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Abstract. While running times of ontology reasoners have been studied
extensively, studies on energy-consumption of reasoning are scarce, and
the energy-efficiency of ontology reasoning is not fully understood yet.
Earlier empirical studies on the energy-consumption of ontology reason-
ers focused on reasoning on smart phones and used measurement meth-
ods prone to noise and side-effects. This paper presents an evaluation of
the energy-efficiency of five state-of-the-art OWL reasoners on an ARM
single-board computer that has built-in sensors to measure the energy
consumption of CPUs and memory precisely. Using such a machine gives
full control over installed and running software, active clusters and CPU
frequencies, allowing for a more precise and detailed picture of the en-
ergy consumption of ontology reasoning. Besides evaluating the energy
consumption of reasoning, our study further explores the relationship
between computation power of the CPU, reasoning time, and energy
consumption.

1 Introduction

Semantic technology applications often use ontologies and ontology reasoners as
the core machinery to accomplish their tasks. Such applications are increasingly
used on mobile devices [24]. Running times of ontology reasoning systems have
been in the centre of attention of developers and users as long as these systems
exist. On mobile devices, energy is a restricted resource, and as such at least as
important as running times, but little is known so far about the energy consump-
tion of ontology reasoners—although the motivation to investigate the energy
consumption of reasoners is manifold.

Selection of the hardware for a reasoning task in an ontology-based mobile appli-
cation requires knowledge on the energy consumption of carrying out this task.
Reasoning could either be performed on a remote server or on the mobile device
directly. While reasoning on a remote machine may save energy and computation
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time, it can bring about problems in terms of privacy and security, and makes
the service dependent on internet connectivity, as data has to be sent to another
server. But if reasoning is performed on the mobile device (by reasoners such as
Mini-Me developed specifically for mobile devices [17]) its energy consumption
becomes relevant, as the energy available is simply limited by the battery.

Selection of the reasoner system for a reasoning task and ontology might re-
gard its energy consumption. Little is known whether OWL reasoners differ as
strongly in their energy consumption as they differ in the approaches they im-
plement. Even for reasoners ported to and evaluated on mobile platforms [12,2]
there is only little research on how the size, expressivity, and structure of the
ontology and the performed reasoning task relate to energy consumption of the
reasoner system.

Development of energy-efficient reasoners which use algorithms that behave
energy-aware, requires detailed and reliable measurement methods for the hard-
ware on which they are to be used. Such measurement methods should facilitate
energy profiling of the different reasoning tasks—ideally for the individual com-
ponents of the hardware.

Prediction functions for energy consumption trained by machine learning al-
gorithms require reliable information about the energy consumption of a rea-
soning task at hand. While most research on prediction functions for reasoners
focuses on running times, first research on predicting energy consumption has
been undertaken in [6], albeit in a setup where only imprecise data on the energy
consumption were available.

In this paper, we present an empirical study on the energy consumption
(and running time) of OWL reasoners. We are not the first to address this
topic. Motivated by the hard energy constraints of mobile devices, several re-
search groups have evaluated the energy consumption of ontology reasoning on
smartphones [16,23,6]. To the best of our knowledge, the first study on energy
consumption of ontology reasoning was carried out by Patton et al. [16], who
evaluated the energy consumption of answering SPARQL queries in the LUBM
benchmark [8] and Schema.org [7]. They evaluated the reasoners Pellet [19],
HermiT [5] and JENA rules [3] on the smartphone Samsung Galaxy S4. In or-
der to measure the energy consumption, they replaced the battery of the phone
with an external power supply that allows for power monitoring of the overall
device. Based on their observations, they hypothesise that there is an almost
linear relationship between execution time and power consumption of reasoners.

As the approach in [16] only works for smartphones with a replaceable bat-
tery, Valincius et al. [23] proposed an approach which uses the power man-
agement integrated circuit (PMIC) of the smartphone battery. Some of these
PMICs, called Fuel Gauge Chips by Valincius et al., contain monitoring features
that can be accessed by standard software libraries. Similarly to Patton et al.,
the authors evaluated SPARQL queries on the LUBM benchmark using the same



set of reasoners, but on a OnePlus One smartphone. They observed that the ca-
pacity of the battery affected the measured values. The capacity was reduced
significantly by the experiments, so that experiments had to be rerun in different
orders to compensate for this effect. This framework was later used by Guclu et
al [6] to evaluate the ontology reasoners HermiT and TrOWL [21] on a Samsung
Galaxy S6 and a Sony XPeria Z3, this time using a large set of ontologies taken
from the OWL reasoner evaluation (ORE) competition from 2014 [1]. Their aim
was to learn a prediction function for the energy consumption based on ontology
metrics. The authors again found that the measured values differ significantly
depending on the battery level of the device. This necessitated to incorporate
the observed error rate in the interpretation of their measurements. The authors
observed that performance and predictability of energy consumption can vary
a lot depending on the hardware used. Moreover, contrary to the hypothesis by
Patton et al., the execution time was not always linearly related to the energy
consumption. The reason is that one of the smartphones, the Sony XPeria Z3,
uses an ARM big.LITTLE architecture. This architecture allows the machine
to switch operation freely between a slower, more energy-efficient cluster and
a faster, less energy-efficient cluster, and makes it harder to obtain predictable
measurements on energy consumption.

In conclusion, earlier studies on energy consumption of reasoners considered
only a small set of available reasoning systems and ontologies (except the latter
in [6]), and were only able to measure the energy consumption during reasoning
for a smart phone as a whole and not for its components. All teams executed
their experiments on Android smartphones, on which active background services,
which have an impact on the overall energy consumption can only be controlled
up to a certain point. Consequently, such measurements yield limited precision
leading to uncertainties in the observed results. So far there are neither fine-
grained, well-established methods of measurement nor benchmarks to assess the
energy consumption of ontology reasoners.

To overcome the software and hardware related limitations that had an im-
pact on the precision of energy measurements in these earlier evaluations, we
used a different hardware setup in our experiments. More precisely, we chose
a single-board computer with built-in sensors that measure power and energy
consumption of various hardware components in a precise fashion. The device
has a hardware architecture commonly found in Android smartphones, but gives
the user full control over the hardware and software configuration. This way, we
avoid the side-effects of unrelated tasks in the measurements, while obtaining
results that can indicate energy consumption of mobile devices in general. The
chosen hardware and architecture allows not only for more precise measurements
of the energy consumption of ontology reasoning, but even for an evaluation of
the energy consumption in regard of different CPU frequencies.

We used the ontologies from the ORE’15 benchmark [15] for computing ABox
realisation in the OWL 2 DL and the OWL 2 EL profile. ABox realisation infers
for all individuals in the data of the ontology to which of the named classes
from the ontology they belong. Our choice is motivated on the one hand by



the relevance reasoning about individuals has to mobile semantic technology
applications, and on the other hand by the fact that there are more OWL rea-
soner systems available that are capable of full ABox realisation than for (full
SPARQL) query answering. To understand the impact of the hardware param-
eters on energy efficiency, we further chose to carry ou tour experiments under
different CPU frequencies. We observed that, since the reasoning systems do
not take full advantage of the computation power available, they perform more
energy-efficient on lower CPU frequencies. For example, by reducing the CPU
frequency from 2.0 GHz to 1.5 GHz, the energy consumption of reasoning is re-
duced by 43 percent on average, while the reasoning time is now increased by
only 19 percent—giving rise to our claim that frequency matters.

The paper is structured as follows. In the next section we describe our ex-
perimental setup, used systems and data in detail. Section 3 lists and discusses
our observations on running times, energy and power consumption as well as on
the effects of the CPU frequency. The paper ends with conclusions and pointers
to future work.

2 Experimental Setup

We describe our experimental setup and the rationale for its design in detail. The
goal of this study is to obtain detailed measurements of the energy consumption
of OWL reasoners. Furthermore, we want to explore the energy consumption
and running time of OWL reasoners in regard of CPU frequency.

2.1 Experimental data and systems

Our experiments used a specific type of hardware, two sets of ontologies—one for
the OWL DL and one for the OWL EL profile—and a set of reasoning systems
capable of performing ABox realisation in at least one of the used profiles. For
readers interested in access to the reasoners and ontologies used in our experi-
ments, we provide links and further results online.3

Hardware. We performed our experiments on the ODROID XU3 by Hardker-
nel, a single-board computer with inbuilt-sensors to measure energy consump-
tion of different components, whose asymmetric ARM big.LITTLE architecture
provides an interesting trade-off space for software energy efficiency [9]. The
ODROID XU3 has two clusters with 4 cores each:

– an ARM Cortex-A15 quadcore with 2.0 GHz maximum frequency
(the ‘big cluster’), and

– an ARM Cortex-A7 quadcore with 1.4 GHz maximum frequency
(the ‘little cluster’).

3 See http://lat.inf.tu-dresden.de/~koopmann/energy-evaluation/
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Table 1. Metrics on the benchmark ontologies used in our evaluation.

#TBox axioms #ABox axioms

Profile #Ontologies average median average median

OWL DL 150 1,690 506 1,208 494
OWL EL 109 31,272 2,718 47,045 2,279

It further has 2 GiB of LPDDR3 RAM with a frequency of 933 MHz. Built-in
sensors allow to measure the energy consumption of both clusters, the memory,
and the GPU independently. As operating system, we used Arch Linux with
Linux kernel version 4.9. We performed all experiments on the big cluster, while
the evaluation environment was executed on the little cluster. To evaluate the
impact of the CPU frequency on performance and energy consumption, we per-
formed our experiments with CPU frequencies of 0.2 GHz, 0.5 GHz, 1.0 GHz,
1.5 GHz, and 2.0 GHz.

Ontologies. To get a balanced mix of ontologies with varying structures and
properties, we took the ontologies from the benchmark used in the 2015 edition
of the OWL Reasoner Evaluation competition (ORE’15) [15]. The competition
evaluated OWL reasoners on reasoning time and success rates. It has different
tracks for the reasoning tasks consistency checking, classification and realisation
and provides for each of them a set of ontologies in the lightweight OWL EL
profile and a set of ontologies in the expressive OWL DL profile. For both OWL
profiles, we evaluated the reasoning task realisation, since it reasons over ABox
data and is implemented in several reasoning systems.

At the ORE’15 ABox realisation track for the OWL DL profile, the reasoners
used in our evaluation could only solve between 106 and 163 of the 264 ontologies.
To obtain an experimental setup significant for the comparison of reasoners
without overly many timeouts, we restricted the test set to the 150 ontologies
of the track that had less than 10,000 statements. For ORE’15 ABox realisation
track for the OWL EL profile, the situation was different. Here the dedicated
OWL EL profile reasoner ELK could compute realisation for all but 7 of the
ontologies at the competition, which is why we selected all of the 109 ontologies
in the OWL EL profile of the ORE’15 realisation track for our experiments.
Table 1 shows for both profiles the average and median of the number of TBox
axioms and ABox axioms of the selected ontologies.

OWL reasoning systems. Our evaluation uses reasoners implemented in Java,
as these can be executed directly on the ARM architecture of the ODROID.
Reasoners not implemented in Java would require a recompilation from the
sources for the architecture of the ODROID. Unfortunately, this technical con-
straint ruled out state of the art reasoners such as Konclude [20], Fact++ [22],
PAGOdA [25] and ELepHant [18], and they are left for future work. Note that
while PAGOdA itself is implemented in Java, the latest version has dependen-
cies to the system-dependent datalog engine RDFox [14]. We used two sets of



reasoners each dedicated to the respective OWL profile. Of all of these reasoners,
we used the latest version available on the official websites when we initiated the
experiments (status January 2017).

To obtain a set of relevant OWL DL reasoners, we picked the four reasoners
implemented in Java that performed best at the OWL DL realisation track at
ORE’15. Listed according their performance at ORE’15, we used the following
reasoners and versions:

– HermiT 1.3.8 [5],

– TrOWL 1.5 [21],

– Pellet 2.4.0 [19], and

– JFact 5.0.2.4

The reasoner TrOWL differs from the other reasoners in that for the OWL DL
profile, it deliberately sacrifices completeness for performance, i.e. it does not
guarantee to compute all instance relationships.

For the OWL EL realisation track of ORE’15, the four best performing rea-
soners were ELK [13], TrOWL, JFact, and Pellet. Since the latter two reasoners
are optimised for more expressive ontology languages and perform significantly
worse on OWL EL ontologies, we restricted our evaluation to

– ELK 0.5.0 [13] and

– TrOWL 1.5 [21].

ELK and TrOWL implement reasoning algorithms that are complete only for the
OWL EL profile. ELK is the only reasoner that uses a dedicated multithreading
implementation and thus implements parallel reasoning.

2.2 Setup of the Experiments

Our experiments are designed to investigate mainly the energy consumption and
not so much the running times of the OWL reasoners. For this reason. we used a
higher timeout of 10 minutes than the 3 minute timeout used at ORE’15, also to
accommodate for the lower computation power of the CPU at lower frequencies.
We ran each ABox realisation for the two OWL profiles for the respective set of
ontologies and OWL reasoning systems. For each run, we logged the following
information:

– histories of the different energy sensors,

– running time,

– CPU utilisation,

– number of CPU instructions, and

– cache references and cache misses per instruction.

4 http://jfact.sourceforge.net/
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The low-level information from the system was collected to gain insight on the
causes for differing energy consumptions and reasoning times. Since all reasoners
parsed the ontologies via the OWL API [11], they would use the same time for
this task. We measured the time and energy used by parsing the ontologies once
(for all) and excluded it in the measurements for the individual ABox realisation
runs of the reasoners.

At ORE’15, the number of successful computations within the timeout was
prioritised in the ranking, and computation time was only taken into account if
the number of successful runs of all reasoners was the same for that ontology.
Our focus here is on energy consumption of ontology reasoning, about which
the number of timeouts hardly gives any insights. For this reason, and to allow
for a meaningful comparison, we excluded those ontologies from the comparison
which caused a timeout or an error for any reasoner at any frequency.5 Excluding
ontologies from the comparison that caused a timeout or an error for any reasoner
at any frequency left us with 82 ontologies of 150 for the OWL DL profile and
with 75 ontologies of 109 for the OWL EL profile. In the following, unless stated
otherwise, all numbers refer to these sets of ontologies. For the interested reader,
we provided corresponding numbers for the complete set of ontologies (including
failed/incomplete computations), on our aforementioned webpage.

3 Observations

We report on our measurements carried out for the set of 82 OWL DL ontolo-
gies and 75 OWL EL ontologies for which ABox realisation was performed on
the hardware and by the reasoning systems described in the last section. We
start reporting on running times for ABox reasoning, because these values are
important to put the measured values on energy consumption into perspective.
We then turn our attention to power and energy consumption in Section 3.2,
and discuss possible reasons for our observations in Section 3.3.

3.1 Running Times

The overall time required for ABox realisation is composed of the time needed for
parsing the ontology and the time needed for the actual reasoning. To distinguish
better the reasoning times of the different reasoners, we consider them separately.

Running times for parsing via the OWL API were measured for ontologies from
both profiles. The obtained values are displayed in Table 2. The table relates
to each frequency of the CPU the average, the standard deviation, and the
median of running times for parsing the ontologies of the two profiles. As one
could expect, the average running time, as well as the median of the running
time, decreases as the frequency of the CPU increases. However, note that this
increase is not proportional to the frequency of the CPU, as loading and parsing

5 Note that this can lead to a different ranking as the one obtained at ORE’15.



Table 2. Execution time for parsing in seconds.

OWL DL OWL EL

Frequency average standrd. dev. median average standrd. dev. median

0.2 GHz 91.05 35.20 97.61 143.10 56.00 186.41
0.5 GHz 53.15 14.60 74.73 104.92 25.50 143.92
1.0 GHz 61.84 8.00 82.81 92.50 14.00 156.55
1.5 GHz 45.70 6.00 61.03 84.58 10.50 150.08
2.0 GHz 37.60 5.00 50.06 76.30 9.00 137.34

Table 3. Reasoning time in seconds for the OWL DL profile.

HermiT JFact

Frequency average standrd. dev. median average standrd. dev. median

0.2 GHz 84.85 205.16 11.58 115.82 282.06 14.32
0.5 GHz 34.45 82.59 4.75 48.79 116.42 6.05
1.0 GHz 18.20 43.33 2.61 27.42 64.35 3.41
1.5 GHz 12.98 30.55 1.92 20.72 47.73 2.66
2.0 GHz 10.33 24.06 1.58 17.40 39.36 2.26

Pellet TrOWL

Frequency average standrd. dev. median average standrd. dev. median

0.2 GHz 31.16 64.12 11.43 4.98 7.76 2.97
0.5 GHz 13.74 30.79 4.74 2.12 3.41 1.26
1.0 GHz 7.80 18.00 2.63 1.20 1.98 0.69
1.5 GHz 5.92 13.85 1.97 0.91 1.56 0.51
2.0 GHz 5.02 11.91 1.63 0.77 1.33 0.43

requires frequent accesses to both hard drive and RAM. In general, the parsing
times for OWL EL ontologies were higher than the ones for the OWL DL profile.
This was to be expected, as the OWL EL ontologies were larger on average.

Running times for ABox realisation in the OWL DL profile were measured for
the reasoners HermiT, JFact, Pellet, and TrOWL. The data obtained for running
times is displayed in Table 3. Clearly, the running times of all reasoners decreased
as the CPU frequencies increased. Here the difference between the reasoners in
regard of the average and the standard deviation of reasoning times compared
to the median is prominent. While HermiT and Pellet differ strongly on the
average, their running times for the median are surprisingly close at all used CPU
frequencies. TrOWL has the lowest running times, but recall that it implements
an incomplete reasoning method and might miss inferences. The biggest decrease
of running times consistently occurred when using a CPU frequency of 0.5 GHz
instead of 0.2 GHz.

Running times for ABox realisation in the OWL EL profile were measured for
the reasoners ELK and TrOWL and are displayed in Table 4. Here the difference



Table 4. Reasoning time in seconds for the OWL EL profile.

ELK TrOWL

Frequency average standrd. dev. median average standrd. dev. median

0.2 GHz 19.77 22.79 11.51 30.51 114.45 2.99
0.5 GHz 8.36 10.19 4.85 13.13 51.51 1.24
1.0 GHz 4.78 6.37 2.70 7.42 29.92 0.75
1.5 GHz 3.74 5.34 2.03 5.76 24.39 0.51
2.0 GHz 3.23 4.66 1.68 4.78 20.70 0.47

between average and median is even stronger—while for ELK, the average is
roughly the double of the median, for TrOWL, the average is almost an order of
magnitude higher than its median.

When comparing the running times for parsing with those for computing ABox
realisation, it is apparent that the overall running times are dominated by the
parsing of the ontologies.

3.2 Energy and Power Consumption

Energy consumption of parsing for both profiles is displayed in Table 5. The
energy consumption of both reasoners first decreased when the CPU frequency
is increased up to 1.0 GHz. But the energy consumption increased again for
frequencies higher than 1.0 GHz—unlike the running times. We will see a similar
effect when regarding the energy consumption of ABox realisation, and give some
explanations for this in Section 3.3. Similarly to the running times, the parsing
of ontologies from the OWL EL profile consumed more energy, which can again
be explained by the larger size of the ontologies.

Energy consumption for ABox realisation. In the OWL DL profile, there were 82
ontologies that could be realised by all reasoners in all frequency settings. The
results of our energy measurements are shown in Table 6. In the OWL EL profile,
there were 75 ontologies that could be realised by all the selected OWL EL rea-
soners in all frequencies. The measured values are displayed in Table 7. Note that
there was generally a high standard deviation, and the average and median val-
ues often differed significantly, For example, while TrOWL had a higher average

Table 5. Energy consumption for parsing in Joule.

OWL DL OWL EL

Frequency average standrd. dev. median average standrd. dev. median

0.2 GHz 7.31 6.33 2.47 50.98 11.27 94.58
0.5 GHz 3.97 3.18 1.53 37.48 6.56 85.10
1.0 GHz 3.07 2.45 1.43 37.18 5.22 86.87
1.5 GHz 3.60 2.50 2.11 56.53 6.89 128.38
2.0 GHz 5.59 4.84 3.72 106.77 10.82 250.05



Table 6. Energy consumption in Joule for reasoning in the OWL DL profile.

HermiT JFact

Frequency average standrd. dev. median average standrd. dev. median

0.2 GHz 31.46 74.60 4.82 42.94 102.62 5.96
0.5 GHz 18.66 42.99 3.33 25.92 60.00 3.82
1.0 GHz 16.79 37.53 3.49 24.18 53.92 4.22
1.5 GHz 20.67 44.60 4.60 30.28 65.30 5.67
2.0 GHz 34.17 73.08 8.28 53.33 111.86 9.72

Pellet TrOWL

Frequency average standrd. dev. median average standrd. dev. median

0.2 GHz 11.98 23.58 4.82 2.30 2.95 1.61
0.5 GHz 7.82 15.94 3.29 1.67 1.88 1.11
1.0 GHz 7.64 15.07 3.54 1.92 1.72 1.61
1.5 GHz 9.36 18.57 4.23 2.73 2.21 2.55
2.0 GHz 17.18 32.66 8.22 4.72 3.92 3.23

Table 7. Energy consumption in Joule for reasoning in the OWL EL profile.

ELK TrOWL

Frequency average standrd. dev. median average standrd. dev. median

0.2 GHz 8.69 10.04 5.14 12.47 46.45 1.64
0.5 GHz 5.76 6.76 3.57 8.03 29.89 1.16
1.0 GHz 5.98 7.25 3.83 7.79 28.22 1.70
1.5 GHz 7.76 10.29 4.70 10.12 36.33 2.49
2.0 GHz 14.41 18.73 9.12 17.34 61.87 4.87

energy consumption in the OWL EL profile than than ELK, the median of the
energy consumption of TrOWL was significantly lower than for ELK, indicating
that TrOWL usually consumed less energy than ELK. In fact, if we consider all
90 ontologies for which ELK and TrOWL successfully performed realisation at
2.0 GHz, we see that for 70 of those, TrOWL consumed less energy than ELK.
This indicates that choosing a reasoner specifically for a given ontology can pro-
vide significant savings in energy and reasoning time. Mobile applications that
require simpler ontologies can therefore save significant energy and reasoning
time by carefully selecting an appropriate reasoner for the ontology at hand.

Our measurements seem to confirm the hypothesis by Patton et al. that there is
an almost linear relationship between energy consumption and reasoning time.
Figure 1 plots for each reasoner the energy consumption against the running time
for reasoning in the OWL DL ontologies at 1.0 GHz. For the other frequencies
and the OWL EL profile, the picture looks similar.

However, when considering the average power consumption (i.e., energy per
time) during realisation, one can note differences between reasoners as well as be-
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Fig. 1. Energy consumption in Joule in relation to reasoning time in seconds for the
OWL DL profile (at CPU frequency of 1.0 GHz).

tween profiles. At 2.0 GHz, in the OWL DL profile, the lowest power consumption
of the CPU was by TrOWL with 2.37 W, followed by Pellet with 2.52 W, with
Hermit and JFact having the highest consumption of 2.62 W. In the OWL EL
profile, the CPU consumed more power in general, with at 2.0 GHz, TrOWL con-
suming 2.60 W on average, and ELK 3.18 W. At the lower frequencies, though
less power was consumed by the CPU, we obtain the same ranking among the
reasoners. There were almost no differences in power consumption in the other
components (memory, little cluster, GPU), which together accounted for between
0.26 and 0.28 W on average for all reasoners, profiles and CPU frequencies.

3.3 Impact of the CPU Frequency

We observed that the power consumption of the CPU grew exponentially with
the selected frequency. While at 2.0 GHz, reasoning consumed 2.69 W on average
for all reasoners and profiles, this value halves with each lower frequency used:

– 1.20 W at 1.5 GHz,
– 0.65 W at 1.0 GHz,
– 0.31 W at 0.5 GHz, and
– 0.16 W at 0.2 GHz.

In contrast, reasoning times were less than linearly affected by the CPU fre-
quency, which is why the reasoning systems consumed significantly more energy
at 2.0 GHz than at the lower frequencies.

The non-linear behaviour of the energy consumption in relation to the system
frequency is to be expected for our system. The power that a system draws during
execution is usually calculated using the following formula:

P = c · f · V 2,



where c is the capacitance of the system, f is the frequency and V is the core
voltage. Since voltage has a quadratic influence on power, it is also the dominat-
ing factor for power efficiency, i.e., for power consumption in relation to work.
The capacitance is a value specific to the system and very hard to determine for
a specific instance of a system in practice. Many factors can change the capac-
itance of the system during runtime, because they disable unused parts of the
chip. In general, the execution time decreases with increasing frequency, while
power consumption increases.

Energy usage corresponds to execution time multiplied by average power
used. To save energy, the decrease in execution time due to increased frequency
has to outweigh the increase in power draw. Especially memory intensive work-
loads, such as those caused by reasoning systems, may benefit less from higher
frequencies, because most of the cycles are spent waiting for memory, which is
significantly slower than the CPU. While this waiting does not consume as much
power as executing work, it still is not as efficient compared to a lower clocked
chip that can run at a lower voltage.

We observed exactly this behaviour in our experiments. Interestingly, differ-
ent reasoners benefited differently from the computation power available. Com-
paring reasoning times at 0.2 GHz with reasoning times at 2.0 GHz, we find for
the OWL DL profile:

– HermiT taking 13.5% of the time,
– Pellet 14.5% of the time,
– TrOWL 14.8% of the time, and
– JFact 15.6% of the time

at the higher frequency. For performing realisation on the OWL EL ontologies,

– TrOWL took 14.5% of the time and
– ELK 15.1% of the time

at 2.0 GHz than it took at the frequency of 0.2 GHz. These values contrast the
fact that the CPU is actually ten times faster at 2.0 GHz than it is at 0.2 GHz.

Based on this observation, it is no surprise that the lowest energy consump-
tion occurred at the lower CPU frequencies, as can already be seen in Table 6
and Table 7. Figure 2 shows, for the OWL DL profile, at which frequencies how
many ontologies caused the lowest energy consumption of the CPU. Figure 3
displays the same kind of information, but for the energy consumption of all
measured components combined. Indeed, by using a lower CPU frequency, the
energy consumption can be reduced significantly, with comparatively small in-
creases in running time. For example, at 1.5 GHz, on average, realisation used
only 57 percent of the energy used at the maximum frequency of 2.0 GHz, while
taking only 119 percent of the time.

To get a clearer understanding of what happens at the lower frequencies,
we first looked at the CPU utilisation, that is, the average number of active
cores, during reasoning. We observed that higher CPU frequencies often caused
a decrease in CPU utilisation, which means that on average, less cores were used
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Fig. 3. Proportion of ontologies that caused the lowest energy consumption at a given
frequency of all measured components. (E.g. with HermiT for almost 48% of the on-
tologies the measured components consumed least energy at 1.0 GHz.)

at the higher frequencies. For ELK, which had the highest CPU utilisation, the
average CPU utilisation changed from 1.63 at 0.2 GHz to 1.42 at 2.0 GHz. For
TrOWL, in both profiles, it even went from 1.21 at 0.2 GHz down to 0.85 at
2.0 GHz. For the other reasoners, the CPU utilisation was less affected by the
CPU frequency, and generally lower than for ELK, which can be explained by
the less dedicated use of multithreading. Note that using less cores means using
less of the computation power available, and therefore has a negative effect on
the reasoning time. The numbers also indicate that at higher frequencies, threads
were often idle, and having a quadcore system was most useful when the CPU
frequency was low.

The expected reason for why the reasoning systems did not make full use of
the computation power available is that they are memory-intensive applications,
and therefore slowed down by frequent accesses to the RAM. To confirm this hy-
pothesis, and to understand better why different reasoners benefited differently
from the CPU frequency, we examined the number of cache misses per CPU
instruction measured during the experiments. A cache miss occurs when data
accessed is not available in the cache, and has to be transferred from the (much



slower) RAM to the cache. Comparing the number of cache misses per CPU in-
struction, we found significant differences between the reasoning systems, which
partly reflect the above observations. The lowest number of cache misses per
CPU instruction was by HermiT (1.06%) and TrOWL (1.01% in both profiles),
the highest was by JFact (1.28%) and ELK (1.34%).

Since ontology reasoning is memory-intensive by nature, higher numbers of
cache misses cannot be avoided in general. However, the observed differences
between the reasoning systems indicate that it might be possible to minimise the
number of cache misses by a careful implementation with dedicated optimisations
for cache-access. Optimisations like this have for instance already been applied
fruitfully in the area of SAT-solvers [10,4]. Such optimisations to alleviate the
memory bottle neck could potentially also improve performance of future OWL
reasoning systems.

4 Conclusion

We evaluated energy consumption of computing ABox realisation in two OWL
profiles with five state-of-the-art OWL reasoners that are implemented in Java.
The experiments were run on a computer with built-in energy sensors, which
allowed for more exact energy measurements than previously used methods for
evaluating energy consumption of OWL reasoning.

Our empirical results confirm the hypothesis originally stated by Patton et
al. that there is an almost linear relation between energy consumption and run-
ning time of OWL reasoning. However, different reasoners vary in the amount of
energy they consume per second. Even though the energy consumption of rea-
soning is dominated by the energy consumption of the CPU, the performance of
the reasoners is still affected significantly by the memory. The reason is that, as
memory-intensive applications, reasoning systems regularly spend time waiting
for data to be transferred from the RAM to the cache. As a result, they benefit
less from higher CPU frequencies, while they consume significantly less energy
at lower frequencies, and OWL reasoning turns out to be more energy-efficient
on lower frequencies. The impact memory access have on reasoning times dif-
fers however from reasoning system to reasoning system. Determining (close to)
optimal configurations for energy-efficiency and saving energy needs further in-
vestigations.

In the future, we would like to use our measurement framework to inves-
tigate the energy consumption of non-Java reasoners, and examine the energy
consumption of query answering. We also see quite some potential in using our
measurements to improve the results on predicting energy consumption of OWL
reasoning obtained in [6]. In order to generate high quality prediction functions,
one would need to relate the ontology metrics to the energy consumption of the
OWL reasoners in regard of the hardware setup and the reasoner used.
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