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Abstract. Defeasible Description Logics (DDLs) can state defeasible
concept inclusions and often use rational closure according to the KLM
postulates for reasoning. If in DDLs with quantification a defeasible sub-
sumption relationship holds between concepts, it can also hold if these
concepts appear nested in existential restrictions. Earlier reasoning algo-
rithms did not detect this kind of relationships. We devise a new form of
canonical models that extend classical ones for EL⊥ by elements that sat-
isfy increasing amounts of defeasible knowledge and show that reasoning
w.r.t. these models yields the missing rational entailments.

1 Introduction

Description Logics (DLs) concepts describe groups of objects by means of other
concepts (unary FOL predicates) and roles (binary relations). Such concepts
can be related to other concepts in the TBox. Technically, the TBox is a the-
ory constraining the interpretation of concepts. The lightweight DL EL allows
as complex concepts: conjunction and existential restriction which is a form of
existential quantification. A prominent DL reasoning problem is to compute sub-
sumption relationships between two concepts. Such a relationship holds, if all
instances of one concept must be necessarily instances of the other (w.r.t. the
TBox). In EL subsumption can be computed in polynomial time [1] which made
it the choice as the basis for OWL 2 EL, standardised by the W3C. In EL satisfia-
bility is trivial, since no negation can be expressed. EL⊥ can express disjointness
of concepts and is thus more interesting for non-monotonic reasoning.

Defeasible DLs (DDLs) are non-monotonic extensions of DLs and were inten-
sively investigated [4,5,2,3,6]. Most DDLs allow to state additional relationships
between concepts that characterize typical instances and that can get defeated if
they cause an inconsistency. The notions of defeasibility and typicality are closely
related: the more defeasible information is used for reasoning about a concept,
the more typical its instances are regarded. Reasoning problems for DDLs are
defined w.r.t. different entailment relations using different forms of closure. We
consider rational closure, which is the basis for stronger forms of entailment and
based on the KLM postulates [7]. Casini and Straccia lifted these postulates for
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propositional logic to DLs [4]. In [3] Casini et al. devise a reduction for comput-
ing rational closure by materialisation, where the idea is to encode a consistent
subset of the defeasible statements as a concept and then use this in classical
subsumption queries as additional constraint for the (potential) sub-concept in
the query. Their translation of the KLM postulates to DLs yields rational entail-
ments of propositional nature, but does not regard existential restrictions. To
be precise, an existential restriction, e.g. ∃r.B requires existence of an element
related via role r to an element belonging to concept B—which cannot be ex-
pressed in propositional logic. By neglecting quantification in the translation of
the postulates, a defeasible implication between concepts need not hold, if these
occur nested in existential restrictions. This is at odds with the basic principle
of defeasible reasoning: defeasible information should be used for reasoning if no
more specific knowledge contradicts it. Consequently, the materialisation-based
approach [3] misses entailments, since it treats all role successors uniformly as
non-typical concept members. Quantified concepts are disregarded in several al-
gorithms for defeasible reasoning in DLs that employ materialisation, such as
lexicographic [5] and relevant [3] closure. This even holds for preferential model
semantics, by the result of Britz et al. in [2], that entailments of preferential
model semantics coincide with those of rational closure in [3].

In this paper we devise a reasoning algorithm for rational entailment for EL⊥
that derives defeasible knowledge for concepts in existential restrictions by a
redution to classical reasoning. To this end we extend the well-known canoni-
cal models for EL to typicality models that use domain elements to represent
differing levels of typicality of a concept. For a simple form of these typicality
models we show that it entails the same consequences as the materialisation-
based approach [3]. We devise an extension of these models that capture the
maximal typicality of each role successor element individually and thereby fa-
cilitates defeasible reasoning also for concepts nested in existential restrictions.
These maximal typicality models yield (potentially) more rational entailments.
Due to space constraints, we need to refer the reader to the technical report [9]
for an introduction to DLs and for the proofs of the claims presented here.

2 Typicality Models for Rational Entailment

In order to achieve rational entailment for quantified concepts, defeasible con-
cept inclusion statements (DCIs) need to hold for concepts in (nested) existential
restrictions. We want to decide subsumption between the EL⊥-concepts C and
D w.r.t. the EL⊥-DKB K = (T ,D). In order to deal with possible inconsisten-
cies between DBox D and TBox T , the reasoning procedure needs to consider
subsets of the DBox. We use the same sequence of subsets of the DBox as in the
materialisation-based approach [3]. Let D =

d
E@∼F ∈D

(¬EtF ) be the material-

isation of D. For a DKB K, the set of exceptional DCIs from D w.r.t. T is defined
as E(D) = {C @∼ D ∈ D | T |= DuC v ⊥}. The sequence of DBox subsets is de-
fined inductively as D0 = D and Di = E(Di−1) for i ≥ 1. If D is finite, there exists
a least n with Dn = Dn+1, which we call the rank of D (rk(D) = n). If Dn = ∅,



then the DKB K is called well-separated, since the set of DCIs can turn consistent
by iteratively removing consistent DCIs. A given DKB K = (T ,D) can be trans-
formed into a well-separated DKB K′ = (T ∪{C v ⊥ | C @∼ D ∈ Dn}, D\Dn) by
deciding a quadratic number of subsumption tests in the size of D. We assume
that a given DKB K = (T ,D) is well-separated and thus the sequence D0, . . . ,Dn

for n = rk(D) ends with Dn = ∅. The index of a DBox Di in this sequence is
referred to as its (level of) typicality : a lower i indicates higher typicality of Di.

Canonical models for classical EL [1], represent every concept F that occurs
in an existential restriction in T , i.e., F ∈ Qc(K) by a single domain element
dF ∈ ∆. One concept F can be used in several existential restrictions inducing
different role-successors with different typicality. There are up to rk(D) = n
different levels of typicality to be reflected in the model.

Definition 1. Let K = (T ,D) be a DKB with rk(D) = n. A complete typicality
domain is defined as ∆K =

⋃n
i=0{diF | F ∈ Qc(K)}. A domain ∆ with {dnF | F ∈

Qc(K)} ⊆ ∆ ⊆ ∆K is a typicality domain. An interpretation over a typicality
domain is a typicality interpretation. A typicality interpretation I = (∆I , ·I) is
a model of K (written I |= K) iff I |= T and diF ∈ GI =⇒ diF ∈ HI for all
G @∼ H ∈ Di, 0 ≤ i ≤ rk(D), F ∈ Qc(K).

We specify when defeasible subsumption relationships hold in typicality inter-
pretations.

Definition 2. Let I be a typicality interpretation. Then I satisfies a defeasible
subsumption C @∼ D (written I |= C @∼ D) iff diC ∈ DI for 0 ≤ i ≤ n s.t.

diC ∈ ∆I and di−1C /∈ ∆I .

To construct a model for K by means of a TBox, the auxiliary names from
Naux
C ⊆ NC \ sig(K) introduce representatives for F ∈ Qc(K) on each level

of typicality. We use FD ∈ Naux
C to define the extended TBox of concept F

w.r.t. D: TD(F ) = T ∪ {FD v F} ∪ {FD u G v H | G @∼ H ∈ D}. Here
{FD v F} propagates all constraints on F to FD. The last set of GCIs is an
equivalent EL⊥-rewriting of {FD v ¬GtH | G @∼ H ∈ D}. We have shown in [9]
that subsumptions w.r.t. classical TBoxes and subsumptions for auxiliary names
w.r.t. TBoxes extended by Dn = ∅ coincide.

Proposition 3. Let sig(G) ∩Naux
C = ∅. Then F vT G iff F∅ vT∅(F ) G.

To use typicality interpretations for reasoning under materialisation-based ra-
tional entailment, Di needs to be satisfied at the elements on typicality level
i, but not (necessarily) for their role successors. It is indeed sufficient to con-
struct a typicality interpretation with minimal typical role successors induced
by existential restrictions that satisfy only T and Dn = ∅.

Definition 4. The minimal typicality model of K is LK = (∆LK , ·LK), where
the domain is ∆LK = {diF ∈ ∆K | FDi

6vTDi
(F ) ⊥} and ·LK satisfies for all

elements diF ∈ ∆LK with 0 ≤ i ≤ n = rk(D) both of the following conditions:
(i) diF ∈ ALK iff FDi

vTDi
(F ) A, for A ∈ sigNC

(K) and (ii) (diF , d
n
G) ∈ rLK iff

FDi vTDi
(F ) ∃r.G, for r ∈ sigNR

(K).



Typicality models need not use the complete typicality domain due to inconsis-
tencies. They are models of DKBs (cf. Def. 1) as we have shown in [9]. Proposition
3 implies that LK, restricted to elements of typicality n, is the canonical model
for an EL⊥-TBox T . Next, we characterise different entailment relations based
on different kinds of typicality models which vary in the typicality admitted for
required role successors. First, we use minimal typicality models to characterize
entailment of propositional nature |=p, where all role successors are uniformly
non-typical.

Definition 5. Let K be a DKB. K propositionally entails a defeasible subsump-
tion relationship C @∼ D (written K |=p C @∼ D) iff LK |= C @∼ D.

Deciding entailments of propositional nature by computing the extended TBox
for a concept F and deriving its minimal typicality model, coincides with en-
riching F with the materialisation of D.

Lemma 6. Let sig(X)∩Naux
C = ∅ for X ∈ {T ,D, C,D}. Then D uC vT D iff

CD vTD(C) D.

Proof (sketch). The proof is by induction on |D|. In the base case D = ∅ and
Prop. 3 holds. For the induction step, let D′ = D∪{G @∼ H} and distinguish: (i)

DuC v G and (ii) DuC 6v G. For case (i), we show: reasoning with CuH, yields
the same consequences as with C. All elements in C uH satisfying G, already
satisfy H. Hence, G @∼ H can be removed from D′ and the induction hypothesis

holds. In case (ii) G @∼ H has no effect on reasoning: since D u C 6v G, some
element in C, satisfying all DCIs in D, does not satisfy G. Thus, G @∼ H does
not affect reasoning and allows application of the induction hypothesis directly.

We denote the result of the reasoning algorithm from [3] as materialisation-
based rational entailment (written K |=m C @∼ D). This algorithm and typicality
interpretations use the same DBox sequence. Although |=p and |=m are defined
on different semantics, they derive the same subsumption relationships.

Theorem 7. K |=p C @∼ D iff K |=m C @∼ D.

The crucial point in the proof of Theorem 7 is the use of Lemma 6. We have
established an alternative characterisation for materialisation-based rational en-
tailment by minimal typicality models. It ignores defeasible knowledge relevant
to existential restrictions which motivates the extension of typicality models with
role successors of the same concept, but of varying typicality.

3 Maximal Typicality Models for Rational Entailment

In materialisation-based rational entailment concepts implying ∃r.C are all rep-
resented by a single element diC allowing for one degree of (non-)typicality. Now,
to obtain models where each role successor is of the highest (consistent) level of
typicality, we transform minimal typical models s.t. each role edge is copied, but
its endpoint, say diH , is exchanged for a more typical representative di−1H .



Definition 8. Let I be a typicality interpretation over a DKB K. The set of
more typical role edges for a given role r is defined as TRI(r) = {(diG, d

j
H) ∈

∆I×∆I\rI | ∃k > 0. (diG, d
j+k
H ) ∈ rI}. Let I and J be typicality interpretations.

J is a typicality extension of I iff (i) ∆J = ∆I , (ii) AJ = AI (for A ∈
NC), (iii) rJ = rI ∪ R (for r ∈ sigNR

(K) and R ⊆ TRI(r)), and (vi) ∃r ∈
sigNR

(K). rI ⊂ rJ . The set of all typicality extensions of I is typ(I).

Unfortunately, typicality extensions do not preserve the property of being a
typicality model, since the increased typicality of the successor can invoke new
concept memberships of the role predecessor which in turn can necessitate new
additions in order to be compliant with all GCIs from T . We formalize the
required additions to obtain a model again by model completions.

Definition 9. Let K be a DKB with n = rk(D) and ∆ a typicality domain.
An interpretation I = (∆, ·I) is a model completion of an interpretation J =
(∆, ·J ) iff (i) J ⊆ I, (ii) I |= K, and (iii) ∀E ∈ Qc(K).diF ∈ (∃r.E)I =⇒
(diF , d

n
E) ∈ rI (for any F ∈ Qc(K) and 0 ≤ i ≤ n). The set of all model

completions of J is denoted as mc(J ).

Note, that model completions introduce role successors only on typicality level
n which can necessitate typicality extensions again. Thus typicality extensions
and model completions are applied alternately until a fixpoint is reached. Clearly
neither Definition 8 nor 9 yield a unique extension or completion. Thus, one
(full) upgrade step is executed by an operator T working on sets of typicality
interpretations. E.g. applying T to the singleton set {I} results in a set of all
possible model completions of all possible typicality extensions of I (one upgrade
step). The fixpoint of T is denoted as typmax(), it collects the maximal typicality
interpretations for a given input (c.f. [9]). There are several ways to use these sets
of obtained maximal typicality models for our new entailment. Since in classical
DL reasoning entailment considers all models, we employ cautious reasoning.
We use a single model that is canonical in the sense that it is contained in
all maximal typicality models obtained from LK. The rational canonical model
RK is defined as RK =

⋂
I∈typmax({LK}) I. This intersection is well-defined as

typmax({LK}) is finite and LK ∈ mc(LK) is not empty, see [9].

Lemma 10. The rational canonical model RK is a model of the DKB K.

Basis of the proof of Lemma 10 is that the intersection of models satisfying Con-
ditions (i)–(iii) in Def. 9 will satisfy the same conditions. The rational canonical
model is used to decide nested rational entailments of the form ∃r.C @∼K ∃r.D,
which requires to propagate DCIs to the instances of C and D. For a DKB K,
we capture (quantifier aware) nested rational entailment as K |=q C @∼ D iff
RK |= C @∼ D.

Theorem 11. Let K be a DKB and C,D concepts. Then (i) K |=m C @∼ D =⇒
K |=q C @∼ D, and (ii) K |=m C @∼ D 6⇐= K |=q C @∼ D.

To show Claim (i) of Theorem 11 observe that J ∈ typmax({LK}) implies
that LK ⊆ J and thus LK ⊆ RK. Hence by Definition 2, LK |= C @∼ D implies
RK |= C @∼ D. Claim (ii) is shown by an example in [9].



Theorem 11 shows that our approach produces results that satisfy the ratio-
nal reasoning postulates as introduced by KLM [7] and lifted to DLs as presented
in [3], as it gives strictly more entailments than the materialisation approach.
The additional entailments are compliant with the argument of Lehmann and
Magidor [8] that implications inferred from conditional knowledge bases should
at least satisfy the postulates for rational reasoning.

4 Concluding Remarks

We have proposed a new approach to characterize entailment under rational
closure (for deciding subsumption) in the DDL EL⊥ motivated by the fact that
earlier reasoning procedures do not treat existential restrictions adequately. The
key idea is to extend canonical models such that for each concept from the DKB,
several copies representing different typicality levels of the respective concept are
introduced. In minimal typicality models the role successors are “non-typical”
in the sense that they satisfy only the GCIs from the TBox. Such models can
be computed by a reduction to classical TBox reasoning by extended TBoxes.
We showed that the entailments obtained from minimal typical models coincide
with those obtained by materialisation. For maximal typicality models, where
role successors are of “maximal typicality”, DCIs are propagated to each role
successor individually, thus allowing for more entailments. Existential restric-
tions are disregarded in several materialisation-based algorithms for defeasible
reasoning in DLs, such as lexicographic [5] and relevant [3] closure. It is future
work to extend our approach to these more sophisticated semantics.
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