionally in the size of the data/KB, i.e., the
same annotations can be coupled with many axioms of the
ontology. Therefore, the ranking is fixed in both the data and
the KB complexity. We also consider the ranking complex-
ity when only the size of the preference ranking is relevant.
In the sequel, the combined complexity refers to the whole
input, including the preference ranking. For an arbitrary but
fixed DL L, we denote by Cd, Ck, and Cc, the data, KB, and
combined complexity of BCQ answering in L, respectively.

We recall that in EL, BCQ entailment is polynomial in
the data and KB complexity, but NP-complete in the com-
bined complexity [Rosati, 2007]; in DL-Litecore, these com-
plexities are membership in AC0, NLOGSPACE-complete-
ness, and NP-completeness, respectively [Artale et al., 2009].

The results for the ranked extensions of EL and DL-Litecore
are summarized in Tables 2 and 3, respectively: reasoning in
these DLs is in general tractable in the data and KB complex-
ity, but intractable in the ranking and combined complexity.

p-Entailment. The following theorem provides complexity
results for p-entailment; its proof is based on Theorem 2.

Theorem 3. The p-entailment problem for ranked ontologies
in L is in Cd, Ck, and NPCc in the data, KB, and combined
complexity, respectively, and is NP-complete in the ranking
complexity. Furthermore, if Cc is contained in NP, then it is
NP-complete in the combined complexity.

In particular, for ranked ontologies in EL, p-entailment is
polynomial in the data and KB complexity, and NP-complete
in the ranking and combined complexity. For DL-Litecore,
this problem is in AC0, NLOGSPACE-complete, and NP-
complete in the respective complexities.

Note that these complexity results do not necessarily
hold for conditional p-entailments, i.e., deciding whether
rankK(q|ϕ)≥ p, which is in fact harder in the net-
work complexity. Assuming that rankP(ϕ)> 0, we have
rankK(q|ϕ) = rankK(q ∧ ϕ) / rankP(ϕ). Thus, before we
can decide whether rankK(q|ϕ)≥ p, it is necessary to com-
pute rankP(ϕ), whose associated decision problem is already
hard for the second level of the polynomial hierarchy. This
is stated in the following theorem, which follows from a re-
duction from the problem of finding the maximum satisfying
assignment of a set of weighted clauses [Krentel, 1988].

Theorem 4. Given a preference ranking P , p∈ [0, 1], and a
propositional formula ϕ, deciding whether rankP(ϕ) = p is
∆p

2-hard.

Top-k Answers. If the size of the CQ q(x) and the preference
ranking P are fixed, then there are polynomially many possi-
ble answers for q(x) to K= (P,O). For each such answer θ,
by Theorem 2, we can compute rankK(q(xθ)) by performing
constantly many BCQ entailment tests in L. If P is in the in-
put, the problem becomes ∆p

2-hard, even for simple instance
queries, by Theorem 4. But it remains in ∆p

2 in the combined
complexity if classical BCQ entailment is in the first level of
the polynomial hierarchy.

Theorem 5. Let A = (θ1, . . . , θk) be a tuple of answers for
a CQ q(x) to a ranked ontology K. If Cd contains P, then de-
ciding whether A is a top-k answer is in Cd, Ck, and (∆P

2 )Cc

in the data, KB, and combined complexity, respectively, and
∆P

2 -complete in the ranking complexity. If Cc is contained
in NP, then it is ∆P

2 -complete in the combined complexity.

In particular, for ranked ontologies in EL, top-k query an-
swering is in P in the data and KB complexity, and ∆P

2 -
complete in the ranking and combined complexity. Note that
the complexity results in Table 3 for ranked ontologies in
DL-Litecore are obtained via separate proofs. In particular, in
the data complexity, one can build a first-order query verify-
ing that A is already a top-k answer, which is in AC0.
Most Preferred Worlds. As we are interested in valuations,
rather than arbitrary contexts, computing conditional ranks is
easier. Indeed, rankP(W) is computable in polynomial time.
Hence, if BCQ answering in L is polynomial, one can decide
in polynomial time whether rankK(W|q) ≥ rankK(W ′|q)
for any two valuations W and W ′. Hardness follows, if P
is part of the input, from the fact that deciding the existence
of someW with rankP(W)≥ p is already NP-hard.



Theorem 6. Deciding whetherW1, . . . ,Wk are k most pre-
ferred worlds for the BCQ q is in Cd, Ck, and coNPCc in the
data, KB, and combined complexity, resp., and coNP-com-
plete in the ranking complexity. If Cc is contained in NP, then
it is coNP-complete in the combined complexity.

In particular, for ranked ontologies in EL, deciding k most
preferred worlds is in P in the data and KB complexity, and
coNP-complete in the ranking and combined complexity. For
DL-Litecore, this problem is in AC0, in NLOGSPACE, and
coNP-complete in the respective complexities.

7 Related Work
A different combination of DLs with preferences for ranking
objects is presented in [Lukasiewicz and Schellhase, 2007],
where conditional preferences define a ranking function that
allows to perform a semantic personalized search and ranking
over a set of resources annotated via an ontological descrip-
tion. In [Lukasiewicz et al., 2013], Datalog+/– is extended
with preferences closely related to those previously studied
for relational databases. A similar combination of DLs with
purely qualitative preferences is the approach in [Di Noia
et al., 2013], which combines DLs with CP-nets in such a
way that variable values of CP-nets are satisfiable DL formu-
las, and that ontological axioms are used to restrict CP-net
outcomes. The work [Di Noia et al., 2015], like ours, also
deals with computing k most preferred answers to CQs, but
differently from ours, it is again based on CP-nets and ex-
istential rules. Although CP-nets are also graphical models
for describing preferences, they differ greatly from polyno-
mial preference rankings (and even possibilistic networks),
both in their expressivity and in their computational complex-
ity (in CP-nets, deciding dominance is PSPACE-complete,
rather than polynomial). Another interesting approach to mix-
ing qualitative preferences with Semantic Web technology
is [Siberski et al., 2006], where SPARQL is extended to en-
code user preferences in the query.

Generalizing possibilistic logic [Dubois and Prade, 2004],
Hollunder [1995], Dubois et al. [2006], and Liau and
Yao [2001] define possibilistic extensions of DLs, with ap-
plications in information retrieval. Similarly, a model for in-
formation retrieval based on possibilistic directed networks
is proposed in [Brini et al., 2005]. Possibilistic extensions
of DLs are also used for handling inconsistencies in ontolo-
gies [Qi et al., 2011]. All these approaches generalize stan-
dard first-order interpretations to possibilistic ones and in-
terpret pairs of ontological axioms and possibilistic weights
in them. Here, instead, we connect DLs under standard first-
order interpretations via contexts to unique preference rank-
ings, which may be encoded as possibilistic networks. Borg-
wardt et al. [2016] use possibilistic networks to define a
ranking on all answers to an ontological query, rather than
an “absolute” ranking on the knowledge base; their frame-
work and complexity results are based on existential rules,
rather than on EL and DL-Litecore. In [HadjAli et al., 2011;
Dubois et al., 2013], preferences are handled via possibilis-
tic logic, while our work is on preference-based ontological
query answering, combining ontologies and preference rank-
ings (potentially encoded as possibilistic networks).

Less closely related, probabilistic DLs [d’Amato et al.,
2008; Ceylan and Peñaloza, 2017; Ceylan and Peñaloza,
2015] may similarly be context-based combinations of DLs
with unique probability distributions, such as those in
Bayesian networks. In [Lukasiewicz et al., 2014], probabilis-
tic preference logic networks allow for dealing with pref-
erences under probabilistic uncertainty in Markov random
fields. However, polynomial preference rankings are very dif-
ferent from probability distributions. In particular, the rank of
an event is the maximum of the ranks of all satisfying worlds,
while its probability is the sum of their probabilities. There-
fore, inference with preference rankings is computationally
much easier than in Bayesian networks or other probabilistic
graphical models (see also [Borgelt and Kruse, 2003]).

8 Summary and Outlook
We have introduced ranked ontologies as a general frame-
work for extending DLs with a unique preference ranking,
where each rank is computable in polynomial time, as a
method for representing and reasoning about users’ condi-
tional preferences about ontological knowledge. Using this
approach, users may retrieve only the most preferred answers
to a given query, instead of being overwhelmed by a large
number of potentially irrelevant answers. We have provided
a host of complexity results for different reasoning tasks in
ranked ontologies in general, as well as in the lightweight
DLs EL and DL-Litecore. Note that our generic complexity re-
sults can also be applied to other DLs, such as Horn SHIQ,
or even other logics beyond DLs. All results can also be eas-
ily extended to non-Boolean variables with finite domains.
All semantic results (but not the computational complexity
results) also hold for non-polynomial preference rankings.

Another natural application of our approach, especially
when considering data sources from the Web and Big Data,
is handling trust on the obtained answers. As knowledge and
data may be extracted from sources with different reputation
(e.g., Wikipedia, different newspapers, or experts), a user may
want to prioritize those answers that arise from the most pre-
ferred sources, potentially conditioned on additional factors
(e.g., when speaking of politics or sports). Naturally, these
preferences may be different for distinct users of the system.

An interesting topic for future work is to adapt specific
query answering techniques to produce effective algorithms
that can be used in practice, e.g., starting from the EL and DL-
Lite families of DLs for which query answering techniques,
mostly based on rewriting, have been largely studied.
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