
Logic on MARS: Ontologies for Generalised Property Graphs
(Extended Technical Report)

Maximilian Marx and Markus Krötzsch and Veronika Thost
TU Dresden

Center for Advancing Electronics Dresden (cfaed)
{maximilian.marx,markus.kroetzsch,veronika.thost}@tu-dresden

Abstract
Graph-structured data is used to represent large in-
formation collections, called knowledge graphs, in
many applications. Their exact format may vary,
but they often share the concept that edges can
be annotated with additional information, such as
validity time or provenance information. Property
Graph is a popular graph database format that also
provides this feature. We give a formalisation of a
generalised notion of Property Graphs, calledmulti-
attributed relational structures (MARS), and intro-
duce a matching knowledge representation formal-
ism, multi-attributed predicate logic (MAPL). We
analyse the expressive power of MAPL and suggest
a simpler, rule-based fragment ofMAPL that can be
used for ontological reasoning on Property Graphs.
To the best of our knowledge, this is the first ap-
proach to making Property Graphs and related data
structures accessible to symbolic AI.

1 Introduction
The representation of human knowledge in its variety and
complexity is a central topic of AI. Recently, graph-based rep-
resentation formats have led to huge advances in the field of
data modelling. So-called Knowledge Graphs (KGs) are now
widely used to capture heterogeneous, multi-faceted knowl-
edge from different sources in a coherent way. Large KGs
are deployed in companies such as Google and Facebook, in
online communities such as Freebase [Bollacker et al., 2008]
andWikidata [Vrandečić and Krötzsch, 2014], and in research
projects such as YAGO2 [Hoffart et al., 2013].
There is no standard definition of what constitutes a KG,

and the formats used in practice vary. The basis of KGs typi-
cally are directed graphs with labelled nodes and edges. What
distinguishes them from plain graphs is their enriched struc-
ture that includes additional annotations to provide contextual
information for every edge or node. Examples include prove-
nance (source information) and temporal validity, but there
can be many other types of annotations.

A popular data model for such KGs is the Property Graph
model, used by the Neo4J graph database [Rodriguez and
Neubauer, 2010] and various other database applications
[Rudolf et al., 2013]. It allows sets of attribute–value pairs

to be associated with the nodes and edges in a directed graph.
For example, we can express that Liz Taylor married Richard
Burton 1964 inMontreal, and that the marriage ended in 1974
by annotating the fact (or edge) spouse(taylor, burton)with the
annotation {start : 1964, loc : Montreal, end : 1974}.Wewrite
the annotated fact as spouse(taylor, burton)@{start : 1964,
loc : Montreal, end : 1974}. Such graphs are also known
as attributed graphs. This model is fundamentally differ-
ent from annotated logics, e.g., using semiring annotations
[Green et al., 2007; Straccia et al., 2010] or requiring func-
tional annotations like aRDF [Udrea et al., 2010], since
the same edge may occur with several, distinct annota-
tions (e.g., Taylor was also married to Burton from 1975
to 1976). Wikidata’s custom data model supports attributed
statements too, but goes beyond Property Graph by allowing
attributes with multiple values. Wikidata includes, e.g., the
fact castMember(Sesame_Street, Frank_Oz) with annotation
{role : Cookie_Monster, role : Grover, role : Bert}.1 We call
such generalised Property Graphs multi-attributed graphs.

In spite of the huge practical significance of these data mod-
els and the obvious potential of KGs for AI, there is practically
no support for using such data in knowledge representation.
The popular ontology language OWL focusses on labelled
directed graphs as defined by RDF [OWL Working Group,
2009]. Rule languages as in logic programming support pred-
icates of higher arities, but bounded arity relations cannot
encode arbitrary sets of attribute–value pairs either. Indeed,
we might want to express schema knowledge as sketched by
the following rule:

∀x, y,z1, z2, z3.
spouse(x, y)@{start : z1, loc : z2, end : z3}
→ spouse(y, x)@{start : z1, loc : z2, end : z3}

(1)

which states that spouse is a symmetric relation, where the
inverse statement has the same start and end dates, and lo-
cation. To the best of our knowledge, this cannot be encoded
in any modern ontology language. Yet there are many more
complex relationships that one might want to express. In fact,
even the underlying data model of a multi-attributed graph
lacks proper formalisation. Property Graph and Wikidata are
highly implementation bound and have no formal specifica-
tion. Other approaches, e.g., YAGO2 annotated triples, lack
generality.

1https://www.wikidata.org/wiki/Q155629 (retr. 2017-02-17)

https://www.wikidata.org/wiki/Q155629

In this paper, we therefore propose a new, formal datamodel
for generalised Property Graphs, called multi-attributed rela-
tional structure (MARS), and we develop a logical language,
calledmulti-attributed predicate logic (MAPL), for modelling
knowledge over such structures. Our main contributions are
as follows:

• we provide a logical foundation for knowledgemodelling
over Property Graphs,

• we study the expressive power of MAPL and show that
it has no sound and complete deduction calculus,

• we identify two expressive features of MAPL that are
useful for modelling,

• we suggest a rule-based fragment of MAPL, called
MARPL, for which reasoning is decidable, and

• we give a reasoning procedure for MARPL.
For reasoning in MARPL, we obtain an ExpTime complexity
bound, which we show to be tight even if only the underlying
facts (corresponding to the input KG) are allowed to vary. This
unusually high data complexity illustrates the added power of
our approach as compared to traditional rule languages such as
Datalog. Under a reasonable assumption (bounding the size of
annotations), data complexity drops back to polynomial time.

For now, we treat the annotations as opaque; we do not aim
at providing specialty reasoning services for certain datatypes
such as time, numbers, coordinates, or provenance informa-
tion. As each datatype suggests different bodies of related
work, we refrain from going into detail.

Our presentation is self-contained, but some proofs and
standard definitions have been moved to the appendix of this
extended report.

2 Multi-Attributed Relational Structures
We now formalise our notion of a generalised Property Graph,
and we use it as the basis for the model theory of a suitably
enhanced predicate logic.

We consider a finite set P of predicates, where each p ∈ P
has an associated arity ar(p) ≥ 0. If not otherwise stated, we
assume this signature to be fixed and refrain from mentioning
it. For the following definition, let Pfin (S) be the set of all
finite subsets of set S.
Definition 1. A multi-attributed relational structure (MARS)
M consists of a non-empty set ∆M of domain elements and,
for each n-ary predicate p ∈ P, an (n + 1)-ary relation pM ⊆
(∆M)n × Pfin

(
∆M × ∆M

)
.

In other words, a MARS behaves like a relational structure
(i.e., hypergraph) over a domain∆M , where each relation tuple
(i.e., hyperedge) is annotated with a finite binary relation over
∆M . We view this relation as a set of attribute–value pairs.
There might be multiple values for each attribute, justifying
our terminology. Also note that the same relational tuple may
occur with different attribute–value collections within a sin-
gle MARS. Thus MARS generalise Property Graphs, where
attributes are functional and relations are unary and binary.
The unary relations can be used to assign attribute–value col-
lections to nodes.

To represent schematic knowledge on (generalised) Prop-
erty Graphs, we introduce logical formulae with an addi-
tional set-valued parameter for each predicate, representing
attribute–value pairs. In addition to the set of predicates P,
such logical expressions are based on a set C of constant sym-
bols, a set V of object variables and a set U of set variables.
Definition 2. An object term is a symbol t ∈ C ∪ V. A set
term is either a variable U ∈ U or an expression of the form
{a1 : b1, . . . , an : bn} for n ≥ 0, where ai, bi are object terms
for all i ∈ {1, . . . , n}.
The formulae of multi-attributed predicate logic (MAPL)

are defined as follows. A relational atom is an expression
p(t1, . . . , tn)@S where p ∈ P is an n-ary predicate, t1, . . . , tn
are object terms, and S is a set term. A set atom is an expression
(a : b) ∈ S, where a, b are object terms and S is a set term.
An atom is a relational atom or set atom. The set of MAPL
formulae is inductively defined to contain all atoms and all
formulae of the form ϕ1 ∧ ϕ2, ¬ϕ, ∃x.ϕ and ∃U.ϕ, where
ϕ(i) are MAPL formulae, x ∈ V and U ∈ U. We define the
shortcuts ∨,→, and ∀ in the usual way.
Example 1. (1) is a MAPL formula that works on spouse
statements with start, loc, and end attributes. It does not apply
tomarriagesmissing loc, but the locationmay not be known for
all spouse statements. To support optional attributes, we first
define a shortcut ϕ[X,Y], where X and Y might be arbitrary
set variables, to be the following formula:

∀z1.((start : z1) ∈ X → (start : z1) ∈ Y) ∧
∀z2.((loc : z2) ∈ X → (loc : z2) ∈ Y) ∧
∀z3.((end : z3) ∈ X → (end : z3) ∈ Y)

(2)

The formula Ψ[X,Y] = ϕ[X,Y] ∧ ∀W .∀x, y.(ϕ[X,W] ∧
(x : y) ∈ Y) → (x : y) ∈ W then expresses that Y is the
least set that contains the same start, loc, and end values as
X , i.e., Y does not contain any other attributes. Using this
conditional copying of attributes, we can improve (1):

∀x, y.∀U,V.(spouse(x, y)@U ∧ ψ[U,V]
→ spouse(y, x)@V)

(3)

The semantics of MAPL formulae is defined in the natural
way by using MARS as the basis for the model theory, i.e.,
by switching from standard relational structures to MARS
in logical interpretations. We first define our interpretation
of (object and set) terms. We make a unique name assump-
tion (UNA), since this is more natural for working with large
knowledge graphs (which are similar to databases). The UNA
is particularly useful when formulatingmeaningful conditions
on finite annotations, as discussed in Section 3.
Definition 3. A MAPL interpretation I is a MARS, which in
addition maps each constant c ∈ C injectively to an element
cI ∈ ∆I (UNA). A MAPL variable assignment for I is a
function Z that maps object variables x ∈ V to elements
Z(x) ∈ ∆I and set variables U ∈ U to finite binary relations
Z(U) ∈ Pfin

(
∆I × ∆I

)
.

For an object term t, we define tI,Z B tI if t ∈ C and
tI,Z B Z(t) if t ∈ V. For a set variable U ∈ U, we define
UI,Z B Z(U) . For a set term S = {a1 : b1, . . . , an : bn}, we
define SI,Z B {〈aI,Z1 , bI,Z1 〉, . . . , 〈aI,Zn , bI,Zn 〉}.

Definition 4. An interpretation I and a variable assignment
Z for I may satisfy a formula ϕ, written I,Z |= ϕ. This is
defined recursively as follows:

• I,Z |= p(t1, . . . , tn)@S if 〈tI,Z1 , . . . , tI,Zn , SI,Z〉 ∈ pI ,

• I,Z |= (a : b) ∈ S if 〈aI,Z, bI,Z〉 ∈ SI,Z ,
• I,Z |= (ϕ1 ∧ ϕ2) if I,Z |= ϕ1 and I,Z |= ϕ2,
• I,Z |= ¬ϕ if I,Z 6|= ϕI ,
• I,Z |= ∃x.ϕ if there is δ ∈ ∆I such that I,Z|x 7→δ |= ϕ,
• I,Z |= ∃U.ϕ if there is R ∈ Pfin

(
∆I × ∆I

)
such that

I,Z|U 7→R |= ϕ,
where Z|X 7→V denotes the assignment Z modified to map
X to V . We may omit Z for formulae without free variables
(sentences), writing I |= ϕ; in this case, I is a model of ϕ.
As usual, we say that a variable-free MAPL formula is

satisfiable if it has a model. A variable-free formula ϕ entails
ψ, written ϕ |= ψ, if all models of ϕ are also models of ψ. We
extend all of these notions to sets of formulae as usual.

Unfortunately, as the next theorem shows, MAPL is al-
ready too powerful for practical applications. Recall that weak
second-order logic (WSO) is a second-order logic that allows
set quantifiers to range over finite sets only [Leivant, 1994].
In spite of this restriction, there is no sound and complete
calculus for WSO, even without built-in equality.
Theorem 1. Satisfiability of a sentence of weak second-order
logic can be polynomially reduced to satisfiability of a MAPL
sentence. In particular, satisfiability for MAPL is not semide-
cidable (and therefore not decidable).

Proof. MAPL uses the same connectives as WSO, but fur-
ther restricts second-order quantification to binary predicate
variables. We translate WSO formulae ϕ into equisatisfiable
MAPL formulae ϕMAPL. For a k-ary second-order variable
X , let X1, . . . , Xk be fresh set variables. If ϕ = p(t1, . . . , tn)
is a first-order atom, then ϕMAPL B p(t1, . . . , tn)@{}. If
ϕ = X(t1, . . . , tk) is a second-order atom, then

ϕMAPL B ∃v.(v : t1) ∈ X1 ∧ · · · ∧ (v : tk) ∈ Xk .

If ϕ = ∃X .ψ for a second-order variable X , then ϕMAPL B
∃X1, . . . , Xk .ψMAPL. If ϕ = ∃x.ψ for a first-order variable x,
then ϕMAPL B ∃x.ψMAPL. Likewise, (¬ψ)MAPL B ¬ψMAPL and
(ψ ∧ ψ ′)MAPL B ψMAPL ∧ ψ ′MAPL. �

3 Towards a Decidable Fragment of MAPL
Theorem 1 shows that MAPL is hardly suitable as an ontology
language, since automated, fully unsupervised processing can
access logically entailed information only in incomplete ways.
Our goal is to identify a decidable fragment of MAPL that
is suitable for speaking about Property Graphs and related
structures. In this section, we introduce several practically
useful expressive features that MAPL can provide, and that
will play an important role in the definition of this fragment.

An important class of formulae are those that can express
conditions on attribute–value sets, which we call specifiers.
For example, we will allow formulae such as [start : ∗, loc :
Montreal](U) to state that U is an annotation that contains

zero or more values for attribute start, the value Montreal for
attribute loc, and no other attributes. We show that this and
many other specifiers can be expressed in MAPL.
Definition 5. A closed specifier is an expression of the form
[a1 : b1, . . . , an : bn] where n ≥ 0, ai are object terms, and bi
are either object terms or one of the special symbols ∗ and +.
For interpretation I and variable assignmentZ, define:

• [a : b]I,Z B {{a : b}I,Z} if b < {∗,+},
• [a : ∗]I,Z as the set of all finite binary relations of form
{〈aI,Z, δ1〉, . . . , 〈aI,Z, δ`〉} with ` ≥ 0 and δi ∈ ∆I ,

• [a : +]I,Z as the set of all finite binary relations of form
{〈aI,Z, δ1〉, . . . , 〈aI,Z, δ`〉} with ` ≥ 1 and δi ∈ ∆I ,

• [a1 : b1, . . . , an : bn]I,ZB
{⋃n

i=1 Si | Si ∈ [ai : bi]I,Z
}
.

Example 2. Consider Ω B [start : ∗, loc : Montreal], the
closed specifier from the motivating example above. Then
given any interpretation I, we have {loc : Montreal}I ∈ ΩI
and {start : 1964, loc : Montreal}I ∈ ΩI , but {start : 1964,
loc : Montreal, end : 1974}I < ΩI .
Closed specifiers allow us to describe annotations that use

only certain “expected” attributes, which is useful in the open,
schema-less world of knowledge graphs, where attributes may
be reused in different contexts. However, it is also useful to
consider open specifiers, which characterise the set of all su-
persets of a given annotation:
Definition 6. An open specifier is an expression of the form
Ω = ba1 : b1, . . . , an : bnc where n ≥ 0, ai are ob-
ject terms, and bi are either object terms or one of the
special symbols ∗ and +. Given an interpretation I and
a variable assignment Z, we define ΩI,Z to be the set{

S ∈ Pfin
(
∆I × ∆I

)
| S ⊇ T for some T ∈ Ω̄I,Z

}
where Ω̄ is

the corresponding closed specifier [a1 : b1,. . ., an : bn].
Example 3. The open specifier bstart : +, loc : Montrealc
characterises annotations that have at least one value for start
and a loc attribute with value Montreal, e.g., for any interpre-
tationI, we have {start : 1964, loc : Montreal, end : 1974}I ∈
bstart : +, loc : MontrealcI .
It is natural to define set operations on specifiers. For ex-

ample, the union bloc : Montrealc ∪ bloc : Perthc describes
annotations with (at least) one of two possible values for loc.
Definition 7. A specifier Ω is a term built from open and
closed specifiers using the (binary) operators ∩ , ∪ , and
\ . The semantics are extended in the natural way, e.g.,
(Ω1 ∩Ω2)I,Z B ΩI,Z1 ∩ ΩI,Z2 . A specifier atom is an ex-
pression Ω(S), where Ω is a specifier and S is a set variable.
Example 4. Note that specifiers may use object variables.
The following specifier defines annotations that give at least
a start date x and a location y, but no end date:

bstart : x, loc : yc \ bend : +c (4)
We may treat arbitrary specifiers as syntactic sugar:

Theorem 2. For every specifier Ω, there is a MAPL formula
ϕΩ[U] with a set variable U such that, for all interpretations
I, variable assignmentsZ, and relations R ∈ Pfin

(
∆I × ∆I

)
,

we have R ∈ ΩI,Z iff I,Z|U 7→R |= ϕΩ.

Example 5. Along the lines of Example 4, we can define the
current spouse of a person:

∀x,y.∀U.
(
bstart : +c \ bend : +c

)
(U)

∧spouse(x, y)@U → currentSpouse(x, y)@U
(5)

This is an important pattern that, in spite of the use of start
and end times in our example, is fundamentally different from
typical patterns in logics with temporal validity annotations.

Specifiers can express conditions on attribute–value sets.
For ontological modelling, it is further useful to construct
new attribute–value sets that are used to annotate newly de-
rived facts. For instance, we have constructed a set V with
optional parts in Example 1. We want enough power to define
interesting types of functions, which compute new annotation
sets by evaluating conditions on their input.
Definition 8. Let F denote a set of function symbols. A func-
tion definition 〈F, S,C〉 consists of a symbol F ∈ F, a signa-
ture S that is a list of distinct variables from V ∪U, and a set
C of conditionals of the following form:

ϕ1, . . . , ϕn ⇒ insert(a1 : b1, . . . , am : bm) (6)

where n ≥ 0, all ϕi are MAPL set atoms or specifier atoms,
m ≥ 1, and all aj, bj are object terms. The part left of ⇒
is the precondition and the part right of⇒ is the action. We
require: (a) all set variables in the precondition must occur
in the signature S; and (b) all variables in the action occur
either in the precondition or in the signature S.

A function term for 〈F, S,C〉 is an expression F(t), where t
is a list of MAPL terms of length | t | = |S |, so that ti is an ob-
ject term if Si is an object variable, and a set term otherwise.
For an interpretation I and variable assignmentZ, we define
F(t)I,Z to be the least set of attribute–value pairs such that,
for each conditional of form (6) in C and all variable assign-
ments Z′ satisfying Z′(Si) = tI,Zi for all i ∈ {1, . . . , |S |},
if I,Z′ |= ϕ1 ∧ . . . ∧ ϕn then 〈aI,Z

′

j , bI,Z
′

j 〉 ∈ F(t)I,Z for
all j ∈ {1, . . . ,m}. We consider the empty conjunction to be
vacuously satisfied in case n = 0.
Inwords, the set F(t)I,Z simply contains all attribute–value

pairs that are entailed by some conditional of F.
Example 6. Making a copy of optional attribute–value pairs
as realised by the formula Ψ[X,Y] in Example 1 can be ex-
pressed with a function definition 〈Copy, 〈U〉,C〉 with C con-
sisting of the following conditionals:

bstart : z1c(U) ⇒ insert(start : z1)
bloc : z2c(U) ⇒ insert(loc : z2)
bend : z3c(U) ⇒ insert(end : z3)

Example 7. We can define binary functions that compute
set operations on two annotations sets U and V . Union is
captured with two conditionals bx : yc(U) ⇒ insert(x : y)
and bx : yc(V) ⇒ insert(x : y). Intersection can be expressed
by one conditonal bx : yc(U), bx : yc(V) ⇒ insert(x : y). Set
difference is defined using a single conditional

bx : yc(U),
(
bc \ bx : y c

)
(V) ⇒ insert(x : y).

Arguably, such operations on annotations are essential
when defining ontological relations on knowledge graphs. The
next result confirms that this can be captured in MAPL.
Theorem 3. For every function definition 〈F, S,C〉 and cor-
responding function term F(t), there is a MAPL formula
ϕF(t)[U]with a set variableU such that, for all interpretations
I, variable assignmentsZ, and relations R ∈ Pfin

(
∆I × ∆I

)
,

we have I,Z|U 7→R |= ϕF(t) iff R = F(t)I,Z .
Theorem 3 allows us to use function terms for annota-

tions within MAPL theories. A relational atom of the form
p(a1, . . . , an)@F(t) can be considered as an abbreviation for
∃U.p(a1, . . . , an)@U ∧ ϕF(t)[U], and similarly for set atoms.
Example 8. With the function definition 〈Copy, 〈U〉,C〉 of
Example 6, formula (3) of Example 1 can be written as
∀x, y.∀U.spouse(x, y)@U → spouse(y, x)@Copy(U) (7)

4 MAPL Rules
We now introduce a rule-based fragment of MAPL, where
rules are allowed to contain arbitrary specifiers. While still
giving us high expressivity, this is sufficient to obtain decid-
ability for fact entailment.
Definition 9. A MAPL rule is a MAPL formula of the form
∀U.∀x.(ϕ → ψ), where ϕ is a conjunction of MAPL atoms
and specifier atoms; ψ is a relational MAPL atom that may
use a function term; and U and x are lists of all set and
object variables, respectively, that occur in ϕ or ψ. We further
require that every set variable or set term {a1 : b1, . . . , a` : b`}
containing object variables must occur in some relational
atom in ϕ, and that all variables in ψ occur in ϕ.

We will tacitly omit the universal quantifiers, and call ϕ
body and ψ head of the rule. A fact is a rule where the body ϕ
is an empty conjunction (interpreted as true).

An ontology of multi-attributed rule-based predicate logic
(MARPL) consists of a finite set P of MAPL rules together with
a finite set F of function definitions that includes exactly one
definition for every function symbol used in P.

Previous examples such as (1) and (7) have already used
rule-shaped formulae. Example 8 therefore showed aMARPL
ontology. A slightly more complex example is given next.
Example 9. MAPL rules allow for elaborate inferences,
where we can enrich annotations by information from other
statements. The following rule can, for example, infer from a
spouse statement and a matching dateOfDeath statement that
the marriage must have ended on the day of the death:2
spouse(x, y)@U ∧ dateOfDeath(x, z)@V

→ spouse(y, x)@EndedByDeath(U,V, z)
(8)

where the function definition 〈EndedByDeath, 〈U,V, z〉,C〉
with the following conditionals is present:
bstart : xc(U) ⇒ insert(start : x),
bloc : xc(U) ⇒ insert(loc : x), (9)

⇒ insert(end : z, endCause : Death)

2This simplified example is inspired by actual usage onWikidata,
where one may indeed find spouse statements that are annotated with
an end cause death.

Given the facts spouse(todd, taylor)@{start : 1957-02-02}
and dateOfDeath(todd, 1958-03-22)@{}, by using the above
rule, we can infer spouse(taylor, todd)@{start : 1957-02-02,
end : 1958-03-22, endCause : Death}, explaining the end of
one of Taylor’s marriages.

While specifiers and function definitions are syntactic sugar
for MAPL, they add true expressive power to MARPL. In-
deed, althoughMARPL rules use only universal second-order
quantifiers explicitly, they are not in the fragment of univer-
sal second-order logic (USO), since specifiers and function
definitions introduce hidden second-order existentials.

Nevertheless, MARPL is not truly a higher-order logic. For
the following statement, we consider first-order logic with
equality ≈ (FO≈) under the unique name assumption (UNA):
Theorem 4. Every MARPL ontology 〈P, F〉 can be translated
into a set of FO≈ sentences M2FO(P, F), and every variable-
free MAPL atom ϕ into a FO≈ sentence M2FO(ϕ), such that
〈P, F〉 |= ϕ iff M2FO(P, F) |= M2FO(ϕ) under the UNA.
The translation M2FO is based on the representation of

MARS in standard first-order relational structures. For a given
MARS predicate symbol p of arity n, we introduce a new
(n + 1)-ary first-order predicate symbol p̄. Moreover, we use
an auxiliary predicate in of arity ar(in) = 3. We can now
encode aMARS tuple 〈δ1, . . . , δn, S〉 ∈ pI , where S is a binary
relation {〈ε1, τ1〉, . . . , 〈εm, τm〉}, using tuples 〈δ1, . . . , δn, σ〉 ∈
p̄I and 〈ε1, τ1, σ〉 ∈ inI, . . . , 〈εm, τm, σ〉 ∈ inI . That is, we
introduce an auxiliary domain element σ to represent the set
S. Translated formulae accordingly use first-order variables
to represent sets, e.g.,a MAPL atom (a : b) ∈ U turns into
in(a, b, u), where u is a first-order variable that is specific toU.
We simply use lower-case variants of set variables to indicate
this switch. As rules are safe and MARPL does not admit
counting quantifiers, this mixing of object and set variables
is unproblematic. A variable-free relational MAPL atom ϕ =
p(t1, . . . , tn)@{a1 : b1, . . . , am : bm} therefore becomes
M2FO(ϕ) B ∃u.p̄(t1, . . . , tn, u) ∧

∧m
i=1 in(ai, bi, u) ∧

∀x,y.in(x,y, u) →∨n
i=1(x≈ai ∧ y≈bi)

(10)

The translation of MARPL rules uses similar formulae to
capture relational and specifier atoms. For every function def-
inition 〈F, S,C〉, we introduce a fresh (|S | + 1)-ary predi-
cate symbol F̄. Let s be the signature of F with all set vari-
ables replaced by first-order variables. For every conditional
ϕ1, . . . , ϕn ⇒ insert(a1 : b1, . . . , am : bm) in C, we add a rule

F̄(s, u) ∧
∧

1≤i≤n
ϕ̄i →

∧
1≤ j≤m

in(aj, bj, u) (11)

where ϕ̄i denotes the first-order translation of the atom ϕi . In
combination with the translated MARPL rules, this yields the
required translation M2FO(P, F).

This shows that MARPL reasoning is semidecidable. We
show in Section 5 that it is decidable in ExpTime, which is the
best result that one could expect considering the ExpTime-
hardness of Datalog. Yet, surprisingly, this bound is tight for
data complexity, which is much lower (PTime) for Datalog.
Theorem 5. Deciding fact entailment for MARPL ontologies
is ExpTime-hard, even when restricting to classes of ontolo-
gies where only the set of facts is allowed to vary.

Our proof is based on an interesting reduction from theword
problem of polynomially space-bounded Alternating Turing
Machines,wherewe use attribute–value sets to representATM
configurations. The key idea is to compute accepting config-
urations backwards starting from the final configuration. The
structure of the polynomial tape can be given in annotations
that are part of the input facts. Function definitions can then
perform most of the computation needed to determine possi-
ble predecessor configurations. The ATM accepts if the initial
configuration can be derived in this way.

5 Reasoning with MARPL
We are interested in reasoning with MARPL. A natural rea-
soning task in this context is fact entailment: given a MARPL
ontology 〈P, F〉 and a variable-free relational MAPL atom ϕ,
we wish to decide if 〈P, F〉 |= ϕ holds. More general query
answering can be reduced to this task. We have already es-
tablished the semi-decidability of reasoning in MARPL. We
now present a decision procedure that, informally speaking,
proceeds as follows:

• We consider all annotations of previously derived facts
as fixed and final (“immutable”). This makes it easy to
evaluate atoms, including all specifier atoms, whether or
not they require negation.

• When applying an ontological rule, we create a new an-
notation as computed from its defining function. This is
a finite “initialisation” process that creates new sets.

• We eagerly eliminate duplicates, i.e., relational atoms
that agree on the first-order atom and annotation after
initialisation.

Exhaustive rule application along these lines yields an algo-
rithm that can be applied directly on MARPL ontologies to
compute the least MARS that satisfies them.
Definition 10. A ground (MAPL) substitution σ is a par-
tial mapping from object and set variables to constants and
variable-free set terms, respectively. Given a term or formula
ϕ, we write ϕσ for the term or formula obtained by replacing
each variable χ in ϕ with σ(χ), whenever this is defined.
Definition 11. The MARS chase procedure takes a MARPL
ontology 〈P, F〉 and constructs a finite interpretation I as
follows. The domain of I is the finite set of constants c ∈ C
in 〈P, F〉; and such constants are interpreted as cI B c.
We initialise pI B ∅ for every predicate p, and repeat the
following steps until no more changes occur:
(A) Let ϕ → p(t1, . . . , tn)@Ψ ∈ P be a rule and let σ

be a ground substitution such that I |= ϕσ but I 6|=
p(t1, . . . , tn)@Ψσ.

(B) If Ψ is a set term or a set variable, set T B Sσ. Note
that Ψ is ground, because Ψ is either a variable-free set
term or appears in ϕ. Otherwise, if Ψ = F(τ1, . . . , τ`),
set T B F(τ1σ, . . . , τ`σ).

(C) Set pI B pI ∪ {〈(t1σ)I, . . . , (tnσ)I,TI〉}.
The result I of this procedure is denoted I(P, F).

We start out with a finite set of constants, so there are
only finitely many finite sets over this set of constants. Hence,

there are only finitely many facts that can be derived, so the
algorithm terminates after finitely many steps.

The next result shows that I(P, F) plays the role of a least
model for MARPL, similar to the least model of Datalog.
While MARPL specifiers introduce a form of negation, the
saturation of Definition 11 remains monotone, since speci-
fiers refer to annotations of previously derived ground atoms,
whereas rule applications can only derive new ground atoms
but never modify existing ones. This mechanism can also be
understood as a form of local stratification of negation.
Theorem 6. For any MARPL ontology 〈P, F〉, we have
〈P, F〉 |= χ iff I(P, F) |= χ for any variable-free atom χ.

Proof. Clearly, the MARS chase terminates after finitely
many steps and the resulting interpretation I(P, F) is finite.
Further note that the MARS chase is monotone in the sense

that I(P, F) can be considered as a set of ground facts, where
each rule application may add new facts but not modify or
delete previously derived ones.

For soundness, we show by induction that I(P, F) |= α
implies J |= α for every model J of 〈P, F〉, and every ground
fact α. Clearly, any fact in P holds in J . Consider now an
applicable rule ϕ→ ψ ∈ P. Then there is a ground substitution
σ such thatI(P, F) |= ϕσ. Hence, by the induction hypothesis,
J |= ϕσ. Any fact added to I(P, F) by applying ϕ→ ψ must
also be present in J , since all variables in ψ appear in ϕ (and
are therefore mapped to constants by σ) and J |= ϕ→ ψ.

For completeness, we show that I(P, F) is indeed a model
of 〈P, F〉. Assume to the contrary that some rule ϕ → ψ ∈ P
does not hold in I(P, F), i.e., for some variable assignmentZ,
we have I(P, F),Z |= ϕ, but I(P, F),Z 6|= ψ. Then ϕ → ψ
is an applicable rule, and its application results in at least one
fact being added to I(P, F) in (A) – contradiction. �

With k constants, one can define 2k2 distinct annotations. If
the maximal arity of predicates in an ontology is a, there are
at most |P| · ka · 2k2 MAPL facts. This yields an upper bound
for the number of iterations in the MAPL chase, and thus a
matching upper bound for Theorem 5. Note that individual
rule applications can also be done in this bound: we can find
the required match (A), and compute the new fact (C) in NP.
Theorem 7. Deciding fact entailment for MARPL ontologies
is in ExpTime.
Our estimation for the upper bound also reveals that the

hardness for data complexity is related to the size of anno-
tations, which occurs in the exponent in 2k2 . We can obtain
lower bounds by restricting to cases where k is bounded by a
constant. A MARPL ontology 〈P, F〉 belongs to MARPLk for
k ≥ 0 iff for any entailed fact 〈P, F〉 |= p(t1, . . . , tn)@S, the
number of attribute–value pairs in S is at most k.
Theorem 8. For any k ≥ 0, deciding fact entailment for
MARPLk ontologies is in PTime with respect to data com-
plexity, i.e., when considering rules except facts to be fixed.

Note that, while data complexity generally allows us to vary
the set of facts while keeping other rules fixed, not all sets of
facts may lead to an ontology in MARPLk . Theorem 8 states
that we recover the low data complexity of Datalog if anno-
tation sizes are bounded. This insight is practically relevant

since typical Property Graphs do not use very large annota-
tions, but it is not easy to invoke Theorem 8 directly: reasoning
is necessary to determine if an ontology (with a given set of
facts) is in MARPLk . However, one can find simpler syntactic
conditions, e.g., for ontologies without function definitions:
Theorem 9. An ontology 〈P, ∅〉 is in MARPLk for every k
greater or equal to the largest set term in (facts or rules of) P.

6 Discussion and Outlook
We presented a first approach towards ontological modelling
on Property Graphs and related data formats. Our rule-based
formalism MARPL captures key expressive features of our
general, second-order logic framework while ensuring ap-
proachable reasoning complexity based on practical bottom-
up algorithms. Combined complexity agrees with other popu-
lar rule languages, such as Datalog, but it may seem problem-
atic that worst-case reasoning time may grow exponentially
in the size of the data (which is usually large). However, our
hardness proof requires attribute–value sets to grow arbitrar-
ily large, which we think is not to be expected in practical
applications. Typical applications rather have bounded-size
annotations, for which data complexity drops to PTime.

Nevertheless, ourExpTime data complexity (and evenmore
so the non-semidecidability of our overall framework) under-
lines that our work is fundamentally different from other sce-
narios studied in AI. Indeed, we are not aware of any closely
related work. Attributed graphs are supported by several
database management systems, but even basic “integrity con-
straints are poorly studied in graph databases” [Angles, 2012].
Somewhat related to our work are recursive graph query lan-
guages over advanced graph models, such as SNQL [Martín et
al., 2011], GraphQL [He and Singh, 2008], G-Log [Paredaens
et al., 1995], and GraphLog [Consens and Mendelzon, 1989].
As MARPL extends Datalog, it subsumes Datalog fragments
such as GraphLog, but other algebras sport incomparable ex-
pressivity such as the computation of aggregates in SNQL.
Maybe closest to the spirit of our work, Moustafa et al. pro-
posed an extension of Datalog where set-valued parameters
represent edge attributes for social network analysis [2011].
None of these works are truly concerned with knowledge

representation or AI, and indeed it seems that this community
has largely ignored enriched graphmodels so far. Our proposal
can offer a first bridge between these hitherto disconnected
areas. It now remains to explore how the wealth of insights
obtained for other ontology languages can be applied to this
new field. Language design, expressive extensions, deduction
methods, and implementations all are worthwhile areas of
future study with a huge potential for applications.

Acknowledgements
This work is partly supported by the German Research Foun-
dation (DFG) within the Cluster of Excellence “Center for
Advancing Electronics Dresden” (cfaed), the Collaborative
Research Center SFB 912 (HAEC), and in Emmy Noether
grant KR 4381/1-1 (DIAMOND).

References
[Angles, 2012] Renzo Angles. A comparison of current

graph database models. In Workshops Proceedings of the
IEEE 28th International Conference on Data Engineering,
ICDE 2012, Arlington, VA, USA, April 1-5, 2012, pages
171–177, 2012.

[Bollacker et al., 2008] Kurt Bollacker, Colin Evans, Praveen
Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A col-
laboratively created graph database for structuring human
knowledge. In Proc. 2008 ACM SIGMOD Int. Conf. on
Management of Data, pages 1247–1250. ACM, 2008.

[Consens and Mendelzon, 1989] M. P. Consens and A. O.
Mendelzon. Expressing structural hypertext queries in
graphlog. In Proceedings of the Second Annual ACM Con-
ference on Hypertext, HYPERTEXT ’89, pages 269–292,
New York, NY, USA, 1989. ACM.

[Green et al., 2007] Todd J. Green, Gregory Karvounarakis,
and Val Tannen. Provenance semirings. In Proceedings of
the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, June 11-13, 2007,
Beijing, China, pages 31–40, 2007.

[He and Singh, 2008] Huahai He and Ambuj K. Singh.
Graphs-at-a-time: query language and access methods for
graph databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIG-
MOD 2008, Vancouver, BC, Canada, June 10-12, 2008,
pages 405–418, 2008.

[Hoffart et al., 2013] Johannes Hoffart, Fabian M. Suchanek,
Klaus Berberich, and Gerhard Weikum. YAGO2: A
spatially and temporally enhanced knowledge base from
Wikipedia. J. of Artif. Intell., 194:28–61, 2013.

[Leivant, 1994] Daniel Leivant. Higher order logic. In
Dov M. Gabbay, Christopher J. Hogger, J. A. Robinson,
and Jörg H. Siekmann, editors, Handbook of Logic in Arti-
ficial Intelligence and Logic Programming, Volume 2, De-
duction Methodologies, pages 229–322. Oxford University
Press, 1994.

[Martín et al., 2011] Mauro San Martín, Claudio Gutierrez,
and Peter T. Wood. SNQL: A social networks query and
transformation language. In Proceedings of the 5th Al-
berto Mendelzon International Workshop on Foundations
of Data Management, Santiago, Chile, May 9-12, 2011,
2011.

[Moustafa et al., 2011] Walaa Eldin Moustafa, Galileo Na-
mata, Amol Deshpande, and Lise Getoor. Declarative
analysis of noisy information networks. In Workshops
Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany, pages 106–111, 2011.

[OWL Working Group, 2009] W3C OWL Working Group.
OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009. Available at
http://www.w3.org/TR/owl2-overview/.

[Paredaens et al., 1995] Jan Paredaens, Peter Peelman, and
Letizia Tanca. G-log: A graph-based query language. IEEE
Trans. on Knowl. and Data Eng., 7(3):436–453, June 1995.

[Rodriguez and Neubauer, 2010] Marko A. Rodriguez and
Peter Neubauer. Constructions from dots and lines. Bul-
letin of the American Society for Information Science and
Technology, 36(6):35–41, 2010.

[Rudolf et al., 2013] Michael Rudolf, Marcus Paradies,
Christof Bornhövd, andWolfgang Lehner. The graph story
of the SAP HANA database. In Datenbanksysteme für
Business, Technologie undWeb (BTW), 15. Fachtagung des
GI-Fachbereichs "Datenbanken und Informationssysteme"
(DBIS), 11.-15.3.2013 in Magdeburg, Germany. Proceed-
ings, pages 403–420, 2013.

[Straccia et al., 2010] Umberto Straccia, Nuno Lopes,
Gergely Lukacsy, and Axel Polleres. A general framework
for representing and reasoning with annotated Semantic
Web data. In Maria Fox and David Poole, editors, Proc.
24th AAAI Conf. on Artificial Intelligence (AAAI’10).
AAAI Press, 2010.

[Udrea et al., 2010] Octavian Udrea, Diego Reforgiato Re-
cupero, and V. S. Subrahmanian. Annotated RDF. ACM
Trans. Comput. Logic, 11(2):10:1–10:41, 2010.

[Vrandečić and Krötzsch, 2014] Denny Vrandečić and
Markus Krötzsch. Wikidata: A free collaborative
knowledgebase. Commun. ACM, 57(10), 2014.

http://www.w3.org/TR/owl2-overview/

The appendix provides proofs and additional definitions
that were omitted from the main text for lack of space.

A Proofs for Section 3
Before proving Theorems 2 and 3, we show two auxiliary
results that we will use in these proofs.
Lemma 1. There is a MAPL formula subset[U,V] with set
variables U,V , such that for all interpretations I, variable
assignmentsZ, and relations R, P ∈ Pfin

(
∆I × ∆I

)
, we have

I,Z|U 7→R,V 7→P |= subset[U,V] iff R ⊆ P.

Proof. Set subset[U,V]B ∀x, y.(x : y) ∈ U→(x : y) ∈ V.
Let I be an interpretation, Z a variable assignment,

and R, P ∈ Pfin
(
∆I × ∆I

)
finite binary relations. Clearly

I,Z|U 7→R,V 7→P |= subset[U,V] iff 〈δ, ε〉 ∈ R → 〈δ, ε〉 ∈ P
for all δ, ε ∈ ∆, i.e., iff R ⊆ P. �

Lemma 2. For any formula ψ[X] with free set variable X ,
there is a MAPL formula minX

ψ [X] with free variable X such
that for all interpretations I, variable assignments Z, and
relations R ∈ Pfin

(
∆I × ∆I

)
, we have I,Z|X 7→R |= minX

ψ iff
R is the least relation satisfying I,Z|X 7→R |= ψ.

Proof. Let ψ[X] be a MAPL formula. Set

minX
ψ B ψ[X] ∧

(∀Y .ψ[X/Y] → subset[X,Y]
)

where ψ[X/Y] denotes ψ[X] with free occurrences of X re-
placed by Y , and Y is chosen such that it does not occur as a
free variable in ψ.

LetI be an interpretation,Z a variable assignment, and R ∈
Pfin

(
∆I × ∆I

)
a finite binary relation satisfying I,Z|X 7→R |=

minX
ψ . Then I,Z|X 7→R |= ψ. Suppose for a contradiction

that R is not minimal, i.e., I,Z|X 7→P |= ψ for some P (
R. Then I,Z|X 7→R |= ∀Y .ψ[X/Y] → subset[X,Y] yields a
contradiction. Conversely, if R is the least relation satisfying
I,Z|X 7→R |= ψ, for any relation Q satisfying I,Z|X 7→Q |= ψ,
we have R ⊆ Q, yielding I,Z|X 7→R |= minX

ψ . �

Theorem 2. For every specifier Ω, there is a MAPL formula
ϕΩ[U] with a set variable U such that, for all interpretations
I, variable assignmentsZ, and relations R ∈ Pfin

(
∆I × ∆I

)
,

we have R ∈ ΩI,Z iff I,Z|U 7→R |= ϕΩ.

Proof. We start by transforming closed specifiers into equiv-
alent MAPL formulae before generalising in turn to open
specifiers and then to arbitrary specifier expressions.

Let I be an interpretation, Z a variable assignment, and
R ∈ Pfin

(
∆I × ∆I

)
a finite binary relation.

Consider firstΩ B [a : b], where a, b are object terms, i.e.,
b < {∗,+}. Set ϕΩ B minU(a:b)∈U . Clearly, I,Z|U 7→R |= ϕΩ

iff R is the least set satisfying 〈aI,Z, bI,Z〉 ∈ R, i.e., iff
R = {〈aI,Z, bI,Z〉} = {a : b}I,Z . By definition, this is
equivalent to R ∈ {{a : b}I,Z} = ΩI,Z .

Next, let Ω B [a : ∗] for some object term a. Define

ϕΩ B ∃Z .minZ
∀x,y.(x:y)∈U→(a:y)∈Z [U, Z] ∧ subset[U, Z]

Note that the first conjunct is a formula with free variables Z
and U. Then R = {〈aI,Z, δ1〉, . . . , 〈aI,Z, δ`〉} for some ` ≥ 0

and δi ∈ ∆I . Suppose for a contradiction that I,Z|U 7→R |=
ϕΩ, but 〈γ, δ〉 ∈ R for γ, δ ∈ ∆I such that γ , aI,Z . Then
there is a relation P that is the least set satisfying, for ε ∈ ∆I ,
〈ε, δ〉 ∈ R only if 〈aI,Z, δ〉 ∈ P. But then either 〈γ, δ〉 < P,
contradicting R ⊆ P, or 〈γ, δ〉 ∈ P, which contradicts the
minimality of P. Hence, R ∈ ΩI,Z .

Similarly, for Ω B [a : +], define ϕΩ B ϕ[a:∗] ∧∃x.(a : x) ∈ U. Clearly, I,Z|U 7→R |= ϕΩ iff R is nonempty
and R ∈ [a : ∗]I,Z , i.e., R = {〈aI,Z, δ1〉, . . . , 〈aI,Z, δ`〉} for
some ` ≥ 1, δi ∈ ∆I .
Finally, letΩ B [a1 : b1, . . . , an : bn] be an arbitrary closed

specifier, where ai are object terms and bi are either object
terms or one of ∗ and +, for i ∈ {1, . . . , n}. Set

ϕΩ B ∃U1, . . . ,Un.
∧

1≤i≤n
ϕ[ai :bi][U/Ui] ∧

minU∧
1≤i≤n subset[Ui,U]

Then I,Z|U 7→R |= ϕΩ iff R is the least set satisfying Si ⊆ R
for relations Si ∈ [ai : bi]I,Z (1 ≤ i ≤ n), i.e., R =

⋃n
i=1 Si .

Equivalently, R ∈
{⋃n

i=1 Si | Si ∈ [ai : bi]I,Z
}
= ΩI,Z .

We now turn to open specifiers. Consider an arbitrary open
specifier Ω B ba1 : b1, . . . , an : bnc, where ai are object
terms and bi are either object terms or one of ∗ and +, for
i ∈ {1, . . . , n}. We set ϕΩ B ∃Z .ϕ[a1:b1,...,an :bn][U/Z] ∧
subset[Z,U]. Clearly, we have I,Z|U 7→R |= ϕΩ iff there is
a subset R′ ⊆ R such that R′ ∈ [a1 : b1, . . . , an : bn]I,Z .
We use induction to show that arbitrary specifiers can be

translated into corresponding MAPL formulae.
First, consider Ω B Ω1 ∩Ω2. Set ϕΩ B ϕΩ1 ∧ ϕΩ2 . Then
I,Z|U 7→R |= ϕΩ iff I,Z|U 7→R |= ϕΩ1 and I,Z|U 7→R |= ϕΩ2 ,
i.e., iff R ∈ ΩI,Z1 ∩ΩI,Z2 = ΩI,Z .

Similarly, for Ω B Ω1 ∪Ω2, set ϕΩ B ϕΩ1 ∨ ϕΩ2 . Finally,
for Ω B Ω1 \Ω2, define ϕΩ B ϕΩ1 ∧ ¬ϕΩ2 . �

Theorem 3. For every function definition 〈F, S,C〉 and cor-
responding function term F(t), there is a MAPL formula
ϕF(t)[U]with a set variableU such that, for all interpretations
I, variable assignmentsZ, and relations R ∈ Pfin

(
∆I × ∆I

)
,

we have I,Z|U 7→R |= ϕF(t) iff R = F(t)I,Z .

Proof. Let 〈F, S,C〉 be an arbitrary function definition, F(t)
a corresponding function term, I an interpretation,Z a vari-
able assignment, and R ∈ Pfin

(
∆I × ∆I

)
. First, for each con-

ditional c B ϕ1, . . . , ϕn ⇒ insert(a1 : b1, . . . , am : bm)
in C with free object variables x in ϕ1, . . . , ϕn, we define
ψc B ∀x.∧n

i=1 ϕi →
∧m

i=1 (ai : bi) ∈ U. Furthermore, we
set ϕF(t) B minU∧

c∈C ψc
. Then I,Z|U 7→R |= ϕF(t) iff R is the

least set satisfying each ψc , i.e., the least set containing all
tuples that are entailed by some conditional c ∈ C. �

B Proofs for Section 4
Theorem 4. Every MARPL ontology 〈P, F〉 can be translated
into a set of FO≈ sentences M2FO(P, F), and every variable-
free MAPL atom ϕ into a FO≈ sentence M2FO(ϕ), such that
〈P, F〉 |= ϕ iff M2FO(P, F) |= M2FO(ϕ) under the UNA.

Proof. Our translation is based on the representation of
MARS in standard first-order relational structures. For a given
MARS predicate symbol p of arity n, we introduce a new
(n+1)-ary first-order predicate symbol p̄. Moreover, we use an
auxiliary predicate in of arity ar(in) = 3. We can now encode a
MARS tuple 〈δ1, . . . , δn, S〉 ∈ pI , where S is a binary relation
{〈ε1, τ1〉, . . . , 〈εm, τm〉}, using tuples 〈δ1, . . . , δn, σ〉 ∈ p̄I and
〈ε1, τ1, σ〉 ∈ inI, . . . , 〈εm, τm, σ〉 ∈ inI . That is, we introduce
an auxiliary domain element σ to represent the set S.

Translated formulae accordingly use first-order variables to
represent sets. For example, a MAPL atom (a : b) ∈ U turns
into in(a, b, u), where u is a first-order variable that is spe-
cific to U. We simply use lower-case variants of set variables
to indicate this switch. Note that we do not need to distin-
guish object and set variables in the translation since rules
are safe and MARPL does not admit counting quantifiers.
Furthermore, we assume all free variables in formulae to be
universally quantified.

We begin with some simplifications. (S1) We replace each
set term {a1 : b1, . . . , a` : b`} in a rule by a fresh set variable
U and add a new body atom [a1 : b1, . . . , a` : b`](U). (S2)
We extend the function definitions F by a new “copy” function
definition 〈cp,U, {(x : y) ∈ U ⇒ insert(x : y)}〉. Then we re-
place all rule heads of the form p(. . .)@V by the atom
p(. . .)@cp(V). (S3) If a rule body contains two relational
atoms α1@U and α2@U with the same set variable U, then
we replace one occurrence of U by a fresh set variable U ′ and
add a new body atom u ≈ u′. Note that the latter is a first-order
atom, so the result is partially translated. It is not hard to see
that (S1)–(S3) preserve semantics.

Next, each relational atom p(t1, . . . , tn)@U in a rule body is
replaced by the corresponding first-order atom p̄(t1, . . . , tn, u).
Similarly, body atoms (a : b) ∈ U are replaced by in(a, b, u).
In either case, U is a variable by (S1).

Towards translating specifier atoms and function defini-
tions, we first establish two auxiliary definitions, where ψ[u]
is a formula with free variable u and ψ[u/v] denotes ψ with
unbound occurrences of u replaced by v.

subset[u, v] B ∀x, y.in(x, y, u) → in(x, y, v)
minuψ B ψ[u] ∧ (∀v.ψ[u/v] → subset(u, v))

We require that identical sets have identical corresponding
first-order variables:

subset[u, v] ∧ subset[v, u] → u ≈ v.

We continue by transforming specifier atoms, i.e., expres-
sions of the form Ω(U), where U is a set variable (by (S1)).
We write Ω[x] to say that Ω contains the free object variables
x (specifiers never contain set variables). We replaceΩ(U) by
the atom Ω̄(x, u), with Ω̄ a fresh (|x | + 1)-ary predicate. Then
we add auxiliary formulae depending on Ω, which we obtain
by translating the MAPL formulae from the proof of Theo-
rem 2. For example, Ω = [a : b] with b < {∗,+} translates
to

minuin(a,b,u) ↔ Ω̄(x, u) (12)

whereas for Ω = [a : ∗], we add
∃z. subset[u, z] ∧minz∀x,y.in(x,y,u)→in(a,y,z) ↔ Ω̄(x, u) (13)

Note that the variables x occur among the terms a, b. Similarly,
for Ω = [a : +], we add

∃y.Ω̄[a:∗](x, u) ∧ in(a, y, u) ↔ Ω̄(x, u) (14)

where Ω̄[a:∗] denotes the translation of [a : ∗]. For Ω = [a1 :
b1, . . . , a` : b`] and Ωi = [ai : bi], we add

∃u1, . . . , un.
∧

1≤i≤n Ω̄i(x, ui) ∧minu∧
1≤i≤n subset(ui,u)

↔ Ω̄(x, u)
(15)

along with the respective formulae for each Ωi , extended to
(|x | + 1)-ary predicates, if necessary. For an open specifier
ba1 : b1, . . . , an : bnc, we add

∃z. subset[z, u] ∧ Ω̄[a1:b1,...,an :bn](x, z) ↔ Ω̄(x, u)

along with the translation Ω̄[a1:b1,...,an :bn] of the correspond-
ing closed specifier [a1 : b1, . . . , an : bn].
If Ω[x] = Ω1[x1] �Ω2[x2] with � ∈ {∩ , ∪ , \ }, we create

recursive auxiliary formulae for Ω̄1 and Ω̄2. The we add:

Ω̄1(x1, u) ∧ Ω̄2(x2, u) ↔ Ω̄(x, u) if � = ∩ (16)
Ω̄1(x1, u) ∨ Ω̄2(x2, u) ↔ Ω̄(x, u) if � = ∪ (17)
Ω̄1(x1, u) ∧ ¬Ω̄2(x2, u) ↔ Ω̄(x, u) if � = \ (18)

In a similar fashion, we can obtain the translation of func-
tion definitions by translating the formulae from the proof of
Theorem 3. Consider a function definition 〈F, S,C〉. For a
conditional c B ϕ1, . . . , ϕn ⇒ insert(a1 : b1, . . . , am : bm)
with free object variables x, define ψc B ∀x.∧n

i=1 ϕi →∧m
i=1 in(ai, bi, u), and add

minu∧
c∈C ψc

↔ F̄(s, u)

where s is the signature S with set variables replaced by the
corresponding first-order variables, and F̄ is a fresh (|S | +
1)-ary predicate symbol. We denote the set of all formulae
obtained by translating an ontology 〈P, F〉 in this fashion by
M2FO(P, F), including all respective auxiliary formulae.

The correctness of this translation follows by a similar ar-
gumentation to the proofs of Theorems 2 and 3. �

Theorem 5 refers to data complexity. For clarity, we give a
more formal definition of this notion here.
Definition 12. For data complexity, we consider the following
decision problem. Fix a MARPL ontology 〈P, F〉. Then, given
any set of MAPL facts D and a MAPL fact ϕ, decide whether
〈P ∪ D, F〉 |= ϕ holds.
Our proof of Theorem 5 uses Alternating Turing Machines,

the definition of which we repeat here for convenience.
Definition 13. A polynomially space-bounded Alternating
Turing Machine (ATM)M = 〈Σ,Q, qs, qf ,∆〉 is a polynomi-
ally space-bounded non-deterministic Turing Machine, where
Q is the disjoint union of Q∃ and Q∀, the sets of existential
and universal states, respectively. A configuration with state
q ∈ Q is accepting if either q ∈ Q∃ is an existential state and
there is an accepting successor configuration, or if q ∈ Q∀
and all successor configurations are accepting.M accepts if
the initial configuration is accepting.

Theorem 5. Deciding fact entailment for MARPL ontologies
is ExpTime-hard, even when restricting to classes of ontolo-
gies where only the set of facts is allowed to vary.

Proof. To show ExpTime-hardness, we reduce from the word
problem for a polynomially space-boundedAlternating Turing
MachineM = 〈Σ,Q, qs, qf ,∆〉 with Q = Q∃ ∪ Q∀, which is
a well known ExpTime-hard problem. We assume thatM is
such that it has a unique accepting configuration with unique
accepting state qf (e.g., by ensuring that it deterministically
deletes the tape and returns to the first position on accepting
runs). We further assume that M has at most two possible
transitions in every configuration, i.e., for all q ∈ Q, σ ∈ Σ,
the set {〈q, σ, q′, σ′, d〉 ∈ ∆ | q′ ∈ Q, σ′ ∈ Σ, d ∈ {r, l}}
is of size ≤ 2 (binary branching); this does not reduce the
expressive power of ATMs but it simplifies our encoding.

We construct a MARPL ontology 〈P, F〉 that entails a fact
A()@S where S has a specific form if and only ifM accepts
on the empty input tape. We simplify notation and omit empty
annotations and empty parameter lists, writing, e.g., A@S for
the accepting fact. Our construction will be such that only the
facts in P depend onM, while other rules of P and function
definitions of F are the same for every ATM.

We assume that P contains constants p0, . . . , p` for repre-
senting each of the polynomiallymany tape positions available
toM (where ` depends onM). Moreover, each symbol σ ∈ Σ
and each state q ∈ Q is also used as a constant. We assume
the following facts to be present in P:

• univ(q) for every q ∈ Q∀,
• exist(q) for every q ∈ Q∃,
• Tape@R where R = {pi : pi+1 | 0 ≤ i < `},
• TapeTrans@R where R = {pi : pj | 0 ≤ i < j ≤ `}, and
• transA(q, σ, q1, σ1, d1) and transB(q, σ, q2, σ2, d2) for
〈q, σ, q1, σ1, d1〉 ∈ ∆ and 〈q, σ, q2, σ2, d2〉 ∈ ∆ the two
transitions available for q and σ, in an arbitrary but fixed
order (if there is only one or none, the according facts
are simply omitted).

We encode configurations of M in finite annotations of the
following form

{p0 : σ0, p1 : σ1, . . . , p` : σ`, head : ph, state : q}

where p0, . . . , p` and ph (the head position) are position con-
stants, σ0, . . . , σ` ∈ Σ are the current symbols at these po-
sitions, q ∈ Q is the current state, and state and head are
auxiliary constants.

To encode the word problem, we compute the set of all
accepting configurations ofM backwards, starting from the
unique final configuration, marked by the following fact:

A@{p0 : _, . . . , p` : _, head : p0, state : qf }

where _ ∈ Σ is the blank tape symbol. Further sets for A are
derived recursively using rules. We show the more compli-
cated case of a rule for a universal state, which requires two
accepting successor configurations to accept.

The body of the rule is as follows:

Tape@R ∧ TapeTrans@T ∧ A@S1 ∧ A@S2 ∧ (19)

bhead : xh1 , state : xq1 , xhprev : xσ1 c(S1) ∧ (20)

bxh1 : xhprevc(R) ∧ (21)

bhead : xh2 , state : xq2 , xhprev : xσ2 c(S2) ∧ (22)

bxh2 : xhprevc(R) ∧ (23)
transA(xqprev, σprev, xq1 , xσ1 , l) ∧ (24)
transB(xqprev, σprev, xq2 , xσ2 , l) ∧ (25)

univ(xqprev) (26)

Part (19) selects two accepting configurations S1 and S2,
and the tape adjacency relation R. (20) fetches state and head
position of S1 and the symbol xσ1 at another position xhprev
(intended to be the previous head position), which by (21) is
the right neighbour of the head position. (22) and (23) do the
same for S2. (24) and (25) find suitable transitions that might
have led to S1 and S2 and (26) checks that the state they came
from is indeed universal. Note that this body is specific to
the case where both accepting configuration are obtained my
moving the head to the left. Similar cases are needed for all
combinations of left and right movement.
If this body condition is satisfied, then it might be that

there is an accepting configuration that can yield the con-
figurations S1 and S2 in two according configuration steps.
However, we have to be careful, since S1 and S2 may not
coincide on all tape positions. The according head is sim-
ply A@Merge(S1, S2,T, xhprev, xqprev, σprev), where the function
Merge is defined by the following conditionals:

⇒ insert(head : xhprev, state : xqprev, xqprev : σprev) (27)

bxl : xhprevc(T) ∧
bxl : yc(S1) ∧ bxl : yc(S2) ⇒ insert(xl : y) (28)

bxhprev : xr c(T) ∧
bxr : yc(S1) ∧ bxr : yc(S2) ⇒ insert(xr : y) (29)

Merge therefore defines the head, state and head symbol of the
predecessor configuration (27) and copies all tape symbols to
the left (28) and to the right (29) of the head tape position,
respectively. However, symbols are only copied when they
agree between S1 and S2. Therefore Merge yields a complete
configuration only if this is the case for all non-head positions.
Deriving incomplete configurations is not a problem, as they
will never lead to a complete configuration that would be
relevant for checking acceptance.
This completes the definition of one generic acceptance

propagation rule for the case of universal states. The other
universal cases (with different head movements) are similar.
The case of existential states is simpler: we merely need one
accepting successor configuration and do not have to check
agreement of two configurations in this case. However, we
have to provide multiple rules since either transA or transB
might lead to the accepting configuration, in addition to the
two possible directions of movement that we need to take into
account as before.

With the according rules in place, the resulting ontology is
such that it entails the fact A@S where S encodes the initial
configuration iffM accepts, i.e.,

A@{p0 : _, . . . , p` : _, head : p0, state : qs}

iffM accepts on the empty input tape. This can be checked
directly from the constructions. �

C Proofs for Section 5
Theorem 7. Deciding fact entailment for MARPL ontologies
is in ExpTime.

Proof. Consider a MARPL ontology 〈P, F〉. Let K be the
set of all constants appearing in P and F. For any an-
notation S, we have S ⊆ K × K , i.e., there are at most
|P (K × K) | = 2 |K |× |K | = 2 |K |

2
distinct annotations. Any

MAPL fact ϕ is of the form ϕ = p(t)@S, hence there are at
most

∑
p∈P |K |ar(p) · 2 |K |

2 ≤ |P| · |K |maxp∈P ar(p) · 2 |K |2 MAPL
facts, i.e., exponentially many facts in the size of K . The
MARS chase procedure therefore terminates after at most ex-
ponentially many iterations.

Any single iteration can also be computed in exponential
time. Clearly, a suitable rule and substitution in step A can be
found in NP, as can the values of (tiσ)I in step C. Comput-
ing the value of TI may require the application of a function
definition 〈F, S,C〉. This amounts to checking, for every con-
ditional c ∈ C, whether I entails the precondition of c. Note
that c may contain free object variables. Indeed, for each con-
ditional, let fc be the number of free object variables in c.
There are |K | fc ground instances of each conditional. Com-
puting TI therefore requires checking at most

∑
c∈C |K | fc ,

i.e., polynomially many, instances of preconditions. �

For the following statement, we restrict our notion of data
complexity to ontologies in MARPLk by restricting the de-
cision problem in Definition 12 to sets of facts D for which
〈P ∪ D, F〉 ∈ MARPLk .
Theorem 8. For any k ≥ 0, deciding fact entailment for
MARPLk ontologies is in PTime with respect to data com-
plexity, i.e., when considering rules except facts to be fixed.

Proof. Consider a fixed MARPL ontology 〈P, F〉, and a given
set of MAPL facts D, such that 〈P ∪ D, F〉 ∈ MARPLk . Let K
be the set of all constants appearing in P∪D and F. Then, for
any entailed MAPL fact with annotation S, we have |S | ≤ k.
As in the proof of Theorem 7, we obtain

∑
p∈P |K |ar(p) · 2k

2 as
an upper bound on the number of entailed MAPL facts, which
is polynomial if 〈P, F〉 and k are constant.
Note that a single iteration of the MARS chase procedure

can now also be done in PTime. In particular, for any rule
∀U .∀x.ϕ → ψ, there are at most |K | |x | · 2 |U | ·k2 candidates
for the substitution σ in step 1. Recall that for any MAPL
fact, we have |x | = |U | = 0, i.e., x and U depend only on
〈P, F〉. Hence, the number of candidates is polynomial in |K |.
There are polynomially many rules in P, so we can find an
applicable rule and a suitable substitution in polynomially
many steps. �

Theorem 9. An ontology 〈P, ∅〉 is in MARPLk for every k
greater or equal to the largest set term in (facts or rules of) P.

Proof. Let 〈P, ∅〉 an ontology in MARPLk . We show that
application of rules in P does not result in facts with anno-
tation size greater than k. Clearly, this holds for all facts in
P. Consider a rule ϕ → ψ ∈ P. Then ψ must be of the form
p(t1, . . . , tn)@S for some n-ary predicate symbol p ∈ P, object
terms t1, . . . , tn, and a set term U. If S ∈ U is a set variable,
then S occurs in ϕ, so, by the induction hypothesis, we obtain
|S | ≤ k. Otherwise, S = {a1 : b1, . . . , a` : b`} for some object
terms ai, bi (1 ≤ i ≤ `). Then |S | = ` ≤ k, since 〈P, ∅〉 is in
MARPLk . �

