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Abstract
Forming the foundations of large-scale knowledge
bases, probabilistic databases have been widely
studied in the literature. In particular, probabilistic
query evaluation has been investigated intensively
as a central inference mechanism. However, des-
pite its power, query evaluation alone cannot ex-
tract all the relevant information encompassed in
large-scale knowledge bases. To exploit this po-
tential, we study two inference tasks; namely find-
ing the most probable database and the most prob-
able hypothesis for a given query. As natural coun-
terparts of most probable explanations (MPE) and
maximum a posteriori hypotheses (MAP) in prob-
abilistic graphical models, they can be used in a
variety of applications that involve prediction or
diagnosis tasks. We investigate these problems rel-
ative to a variety of query languages, ranging from
conjunctive queries to ontology-mediated queries,
and provide a detailed complexity analysis.

1 Introduction
Research on building large-scale probabilistic knowledge
bases (PKBs) has resulted in a number of systems includ-
ing NELL [Mitchell et al., 2015], Yago [Hoffart et al.,
2013], DeepDive [Shin et al., 2015], and Google’s Know-
ledge Vault [Dong et al., 2014]. They have been used in a
wide range of areas to automatically build structured know-
ledge bases. Most of them are based on the long tradition and
foundations of probabilistic databases (PDBs) [Imieliski and
Lipski, 1984; Suciu et al., 2011], which define probability
distributions over sets of classical databases.

Probabilistic query evaluation is the key inference task un-
derpinning these systems. However, PKBs encompass rich,
structured knowledge, for which alternative inference mech-
anisms beyond probabilistic query evaluation are needed. In-
spired by the maximal posterior probability computations in
Probabilistic Graphical Models (PGMs) [Pearl, 1988; Koller
and Friedman, 2009], we investigate the problem of finding
most probable explanations for probabilistic queries to ex-
ploit the potential of such large databases to their full extent.

Computing the maximal posterior probability of a distin-
guished set of variables, given evidence about another set of

variables, is one of the key computational problems in PGMs.
In its general form, this problem is studied under the name
of maximum a posteriori hypothesis1 (MAP), where the hy-
pothesis refers to an instantiation of a set of distinguished
variables. The most probable explanation (MPE) is a spe-
cial case of MAP, where the distinguished variables and the
evidence variables cover all variables in the model. Maximal
posterior probability computations have also been lifted to re-
lational probabilistic models such as Markov Logic Networks
(MLNs) [Richardson and Domingos, 2006].

Both MPE and MAP translate to probabilistic databases
in a natural way through the rich structure of queries. The
most probable database problem (analogous to MPE), first
proposed in [Gribkoff et al., 2014], is the problem of de-
termining the (classical) database with the largest probabil-
ity that satisfies a given query. Intuitively, the query defines
constraints on the data, and the goal is to find the most prob-
able database that satisfies these constraints. We also in-
troduce a more intricate notion, called most probable hypo-
thesis, which only asks for partial databases satisfying the
query (analogous to MAP). The most probable hypothesis
contains only tuples that contribute to the satisfaction con-
dition of the query, which allows to more precisely pinpoint
the most likely explanations of the query.

We study the computational complexity of the correspond-
ing decision problems, denoted by MPD and MPH, respect-
ively, for a variety of query languages. Our results provide
detailed insights about the nature of these problems. We show
that the data complexity of both problems is lower for exist-
ential queries than for universal queries. As expected, MPH
usually has a higher complexity than MPD.

We extend our results towards ontology-mediated queries
(OMQs), which enrich the well-known class of unions of con-
junctive queries with the power of ontological rules based on
Datalog± (also called existential rules) [Baget et al., 2011;
Calı̀ et al., 2013]. This follows the tradition of ontology-
based data access [Poggi et al., 2008], which allows us to
query PDBs in a more advanced manner. For OMQs, our
analysis shows that the computational complexity of these
problems can change significantly w.r.t. the ontology lan-

1There exist other variants of these inference tasks [Kwisthout,
2011], and there are different naming conventions across communit-
ies; here, we use the terminology from the Bayesian Network (BN)
literature [Darwiche, 2009].



guages under consideration and the complexity-theoretic as-
sumptions employed. Our results provide tight complexity
bounds for all Datalog± languages known in the literature.

2 Background and Motivation
We recall the basics of classical query languages and data-
bases and briefly describe the tuple-independent PDB model.

2.1 Queries and Databases
We consider a relational vocabulary consisting of finite sets R
of predicates, C of constants, and V of variables. A term is a
constant or a variable. An atom is of the form P(s1, . . . , sn),
where P is an n-ary predicate, and s1, . . . , sn are terms. A
tuple is an atom without variables.

A conjunctive query (CQ) is an existentially quantified for-
mula ∃xφ, where φ is a conjunction of atoms, written as a
comma-separated list. A union of conjunctive queries (UCQ)
is a disjunction of CQs. If φ is an arbitrary Boolean combin-
ation of atoms, then we call ∃xφ an existential query (∃Q),
and ∀xφ a universal query (∀Q). A first-order query (FOQ)
is an arbitrary first-order formula. A query is Boolean if it has
no free variables.

A database is a finite set of tuples. The central problem
studied for databases is query evaluation: Finding all answers
to a query Q over a database D, which are assignments of
the free variables in Q to constants such that the resulting
first-order formula is satisfied in D in the usual sense. In the
following, we consider only Boolean queries Q, and focus on
the associated decision problem, i.e., deciding whether Q is
satisfied in D, denoted as usual by D ⊧ Q.

2.2 Probabilistic Databases
The most elementary probabilistic database model is based
on the tuple-independence assumption. We adopt this model
and refer to [Suciu et al., 2011] for details and alternatives.
A probabilistic database induces a set of classical databases
(called worlds), each associated with a probability value.

Formally, a probabilistic database (PDB) P is a finite set
of probabilistic tuples of the form ⟨t ∶ p⟩ , where t is a tuple
and p ∈ [0,1], and, whenever ⟨t ∶ p⟩, ⟨t ∶ q⟩ ∈ P , then p = q. A
PDB P assigns to every tuple t the probability p if ⟨t ∶ p⟩ ∈ P ,
and otherwise the probability 0. Since we usually consider
a single, fixed PDB, we denote this probability assignment
simply by P. We concentrate on the well-known possible
worlds semantics. Under the tuple-independence assumption,
P induces the following unique probability distribution over
classical databases D:

P(D) ∶=∏
t∈D

P(t)∏
t∉D

(1 −P(t)).

By the worlds induced by P we refer to those databases D
with P(D) > 0. Query evaluation is also enriched by prob-
abilistic information. More formally, the probability of a
Boolean query Q w.r.t. P is P(Q) ∶= ∑D⊧Q P(D).

Example 1. Consider the PDB Pv given in Figure 1 and the
conjunctive query

Q1 = ∃x, y Veg(x) ∧ FriendOf(x, y) ∧ Veg(y),

Vegetarian

alice 0.7
bob 0.9
chris 0.6

FriendOf

alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats

bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat

shrimp 0.7
mussels 0.9
seahorse 0.3

Figure 1: The PDB Pv , where each table represents a predic-
ate and each row is a probabilistic tuple.

through which we can ask the probability of vegetarians being
friends with vegetarians. In the given PDB, alice, bob, and
chris are all vegetarians and friends with each other (with
some probability). The query

Q′
1 = ∃y Veg(bob) ∧ FriendOf(bob, y) ∧ Veg(y)

is a special case of Q1 which asks whether bob has vegetarian
friends. Its probability can be computed as P(Q′

1) = 0.9 ⋅0.1 ⋅
0.6 = 0.054. ∎

This task is known as probabilistic query evaluation, and
it has been studied extensively in PDBs. In a celebrated res-
ult by [Dalvi and Suciu, 2012], it has been shown that UCQs
exhibit a data complexity dichotomy between P and #P for
probabilistic query evaluation. However, while dealing with
large-scale knowledge bases, alternative inference mechan-
isms are needed. Consider again our running example, and
suppose that we have observed that Q′

1 is true and would like
to learn what best explains this observation w.r.t. the PDB Pv .
We revisit this example after providing a principled approach
for dealing with such tasks.

3 Most Probable Explanations
We investigate the problem of finding most probable explan-
ations for probabilistic database queries under two different
semantics. Finding the most probable database is to determ-
ine the world with the largest probability that satisfies a given
query, as formalized by [Gribkoff et al., 2014]:

Definition 2. The most probable database for a query Q over
a PDB P is

arg max
D⊧Q

P(D),

where D ranges over all worlds induced by P .

Intuitively, a PDB defines a probability distribution over
exponentially many classical databases, and the most prob-
able database is the element in this collection that has the
highest probability while still satisfying the query. This can
be seen as the best instantiation of a probabilistic model, and
hence analogous to MPE in BNs [Darwiche, 2009].

Example 3. Consider again the PDB Pv and the query

Q2 = ∀x, y ¬Veg(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y),

which defines the constraints of being a vegetarian, which is
violated by the tuples Veg(chris), Eats(chris,mussels)



and Meat(mussels). Hence, the most probable database
for Q2 cannot contain all three of them. It is easy to see
that Veg(chris) is removed, as it has the lowest probabil-
ity. Thus, the most probable database (in this case unique)
contains all tuples of Pv that have a probability above 0.5,
except for Veg(chris). Suppose that we have observed Q′

1,
and we are interested in finding an explanation for this ob-
servation under the constraint of Q2, which is specified by
Q3 = Q′

1 ∧Q2. In this case, the most probable database must
contain the tuples Veg(chris) and FriendOf(bob,chris),
whereas Eats(chris,mussels) is omitted. ∎

Finding the most probable database is important, as it iden-
tifies the most likely state of a PDB relative to a query. How-
ever, it has certain limitations, which are analogous to the
limitations of MPE in PGMs [Koller and Friedman, 2009].
Most importantly, one is always forced to choose a complete
database although the query usually affects only a subset of
the tuples. In other words, it is usually not the case that the
whole database is responsible for the goal query to be satis-
fied. To be able to more precisely pinpoint the explanations
of a query, we introduce the following more intricate notion.
Definition 4. The most probable hypothesis for a query Q
over a PDB P is

arg max
H⊧Q

∑
D⊧H

P(D),

where H ranges over sets of tuples t and negated tuples ¬t
such that t occurs in P , and ⊧ denotes the open-world entail-
ment relation, i.e., H ⊧ Q holds iff all worlds induced by P
that satisfyH also satisfy Q.

The sum inside the maximization evaluates to the product
of the probabilities of the (negated) tuples inH, and hence we
denote it by P(H). Note that eachD ⊧Hmust satisfy Q, and
thus the most probable database is a special case of the most
probable hypothesis that has to contain all tuples from P . In
contrast, the most probable hypothesis contains tuples only if
they contribute to the satisfaction of the query.
Example 5. The most probable hypothesis H for Q3 con-
sists of Veg(bob), Veg(chris), FriendOf(bob,chris),
and ¬Eats(chris,mussels), which yields a probability of
P(H) = 0.9 ⋅ 0.6 ⋅ 0.1 ⋅ (1 − 0.8) = 0.0108. Since the most
probable hypothesis contains less tuples, it is more informat-
ive than the most probable database for Q3. ∎

Whereas the most probable database represents full know-
ledge about all facts, which corresponds to the common
closed-world assumption for (probabilistic) databases, the
most probable hypothesis may leave tuples of P unresolved,
which can be seen as a kind of open-world assumption (al-
though the tuples that do not occur in P are still false).

Complexity Results
We formulate the decision problems MPD and MPH and in-
vestigate their computational complexity (see Table 1). We
assume familiarity with computational complexity theory,
and the distinction between data and combined complexity.
Definition 6. Let Q be a query, P a PDB, and p ∈ (0,1]
a threshold. We denote by MPD (resp., MPH) the problem
of deciding whether there exists a database D (resp., hypo-
thesisH) that satisfies Q with P(D) ≥ p (resp., P(H) ≥ p).

Our first result concerns the well-known class of UCQs,
and we observe that both MPD and MPH remain in polyno-
mial time in the data complexity and in NP for the combined
complexity.
Theorem 7. MPD and MPH for UCQs can be decided in
polynomial time in the data complexity and are NP-complete
in the combined complexity.

Intuitively, polynomial-time data complexity is ensured by
the fact that UCQs are monotone queries: as a simple al-
gorithm for MPD, consider all matches (of which there are
polynomially many) of a given UCQ, and extend each match
with all (negated) tuples from the PDB that have a probability
greater than 0.5. This results in (polynomially many) clas-
sical databases, one of which is the most probable database.
The polynomial data complexity result for MPH follows from
similar arguments.

This result may seem immediate, as UCQs are monotone
queries, but for MPD we can show an even stronger result that
applies to all existential queries, even if negations in front of
query atoms are allowed. For MPH, we show an additional
hardness in the combined complexity.
Theorem 8. MPD for ∃Q can be decided in polynomial time
in the data complexity and is NP-complete in the combined
complexity. MPH for ∃Q can be decided in ΣP

2 in the data
complexity and is ΣP

3-complete in the combined complexity.
Determining the precise data complexity of MPH for ∃Q is

left as an open problem.
For universally quantified queries, MPD becomes harder

even in the data complexity. Given the rich structure of
the query, it becomes possible to encode non-deterministic
choices over all possible databases. It is important to note
that a similar hardness result was also obtained in [Gribkoff
et al., 2014] (although on a different query).
Theorem 9. MPD for ∀Q is NP-complete in the data com-
plexity.

We observe a similar phenomenon for MPH, where the in-
crease in the complexity is even more dramatic.
Theorem 10. MPH for ∀Q is ΣP

2-complete in the data com-
plexity.

Note that also MPE and MAP differ in terms of computa-
tional complexity: in BNs, the former is NP-complete [Shi-
mony, 1994; Littman, 1999] and the latter NPPP-complete
[Park and Darwiche, 2004a]. Differently, MPH remains
in ΣP

2 ⊆ NPPP, since computing the probability of the hy-
pothesis can be done in polynomial time due to the tuple-
independence assumption. As we will examine later, allow-
ing ontological rules to induce correlations on the tuples res-
ults in different complexities, which are more comparable to
PGMs, which can express conditional dependencies between
their variables. Our final result for this section concerns the
combined complexity of both problems for ∀Q.
Theorem 11. MPD and MPH for ∀Q are ΣP

2-complete in the
combined complexity.

If we consider arbitrary FOQs, it is easy to show that the
data complexity remains the same as for ∀Qs, and the com-
bined complexity is still PSPACE, as for classical databases.



Moreover, all our combined complexity results for PDBs hold
even in the case where the arity of the predicates is bounded
by some constant, commonly known as the bounded-arity
(ba) combined complexity (see Table 1). The reason is that
our hardness results use only predicates of a bounded arity.

4 Most Probable Explanations for OMQs
We now study the problems in the presence of ontological
rules, which add deductive power to PDBs. The benefits of
using of ontologies for large-scale PKB completion are well
known [Jung and Lutz, 2012; Borgwardt et al., 2017]. From a
broader perspective, extending tuple-independent PDBs with
logical rules is an old idea, aiming to induce correlations on a
logical level, and thus to relax the tuple independence, result-
ing in very powerful formalisms [Poole, 1993; 1997].

In the remainder of this paper, we restrict ourselves to
UCQs, but in exchange consider additional knowledge en-
coded through an ontology. In the simplest case, we can for-
mulate negative constraints (NCs) like

∀x, y Veg(x) ∧ Eat(x, y) ∧ Meat(y)→ �,

which imposes the same constraints as Q2. NCs are a spe-
cial case of denial constraints over databases [Staworko and
Chomicki, 2010]. We also allow to formulate more general
ontological knowledge in the form of tuple-generating de-
pendencies (TGDs). For instance, the first-order formulas

∀x, y FriendOf(x, y)→ FriendOf(y, x),

∀x Veg(x)→ ∃y Knows(x, y) ∧ Veg(y)

are TGDs stating that the friend relation is symmetric and
that every vegetarian knows another vegetarian. In partic-
ular, TGDs can express the well-known inclusion depend-
encies and join dependencies from database theory. Taking
all parts together, we are talking about ontology-mediated
queries, which are UCQs in combination with a so-called
Datalog± ontology, i.e., a finite set of NCs and TGDs [Calı̀ et
al., 2012]. We will pay particular attention to the case where
only NCs are allowed, as this is closest to the constraints over
PDBs that we described in the previous examples, and it gives
us a baseline for the computational complexity.

More formally, an NC ν is an FO formula ∀xϕ(x) → �,
where ϕ(x) is a conjunction of atoms, called the body of ν,
and � is the truth constant false . A TGD σ is an FO for-
mula ∀xϕ(x)→ ∃y P(x,y), where ϕ(x) is a conjunction of
atoms, called the body of σ, and P(x,y) is an atom, called the
head of σ. A (Datalog±) program (or ontology) Σ is a finite
set of NCs and TGDs.2 An ontology-mediated query (OMQ)
(Q,Σ) consists of a program Σ and a Boolean UCQ Q.

For the semantics, we extend the vocabulary by an infinite
set N of nulls. An instance I is a possibly infinite set of tuples
that may additionally contain nulls; it satisfies a TGD or NC σ
if I ⊧ σ, where ⊧ denotes standard FO entailment. I satisfies
a program Σ, written I ⊧ Σ, if I satisfies each formula in Σ.
The set mods(D,Σ) of models of a database D relative to a
program Σ is {I ∣ I ⊇ D and I ⊧ Σ}. A databaseD is consist-
ent w.r.t. Σ if mods(D,Σ) is non-empty. The OMQ (Q,Σ)

2We omit the universal quantifiers in TGDs and NCs, and use
commas (instead of ∧) for conjoining atoms for ease of presentation.

is entailed by D, denoted D ⊧ (Q,Σ), if I ⊧ Q holds for all
I ∈ mods(D,Σ). Observe that consistency of D w.r.t. Σ can
thus be written asD ⊭ (�,Σ), or equivalently,D ⊭ (Q�,Σ+),
where Q� is the UCQ obtained from the disjunction of the
bodies of all NCs in Σ, and Σ+ contains all TGDs of Σ. The
probability of an OMQ over a PDB is defined as usual, by
summing up over the consistent worlds that entail the query.

In general, the entailment problem is undecidable [Beeri
and Vardi, 1981], which motivated syntactic fragments of
TGDs (but not the NCs) [Calı̀ et al., 2012; Baget et al., 2011;
Krötzsch and Rudolph, 2011; Calı̀ et al., 2013; Fagin et al.,
2005]. We focus on only a few of these classes here (see
Table 1). If there are no TGDs at all, i.e., Σ+ = ∅, then
we denote the query language by OMQNC. One of the most
important classes, guarded programs (OMQG) allow only
such TGDs that have a body atom (the guard) that contains
all body variables. In the special case of linear programs
(OMQL), the body may consist of only one atom. In frontier-
guarded programs (OMQFG), only the frontier variables, i.e.,
those shared by the body and the head, need to be guarded.
We pay particular attention to the class of guarded and full
programs (OMQGF), which does not allow existentially quan-
tified variables, and is one of the least expressive Datalog±-
based query languages with a P-complete data complexity.
At the upper end of the expressivity spectrum, we observe
classes like weakly guarded (OMQWG) programs, whose data
complexity is already EXP-complete. From a theoretical per-
spective, the class of acyclic programs (OMQA), which do
not allow cyclic dependencies between predicates, is of in-
terest, because it has a non-deterministic combined complex-
ity, which leads to a different behavior.

A key paradigm in OMQ answering is the FO-rewritability
of queries: an OMQ (Q,Σ) is FO-rewritable if there exists
a Boolean UCQ QΣ such that, for all consistent databases D,
it holds that D ⊧ (Q,Σ) iff D ⊧ QΣ. Intuitively, the re-
written query QΣ can be answered directly over the database,
without referring to the Datalog± program. A class OMQX is
FO-rewritable if all its OMQs are FO-rewritable; in this case,
the OMQ entailment problem for OMQX has a data complex-
ity of AC0. Of the classes mentioned above, only OMQNC,
OMQL, and OMQA have this property.

In addition to data complexity, ba-combined complexity,
and combined complexity, for OMQs we also consider the
fixed-program (fp) combined complexity, where the Datalog±
program is viewed as fixed, but both (P)DB and query are
considered to be part of the input. The ba-combined complex-
ity is of interest for Description Logics [Baader et al., 2003],
some of which can be considered to be Datalog± languages
with arity at most 2.

4.1 Most Probable Databases for OMQs
For ontology-mediated queries, models are restricted to those
that are consistent with the ontology. In other words, the con-
straints are considered separately from the (existential) query;
thus, the definitions of MPD and MPH have to be adapted ac-
cordingly. The main difference is that we now consider only
the consistent worlds induced by the PDB, and thus maximize
only over consistent worlds.



Query
Languages

Most Probable Database Most Probable Hypothesis
data fp-comb. ba-comb. comb. data fp-comb. ba-comb. comb.

UCQ in P — NP NP in P — NP NP
∃Q in P — NP NP in ΣP

2 — ΣP
3 ΣP

3

∀Q NP — ΣP
2 ΣP

2 ΣP
2 — ΣP

2 ΣP
2

FOQ NP — PSPACE PSPACE ΣP
2 — PSPACE PSPACE

OMQNC NP NP ΣP
2 ΣP

2 PP NPPP NPPP NPPP

OMQL NP NP ΣP
2 PSPACE PP NPPP NPPP PSPACE

OMQA NP NP PNE PNE PP NPPP PNE PNE

OMQGF NP NP ΣP
2 EXP NPPP NPPP NPPP EXP

OMQG NP NP EXP 2EXP NPPP NPPP EXP 2EXP

OMQFG NP NP 2EXP 2EXP NPPP NPPP 2EXP 2EXP
OMQWG EXP EXP EXP 2EXP EXP EXP EXP 2EXP

Table 1: Complexity results for MPD and MPH for a wide range of queries: all listed results are original contributions of this
paper except the data complexity for ∀Q. This latter result has been strengthened towards the weaker representation OMQNC.

Definition 12. The most probable database for an OMQ
(Q,Σ) over a PDB P is

arg max
D⊧(Q,Σ),mods(D,Σ)≠∅

P(D).

As before, we consider the decision problem MPD, which
checks for the existence of a world D as above that exceeds a
given probability threshold p. Our complexity results for this
problem are summarized in the lower left part of Table 1.

A naive approach to solve MPD is to guess the databaseD,
and then check that it entails the given OMQ, does not entail
the query (Q�,Σ+), and exceeds the probability threshold.
Since the probability can be computed in polynomial time,
the problem can be decided by an NP Turing machine using
an oracle to check OMQ entailment.
Theorem 13. If entailment for OMQX is in a complexity
class C, then MPD for OMQX is in NPC (under the same
complexity assumptions).

By a reduction from 3-colorability, we show that MPD is
NP-hard already in the data complexity, even if we only use
NCs, i.e., the query and the positive program Σ+ are empty.
This strengthens our previous result about ∀Qs, since NCs
can be expressed by universal queries, but are not allowed to
use negated atoms.
Theorem 14. MPD for OMQNC is NP-hard in the data com-
plexity, even for Q = ⊺.

We show a matching upper bound even in the fp-combined
complexity, by reconsidering the approach from Theorem 13.
Since here the query (Q�,Σ+) is fixed, for the non-entailment
check, we can refer to the data complexity of OMQ entail-
ment. Assuming that this is possible in P, and further that the
fp-combined complexity does not exceed NP, then the whole
test can be done by a single non-deterministic Turing machine
in polynomial time. This insight yields an upper bound of NP
for most of the classes we consider.
Theorem 15. If entailment for OMQX is in NP in the fp-
combined complexity and in P in the data complexity, then
MPD for OMQX is in NP in the fp-combined complexity.

Under ba-combined complexity assumptions, we observe
an increase in complexity, which intuitively comes from the
fact that the query (Q�,Σ+) is not fixed anymore.
Theorem 16. MPD for OMQNC is ΣP

2-hard in ba-combined
complexity, even for Q = ⊺.

We obtain a matching upper bound from Theorem 13 if
C = NP. Most of the remaining hardness results follow
from the complexity of classical OMQ entailment, since an
OMQ (Q,Σ) is entailed by a consistent database D iff the
most probable database w.r.t. {⟨t ∶ 1⟩ ∣ t ∈ D} has probabil-
ity 1. In combination with Theorem 13, this yields tight com-
plexity results for large deterministic classes like PSPACE or
EXP. This leaves open only the case of OMQA, for which en-
tailment is NEXP-complete in the (ba-)combined complexity,
which yields an upper bound of NPNEXP = PNEXP = PNE due
to Theorem 13 and results from [Hemachandra, 1989]. We
show that this bound is tight, using a reduction from a PNEXP-
complete version of the tiling problem [Fürer, 1983].

Theorem 17. MPH for OMQA is PNE-hard in the ba-
combined complexity.

4.2 Most Probable Hypotheses for OMQs
Similarly to MPD, we have to update the definition of MPH
to take into account only consistent worlds.
Definition 18. The most probable hypothesis for an OMQ
(Q,Σ) over a PDB P is

arg max
H⊧(Q,Σ)

∑
D⊇H

mods(D,Σ)≠∅

P(D),

whereH is a set of (non-probabilistic) tuples t occurring inP .
Since we consider only monotone queries (i.e., UCQs), we

do not have to include negated tuples in the hypothesis.
To solve MPH, one can guess a hypothesis, and then check

whether it entails the query, and whether the probability mass
of its consistent extensions exceeds the given threshold. The
latter part can be done by a PP Turing machine with an oracle



for OMQ entailment (by normalizing the probability of the
worlds such that the threshold is exactly 0.5). The oracle can
be used also for the initial entailment check.
Theorem 19. If entailment for OMQX is in a complexity
class C, then MPH for OMQX is in NPPPC

(under the same
complexity assumptions).

For any C ⊆ PH, this yields NPPPPH
= NPPPP

= NPPP as an
upper bound, due to a result from [Toda, 1989]. Except for
PP, all other upper bounds in the lower right part of Table 1
also follow from this observation. For C = NEXP, the whole
PPNEXP computation can be done by an NEXP oracle, and
hence we again obtain NPNEXP = PNE in this case.

On the other hand, we can transfer most of the lower
bounds from MPD by a simple reduction.
Theorem 20. If MPD for OMQX is hard for a complexity
class C, then MPH for OMQX is also hard for C (under any
complexity measure except for the data complexity).

We now discuss the more interesting cases below PSPACE.
For FO-rewritable classes of OMQs, we obtain a data com-
plexity of only PP. This is due to the fact that TGDs can be
compiled into the query, and the observation of Theorem 8
that existential queries can be processed using polynomially
many steps. Nevertheless, in each step, we have to compute
a non-trivial sum over the consistent worlds, which can be
done in PP. Finally, the polynomially many PP checks can
be compiled into a single PP operation [Beigel et al., 1995].
Theorem 21. If entailment for OMQX is in AC0 in the data
complexity, then MPH for OMQX is PP-complete in the data
complexity.

To frame this result, we show NPPP-hardness both for
OMQGF (the prototypical non-FO-rewritable class) in the
data complexity, and for OMQNC in the fp-combined com-
plexity. We use two similar reductions from a problem in the
polynomial-time counting hierarchy [Wagner, 1986]. In the
first one, we rely on the power of guarded and full TGDs; in
the second, we use a non-fixed query and a careful choice of
probabilities to simulate the effect of these TGDs.
Theorem 22. MPH is NPPP-hard for OMQGF in the data
complexity, and for OMQNC in the fp-combined complexity.

We also observe a dichotomy in the data complexity of
MPH, which follows from the dichotomy for probabilistic
query evaluation [Dalvi and Suciu, 2012]. Note that the PP-
hardness holds only under Turing reductions.
Lemma 23 (Dichotomy). For FO-rewritable classes OMQX,
MPH is either in P or PP-hard in the data complexity.

Our results apply to all decidable Datalog± languages from
the literature, due to the generic nature of our theorems and
the known complexity results for OMQ entailment [Calı̀ et
al., 2012; Baget et al., 2011; Krötzsch and Rudolph, 2011;
Calı̀ et al., 2013]. For example, full sets of TGDs (F) behave
like OMQGF, and linear full (LF) and acyclic full (AF) sets of
TGDs exhibit the same complexities as OMQL.

5 Related Work
Our work is inspired by the maximal posterior probability
computations in PGMs [Pearl, 1988; Koller and Friedman,

2009]. It is well-known that they are a form of abduction,
which clearly also applies to the problems studied here. Max-
imal posterior probability computations are central in PGMs
and in statistical relational learning. However, analogous
problems have not been studied in depth in the context of
PDBs. To our knowledge, the only work in this direction is
on most probable databases [Gribkoff et al., 2014], which we
use as a starting point.

Probabilistic query evaluation has been investigated in
depth in the literature [Imieliski and Lipski, 1984; Suciu et
al., 2011]. In fact, it is known to be either in P or #P-hard
for UCQs in the data complexity [Dalvi and Suciu, 2012].
Extensions of PDBs with ontological rules, in particular with
Datalog±, are also well-covered in the literature [Gottlob et
al., 2013; Borgwardt et al., 2017]. The focus of these works
is on probabilistic query answering.

Most of our data complexity results are covered by the
classes NP, ΣP

2 , PP, and NPPP. Though intractable, they
are at the core of many important problems, which motiv-
ated a body of work tailored towards scalable algorithms for
these classes. There is an immediate connection between
MPE and weighted MAX-SAT [Sang et al., 2007]. Simil-
arly, advances in knowledge compilation [Park and Darwiche,
2004b; Pipatsrisawat and Darwiche, 2009] and approximate
model counting [Chakraborty et al., 2016; Fremont et al.,
2017] are tailored to achieve optimal, scalable algorithms for
problems in classes such as PP and NPPP. Both MPD and
MPH can be cast into their propositional variants using the
lineage representation of queries, which gives immediate ac-
cess to such algorithms. However, there is need for future
work in this direction, as grounding is not an optimal way
of handling these problems; performing inference directly on
FO-structures is known to be more efficient.

6 Summary and Outlook
We studied two inference tasks for PDBs; namely finding the
most probable database and the most probable hypothesis for
a given query. The focus of this paper was to determine the
precise complexity of these problems, and we provided a de-
tailed analysis for these problems relative to a variety of query
languages, ranging from conjunctive queries to ontology-
mediated queries. The main focus of future work is on the one
hand to extend these results to other classes (such as equal-
ity generating dependencies) and on the other hand to obtain
even more refined results (such as classification results).
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and Thomas Lukasiewicz. Ontology-mediated queries for prob-
abilistic databases. In Proc. AAAI, 2017.

[Calı̀ et al., 2012] Andrea Calı̀, Georg Gottlob, and Thomas
Lukasiewicz. A general Datalog-based framework for tractable
query answering over ontologies. JWS, 14:57–83, 2012.

[Calı̀ et al., 2013] Andrea Calı̀, Georg Gottlob, and Michael Kifer.
Taming the infinite chase: Query answering under expressive re-
lational constraints. JAIR, 48:115–174, 2013.

[Chakraborty et al., 2016] Supratik Chakraborty, Kuldeep S. Meel,
and Moshe Y. Vardi. Algorithmic improvements in approximate
counting for probabilistic inference: From linear to logarithmic
SAT calls. In Proc. IJCAI, 2016.

[Dalvi and Suciu, 2012] Nilesh Dalvi and Dan Suciu. The dicho-
tomy of probabilistic inference for unions of conjunctive queries.
J. ACM, 59(6):1–87, 2012.

[Darwiche, 2009] Adnan Darwiche. Modeling and Reasoning with
Bayesian Networks. Cambridge University Press, 2009.

[Dong et al., 2014] Xin Luna Dong, Evgeniy Gabrilovich, Geremy
Heitz, Wilko Horn, Ni Lao, Kevin Patrick Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang. Knowledge Vault: A
web-scale approach to probabilistic knowledge fusion. In Proc.
SIGKDD, 2014.

[Fagin et al., 2005] Ronald Fagin, Phokion G. Kolaitis, Renée J.
Miller, and Lucian Popa. Data exchange: Semantics and query
answering. TCS, 336(1):89–124, 2005.

[Fremont et al., 2017] Daniel Fremont, Markus Rabe, and Sanjit
Seshia. Maximum model counting. In Proc. AAAI, 2017.
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A Complexity Background
In the scope of this paper, we use the standard assumption
that the probability values are rational. Apart from the well
known classes such as NP, ΣP

2 , ΣP
3 , PSPACE, EXP, we refer

to the probabilistic complexity class PP [Gill, 1977]. Briefly,
PP defines the set of languages recognized by a polynomi-
ally time-bounded non-deterministic Turing machine that ac-
cepts an input if and only if more than half of the computa-
tion paths are accepting [Torán, 1991]. Intuitively, the class
PP can be seen as the decision counterpart of the counting
class #P [Valiant, 1979]. In fact, it is known that PPP = P#P by
Toda’s theorem. Toda’s theorem is actually stronger than this
well-known result: it holds that PPPH ⊆ PPP [Toda, 1989].

Observe that the original dichotomy for probabilistic query
evaluation by Dalvi and Suciu (2012) is formulated using the
class #P. However, #P-hardness is shown as usual using FP-
Turing reductions, which translates to a P versus PP dicho-
tomy under polynomial-time Turing reductions, for the as-
sociated decision problem. Thus, the dichotomy result from
Lemma 23 holds under these assumptions. All our other res-
ults, however, hold even under standard many-one reductions.

We also refer to the class NPPP, which encompasses an im-
portant class of problems in AI, combining search and count-
ing problems. The complexity classes relevant to our results
relate to standard classes as follows:

NP ⊆ ΣP
2, PP, PH ⊆ PPP = P#P ⊆ NPPP ⊆ PSPACE ⊆ EXP

EXP ⊆ NEXP ⊆ NPNEXP = PNEXP = PNE ⊆ 2EXP

B Proof of Theorem 7
The claim for MPD follows from Theorem 8.

For MPH, observe first that, since the query is monotone,
the databases extending the hypothesis H satisfy the query
only if H (extended with all tuples that have probability 1) is
already a match for the query. This means that the hypothesis
must be a subset of a ground instance of one of the disjuncts
of the UCQ Q. In the data complexity, there are only polyno-
mially many such hypotheses, and their probabilities can be
computed in polynomial time, which yields an upper bound
of P. In the combined complexity, we can guess such a hypo-
thesis, compare its probability to the threshold in polynomial
time, and verify that it satisfies one of the disjuncts of Q.

C Proof of Theorem 8
Upper bounds We can assume that the query is of the
form ∃xφ, where φ is a disjunction of conjunctions of atoms
and negated atoms. It is easy to see that the most probable
database must contain an instance of one of these conjunc-
tions, and from the remaining tuples t in P simply contains

those with P(t) > 0.5. Hence, for the data complexity, one
can enumerate all (polynomially many) such instances and
check if one of the resulting databases exceeds the probabil-
ity threshold. For the combined complexity, we can guess the
instance in non-deterministic polynomial time, complete it to
a database using the polynomial approach described above,
and compare its probability to the threshold in polynomial
time.

For the MPH, we can guess a hypothesis H in in polyno-
mial time, and then check the treshold and verify that, for
all databases extending H that are induced by the PDB, the
query is satisfied. The latter is an ordinary database query
evaluation problem, and hence can be done in NP in the com-
bined complexity (in P in the data complexity). Thus, the en-
tailment check can be done using a ΠP

2 (coNP) oracle, which
puts the overall complexity of this algorithm at ΣP

3 (ΣP
2).

Combined complexity lower bound for MPH We now
show ΣP

3-hardness. Consider a quantified Boolean formula
of the form

Φ = ∃u1, . . . , un∀v1, . . . , vm∃w1, . . . ,wk φ,

where φ = φ1 ∧ . . . ∧ φl is in CNF. Checking validity of such
formulas is known to be ΣP

3-complete. We provide a reduc-
tion from this problem. We start by defining a PDB PΦ as
follows:

– For every existentially quantified variable uj , PΦ con-
tains the tuples ⟨L(uj ,0) ∶ 0.5⟩ and ⟨L(uj ,1) ∶ 0.5⟩.

– For every universally quantified variable vj , PΦ contains
the tuple ⟨S(vj) ∶ 0.5⟩.

– For the existentially quantified variableswj , we only add
the two tuples ⟨T(1) ∶ 1⟩ and ⟨T(0) ∶ 0⟩ to PΦ.

We now construct a query from the given propositional for-
mula:

– For every clause φj , we construct a disjunction ψj by
replacing the propositional variables with appropriate L-
atoms, S-atoms, or T-atoms. For instance, for φj = u1 ∨
¬u2 ∨ v3 ∨ ¬w6, we use

ψj = L(u1,1) ∨ L(u2,0) ∨ S(v3) ∨ ¬T(w6).

The atom L(u1,1) indicates that the existentially quan-
tified variable u1 should be true, and dually for L(u2,0).
The atom S(v3) says that the universally quantified vari-
able v3 should be true, and we negate such atoms if the
variable is negated in the clause. Finally, ¬T(w6) ex-
presses a similar condition on the remaining existentially
quantified variable. Note that herew6 is a variable, while
u1, u2, v3 are constants from PΦ.

– For all existentially quantified variables ui, we addition-
ally define the formulas
ψei = (¬L(ui,0) ∨ ¬L(ui,1)) ∧ (L(ui,0) ∨ L(ui,1)).

– We finally construct the existential query
QΦ = ∃w1, . . . ,wn ⋁

1≤j≤l
ψj ∧ ⋀

1≤i≤n
ψei .

Intuitively, PΦ together with ψ1, . . . , ψl encodes the satis-
faction condition of the formula, while ψe1 , . . . , ψen force the
hypothesis to contain the L-tuples for the existentially quan-
tified variables u1, . . . , un.



Claim Φ is valid iff there exists a hypothesis H for QΦ

over PΦ such that P(H) ≥ (0.5)2n andH ⊧ QΦ.
Assume that Φ is valid. Then there exists a valuation ν for

u1, . . . , un, such that all extentions τ of ν to v1, . . . , vm admit
an extension ι to w1, . . . ,wk that satisfies φ. We choose the
hypothesisH as follows: We add L(uj ,1) and ¬L(uj ,0) toH
if ν(uj) = 1, and otherwise we add ¬L(uj ,1) and L(uj ,0)
to H. Hence, we have P(H) = (0.5)2n. Now, for any data-
base D that is induced by PΦ and extends H, we must have
T(1) ∈ D and T(0) ∉ D, and for each universally quanti-
fied variable vj , D fixes a truth value via the tuple S(vj).
This defines an extension τD of ν by setting τD(vj) = 1 iff
S(vj) ∈ D. By assumption, we know that there is an exten-
sion ιD of τD to the remaining variables such that φ is satis-
fied. We can hence satisfy QΦ in D by mapping each wj to 1
if ιD(wj) = 1, and to 0 otherwise. This shows thatH ⊧ QΦ.

Conversely, suppose that P(H) ≥ (0.5)2n for some hypo-
thesis H, i.e., H ⊧ QΦ. By construction of the query, for
every existentially quantified variable uj ,H must contain the
two tuples L(uj ,0) and L(uj ,1), one positively and the other
negatively, to satisfy the query. This implies that, for H to
achieve the threshold (0.5)2n, it must contain exactly two L-
tuples for each existentially quantified variable uj (and it can
contain some deterministic tuples). To show that Φ is valid,
we now define the partial assignment ν such that ν(uj) = 1 if
L(uj ,1) ∈H (thus, ¬L(uj ,0) ∈H), and ν(uj) = 0 otherwise.
Consider now any extenstion τ of ν to v1, . . . , vm, and con-
struct the extension D of H by adding S(vj) iff τ(vj) = 1.
We must also add T(1) to D. It is easy to see that P(D) > 0.
Hence, by assumption there must be an instantiation µ of the
query variables w1, . . . ,wk that satisfies QΦ. We define the
extension ιµ of τ to the propositional variables w1, . . . ,wk by
setting ιµ(wj) = 1 iff T(µ(wj)) ∈ D. Due to the construction
of QΦ, this extension must satisfy φ, and hence we know that
Φ is valid.

D Proof of Theorem 9
Hardness We provide a reduction from the satisfiability of
propositional 3CNF formulas. Let φ = ⋀i φi be a proposi-
tional formula in 3CNF. We define the following query

QSAT ∶= ∀x, y, z ( L(x) ∨ L(y) ∨ L(z) ∨ R1(x, y, z)) ∧

(¬L(x) ∨ L(y) ∨ L(z) ∨ R2(x, y, z)) ∧

(¬L(x) ∨ ¬L(y) ∨ L(z) ∨ R3(x, y, z)) ∧

(¬L(x) ∨ ¬L(y) ∨ ¬L(z) ∨ R4(x, y, z))

We define the PDB PΦ as follows.

– For each propositional variable uj , the PDBPΦ contains
the tuple ⟨L(uj) ∶ 0.5⟩.

– The clauses φj are described with the help of the predic-
ates R1, . . . , R4, each of which corresponds to one type
of clause. For example, if we have φj = u1 ∨¬u2 ∨¬u4,
we add the tuple ⟨R3(u4, u2, u1) ∶ 0⟩ to PΦ, which en-
forces via QSAT that either ¬L(u4), ¬L(u2) or L(u1)
holds. All other tuples Ri(uk, ul, um) that do not cor-
respond in such a way to one of the clauses we add with
probability 1 to PΦ.

Claim The formula φ is satisfiable iff there exists a world
D induced by Pφ such that P(D) ≥ (0.5)n and D ⊧ QSAT,
where n is the number of variables appearing in φ.

Suppose that φ is satisfiable and let ν be such a satisfying
assignment. We define a world D such that it contains all the
tuples of the form L(uj) iff ν(uj) ↦ 1 in the given assign-
ment. Moreover, D contains all the tuples which are assigned
the probability 1 in Pφ. It is easy to see that D is one of the
worlds induced by Pφ. Observe further that Pφ contains n
non-deterministic tuples, each with 0.5 probability. By this
argument, the probability of D is clearly (0.5)n. It only re-
mains to show that D ⊧ QSAT, which is easy to verify.

For the other direction, let D ⊧ QSAT and P(D) ≥ (0.5)n

for some world D. We define an assignment ν by setting the
truth value of uj to 1 if L(uj) ∈ D, and to 0 otherwise. Every
world contains exactly one assignment for every variable, by
our construction. Thus, the assignment ν is well-defined. It
is easy to verify that ν ⊧ φ.

Membership We can guess a world D, verify that it satis-
fies the query, and compare its probability in polynomial time.
Furthermore, only the first step is non-deterministic.

E Proof of Theorem 10
Hardness We consider the following query Q = QVAL ∧Q′
where

QVAL ∶= ∀x, y, z (( L(x) ∧ L(y) ∧ L(z)) ∨ R1(x, y, z)) ∧

((¬L(x) ∧ L(y) ∧ L(z)) ∨ R2(x, y, z)) ∧

((¬L(x) ∧ ¬L(y) ∧ L(z)) ∨ R3(x, y, z)) ∧

((¬L(x) ∧ ¬L(y) ∧ ¬L(z)) ∨ R4(x, y, z))

and

Q′ ∶= ∀x (¬M(x) ∧ L(x)) ∨ (M(x) ∧ ¬L(x)) ∨ K(x)

Consider a quantified Boolean formula of the form Φ =
∃u1, . . . , un∀v1, . . . , vm φ, where φ is in 3DNF. Checking
validity of such formulas is known to be ΣP

2-complete. We
provide a reduction from this problem. First, we define a PDB
PΦ such that

– for each variable u that appears in φ, PΦ contains the
tuple ⟨L(u) ∶ 0.5⟩.

– for every existentially quantified variable uj , PΦ con-
tains the tuple ⟨M(uj) ∶ 0.5⟩.

– for every universally quantified variable vj , PΦ contains
the tuple ⟨K(vj) ∶ 1⟩.

– for every conjunction in φ, PΦ contains an Ri-tuple with
probability 0, e.g., for φj = u1 ∧ v3 ∧ ¬u5 the tuple
⟨R2(u5, v3, u1) ∶ 0⟩.

– PΦ contains the remaining Ri-tuples with probability 1.

In this construction, QVAL encodes the 3DNF and Q′ helps
us to distinguish between the existentially and universally
quantified variables through the K− and M−tuples.



Claim Φ is valid iff there exists a hypothesis H for Q
over PΦ such that P(H) ≥ (0.5)2n andH ⊧ Q.

Suppose that Φ is valid. Then, there exists a valuation ν of
u1, . . . , un, such that all valuations τ that extend this partial
valuation (by assigning truth values to v1, . . . , vm) satisfy φ.
We define a hypothesis H depending on ν as follows. For
all assignments uj ↦ 1 in ν, we add L(uj) to H; if, on the
other hand, uj ↦ 0 in ν we add ¬L(uj) to H. Moreover,
to satisfy the query Q, for every L(uj) ∈ H, we add ¬M(uj)
to H, and analogously, for every ¬L(uj) ∈ H, we add M(uj)
to H. By this construction, there are clearly 2n tuples in H,
each of which has the probability 0.5 in Pφ. Hence, it holds
that P(H) = (0.5)2n. Finally, it is sufficient to observe that
all databases D which extend H must satisfy the query Q, as
every such database is in one-to-one correspondence with a
valuation τ that extends ν.

For the other direction, we assume that there exists a hypo-
thesisH for Q overPΦ such that P(H) ≥ (0.5)2n andH ⊧ Q.
This implies thatH contains at most 2n tuples that have prob-
ability 0.5 in Pφ (and possibly some deterministic tuples).
Furthermore, since H ⊧ Q′, H contains each M-tuple either
positively or negatively, and it also contains the complement-
ary L-tuple. Since these are already 2n tuples,H cannot con-
tain any L-tuples for the universally quantified variables vj .
We can thus define a valuation ν for u1, . . . , un simply by
setting uj ↦ 1 if L(uj) ∈ H and uj ↦ 0 if ¬L(uj) ∈ H.
It is easy to see that the extensions τ of ν are in one-to-one
correspondence with the databases that extend H, and that φ
evaluates to true for all of these assignments.

Membership This is an immediate consequence of The-
orem 11, which proves ΣP

2 membership even for combined
complexity.

F Proof of Theorem 11
Hardness for MPD We again consider the validity prob-
lem for Φ = ∃u1, . . . , un∀v1, . . . , vm φ, where φ is a propos-
itional formula. We use the PDB PΦ that contains all tuples
⟨L(uj) ∶ 0.5⟩ for the existentially quantified variables uj , and
the two additional tuples ⟨L(0) ∶ 0⟩ and ⟨L(1) ∶ 1⟩. The query
is QΦ = ∀v1, . . . , vm ψ, where ψ is obtained from φ by re-
placing all propositional variables u by L(u). Here, the ex-
istentially quantified variables are viewed as constants, and
the universally quantified variables are still universally quan-
tified, but now range over the database constants instead of
the truth values true and false.

Claim Φ is valid iff there exists a database D induced
by PΦ that satisfies QΦ such that P(D) ≥ (0.5)n.

Assume that Φ is valid. Then there is a valuation ν for
u1, . . . , un such that all extensions τ to v1, . . . , vm satisfy φ.
We choose the database D such that L(uj) ∈ D iff ν(uj) = 1,
L(1) ∈ D, and L(0) ∉ D. Hence, P(D) = (0.5)n. To show
thatD ⊧ QΦ, consider an assignment σ for v1, . . . , vm in QΦ,
which assigns a constant to each vj . We define the exten-
sion τ of ν to the propositional variables v1, . . . , vm by set-
ting τ(vj) = 1 iff L(σ(vj)) ∈ D. Since by assumption τ
satisfies φ, it must be the case that σ satisfies ψ.

Conversely, let D ⊧ Qφ be such that P(D) ≥ (0.5)n. We
define the valuation ν for u1, . . . , un by setting ν(uj) = 1 iff
L(uj) ∈ D. Consider now any extension τ of ν to v1, . . . , vm.
We obtain a corresponding assignment for the variables in QΦ

by setting σ(vj) = τ(vj). Since D must satisfy L(1) and
cannot satisfy L(0), we know fromD ⊧ QΦ that τ satisfies φ.

Membership Consider a non-deterministic Turing machine
M with a (co)NP oracle: Given a PDB P , a universal
query Q, and a threshold p ∈ (0,1], we can decide whether
there exists a hypothesisH such that P(H) ≥ p by first guess-
ing a hypothesis H, and verifying whether (i) P(H) ≥ p and
(ii) for all databasesD that extendH and are induced by P , it
holds that D ⊧ Q. Verification of (i) can be done in determin-
istic polynomial time and (ii) can be done in coNP (the com-
plement is equivalent to the existence of an extension D and
a valuation for the query variables that falsifies Q).

We can use the same machine for MPD, except that we
require the initial guess to be a full database.

G Proof of Theorem 14
We provide a reduction from the well-known 3-colorability
problem: Given an undirected graph G = (V,E), decide
whether the nodes of G are 3-colorable. We define the PDB
PG as follows. For all edges (u, v) ∈ E, we add the tuple
E(u, v) with probability 1, and for all nodes u ∈ V , we add the
tuples V(u,1), V(u,2), V(u,3), each with probability 0.7. In
this encoding, the tuples V(u,1), V(u,2), V(u,3) correspond
to different colorings of the same node u. The conditions for
3-colorability are encoded through a set Σ containing only
negative constraints (that do not depend on G). First, we en-
sure that each node is assigned at most one color:

V(x,1),V(x,2)→ �

V(x,1),V(x,3)→ �

V(x,2),V(x,3)→ �

Similarly, we enforce that the neighboring nodes are not as-
signed the same color:

E(x, y),V(x, c),V(y, c)→ �

Finally, we define the query Q = ⊺.

Claim G is 3-colorable iff there is a consistent database D
with P(D) ≥ (0.7 ⋅ 0.3 ⋅ 0.3)∣V ∣ (D ⊧ Q is trivially fulfilled).

Suppose that there exists a databaseD with a probability of
at least (0.7 ⋅0.3 ⋅0.3)∣V ∣ that satisfies all NCs in Σ. Then, for
every node u ∈ V , D must contain exactly one tuple V(u, c)
for some color c ∈ {1,2,3}. Recall that at most was ensured
by the first three NCs; hence, in order to achieve the given
threshold, at least one of these tuples must be present. This
yields a unique coloring for the nodes. Furthermore, since D
must contain all tuples corresponding to the edges of G, and
D satisfies the last NC, we conclude that G is 3-colorable.

Suppose that G is 3-colorable. Then, for a valid coloring,
we define a DB D that contains all tuples that correspond
to the edges, and add all tuples V(u, c) where c is the color
of u. It is easy to see that D is consistent with Σ and P(D) =

(0.7 ⋅ 0.3 ⋅ 0.3)∣V ∣, which concludes the proof.



H Proof of Theorem 16
Consider the formula

Φ = ∃x1, . . . , xn ∀y1, . . . , ym φ,

where φ = φ1 ∨ ⋅ ⋅ ⋅ ∨ φk is a propositional formula in 3DNF.
We encode the truth values of the variables xi using the tuples
⟨V(xi,0) ∶ 0.9⟩, ⟨V(xi,1) ∶ 0.9⟩ in the PDB PΦ, which are
constrained by the NC V(x,0)∧V(x,1)→ �. The idea is that
the worlds D with maximal probability must satisfy exactly
one of V(xi,0), V(xi,1) for each xi, thereby representing a
truth value assignment for x.

We illustrate the encoding of the conjunctions in Φ on the
example of φj = x1 ∧ ¬y4 ∧ ¬x3. We introduce a predicate
Cj(t, y4) that describes the truth value t of φj as a function
of the truth value of y4, which of course depends on the truth
values chosen for x1 and x3 via the V-tuples. For example, if
y4 is true, then φj must be false, which is expressed by the
tuple Cj(0,1). As above, we add all tuples ⟨Cj(t, y4) ∶ 0.9⟩
with t, y4 ∈ {0,1} to PΦ. The idea is again that, for a certain
value of y4, exactly one of the two tuples Cj(0, y4), Cj(1, y4)
will be true in the chosen world D (not both and not neither).

This behavior is enforced by a series of NCs. For example,
if x1 is true and x3 is false, then Cj(1,0) must be true, i.e.,
Cj(0,0) must be false:

V(x1,1) ∧ V(x3,0) ∧ Cj(0,0)→ �

Moreover, making y4 true will always make the conjunction
false, regardless of the values of x1 and x3:

Cj(1,1)→ �

Finally, if either x1 is false or x3 is true, then it is impossible
to satisfy φj , regardless of the value of y4:

V(x1,0) ∧ Cj(1, y4)→ �

V(x3,1) ∧ Cj(1, y4)→ �

These four NCs together ensure that, in every world D of
maximal probability (which determines a fixed truth value
assignment for x1, . . . , xn), the satisfied tuples Cj(t, y4) de-
termine the truth value of φj as a function of the truth value
of y4. For example, if D satisfies V(x1,0) and V(x3,1) (and
hence neither V(x1,1) nor V(x3,0)), then it must satisfy also
Cj(0,0) and Cj(0,1) (but neither Cj(1,0) nor Cj(1,1)).

In general, the predicate Cj is of arity 1+ ∣yj ∣, where yj are
the variables among y1, . . . , ym that occur in φj . This results
in tuples of the form Cj(t,yj). For each clause, four NCs
like the ones above enforce that exactly one of Cj(0,yj) and
Cj(1,yj) is true, for each valuation of yj , and this describes
exactly the behavior of φj .

Finally, we add the NC
k

⋀
j=1

Cj(0,yj)→ �

to express that every valuation of the variables y1, . . . , ym
must satisfy at least one conjunction φj . Hence, the exist-
ence of a consistent world D with P(D) ≥ (0.09)`, where
` = n + ∑

k
j=1 2∣yj ∣, is equivalent to the validity of Φ. Since

` is bounded by n + 8k, the threshold can be written using
linearly many bits. Observe that we do not need a query (we
can choose Q = ⊺) nor any TGDs, and the maximal arity of
the used predicates is 4.

I Proof of Theorem 17
We give a reduction from the following extended tiling prob-
lem, which is PNEXP-complete: Given a triple (m,TP1,TP2)
of an integer m in unary and tiling problems TP1 and TP2

for the exponential square 2n×2n, does, for every initial con-
dition w = w1 . . .wm for the first row, TP1 have no solution
with w, or does TP2 have some solution with w? Here, the
tiling problem [Fürer, 1983] is defined as follows: Let T be a
set of square tile types, H,V ⊆ T × T be the horizontal and
vertical compatibility relations, respectively, and n be an in-
teger in unary. A 2n × 2n tiling is a function f ∶{1, . . . ,2n} ×
{1, . . . ,2n} → T such that (f(i, j), f(i, j + 1)) ∈ H and
(f(i, j), f(i + 1, j)) ∈ V , for each i and j. An instance of
the tiling problem is a tuple (T,H,V,n), and the question is
whether a 2n × 2n tiling exists.

The construction makes use of the result that any instance
TP of tiling the 2n × 2n-square, given n, relations H and V ,
and an initial tiling condition w = w1 . . .wm, is reducible
to OMQ answering with acyclic TGDs in polynomial time
such that the query (Tiling,ΣTP,∣w∣) is entailed by DTP ∪

Dw, where ΣTP,∣w∣ is constructed from TP and ∣w∣, DTP from
TP, andDw = {Initj(wj) ∣ 1 ≤ j ≤m}, iff TP has a solution
with w.

We define the PDB P as the set of all tuples ⟨t ∶ 1⟩ such
that f ∈ DTP1 ∪ DTP2 , all tuples ⟨Initj(d) ∶ 0.5⟩ such that
d ∈ T and 1 ≤ j ≤m, and the tuples ⟨Tiling2(0) ∶ 0.5⟩
and ⟨Tiling2(1) ∶ 0.5⟩. We define the program Σ as the
union of Σ

TP1,∣w∣
r and Σ

TP2,∣w∣
r , obtained from ΣTP1,∣w∣ and

ΣTP2,∣w∣ by renaming all derived predicates P to P1 and P2,
respectively, and by replacing Tiling2 by Tiling2(1), to-
gether with the NCs Tiling2(0),Tiling2(1) → � and all
Initj(d),Initj(d

′)→ � such that d, d′ ∈ T and 1 ≤ j ≤m.
Then, with the UCQ Q defined as

∃x1, . . . , xm
m

⋀
j=1

Initj(xj) ∧ Tiling1 ∧ Tiling2(0),

we obtain that there is a world induced by P that satisfies
(Q,Σ) iff (m,TP1,TP2) is a no-instance of the extended
tiling problem.

J Proof of Theorem 20
Consider an OMQ (Q,Σ) over a PDB P , for which we want
to find a consistent world of probability > q. We enforce that
the most probable hypothesis needs to make a choice for all
tuples in P , by replacing each tuple ⟨P(t) ∶ p⟩ by two new
tuples ⟨P′(t,1) ∶ p⟩ and ⟨P′(t,0) ∶ 1 − p⟩, where P′ is a fresh
predicate that increases the arity of P by one, and 0 and 1 are
fresh constants. We denote the resulting PDB by P ′. As the
query, we use

Q′ ∶= Q1 ∧ ⋀
⟨P(t)∶p⟩∈P

∃z P′(t, z),

where Q1 is obtained from Q by replacing all tuples P(x) by
P′(x,1). The query Q′ is equivalent to a UCQ that is of size
polynomial in the size of Q and P . Finally, in the program Σ
we similarly replace each tuple P(x) by P′(x,1), and add the
NCs P′(x,1)∧P′(x,0)→ � for each of the new predicates P′.



The resulting program Σ′ still satisfies the constraints of fp-
/ba-combined complexity, and is in the same class as Σ.

We show that the most probable hypothesis for (Q′,Σ′)
over P ′ exceeds the threshold q2 iff the most probable data-
base for (Q,Σ) overP exceeds q. Assume that the latter is the
case, and the database D has a probability of d > q w.r.t. P .
Then the hypothesis that contains all tuples P′(t,1) for which
P(t) ∈ D, and P′(t,0) whenever P(t) ∉ D has the probability
d2 > q2 over P ′ and satisfies the OMQ (Q′,Σ′). Conversely,
assume that the hypothesisH for (Q′,Σ′) over P ′ has a prob-
ability d > q2. SinceH satisfies Q′ and the new NCs in Σ′, for
each tuple ⟨P(t) ∶ p⟩ ∈ P , it must contain exactly one of the
tuples P′(t,0) or P′(t,1), which together contribute a prob-
ability of (1−p)2 or p2, respectively, overP ′. Hence, the sum
in Definition 18 collapses to one element, which corresponds
exactly to the database D obtained by collecting all tuples
P(t) for which P′(t,1) is inH. This database has a probabil-
ity of

√
d > q over P , and must satisfy the original query and

NCs.

K Proof of Theorem 21
Hardness PP-hardness follows from the complexity of
probabilistic query evaluation over PDBs [Suciu et al., 2011]
since we can choose Q = ⊺ and reformulate any UCQ into a
set of NCs such that the consistency of a database is equival-
ent to the non-satisfaction of the UCQ.

Membership We consider an OMQ (Q,Σ), a PDB P , and
a threshold p. Since the query is FO-rewritable, it is equi-
valent to an ordinary UCQ QΣ over P . Similarly, we can
rewrite the UCQ Q� expressing the non-satisfaction of the
NCs into a UCQ Q�,Σ. By the observation in Theorem 8,
we can enumerate all hypotheses H, which are the polyno-
mially many matches for QΣ in P , and then have to check
for each H whether the probability of all consistent exten-
sions exceeds p. The latter part is equivalent to evaluating
¬Q�,Σ ∧ ⋀t∈H t over P , which can be done by a PP oracle
[Suciu et al., 2011]. We accept iff one of these PP checks
yields a positive answer. In the terminology of [Beigel et al.,
1995], this is a polynomial-time disjunctive reduction of our
problem to a PP problem. Since that paper shows that PP is
closed under such reductions, we obtain the desired PP upper
bound.

L Proof of Theorem 22
Data complexity for OMQGF We reduce the following
problem from [Wagner, 1986], which uses the counting quan-
tifier C: decide the validity of

Φ = ∃x1, . . . , xn Cc y1, . . . , ym φ,

where φ = φ1 ∧ ⋅ ⋅ ⋅ ∧ φk is a propositional formula in CNF,
over the variables x1, . . . , xn, y1, . . . , ym. This amounts to
checking whether there is a partial assignment for x1, . . . , xn
that admits at least c extensions to y1, . . . , ym that satisfy φ.

We can assume without loss of generality that each of the
clauses φi contains exactly three literals: shorter clauses can
be padded by copying existing literals, and longer clauses can

be abbreviated using auxiliary variables that are included un-
der the counting quantifier Cc. Since the values of these vari-
ables are uniquely determined by the original variables, this
does not change the number of satisfying assignments.

We define the PDB PΦ that describes the structure of Φ:

• For each variable v occurring in Φ, PΦ contains the
tuples ⟨V(v,0) ∶ 0.5⟩ and ⟨V(v,1) ∶ 0.5⟩, where v is
viewed as a constant. These tuples represent the assign-
ments that map v to false and true, respectively.

• For each clause φj , we introduce the tuple
⟨C(v1, t1, v2, t2, v3, t3) ∶ 1⟩, where ti is 1 if vi oc-
curs negatively in φj , and 0 otherwise (again, all terms
are constants). For example, for x3 ∨ ¬y2 ∨ x7, we use
the tuple ⟨C(x3,0, y2,1, x7,0) ∶ 1⟩. This encodes the
knowledge about the partial assignments that do not
satisfy φ.

• We use auxiliary tuples ⟨A(x1) ∶ 1⟩, ⟨S(x1, x2) ∶ 1⟩, . . . ,
⟨S(xn−1, xn) ∶ 1⟩, and ⟨L(xn) ∶ 1⟩ to encode the order
on the variables xi, and similarly for yj : ⟨B(y1) ∶ 1⟩,
⟨S(y1, y2) ∶ 1⟩, . . . , ⟨S(ym−1, ym) ∶ 1⟩, and ⟨L(ym) ∶ 1⟩.

We now describe the program Σ used for the reduction. First,
we detect whether all variables xi (1 ≤ i ≤ n) have a truth
assignment (i.e., at least one of the facts V(xi,0) or V(xi,1) is
present) by the special nullary predicate A, using the auxiliary
unary predicates V and A:

V(x, t)→ V(x)

A(x) ∧ V(x) ∧ S(x,x′)→ A(x′),
A(x) ∧ V(x) ∧ L(x)→ A,

where x,x′, t are variables. We do the same for the variables
y1, . . . , ym:

B(y) ∧ V(y) ∧ S(y, y′)→ B(y′),
B(y) ∧ V(y) ∧ L(y)→ B.

Now, the query Q = A ensures that only such hypotheses are
valid that at least contain a truth assignment for the variables
x1, . . . , xn.

Next, we restrict the assignments to satisfy φ by using ad-
ditional NCs in Σ. First, we ensure that there is no “inconsist-
ent” assignment for any variable v, i.e., only one of the facts
V(v,0) or V(v,1) holds:

V(v,0) ∧ V(v,1)→ �

Furthermore, if all variables y1, . . . , ym have an assignment,
then none of the clauses in φ can be falsified:

C(v1, t1, v2, t2, v3, t3) ∧

V(v1, t1) ∧ V(v2, t2) ∧ V(v3, t3) ∧ B→ �,

where v1, t1, v2, t2, v3, t3 are variables.
We show that Φ is valid iff there exists a hypothesis H

that satisfies (Q,Σ) such that all consistent databases that
extend H sum up to a probability (under PΦ) of at least
p = 0.25n ⋅ 0.25m(3m − 2m + c).

Assume that such a hypothesis H exists. Since H ⊧
(Q,Σ), we know that for each xi (1 ≤ i ≤ n) one of the



tuples V(xi,0), V(xi,1) is included in H. In each consist-
ent extension of H, it must be the case that the complement-
ary facts (representing an inconsistent assignment for xi) are
false. In particular, these complementary facts cannot be part
of H since then its probability would be 0. Hence, we can
ignore the factor 0.25n in the following. There are exactly
3m − 2m databases satisfyingH that represent consistent, but
incomplete assignments for the variables yj . Since these data-
bases do not entail B, they are all consistent, and hence coun-
ted towards the total sum. The inconsistent assignments for
y1, . . . , ym yield inconsistent databases, which leaves us only
with the 2m databases representing proper truth assignments.
Those that violate at least one clause of φ become inconsist-
ent, and hence there are at least c such consistent databases
iff there are at least c extensions of the assignment repres-
ented by H that satisfy φ. We conclude these arguments by
noting that the probability of each individual choice of tuples
V(yj , tj) (1 ≤ j ≤m) is 0.25m.

On the other hand, if Φ is valid, then we can use the same
arguments to construct a hypothesis H (representing the as-
signment for x1, . . . , xn) that exceeds the given threshold.

Fp-combined complexity for OMQ∅ As before, we con-
sider a formula

Φ = ∃x1, . . . , xn Cc y1, . . . , ym φ,

where φ = φ1 ∧ ⋅ ⋅ ⋅ ∧φk is in 3CNF and the PDB PΦ is almost
the same as before:

• For each variable xi, 1 ≤ i ≤ n, we use the tuples
⟨V(xi,0) ∶ 0.5⟩ and ⟨V(xi,1) ∶ 0.5⟩, and for yj , 1 ≤ j ≤
m, we use ⟨V(yj ,0) ∶ p⟩ and ⟨V(yj ,1) ∶ p⟩, where p is a
fixed, large probability that we specify later.

• For each clause φj , we introduce the tuple
⟨C(v1, t1, v2, t2, v3, t3) ∶ 1⟩ as before.

We use the query

QΦ = ∃t1, . . . , tn V(x1, t1) ∧ ⋅ ⋅ ⋅ ∧ V(xn, tn),

which is equivalent to the query A from above, to enforce that
any hypothesis contains a truth assignment for the existen-
tially quantified variables. For the variables y1, . . . , ym, this
is handled by a special choice of p, which ensures that the
probabilities of the incomplete assignments sum up to a value
that is smaller than the probability of a single complete as-
signment; hence, we can ignore the incomplete assignments
when counting the complete assignments. The program Σ
hence only needs to contain the two NCs

V(v,0) ∧ V(v,1)→ �

and

C(v1, t1, v2, t2, v3, t3) ∧

V(v1, t1) ∧ V(v2, t2) ∧ V(v3, t3)→ �.

To find an appropriate value for p, consider a fixed hy-
pothesis (which specifies an assignment for the existentially
quantified variables), and a single database that contains ex-
actly one of each of the pairs of tuples V(yj ,0),V(yj ,1), for

each yj , 1 ≤ j ≤ m. This complete assignment has a probab-
ility of pm(1 − p)m (if we ignore all other tuples). We now
compute the probability mass of all incomplete assignments
for y1, . . . , ym. For a fixed number k of “incomplete vari-
ables”, there are (m

k
)2m−k such assignments, since we can

first choose k out of m variables yj for which neither tuple
V(yj ,0),V(yj ,1) is true, and we have binary choice for each
of the remainingm−k variables. Each such assignment has a
probability of pm−k(1− p)m+k, and hence in total the incom-
plete assignments have a probability of

m

∑
k=1

(m
k
)2m−kpm−k(1 − p)m+k

= 2mpm(1 − p)m
m

∑
k=1

(m
k
) ( 1−p

2p
)
k

= 2mpm(1 − p)m ((1 + 1−p
2p

)
m
− 1)

by the binomial theorem. Recall that our goal is to make this
number smaller than pm(1−p)m, and hence we need to solve
the inequation

1 > (p+1
p

)
m
− 2m,

which is equivalent to

p >
1

(1 + 2m)
1
m − 1

.

Since the latter term is always smaller than 1, it is possible
to choose p as required, e.g., p = 1 − 2−2m, which has only
linearly many digits.

Now we have that Φ is valid iff there exists a hypothesis
H ⊧ (QΦ,Σ) whose consistent extensions sum up to probab-
ility (under PΦ) of at least 0.25n ⋅ c ⋅ pm(1 − p)m. Indeed,
if there exists such an H, then it represents a truth assign-
ment for x1, . . . , xm, which accounts for the term 0.25n (see
the proof of Theorem 22). But then to obtain the probability
threshold, there must exist at least c complete assignments for
y1, . . . , ym, since the incomplete assignments on their own
do not add up to pm(1 − p)m. Conversely, if Φ is valid, we
can use that information to choose a hypothesis that admits at
least c extensions that represent complete truth assignments
for y1, . . . , ym.

M Proof of Lemma 23
Recall the proof of Theorem 21. According to [Dalvi and Su-
ciu, 2012], the evaluation problem for the UCQ Q�,Σ over P
is either in P or PP-hard (under Turing reductions). In the
former case, MPH can also be decided in deterministic poly-
nomial time. In the latter case, we reduce the evaluation prob-
lem for Q�,Σ over a PDB P to the MPH for QΣ and Q�,Σ
over some P ′ ⊇ P . We introduce an “artificial match” for QΣ

into P ′, by adding new constants and tuples (with probabil-
ity 1) that satisfy one disjunct of QΣ, while taking care that
these new tuples do not satisfy Q�,Σ. Such tuples must ex-
ist if QΣ is not subsumed by Q�,Σ; otherwise, all hypotheses
would trivially have the probability 0 (and hence the MPH
would be decidable in polynomial time). In P ′, the probab-
ility of the most probable hypothesis for QΣ and Q�,Σ is the
same as the probability of Q�,Σ over P , and hence deciding
the threshold is PP-hard.


