
Attributed Description Logics:
Ontologies for Knowledge Graphs

(Extended Technical Report)

Markus Krötzsch?, Maximilian Marx, Ana Ozaki, and Veronika Thost

Center for Advancing Electronics Dresden (cfaed), TU Dresden
firstname.lastname@tu-dresden.de

Abstract In modelling real-world knowledge, there often arises a need to represent
and reason with meta-knowledge. To equip description logics (DLs) for dealing
with such ontologies, we enrich DL concepts and roles with finite sets of attribute–
value pairs, called annotations, and allow concept inclusions to express constraints
on annotations. We show that this may lead to increased complexity or even
undecidability, and we identify cases where this increased expressivity can be
achieved without incurring increased complexity of reasoning. In particular, we
describe a tractable fragment based on the lightweight description logic EL, and
we cover SROIQ, the DL underlying OWL 2 DL.

1 Introduction

Modern data management has re-discovered the power and flexibility of graph-based
representation formats, and so-called knowledge graphs are now used in many practical
applications, e.g., in companies such as Google or Facebook. The shift towards graphs is
motivated by the need for integrating knowledge from a variety of heterogeneous sources
into a common format.

Description logics (DLs) seem to be an excellent fit for this scenario, since they can
express complex schema information on graph-like models, while supporting incomplete
information via the open world assumption. Ontology-based query answering has become
an important research topic, with many recent results and implementations, and the W3C
OWL and SPARQL standards provide a basis for practical adoption. One would therefore
expect to encounter DLs in many applications of knowledge graphs.

However, this is not the case. While OWL is often used in RDF-based knowledge
graphs developed in academia, such as DBpedia [5] and Bio2RDF [4], it has almost
no impact on other applications of graph-structured data. This might in part be due
to a format mismatch. Like DLs, many knowledge graphs use directed, labelled graph
models, but unlike DLs they often add (sets of) annotations to vertices and edges. For
example, the fact that Liz Taylor married Richard Burton can be described by an assertion
spouse(taylor, burton), but in practice we may also wish to record that they married in
1964 in Montreal, and that the marriage ended in 1974. We may write this as follows:

spouse(taylor, burton)@[start : 1964, location : Montreal, end : 1974] (1)
? The author thanks the competent and friendly staff of trauma surgery ward OUC-S2 at the
University Hospital Carl Gustav Carus, Dresden, where some of this research has been executed.

Such annotated graph edges today are widespread in practice. Prominent representatives
include Property Graph, the data model used in many graph databases [19], andWikidata,
the knowledge graph used by Wikipedia [23]. Looking at Wikidata as one of the few
freely accessible graphs outside academia, we obtain several requirements:

– No single purpose. Annotations are used for many modelling tasks. Expected cases
such as validity time and provenance are important, but are by far not the only uses,
as (1) (taken from Wikidata) illustrates. Besides start, end, and location, over 150
other attributes are used at least 1000 times as annotations on Wikidata.

– Multi-graphs. It can be necessary to include the same assertion multiple times with
different annotations. For example, Wikidata in addition to (1) also includes the
assertion spouse(taylor, burton)@[start : 1975, end : 1976]. Such multi-graphs are
also supported by Property Graph, but not by logics with functional annotations,
such as semi-ring approaches [10,21] and aRDF [22].

– Multi-attribute annotations. Wikidata (but not Property Graph) further supports
annotations where the same attribute has more than one value. Among others,
Wikidata includes, e.g., the assertion castMember(Sesame_Street, Frank_Oz)@
[role : Bert, role : Cookie_Monster, role : Grover].

One can encode annotated (multi-)graphs as directed graphs, e.g., using reification [9],
but DLs cannot express much over such a model. For example, one cannot say that the
spouse relation is symmetric, where annotations are the same in both directions [16].
Other traditional KR formalisms are similarly challenged in this situation.

In a recent work, we have therefore proposed to develop logics that support sets of
attribute–value annotations natively [16]. The according generalisation of first-order
logic, called multi-attribute predicate logic (MAPL), is expressive enough to capture
weak second-order logic, making reasoning non-semi-decidable. For that reason, we have
developed the Datalog-like MAPL rule language (MARPL) as a decidable fragment.

In this paper, we explore the use of description logics as a basis for decidable, and even
tractable, fragments of MAPL. The resulting family of attributed DLs allows statements
such as spouse@X v spouse−@X to say that spouse is symmetric. We introduce set
variables (X in the example) to refer to annotations. We refer to variables to express
constraints over annotations and to compare attribute values between them. A challenge
is to add functionality of this type without giving up the nature of a DL.

Another challenge is that these extensions may greatly increase the complexity of
DLs. We show that reasoning becomes 2ExpTime-complete for attributed ALCH, a
prototypical DL; ExpTime-complete for attributed EL, a DL close to OWL 2 EL; and
N2ExpTime-complete for attributed SROIQ, the DL underlying OWL 2 DL. Slight
extensions of our DLs even lead to undecidability. We develop syntactic constraints to
recover lower complexities, including PTime-completeness for attributed EL.

For readability, some proofs have been moved to the appendix.

2 Attributed Description Logics

We introduce attributed description logics by defining the syntax and semantics of
attributed ALCH, denoted ALCH@+. This allows us to illustrate the central ideas

without having to deal with the full generality of SROIQ, which we introduce in
Section 6. We note that fact entailment can be polynomially reduced in the DLs we study.

2.1 Syntax and Intuition

We first give the syntax and intuitive semantics of ALCH@+; the semantics will be
formalised thereafter.

Example 1. We start with a guiding example, which will be formally explained when
we define ALCH@+. Wikidata contains assertions of the form educatedAt(a_person,
a_university)@[start : 2005, end : 2009, degree : master]. This motivates the following
ALCH@+ axiom:

X : bdegree : masterc
(∃educatedAt@X .University v MSc@[start : X .end]

)
(2)

The underlying DL axiom is ∃educatedAt.University v MSc, stating that anybody
educated at some university holds an M.Sc. Axiom (2) restricts this to educatedAt
assertions whose annotations X specify the degree to be a master, where X may contain
further attribute–value pairs. Indeed, if X specifies an end date for the education, then
this is used as a start for the entailed MSc assertion. Similarly, we may express that a
person that was educatedAt some institution (where the degree attribute has some value)
obtained a degree from this institution:

educatedAt@bdegree : +c v obtainedDegreeFrom (3)

Attributed DLs are defined over the usual DL signature with sets of concept names
NC, role names NR, and individual names NI. In OWL terminology, concepts correspond
to classes, roles correspond to properties, and individual names correspond to individuals.
We consider an additional set NV of (set) variables. Following the definition of multi-
attributed predicate logic (MAPL, [16]), we define annotation sets as finite binary
relations, understood as sets of attribute–value pairs. In particular, attributes refer
to domain elements and are syntactically denoted by individual names. To describe
annotation sets, we introduce specifiers. The set S of specifiers contains the following
expressions:

– set variables X ∈ NV;
– closed specifiers [a1 : v1, . . . , an : vn]; and
– open specifiers ba1 : v1, . . . , an : vnc,

where ai ∈ NI and vi is either +, an individual name in NI, or an expression of the form
X .c, with X a set variable in NV and c an individual name in NI. Intuitively, closed
specifiers define specific annotation sets whereas open specifiers merely provide lower
bounds. We use + for “one or more” values, while X .c refers to the (finite, possibly
empty) set of all values of attribute c in an annotation set X . A ground specifier is a
specifier that does not contain expressions of the form X .c.

Example 2. The open specifier bdegree : masterc in Example 1 describes all annotation
sets with at least the given attribute–value pair. The closed specifier [start : X .end]
denotes the (unique) annotation set with start as the only attribute, having exactly the
values given for attribute end in X .

The set R of ALCH@+ role expressions contains all expressions r@S with r ∈ NR and
S ∈ S. The set C of ALCH@+ concept expressions is defined as follows

CF > | ⊥ | NC@S | ¬C | C u C | C t C | ∃R.C | ∀R.C (4)

An ALCH@+ concept (or role) assertion is an expression A(a)@S (or r(a, b)@S), with
A ∈ NC (or r ∈ NR), a, b ∈ NI, and S ∈ S a specifier that is not a set variable. An
ALCH@+ concept inclusion is an expression of the form

X1 :S1, . . . , Xn :Sn (C v D), (5)

where C,D ∈ C are ALCH@+ concept expressions, S1, . . . , Sn ∈ S are specifiers, and
X1, . . . , Xn ∈ NV are set variables occurring in C,D or in S1, . . . , Sn. ALCH@+ role
inclusions are defined analogously, but with role expressions instead of the concept
expressions. An ALCH@+ ontology is a set of ALCH@+ assertions, and role and
concept inclusions.

To simplify notation, we omit the specifier bc (meaning “any annotation set”) in role
or concept expressions, as done for University in Example 1. In this sense, any ALCH
axiom is also an ALCH@+ axiom. Moreover, we omit prefixes of the form X : bc, which
merely state that X might be any annotation set.

We follow the usual DL notation for referring to other attributed DLs, where we add
symbols to the DL name to indicate additional features, and remove symbols to indicate
restrictions. Thus, ALC@+ denotes ALCH@+ without role hierarchies, and ALCH@
corresponds to the fragment of ALCH@+ that disallows + in specifiers.

2.2 Formal Semantics
As usual in DLs, an interpretation I = 〈∆I, ·I〉 consists of a domain ∆I and an
interpretation function ·I . Individual names c ∈ NI are interpreted as elements cI ∈ ∆I .
Concepts and roles are interpreted as relations that here include annotation sets:
– AI ⊆ ∆I × Pfin

(
∆I × ∆I

)
for a concept A ∈ NC, and

– rI ⊆ (∆I × ∆I) × Pfin
(
∆I × ∆I

)
for a role r ∈ NR,

where Pfin
(
∆I × ∆I

)
denotes the set of all finite binary relations over ∆I . Expres-

sions with free set variables are interpreted using variable assignments Z : NV →
Pfin

(
∆I × ∆I

)
. For an interpretation I and a variable assignment Z , we define the

semantics of specifiers as follows:

XI,Z B
{
Z(X)

}
,

[a : b]I,Z B
{
{〈aI, bI〉}

}
,

[a : X .b]I,Z B
{
{〈aI, δ〉 | there is δ ∈ ∆I such that 〈bI, δ〉 ∈ Z(X)}

}
,

[a : +]I,Z B
{
{〈aI, δ1〉, . . . , 〈aI, δ`〉}

�� ` ≥ 1 and δi ∈ ∆I
}
,

[a1 : v1, . . . , an : vn]I,Z B
{ n⋃
i=1
Ψi

��� Ψi ∈ [ai : vi]I,Z
}
,

ba1 : v1, . . . , an : vncI,Z B
{
Ψ ∈ Pfin

(
∆
I × ∆I

) ��Ψ ⊇ Φ
for some Φ ∈ [a1 : v1, . . . , an : vn]I,Z

}
,

where X ∈ NV, a, ai, b ∈ NI, and vi is +, an element of NI, or of the form X .a. We can
now define the semantics of concept and role expressions:

A@SI,Z B {δ ∈ ∆I | 〈δ,Ψ〉 ∈ AI for some Ψ ∈ SI,Z } (6)

r@SI,Z B {〈δ1, δ2〉 ∈ ∆I × ∆I | 〈δ1, δ2,Ψ〉 ∈ rI for some Ψ ∈ SI,Z } (7)

Observe that we quantify existentially over admissible annotations here (“some Ψ ∈
SI,Z”). However, variables and closed specifiers without + are interpreted as singleton
sets, so true existential quantification only occurs if S is an open specifier or if it contains
+. All other DL constructs can now be defined as usual, e.g., (C uD)I,Z = CI,Z ∩DI,Z ,
(∃r .C)I,Z = {δ | there is 〈δ, ε〉 ∈ rI,Z with ε ∈ CI,Z }, and (¬C)I,Z = ∆I \CI,Z . Note
that we do not include annotations on >, i.e. >I,Z = ∆I , and similarly for ⊥I,Z = ∅.

Now I satisfies an ALCH@+ concept inclusion α of the form (5), written I |= α,
if for all variable assignments Z such that Z(Xi) ∈ SI,Z

i for all i ∈ {1, . . . , n}, we
have CI,Z ⊆ DI,Z . Satisfaction of role inclusions is defined analogously. Moreover, I
satisfies an ALCH@+ concept assertion A(a)@S if 〈aI,Ψ〉 ∈ AI for some Ψ ∈ SI (the
latter is well-defined since S contains no variables). I satisfies an ontology if it satisfies
all of its axioms. Based on this model theory, logical entailment is defined as usual.

Example 3. Consider the concept inclusion α of Example 1 and the interpretation I over
domain ∆I = {Mary, John, TUD, start, end, 2017, 2018,master, degree}, given by

MScI = {〈Mary, {〈start, 2016〉}〉, 〈John, {〈start, 2017〉}〉},
educatedAtI = {〈Mary, TUD, {〈degree,master〉, 〈end, 2016〉}〉,

〈John, TUD, {〈degree,master〉, 〈end, 2017〉}〉}, and
UniversityI = {〈TUD, {}〉}.

Then I |= α, i.e., I satisfies α.

3 Expressivity of Attributed Description Logics

In this section, we clarify some basic semantic properties of attributed DLs and the
general relation of attributed DLs to other logical formalisms. As a first observation, we
note that already ALC@+ is too expressive to be decidable:

Theorem 1. Satisfiability of attributed DLs with + is undecidable, even if the DL only
supports u, and supports either only open specifiers or only closed specifiers.

Proof. We reduce from the query answering problem for existential rules, i.e., first-order
formulae of the form

∀x.p1(x1
1, . . . , x1

ar(p1)) ∧ . . . ∧ pn(xn1 , . . . , xnar(pn)) → ∃y.p(z1, . . . , zar(q)), (8)

where the variables xij occur among the universally quantified variables, i.e., xij ∈ x, and
variables zi might be universally or existentially quantified, i.e., zi ∈ x ∪ y. We require
that each universally quantified variable occurs in some atom in the premise of the rule

(safety), and that each existentially quantified variable occurs only once per rule. The
latter is without loss of generality since rules that violate this restriction can be split into
two rules using an auxiliary predicate. A fact is a formula of the form q(c1, . . . , car(q))
with constants ci . Entailment of facts from given sets of facts and existential rules is
known to be undecidable [3,8].

To translate an existential rule of the form (8), we consider DL concept names P(i)
for each predicate symbol p(i), and individual names a1, . . . , a` , where ` is the maximal
arity of any such predicate. For each universally quantified variable x, let πx = 〈pi, k〉 be
an (arbitrary but fixed) position at which x occurs, i.e., for which x = xi

k
. The rule can

now be rewritten to the attributed DL axiom

X1 :S1, . . . , Xn :Sn (P1@X1 u . . . u Pn@Xn v P@T) ,

where the specifiers are defined as Si = [aj : Xm.ak | 1 ≤ j ≤ ar(pi) and πxij = 〈pm, k〉]
and T = [aj : + | zj ∈ y] ∪ [aj : Xm.ak | zj ∈ x and πz j = 〈pm, k〉] (note that
we slightly abuse | and ∪ here for a simpler presentation). For example, the rule
∀xy.p1(x, y) ∧ p2(y, x) → ∃z.p(x, z) is translated into the concept inclusion X1 :S1, X2 :
S2 (P1@X1 u P2@X2 v P@[a1 : X1.a1, a2 : +]) , where S1 = [a1 : X1.a1, a2 : X2.a1]
and S2 = [a1 : X2.a1, a2 : X1.a1]. Observe that the specifier Si for Xi may contain
assignments of the form aj : Xi .aj : by our semantics, this merely states that aj may have
zero or more values. Facts of the form q(c1, . . . , cm) can be translated into assertions
Q(b)@[a1 : c1, . . . , am : cm] for an individual name b that is used in all such assertions.

Entailment of facts is preserved in this translation. Correctness is retained if we
replace all closed by open specifiers, since the translated ontology admits a least model
where all annotation sets are interpreted as the smallest possible sets. ut

In Sections 4 and 5, we present two approaches for overcoming the undecidability
of Theorem 1, namely to exclude + from attributed DLs, and to restrict the use of
expressions of the form X .a.

Example 4. It follows from Theorem 1 thatALC@+ ontologies may require models with
annotation sets of unbounded size. To see this, consider the following ontology:

A(b)@bc : cc (9)
A@X v ∃r .A@bc : +, p : X .c, p : X .pc (10)

A@X u A@bp : X .cc v ⊥ (11)

Axiom (9) defines an initial A member. Axiom (10) states that all A members have an
r successor that is in A, annotated with some value for c (“current”), and values for p
(“previous”) that include all of its predecessor’s c and p values. Axiom (11) requires that
no individual in A may have a set of p values that include all of its c values. It is not hard
to see that all models of this ontology include an infinite r-chain with arbitrarily large
(but finite) A-related annotations sets.

It is interesting to discuss Theorem 1 in the context of our previous work on multi-
attributed predicate logic (MAPL), which generalises first-order logic with annotation
sets for arbitrary predicates. Indeed, our interpretations for attributed DLs are a special

case of multi-attributed relational structures (MARS), though we do not make the unique
name assumption here, since it is not common for the DLs we consider. Otherwise,
attributed DLs are fragments of MAPL. Our notation X .a is new, but it can be simulated
in MAPL, e.g., by using function definitions [16].

MAPL is not semi-decidable, and we have proposed MAPL rules (MARPL) as a
decidable fragment. MARPL supports + without restrictions, and it includes arbitrary
predicate arities and more expressive specifiers (with some form of negation). In contrast,
attributed DLs add the ability to quantify existentially over annotations, and therefore to
derive partially specified annotation sets, which is the main reason for Theorem 1. In
general, attributed DLs are based on the open world assumption, whereas MARPL could
equivalently be interpreted under a closed world, least model semantics. Nevertheless,
even without + the translation from the proof of Theorem 1 allows attributed DLs
to capture rule languages, as the following result shows. Here, by Datalog we mean
first-order Horn logic without existential quantifiers.

Theorem 2. Attributed DLs can capture Datalog in the sense that every set P of Datalog
rules and fact q(c1, . . . , cm) can be translated in linear time into an attributed DL
ontology KBP and assertion Q(b)@S, such that P |= q(c1, . . . , cm) iff KBP |= Q(b)@S.
This translation requires just u, no +, and either only open or only closed specifiers.

The ability to capture Datalog reminds us of nominal schemas, the extension of
DLs with “variable nominals” [14,15]. Indeed, this extension can also be captured
in attributed DLs (we omit the details here). The converse is not true, e.g., since
nominal schemas cannot encode annotation sets on role assertions. Role inclusion
axioms such as spouse@X v spouse−@X are therefore impossible. Another related
formalism is DL-LiteA, which supports (data) annotations on domain elements and pairs
of domain elements [6]. This extension of DLs supports some forms of ternary relations.
Nevertheless, the use case and complexity properties of DL-LiteA are different from the
logics we study here, and it remains for future work to further explore attributed DL-Lite
in more detail.

4 Reasoning in ALCH@

We first focus on ALCH@, for which we show reasoning to be decidable, albeit at
a higher complexity. For a first positive result, we consider ground ALCH@, where
ontologies do not contain any set variables. We show that we can translate any ground
ALCH@ ontology into an equisatisfiable ALCH ontology by introducing fresh names
for annotated concept and role names. This renaming is one of the key ingredients in
obtaining decision procedures for attributed DLs.

Theorem 3. Satisfiability of ground ALCH@ ontologies is ExpTime-complete.

Proof. Hardness is immediate since ALCH@ generalises ALCH. For membership, we
reduce ALCH@ satisfiability to ALCH satisfiability. Given an ALCH@ ontology KB,
let KB† denote theALCH ontology that is obtained by replacing each annotated concept

name A@S with a fresh concept name AS , and each annotated role name r@S with a
fresh role name rS , respectively. We then extend KB† by all axioms

AS v AT , where AS and AT occur in translated axioms of KB†, and (12)

rS v rT , where rS and rT occur in translated axioms of KB† (13)

such that T is an open specifier, and the set of attribute–value pairs a : b in S is a superset
of the set of attribute–value pairs in T . We show that KB is satisfiable iff KB† is satisfiable.
The claim then follows from the well-known ExpTime-completeness of satisfiability
checking in ALCH. Given an ALCH@ model I of KB, we directly obtain an ALCH
interpretation J over ∆I by undoing the renaming and applying I, i.e., by mapping
AS ∈ NC to A@SI , rS ∈ NR to r@SI , and a ∈ NI to aI . Clearly, J |= KB†. Conversely,
given anALCHmodelJ of KB†, we construct anALCH@-interpretation I over domain
∆I = ∆J ∪ {?}, where ? is a fresh individual name, and define aI B aJ for all a ∈ NI.
For a ground closed specifier S = [a1 : b1, . . . , an : bn], we set ΨS B SI . Similarly,
for a ground open specifier S = ba1 : b1, . . . , an : bnc, we define ΨS B SI ∪ {〈?,?〉}.
Furthermore, let AI B {〈a,ΨS〉 | a ∈ AJ

S
for some specifier S} and rI B {〈a, b,ΨS〉 |

〈a, b〉 ∈ rJ
S

for some specifier S}. Then I |= KB, where ? ensures that axioms such as
> v A@ba : bc u ¬A@[a : b] remain satisfiable. ut

The other important technique for dealing with attributed DLs is grounding, where we
eliminate set variables from an ontology, thus transforming it into a ground ontology. As
illustrated by the next result, this grounding may lead to an ontology of exponentially
larger size, resulting in an increased complexity of reasoning.

Theorem 4. Satisfiability of ALCH@ ontologies is in 2ExpTime.

Proof. LetKB be anALCH@ ontology, and letNKB
I the set of individual names occurring

in KB, extended by one fresh individual name x. The grounding ground(KB) of KB
consists of all assertions in KB, together with grounded versions of inclusion axioms.
Let I be an interpretation over domain ∆I = NKB

I satisfying aI = a for all a ∈ NKB
I ,

and Z : NV → Pfin
(
∆I × ∆I

)
be a variable assignment. Consider a concept inclusion

α of the form X1 : S1, . . . , Xn : Sn (C v D). We say that Z is compatible with α if
Z(Xi) ∈ SI,Z

i for all 1 ≤ i ≤ n. In this case, the Z-instance αZ of α is the concept
inclusion C ′ v D′ obtained by

– replacing each variable Xi with [a : b | 〈a, b〉 ∈ Z(Xi)], and
– replacing every assignment a : Xi .b occurring in some specifier by all assignments

a : c such that 〈b, c〉 ∈ Z(Xi).

Then ground(KB) contains all Z-instances αZ for all concept inclusions α in KB and
all compatible variable assignments Z; and analogous axioms for role inclusions. In
general, there may be exponentially many different instances for each terminological
axiom in KB, thus ground(KB) is of exponential size. We conclude the proof by showing
that KB is satisfiable iff ground(KB) is satisfiable, the result then follows from Theorem 3.
By construction, we have KB |= ground(KB), i.e., any model of KB is also a model of
ground(KB). Conversely, let I be a model of ground(KB). Without loss of generality,

assume that xI , aI for all a ∈ NKB
I \ {x} (it suffices to add a fresh individual since

x does not occur in KB). For an annotation set Ψ ∈ Pfin
(
∆I × ∆I

)
, we define repx(Ψ)

to be the annotation obtained from Ψ by replacing any individual δ < I(NKB
I) in Ψ by

xI . We let ∼ be the equivalence relation induced by repx(Ψ) = repx(Φ) and define an
interpretation J over domain ∆J B ∆I , where AJ B {〈δ,Φ〉 | 〈δ,Ψ〉 ∈ AI andΨ ∼ Φ}
for A ∈ NC, rJ B {〈δ, ε,Φ〉 | 〈δ, ε,Ψ〉 ∈ rI and Ψ ∼ Φ} for r ∈ NR, and aJ B aI for
all individual names a ∈ NI. It remains to show that J is indeed a model of KB. Suppose
for a contradiction that there is a concept inclusion α that is not satisfied by J (the case
for role inclusions is analogous). Then we have some compatible variable assignment
Z that leaves α unsatisfied. Let Zx be the variable assignment X 7→ repx(Z(X)) for all
X ∈ NV. Clearly, Zx is also compatible with α. But now we have CJ ,Z = CI,Zx for all
ALCH@ concepts C, yielding the contradiction I 6 |= αZx . ut
We regain decidability for ALC@+ by disallowing expressions of the form X .a.
Theorem 5. Satisfiability of ALCH@+ ontologies without expressions of the form X .a
is in 2ExpTime.
Proof. We reduce satisfiability in ALCH@+ (without expressions of the form X .a)
to satisfiability in ALCH, similar to the proof of Theorem 4. Consider an ALCH@+
ontology KB that contains the individual names NKB

I , along with two fresh individual
names x and x+. The grounding proceeds as in the proof of Theorem 4, except that
for Z-instances αZ of concept inclusions α, we additionally replace each assignment
a : + occurring in some specifier by the assignment a : x+. The exponentially large
grounding again yields containment in 2ExpTime. From a model J of KB, we obtain a
model I of ground(KB) by setting ∆I B NKB

I , aI B aJ for a ∈ NI \ {x, x+}, xI B x,
xI+ B x+, AI B {〈δ,Ψ ∪ Φ〉 | 〈δ,Ψ〉 ∈ AJ ,Φ ∈ P ({〈a, x+〉 | 〈a, b〉 ∈ Ψ})} for A ∈ NC,
and rI B {〈δ, ε,Ψ ∪ Φ〉 | 〈δ, ε,Ψ〉 ∈ AJ ,Φ ∈ P ({〈a, x+〉 | 〈a, b〉 ∈ Ψ})} for r ∈ NR.
Clearly, if J satisfies a concept inclusion in KB, then I satisfies a corresponding concept
inclusion in ground(KB). Similarly, any concept inclusion satisfied by I must correspond
to a concept inclusion satisfied by J since x+ does not occur in KB. The converse
direction follows immediately from the proof of Theorem 4. ut

Both of these upper bounds are tight, as the next theorem shows:
Theorem 6. Checking satisfiability ofALC@ ontologies without expressions of the form
X .a is 2ExpTime-hard.
Proof (sketch). We reduce the word problem for exponentially space-bounded alternating
Turing machines (ATMs) [7] to the entailment problem for ALC@ ontologies. We
construct the tree of all configurations reachable from the initial configuration, encoding
the transitions in the edges of the tree, i.e., each configuration is represented by an
individual. The tape cells are represented as concepts carrying an annotation encoding the
cell content and position (as a binary number). We mark the current head position with an
additional concept, allowing us to copy each non-head position of the tape to successors
in the configuration tree, while changing the tape cell at the head position and moving
the head depending on the transition from the preceding configuration. As acceptance
of a given configuration depends solely on the state and the successor configurations,
we can propagate acceptance backwards from the leaves of the configuration tree to the
initial configuration. ut

5 Tractable Reasoning in Attributed EL

In this section, we investigate ALC@ fragments based on the EL family of description
logics. This family includes EL++, which forms the logical foundation of the OWL 2 EL
profile and is widely used in applications such as in SNOMED CT [20], a clinical
terminology with global scope. SNOMED CT also features a compositional syntax [1],
which has recently been augmented with attribute sets allowing arbitrary concrete values.
While concept expressions in either of the syntaxes can be translated into the other, EL++
provides no such attributes (i.e., concepts with attribute sets have to be represented by
introducing new concept names). We can not only capture these attributes using our
attribute–value sets, but also include them into the reasoning process. As a (simplified)
example, the concept of a 500mg Paracetamol tablet could be annotated with

bstrengthMagnitude : 500, tradeName : PANADOLc .

The basic logic is EL@, the fragment of ALC@ which uses only ∃, u, > and ⊥ in
concept expressions. Unfortunately, Theorem 2 shows that EL@ is ExpTime-complete,
even with severe syntactic restrictions. To overcome this source of complexity, we impose
a bound on the number of set variables per concept inclusion and exclude X .a:

Theorem 7. Let ` ∈ N. Checking satisfiability of EL@ ontologies with at most ` variables
per axiom, and without expressions of the form X .a is PTime-complete.

Proof. Hardness follows from the PTime-hardness of EL [2]. For membership, we
polynomially reduce EL@ satisfiability to ELH satisfiability. Indeed, the grounding
used in Theorem 4 can be restricted to annotation sets that are described in (ground)
specifiers that are found in the ontology, since no new sets can be derived without X .a.
The bounded number of variables then ensures that the grounding remains polynomial.
Since neither grounding nor renaming introduce negation, the resulting ontology belongs
to the ELH fragment of ALCH. ut

Observe that we can allow some uses of X .a, given that we obey certain restrictions:

Theorem 8. Let `, k ∈ N. Checking satisfiability of EL@ ontologies is PTime-complete
if all of the following conditions are satisfied:

(A) axioms contain at most ` variables,
(B) any closed or open specifier contains at most k expressions of the form X .a, and,
(C) if any specifier contains an assignment a : X .b, then it does not contain any other

assignment for attribute a.

Proof. As in the proof of Theorem 7, we can obtain a polynomial grounding, but we may
need to consider annotation sets that are not explicitly specified in the original ontology.
But, due to condition (C), as the set of values for any attribute we only need to consider
one of the polynomially many sets of values given explicitly through ground assignments
in specifiers. Considering any combination of these value sets for any of the at most k
attributes that use X .a in assignments results in polynomially many annotation sets. ut

We now show that violating any of these conditions makes satisfiability intractable.

Theorem 9. Let KB be an EL@ ontology and consider conditions (A)–(C) of Theorem 8
with ` = 1 and k = 2. Then deciding satisfiability of KB is

(1) ExpTime-hard if KB satisfies only conditions (B) and (C),
(2) ExpTime-hard if KB satisfies only conditions (A) and (C), and
(3) PSpace-hard if KB satisfies only conditions (A) and (B).

It is an open question whether the PSpace bound in the third case is tight. Nevertheless,
it implies intractability for this case. Finally, we show that also EL@+ (without X .a) is
intractable (recall that EL@+ with X .a is already undecidable by Theorem 1).

Theorem 10. Checking satisfiability of EL@+ ontologies without expressions of the
form X .a is ExpTime-complete.

Proof. ExpTime-hardness follows from Theorem 9. From the proof of Theorem 5, we
obtain an exponentially large grounding, which, together with the PTime complexity of
ELH, yields the ExpTime upper bound. ut

6 Attributed OWL

In this section, we consider attributed DLs with further expressive features, so that in
particular we can cover all of the expressivity of the OWL 2 DL ontology language [17].
The underlying DL is SROIQ@, which we introduce next by slightly extending our
earlier definition of ALCH@. The set R of SROIQ@ role expressions contains all
expressions r@S and r−@S with r ∈ NR and S ∈ S. The set C of SROIQ@ concept
expressions is defined as follows

CF > | ⊥ | NC@S | {NI} | ¬C |C u C |C t C | ∃R.C | ∀R.C | 6n R.C | >n R.C (14)

The new features are nominals {c}, which denote concepts containing one individual,
and number restrictions 6n R.C and >n R.C, which express concepts of elements with
at most/at least n ≥ 0 R-successors in C. Note that we do not include annotations on
nominals. This is no real restriction, since one can use axioms such as {c} ≡ Ac@bc to
introduce a concept name Ac that may hold such annotations. This allows us to use the
same notion of interpretation as forALCH@. Assertions, concept and role inclusions are
defined as before, based on these extended sets of expressions. In addition, SROIQ@
supports complex role inclusion axioms of the form

X1 :S1, . . . , Xn :Sn (R1 ◦ . . . ◦ R` v T), (15)

where Ri,T ∈ R are SROIQ@ role expressions, S1, . . . , Sn ∈ S are specifiers, and
X1, . . . , Xn ∈ NV are set variables occurring among Ri,T, S1, . . . , Sn. A SROIQ@
ontology is a set of SROIQ@ assertions, and role and concept inclusions.

The semantics of these constructs and axioms is defined as usual [11], where the
interpretation of roles and concepts takes annotations into account as in Section 2. For
instance, we may express that any drug, such as a Paracetamol tablet, that contains at

most one active ingredient and a certain amount of some such ingredient, such as 500 mg
of Acetaminophen, has the same dose:

X : bc Drug u 61 hasActiveIngredient.> u ∃hasActiveIngredient@X .> v
Drug@bstrengthMagnitude : X .strengthMagnitudec

To ensure decidability of reasoning, SROIQ imposes two additional restrictions on
ontologies: simplicity and regularity [11]. We adopt them to SROIQ@ as follows.

Simplicity is defined as in SROIQ, ignoring the annotations. The set of non-simple
roles Nn

R ⊆ NR w.r.t. a SROIQ@ ontology is defined recursively: t ∈ Nn
R if t occurs

on the right of an axiom of form (15) and either (1) ` > 1 or (2) some non-simple role
s ∈ Nn

R occurs on the left of the axiom. All other role names are simple. We now require
that only simple roles occur in R in number restrictions 6n R.C and >n R.C.

A SROIQ@ ontology is regular if there is a strict partial order ≺ on the set
N±R = NR ∪ {r− | r ∈ NR}, such that

(1) for all R ∈ N±R and s ∈ NR, we have s ≺ R iff s− ≺ R, and
(2) for all role inclusion axioms of form (15), the inclusion R1 ◦ . . . ◦ R` v T has one of

the following forms:

T@S ◦ T@S v T@S R1 ◦ . . . ◦ R`−1 ◦ T@S v T@S r−@S v r@S

R1 ◦ . . . ◦ R` v T@S T@S ◦ R2 ◦ . . . ◦ R` v T@S

where S ∈ S, T ∈ N±R, r ∈ NR, and R1, . . . , R` ∈ R are of form R1@S1, . . . , R`@S`
such that Ri ≺ T for all i ∈ {1, . . . , `}.

Note that we adopt the usual conditions from SROIQ for (inverted) role names, and
further require that cases with the same role T on both sides use the same specifier S. As
for SROIQ, this condition can be verified in polynomial time by computing a minimal
relation ≺ that satisfies the conditions and checking if it is a strict partial order.

For reasoning, the step from ALCH@ to SROIQ@ leads to several difficulties.
First, nominals and cardinality restrictions may lead to the entailment of equalities a ≈ b,
which has consequences on annotation sets (e.g., A@bc : ac ≡ A@bc : bc in this case).
For obtaining complexity upper bounds by transformation to standard DLs as in Section 4,
we need to axiomatise such relationships. Second, nominals may be used to restrict
the overall size of the domain, e.g., when stating > v {a}. Besides the entailment of
further equalities, this also changes the semantics of open specifiers (e.g., we obtain
A@ba : ac v A@[a : a] in this case). As before, this requires suitable axiomatisation in
SROIQ. Either of these two effects may require exponentially many auxiliary axioms,
leading to an N3ExpTime upper bound even for ground SROIQ@. However, we will
show an N2ExpTime upper bound as for SROIQ, which is tight.

Theorem 11. Satisfiability of ground SROIQ@ ontologies is in N2ExpTime.

To prove this theorem, we first translate ground SROIQ@ into an auxiliary DL,
called SROIQ≈, and then show how to reason in this DL by an exponential reduction to
C2, the two-variable fragment with counting [18], which yields the desired N2ExpTime
upper bound. The second part of the proof is split over several lemmas.

SROIQ≈, in addition to the usual SROIQ axioms, supports concept inclusions of
the form a ≈ b⇒ C v D and role inclusions of the form a ≈ b⇒ R1 ◦ . . . ◦ R` v T .
An axiom a ≈ b⇒ α is satisfied by interpretation I if either aI , bI or I |= α.

The translation from a ground SROIQ@ ontology KB to a SROIQ≈ ontology
KB‡ now proceeds as for ground ALCH@, by replacing annotated concept names A@S
by new names AS , and likewise for roles. However, we now introduce names AS ∈ NC
and rS ∈ NR for all possible open and closed ground specifiers over the set of individual
names in KB, as opposed to only those occurring in KB. We then add two families of
axioms for capturing the aforementioned effects. First, to handle individual equality, for
each A ∈ NC and r ∈ NR, we add axioms a ≈ b⇒ AS v AT and a ≈ b⇒ rS v rT for
every pair S,T of ground specifiers that are either both open or both closed, and where
the sets of pairs in S and T are the same when replacing each occurrence of a by b.
Second, to handle bounded domain size, we consider an individual name z not occurring
in KB. Entailments of the form z ≈ a will be used to detect the bounded domain case. We
can formalise this effect by axioms z ≈ a ⇒ > v ⊔

c∈NKB
I
{c}, where NKB

I is the set of
individual names occurring in KB for all a ∈ NKB

I . To handle specifiers in this situation,
we add axioms of the form

z ≈ a⇒ AS v
⊔

T ⊇cS
AT for all A ∈ NC in KB and a ∈ NKB

I (16)

where S is a ground open specifier and T ⊇c S holds whenever T is a ground closed
specifier that contains all attribute–value pairs in S. We would need a similar axiom as
(16) for roles, but this would require disjunctions of arbitrary roles, which is not supported
in SROIQ. However, since these axioms only are necessary when all elements in the
domain of interpretation are the interpretation of some individual name in NKB

I , we can
instead use concept inclusions as follows:

z ≈ a⇒ {b} u ∃rS .{c} v
⊔

T ⊇cS
∃rT .{c} for all r ∈ NR in KB and a, b, c ∈ NKB

I (17)

where S and T are as above. Finally, as previously for ALCH@, we also add all axioms
of the form (12) and (13). This finishes our construction of KB‡.

Lemma 1. For any ground SROIQ@ ontology KB, the SROIQ≈ ontology KB‡ is
equisatisfiable and can be constructed in exponential time.

The proof is analogous to the proof of Theorem 3 with one exception: when
constructing models we do not introduce a fresh, unnamed domain element ?, but rather
use zJ instead (which may or may not be named).

To complete the proof of Theorem 11, it remains to show that satisfiability checking
for the exponentially larger KB‡ can still be done in nondeterministic double exponential
time w.r.t. the size of KB. To this end, we can define simplicity and regularity for
SROIQ≈ as for SROIQ@, by ignoring the additional ≈-prefixes and disregarding
any condition related to annotations. In particular, we obtain a strict partial order ≺, as
before, and, since KB‡ only contains role inclusions translated directly from those in KB,
it also satisfies the regularity restrictions. We define the ◦-depth of a regular SROIQ≈

ontology KB≈ to be the maximal number k for which there is a chain of (inverted) roles
R1 ≺ R′1 ≺ . . . ≺ Rk ≺ R′

k
, such that KB≈ contains complex role inclusions with Ri

occurring as one of several roles on the left and R′i on the right. Intuitively speaking, the
◦-depth bounds the number of axioms with ◦ along paths of ≺. Clearly, the ◦-depth of
KB‡ is the same as for KB, in spite of the exponential increase in the number of axioms.

Lemma 2. Checking satisfiability of a SROIQ≈ ontology KB≈ of size s and ◦-depth d
is possible in NTIME (2p(s ·2q(d))), where p, q are some fixed polynomial functions.

In particular, if an ontology is of size O(2n) but retains a ◦-depth in O(n), then
reasoning is still in N2ExpTime. To show this, we adapt the translation from SROIQ to
SHOIQ as given by Kazakov [13], which is based on representing the effects of complex
role inclusion axioms using concept inclusions. As a first step, one constructs, for any
non-simple role expression R, a nondeterministic finite automaton BR that describes
the regular language of all sequences of roles that entail R [11]. We modify the known
construction for SROIQ≈ by allowing transitions in this automaton to be labelled not
just by role expressions S, but also by conditional expressions a ≈ b⇒ S. The idea is
that these transitions are only available if the precondition holds. By a slight adaptation
of a similar observation of Horrocks and Sattler [12, Lemma 11], we obtain:

Lemma 3. For a SROIQ≈ ontology KB≈ and a role expression R, the size of BR is
bounded exponentially in the ◦-depth of KB≈.

Kazakov considers a normal form of axioms, which we can construct analogously for
SROIQ≈ [13, Table 1]. We can ensure that conditions a ≈ b occur in concept inclusions
only if they have the form a ≈ b⇒ A v B with A, B ∈ NC. The automaton B(R) is then
used to replace every axiom of the form A v ∀R.B (which never has ≈-conditions) by
the following axioms:

A v AR
q q starting state of B(R) (18)

a ≈ b⇒ AR
q1
v ∀S.AR

q2
q1

a≈b⇒S→ q2 a transition of B(R) (19)

AR
q v B q a final state of B(R) (20)

where the condition a ≈ b in axioms (19) can be omitted if it is not given. The resulting
SROIQ≈ ontology still contains axioms with preconditions a ≈ b, but no more ◦. Every
normalised SROIQ axiom α can be translated into a C2 formula c2(α) as shown in [13,
Table 1]. A SROIQ≈ axiom of the form a ≈ b⇒ α accordingly can be translated as
(∃=1x.Aa(x) ∧ Ab(x)) → c2(α). This completes the proof of Theorem 11.

We can lift this result to non-ground ontologies without an increase in complexity:

Theorem 12. Satisfiability of SROIQ@ ontologies is N2ExpTime-complete.

Proof. Hardness is immediate given the hardness of SROIQ. The proof of membership
uses the same grounding approach as the proof of Theorem 4, which is easily seen to
be correct. This grounded ontology ground(KB) is exponentially larger than the input
KB, but the regularity conditions for SROIQ@ ensure that it has the same (linearly
bounded) ◦-depth. Moreover, while the transformation used for axiomatising ground

SROIQ@ ontologies is also exponential, it is polynomial in the number of possible
ground annotation sets; this number remains single exponential w.r.t. the size of KB, even
when considering ground(KB). Therefore, we find that the auxiliary SROIQ≈ ontology
ground(KB)‡ is still only exponential w.r.t. KB while having a polynomial ◦-depth. The
claimed complexity therefore follows from Lemma 2. ut

7 Conclusion

Current graph-based knowledge representation formalisms suffer from an inability to
handle meta-data in the form of sets of attribute–value pairs. These limitations show
up even when dealing with purely abstract data and are orthogonal to datatype support
in the formalisms. We therefore believe that KR formalisms must urgently take up the
challenge of incorporating annotation structures into their expressive repertoire.

Our family of attributed description logics represents a potential solution in the
context of DLs, and covers attributed SROIQ, the DL underlying OWL 2DL. In contrast
to our recent findings on rule-based logics supporting similar annotations, attributed DLs
often incur an increased reasoning complexity due to the open-world nature of DLs. We
have presented a grounding-based decision procedure and identified the special cases of
ground ontologies and structural restrictions on set variables, for which this overhead
can be avoided. Now, more work is needed regarding practical reasoning algorithms
in attributed DLs. We believe that similar approaches to those used for reasoning with
nominal schemas might be effective here. Finally, there are surely further expressive
mechanisms related to modelling with annotations which should be considered and
investigated in future studies of the new field.

References

1. SNOMED CT Compositional Grammar Specification and Guide v2.02. IHTSDO (22 May
2015), http://doc.ihtsdo.org/download/doc_CompositionalGrammarSpecificationAndGuide_
Current-en-US_INT_20150522.pdf

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L., Saffiotti, A. (eds.)
Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). pp. 364–369. Professional
Book Center (2005)

3. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O.
(eds.) Proc. 8th Colloquium on Automata, Languages and Programming (ICALP’81). LNCS,
vol. 115, pp. 73–85. Springer (1981)

4. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: Towards a mashup
to build bioinformatics knowledge systems. J. of Biomedical Informatics 41(5), 706–716
(2008)

5. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
DBpedia – A crystallization point for the Web of Data. J. of Web Semantics 7(3), 154–165
(2009)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Linking data
to ontologies: The description logic DL-LiteA. In: Proceedings of the OWLED*06 Workshop
on OWL: Experiences and Directions, Athens, Georgia, USA, November 10-11, 2006 (2006)

7. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. of the ACM 28(1), 114–133
(1981)

http://doc.ihtsdo.org/download/doc_CompositionalGrammarSpecificationAndGuide_Current-en-US_INT_20150522.pdf
http://doc.ihtsdo.org/download/doc_CompositionalGrammarSpecificationAndGuide_Current-en-US_INT_20150522.pdf

8. Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependencies and
their inference problem. In: Proc. 13th Annual ACM Symposium on Theory of Computation
(STOC’81). pp. 342–354. ACM (1981)

9. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing Wikidata to
the linked data web. In: Proc. 13th Int. Semantic Web Conf. (ISWC’14). LNCS, vol. 8796, pp.
50–65. Springer (2014)

10. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the
Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 11-13, 2007, Beijing, China. pp. 31–40 (2007)

11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylo-
poulos, J., Welty, C.A. (eds.) Proc. 10th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’06). pp. 57–67. AAAI Press (2006)

12. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms. Artificial
Intelligence 160(1), 79–104 (2004)

13. Kazakov, Y.:RIQ and SROIQ are harder than SHOIQ. In: Brewka, G., Lang, J. (eds.)
Proc. 11th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’08). pp.
274–284. AAAI Press (2008)

14. Krötzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL: Nominal
schemas for integrating rules and ontologies. In: Proc. 20th Int. Conf. on World Wide Web
(WWW’11). pp. 645–654. ACM (2011)

15. Krötzsch, M., Rudolph, S.: Nominal schemas in description logics: Complexities clarified. In:
Baral, C., De Giacomo, G., Eiter, T. (eds.) Proc. 14th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’14). pp. 308–317. AAAI Press (2014)

16. Marx, M., Krötzsch, M., Thost, V.: Logic on MARS: Ontologies for generalised property
graphs. In: Proc. 26th Int. Joint Conf. on Artificial Intelligence (IJCAI’17). AAAI Press
(2017), to appear; available at https://iccl.inf.tu-dresden.de/web/Inproceedings3141

17. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation (27 October 2009), available at http://www.w3.org/TR/owl2-overview/

18. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. J. of
Logic, Language and Information 14, 369–395 (2005)

19. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of the American
Society for Information Science and Technology 36(6), 35–41 (2010)

20. Spackman, K.A., Campbell, K.E., Côté, R.A.: SNOMED RT: A reference terminology for
health care. In: Masys, D.R. (ed.) Proc. 1997 AMIA Annual Fall Symposium. pp. 640–644. J.
of the American Medial Informatics Association, Symposium Supplement, Hanley & Belfus
(1997)

21. Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A general framework for representing and
reasoning with annotated Semantic Web data. In: Fox, M., Poole, D. (eds.) Proc. 24th AAAI
Conf. on Artificial Intelligence (AAAI’10). AAAI Press (2010)

22. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. ACM Trans. Comput. Logic
11(2), 10:1–10:41 (2010)

23. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Commun. ACM
57(10) (2014)

https://iccl.inf.tu-dresden.de/web/Inproceedings3141
http://www.w3.org/TR/owl2-overview/

A Proof of Theorem 6

Theorem 6. Checking satisfiability ofALC@ ontologies without expressions of the form
X .a is 2ExpTime-hard.

Proof. We reduce from the word problem for an exponentially space-bounded alternating
Turing machine (ATM), which is 2ExpTime-hard [7].

An ATM is a tupleM = 〈Q, Σ, q0,Θ〉, where

– Q = Q∃] Q∀ is a finite set of states, partitioned into existential states Q∃ and
universal states Q∀,

– Σ is a finite alphabet containing the blank symbol ␣,
– q0 ∈ Q is the initial state, and
– Θ ⊆ (Q × Σ) × (Q × Σ) × {L, R} is the transition relation.

A configuration of M is a word wqw′ with w,w′ ∈ Σ∗ and q ∈ Q, understood as
the tape containing ww′ (starting at the leftmost tape cell), each tape cell to the right of
w′ containing a blank, the head being at the leftmost position of w′, and with current
state q. Such a configuration is universal if q ∈ Q∀, and existential otherwise. Successor
configurations are defined in terms of the transition, as it is usual [7]. A configuration α
is accepting if either

– α is universal and each successor configuration of α is accepting, or
– α is existential and there is an accepting successor configuration of α.

In particular, universal configurations without successors are accepting, whereas existen-
tial configurations without successors are not.

A computation of M on input w ∈ (Σ \ {␣})∗ is a sequence of successive configura-
tions α0, α1, . . . , where α0 = q0w is the initial configuration for input w. Without loss of
generality, we restrict ourselves to ATMs where computations on arbitrary inputs are
finite [7].M accepts a word w if the initial configuration is accepting.

Let M be such an exponentially space-bounded ATM and w = σ1σ2 · · ·σn an input
word. Without loss of generality, we assume that M uses at most 2n tape cells, and that
M never moves to the left when the head is at the leftmost position. We construct an
ALC@ ontology KB that entails A(a) iff M accepts w.

We represent both configurations and the individual tape cells using individuals in
KB, where we require that individuals representing configurations are connected to the
corresponding successor configurations by roles encoding the transition. Without loss of
generality, we assume that these individuals form a tree, which we call the configuration
tree. Furthermore, each node of this tree, i.e., each configuration, is connected to 2n
individuals representing the tape cells. The main ingredients for our construction are as
follows:

– an individual a denoting the root of the configuration tree;
– an individual cell carrying the contents of a tape cell;
– an auxiliary individual bit for counting;
– a concept A marking accepting configurations;
– a concept H marking the head position;

– a concept T marking tape cells, annotated with cell : σ for some σ ∈ Σ;
– concepts B0, . . . , Bn for counting, annotated with bit : i for i ∈ {0, 1};
– concepts Sq for all states q ∈ Q;
– roles rθ for all transitions θ ∈ Θ; and
– a role tape connecting configurations to tape cells.

To improve readability, we abbreviate the binary encoding of some i ∈ {1, . . . , 2n}
by writing Ci

b as a shorthand for

n/
j=0

Bj@[bit : i |bj],

where i |bj denotes bit j in the binary representation of i (with bit 0 being the least
significant bit). Hence, e.g., C3

b is shorthand for

B0@[bit : 1] u B1@[bit : 1] u B2@[bit : 0] u · · · u Bn@[bit : 0]. (21)

Similarly, we write Cb@Xb as shorthand for B0@X0 u · · · u Bn@Xn. We also write Ωi
b

for X0 : [bit : 1], . . . , Xi−1 : [bit : 1], Xi : [bit : 0] and Ωi+1
b @Xb for

i−1/
j=0

Bj@[bit : 0] u Bi@[bit : 1] u
n/

j=i+1
Bj@Xj .

We begin by adding assertions to KB that encode the initial configuration of M. We
mark the root of the configuration tree with the initial state by adding Sq0 (a) and initialise
the tape cells with the input word:(

∃tape. (T@[cell : σ0] u C0
b u H

))
(a), (22)(

∃tape. (T@[cell : σi] u Ci
b
))
(a) for 0 < i ≤ n, and (23)(

I u∃tape. (T@[cell : ␣] u Cn+1
b

))
(a), (24)

where we use I as an auxiliary concept encoding that all tape cells further to the right
contain blanks.

Next, we add concept inclusions to create the remaining blank tape cells, where the
iteration is performed by repeatedly flipping bit values, and ensure that the counting
remains unambiguous, i.e., for 0 ≤ i < n, we add:

Ω
i
b

(
I u ∃tape. (T@[cell : ␣] u Cb@Xb

)
v ∃tape. (T@[cell : ␣] uΩi+1

b @Xb
))

(25)

Bi@[bit : 0] u Bi@[bit : 1] v ⊥ (26)

Then, for each transition θ ∈ Θ, we make sure that tape contents are transferred to
successor configurations, except for the tape cell at the head position:

∃tape. (T@Y u Cb@Xb u ¬H
)
v ∀rθ .∃tape. (T@Y u Cb@Xb

)
(27)

Now, it remains to modify the tape cell in the head position and to then move
the head position in the successor configuration as appropriate for the transition, by
flipping some of the bit-values to increment or decrement the position. We show the
case for θ = 〈q, σ, q′, τ, R〉; movement of the head to the left is handled analogously. For
0 ≤ i < n, we add the following concept inclusions:

Ω
i
b

(
Sq u ∃tape. (T@[cell : σ] u Cb@Xb u H

)
u ∃tape. (T@Y uΩi+1

b @Xb
)

v ∃rθ .
(
Sq′ u ∃tape. (T@[cell : τ] u Cb@Xb

)
u ∃tape. (T@Y uΩi+1

b @Xb u H
)))

The three conjuncts on either side of the concept inclusions correspond to the state,
the old head position, and the new head position, respectively.

Finally, we add concept inclusions that propagate acceptance from the leaf nodes of
the configuration tree backwards to the root of the tree. For existential configurations, we
add Sq u ∃rθ .A v A for each q ∈ Q∃, whereas to handle universal configurations, we
add, for each q ∈ Q∀, the concept inclusion

Sq u ∃tape. (T@[cell : σ] v H
)
u
/
θ∈Θ

θ=〈q,σ,q′,τ,D〉

∃rθ .A v A (28)

where the conjunction may be empty if there are no suitable θ ∈ Θ.
An inductive argument shows that KB |= A(a) iff M accepts w. ut

B Proof of Theorem 9

Theorem 9. Let KB be an EL@ ontology and consider conditions (A)–(C) of Theorem 8
with ` = 1 and k = 2. Then deciding satisfiability of KB is

(1) ExpTime-hard if KB satisfies only conditions (B) and (C),
(2) ExpTime-hard if KB satisfies only conditions (A) and (C), and
(3) PSpace-hard if KB satisfies only conditions (A) and (B).

Proof. (1) The proof uses an encoding of Datalog. For each rule, we introduce a concept
inclusion: each variable x occurring in the rule is represented by a set variable X
defined as X : bc, and Datalog atoms p(xp1, . . . , xpar(p)) are represented by concept
expressions ∃p@Xp1 .> u · · · u ∃p@Xpar(p) .>.

(2) The proof works by a modification of the Datalog encoding in the proof of Theorem 2.
Instead of using one universally quantified variable for each atom in the premise of
a rule, we use a single variable X defined as X : bx1 : X .x1, . . . , xn : X .xnc, where
x1, . . . , xn are the variables in the encoded rule. Datalog atoms p(xp1, . . . , xpar(p)) can
now be encoded with concept expressions P@ba1 : X .xp1, . . . , aar(p) : X .xpar(p)c.
Observe that this can be used to capture the original semantics and obeys the
additional restrictions.

(3) The proof is by reduction from QBFSAT. Consider a quantified Boolean formula
ϕ = Q1a1. · · ·Qmam.(ϕ1 ∧ . . .∧ ϕn) in prenex conjunctive normal form, where each
ϕi is a disjunction (li1 ∨ . . . ∨ li

`i
), a1, . . . , am are the variables occurring in ϕ, and

each Qi is either ∃ or ∀ (1 ≤ i ≤ m). We construct an ontology KBϕ consisting of
the assertion A0(a) and axioms for all i ∈ {0, . . . ,m − 1}, where we add

Ai@X v ∃r .Ai+1@bt : ai+1, t : X .t, f : X . f c (29)
Ai@X v ∃r .Ai+1@b f : ai+1, t : X .t, f : X . f c (30)

if ai is existentially quantified, and

Ai@X v ∃rt .Ai+1@bt : ai+1, t : X .t, f : X . f c (31)
u ∃rf .Ai+1@b f : ai+1, t : X .t, f : X . f c (32)

if ai is universally quantified. For a disjunction ϕi = (li1 ∨ . . . ∨ li
`i
), we use aij to

denote the variable in the literal lij ; we set pij B t if lij = aij , and pij B f if lij = ¬aij .
Furthermore, we add axioms

Am v T0, Tn v True, A0 u True v ⊥, (33)

Ti−1 u Am@bpi1 : ai1c v Ti, . . . , Ti−1 u Am@bpi`i : ai`i c v Ti, (34)

where 1 ≤ i ≤ n. Finally, for i ∈ {0, . . . ,m − 1}, we add

Ai u ∃r .True v True (35)

if ai+1 is existentially quantified, and

Ai u ∃rt .True u ∃rf .True v True (36)

if ai+1 is universally quantified. ThenKBϕ is unsatisfiable if and only if ϕ is satisfiable.
ut

