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Abstract

Maximum entropy reasoning (ME-reasoning) based on relational conditionals combines
both the capability of ME-distributions to express uncertain knowledge in a way that
excellently fits to commonsense, and the great expressivity of an underlying first-order
logic. The drawbacks of this approach are its high complexity which is generally paired with
a costly domain size dependency, and its non-transparency due to the non-existent a priori
independence assumptions as against in Bayesian networks. In this paper, we present some
independence results for ME-reasoning based on the aggregating semantics for relational
conditionals that help to disentangle the composition of ME-distributions, and therefore,
lead to a problem reduction and provide structural insights into ME-reasoning.

1 Introduction

In recent years, relational probabilistic logics [3, 7, 8, 12] became the focus of interest due to
their expressive power when modeling uncertain knowledge about interactions between individ-
ual objects. The principle of maximum entropy (ME-principle) [5] then again constitutes a most
appropriate form of commonsense probabilistic reasoning [9]. As it fulfills the paradigm of in-
formational economy [2], it provides a probability distribution which satisfies given probabilistic
knowledge and adds as little information as possible. Hence, ME-reasoning based on relational
conditionals combines both the capability of maximum entropy distributions to express uncer-
tain knowledge in a way that excellently fits to commonsense, and the great expressivity of the
underlying first-order logic. The drawbacks of the maximum entropy approach are, on the one
hand, its high complexity and therefore the need of elaborate strategies to deal with large num-
bers of objects. And on the other hand, its non-transparency due to the non-existent a priori
independence assumptions in contrast to Bayesian networks [11]. Due to this, the ME-principle
is often regarded as a black box methodology.

In this paper, we present some independence results for ME-reasoning based on relational
conditionals that help to disentangle the composition of ME-distributions, and therefore, pro-
vide structural insights into ME-reasoning. Formally, we consider a reasoner’s knowledge base
to consist of two distinct sets: A finite set of factual knowledge and a finite set of conditional
beliefs. While facts are represented by grounded first-order formulas and are treated as being
definitely true, conditional beliefs represent defeasible rules: A conditional (B|A)[p] is a formal
representation of the statement “if A holds, then B follows with probability p”, where A and
B are not necessarily grounded first-order formulas. As a common ground, both facts and
beliefs constitute constraints for probability distributions to serve as the reasoner’s epistemic
state. As an intuition, these distributions assign the likelihood of representing the real world to
possible worlds, based on the assumptions made in the reasoner’s knowledge base. While facts
just force the distributions to assign the probability zero to certain worlds, conditional beliefs
need a more comprehensive semantics. Here, we rely on the so-called aggregating semantics
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[8] which is inspired by statistical approaches, but sums up probabilities instead of just count-
ing instances. More precisely, it stipulates that the probabilities of all possible worlds, each
probability weighted with the number of verified ground instances of the conditional (i.e., both
the premise and the conclusion of the ground instance are true within the respective possible
world), sums up to the probabilities of all possible worlds, each weighted with the number of
applicable ground instances (i.e., the premise is true) and multiplied with the probability of the
conditional. Therefore, the aggregating semantics combines the statistical and the subjective
view on probabilities proposed by Halpern [4].

The ME-distribution then is the unique probability distribution which maximizes entropy
while satisfying the constraints given by the facts and beliefs according to the aggregating se-
mantics. In reference to its property of system independence [13], the ME-distribution factorizes
if these constraints only make an impact on the single factors, i.e., if the constraints themselves
are independent. Here, we show that the latter happens in two different cases: If the knowledge
base splits into syntactically independent parts (= “independence based on syntax splitting”),
and if the ground instances of the conditionals show a certain isomorphism property (= “inde-
pendence based on isomorphic operands”). Furthermore, these independence results carry over
to ME-reasoning: Under some additional constraints, drawing inferences and revising epistemic
states can be performed on the individual independent parts of the ME-distribution.

The rest of this paper is organized as follows: First, we recall essentials of ME-reasoning
for some deeper syntactical and structural analysis. Afterwards, we devote a separate sec-
tion to both independence studies (independence based on syntax splitting and on isomorphic
operands). Finally, we conclude. Most of the proofs are omitted due to space restrictions.

2 Background: Knowledge Representation and Reason-
ing Formalisms with Respect to Maximum Entropy

We consider a function-free first-order language FOL over the signature Σ = (Pred,Const)
consisting of a finite set of predicates Pred with a fixed arity and a finite set of constants Const.
An atom P (t1, . . . , tk) is a predicate P of arity k followed by terms t1, . . . , tk, where a term
is either a variable or a constant. We typically use the symbols x, y, z for variables and a, b, c
for constants. A literal is an atom or its negation. Formulas in FOL are inductively built from
atoms using negation ¬, binary connectives ∧ and ∨, as well as quantification ∃x ∈ C.φ and
∀x ∈ C.φ with C ⊆ Const. A variable is called free if it is not bounded by a quantifier, and a
formula without variables is ground. The set of all ground atoms based on the signature Σ is
denoted with G(Σ). Every formula F ∈ FOL can be grounded by substituting every free variable
in F with a constant, and by carrying out all the quantifications. We denote the set of all ground
instances of F built this way with Grnd(F ). Further, Lit(G) denotes the set of all ground literals
built on the ground atoms in G ⊆ G(Σ). In order to shorten mathematical expressions, we
abbreviate A ∧B with AB, ¬A with A, and A ∨A with > for formulas A,B ∈ FOL.

2.1 Probabilistic Relational Conditional Knowledge Bases

In order to represent uncertain knowledge, we use (probabilistic) conditionals of the form
(B|A)[p] with A,B ∈ FOL and p ∈ [0, 1].1 Such a conditional serves as a formalization of

1Principally, it would be possible to formulate conditionals with interval probabilities. However, reasoning
with interval probabilities quickly leads to non-informative results (cf. [6]). In this paper, we therefore identify
probabilities with best expectation values.
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the statement “if A holds, then B follows with probability p”, albeit we have to clarify its
meaning when A or B contains free variables, which is explicitly allowed in our framework.
In addition, we allow to add a constraint set C to a conditional (B|A)[p], which restricts the
domain of the free variables in A and B. The constraints in C have to be of the form x ∈ C or
x 6= y where x and y are free variables in A or B and C is a subset of Const. A ground instance
of such a constrained conditional (B|A)〈C〉[p] is obtained by grounding A and B (as well as the
constraints in C) such that free variables occurring in both A and B are substituted with the
same constant in A and B, and all the (grounded) constraints are satisfied. If C is empty or
contains valid formulas only, we omit 〈C〉 in the notation of conditionals. The set of all ground
instances of (B|A)〈C〉[p] is denoted with Grnd((B|A)〈C〉[p]).

Example 1. 1. Let r1 = (R(x, y)|Q(x))[p] be a conditional, and let a, b ∈ Const. Then, both
(R(a, b)|Q(a))[p] and (R(a, a)|Q(a)[p] are proper ground instances of r1, but the condi-
tional (R(a, b)|Q(b))[p] is not.

2. Let r2 = (R(x, y)|>)〈{x 6= y}〉[p] be a conditional, and let Const = {a, b}. Then, the set
of all ground instances of r2 is Grnd(r2) = {(R(a, b)|>)[p], (R(b, a)|>)[p]}.

A knowledge base KB = (F ,B) consists of two components: F is a finite set of ground
formulas in FOL representing factual knowledge which is incontrovertible true, and B is a finite
set of conditionals with non-trivial probabilities (i.e., p /∈ {0, 1}) representing what is believed
to be true by an agent. When dropping the restriction p /∈ {0, 1}, the factual knowledge could
principally be integrated into B (just add the conditionals (F |>)[1] for every F ∈ F to B).
However, we want to maintain the differentiation between facts and beliefs in order to highlight
their different semantics.

Convention 1. Let KB = (F ,B) be a knowledge base. Throughout the rest of the paper, we
refer to the i-th conditional in B with ri = (Bi|Ai)〈Ci〉[pi], i.e., Ai (resp. Bi, Ci, and pi) refers
to the premise (resp. consequence, constraint set, and probability) of the i-th conditional in B.
Further, n = |B| denotes the number of conditionals in B.

To be able to separate ground instances of conditionals as well as whole knowledge bases
on a syntactical level, we introduce the notion of the support of a conditional respectively a
knowledge base. Informally, the support is the set of all ground atoms that may occur in any
ground instance of the conditional respectively of any conditional in the knowledge base.

Definition 1 (Support). The support Supp(F ) of a ground formula F ∈ FOL is the set of all
ground atoms that occur in F . We further inductively define the support of

1. an arbitrary formula F ∈ FOL as Supp(F ) =
⋃
F ′∈Grnd(F ) Supp(F ′),

2. a conditional r as Supp(r) =
⋃

(B|A)[p]∈Grnd(r)

(
Supp(A) ∪ Supp(B)

)
,

3. a knowledge base KB as Supp(KB) =
⋃
F∈F Supp(F ) ∪

⋃
r∈B Supp(r).

Example 2. The support of conditional r2 from Example 1 is Supp(r2) = {R(a, b), R(b, a)}.

The formal semantics of knowledge bases is given by probability distributions over possible
worlds. Let G ⊆ G(Σ) be a set of ground atoms. A possible world ω over G is a complete
conjunction of the ground literals in Lit(G). We denote the set of all possible worlds over G
with Ω(G). A ground literal L ∈ Lit(G(Σ)) is entailed by a possible world ω, written ω |= L, iff
L occurs in ω. This entailment relation shall be extended to arbitrary ground formulas in the

3
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usual way. Further, let F be a set of ground formulas. We write ω |= F iff ω |= F for all F ∈ F ,
and ω 6|= F iff ¬(ω |= F) holds. Provided that G is a proper subset of G(Σ), a possible world
ω ∈ Ω(G) more precisely is a partial possible world, as it does not describe the (possible) state
of the whole world, but refers to the disjunction ω =

∨
ω′∈Ω(G(Σ)): ω′|=ω ω′ of truly possible

worlds. We also have the following definition.

Definition 2 (Projection of Possible Worlds). Let G,G′ ⊆ G(Σ) be sets of ground atoms with
G ⊆ G′, and let ω ∈ Ω(G′) be a possible world over G′. The projection of ω on G is the possible
world ω|G ∈ Ω(G) defined by

ω|G =
∧

l∈Lit(G)
ω|=l

l.

Example 3. Let G(Σ) = {A(a), A(b), B(a), B(b)} and G = {A(a), B(a)}. The projection of the
possible world ω = A(a) A(b) B(a) B(b) ∈ Ω(G(Σ)) on G is ω|G = A(a) B(a).

We make use of this fine-grained notion of (partial) possible worlds and projections of
possible worlds when obtaining marginal distributions.

While the probabilistic evaluation of facts F ∈ F and conditionals (B|A)[p] ∈ B without free
variables is very straightforward (possible worlds that contradict any F ∈ F should have prob-
ability zero, and a conditional (B|A)[p] without free variables constrains a probability distribu-
tion P to satisfy the conditional probability P(AB) · P(A)−1 = p where P(A) =

∑
ω|=A P(ω)),

conditionals with free variables leave some room for interpretation. In this point, we rely on the
aggregating semantics [14], which is inspired by statistical approaches, but sums up probabili-
ties instead of just counting instances. Therefore it combines the statistical and the subjective
view on probabilities proposed by Halpern [4].

Definition 3 (Aggregating Semantics). Let r = (B|A)〈C〉[p] be a conditional, let G ⊆ G(Σ) be a
set of ground atoms with Supp(r) ⊆ G, and let P(G) : Ω(G)→ [0, 1] be a probability distribution.
P(G) is a G-model of r, denoted P(G) |= r, iff∑

(B′|A′)[p]∈Grnd(r) P(G)(A′B′)∑
(B′|A′)[p]∈Grnd(r) P(G)(A′)

= p.

Note that the aggregating semantics reduces to the standard conditional probability fulfill-
ment P(G)(AB) · P(G)(A)−1 = p if r does not contain free variables. Further, if P(G) is a
uniform distribution, we end up with a purely statistical interpretaion of the conditional.

Altogether, we now can define when a probability distribution models a (whole) knowledge
base KB. If so, the probability distribution can be understood as the epistemic state of an
agent whose knowledge is KB.

Definition 4 (G-Model of a Knowledge Base). Let KB = (F ,B) be a knowledge base, let
G ⊆ G(Σ) be a set of ground atoms with Supp(KB) ⊆ G, and let P(G) : Ω(G)→ [0, 1] be a
probability distribution. P(G) is a G-model of

1. F , written P(G) |= F , iff P(G)(ω) = 0 for all ω ∈ Ω(G) with ω 6|= F .

2. B, written P(G) |= B, iff P(G) |= r for all r ∈ B.

3. KB, written P(G) |= KB, iff P(G) is a G-model of both F and B.

If P(G) is a G-model of KB and G = G(Σ), we call P(G) a model of KB for short.

4
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Obviously, the following characterization of being a model of KB according to the aggregat-
ing semantics holds:

Proposition 1. Let KB = (F ,B) be a knowledge base, let G ⊆ G(Σ) be a set of ground atoms
with Supp(KB) ⊆ G, and let

Ω(G)|F = {ω ∈ Ω(G) | ω |= F}

be the set of possible worlds over G that do not contradict the facts in F . Further, let P ′(G) :
Ω(G)|F → [0, 1] be a probability distribution with∑

(B′|A′)[p]∈Grnd(r) P ′(G)(A′B′)∑
(B′|A′)[p]∈Grnd(r) P ′(G)(A′)

= p for all r = (B|A)〈C〉[p] ∈ B.

Then,

P(G)(ω) =

{
P ′(G)(ω) iff ω ∈ Ω(G)|F
0 iff ω ∈ Ω(G) \ Ω(G)|F

is a G-model of KB. Every G-model of KB can be built this way.

Proposition 1 allows us to investigate the facts and the beliefs in a knowledge base consec-
utively. Once the set of possible worlds Ω(G)|F is determined, the conditional beliefs in B can
be evaluated with respect to Ω(G)|F , and without taking the original set F into account.

A knowledge base KB is called G-consistent if it has at least one G-model. Note that if
KB is G-consistent for some G ⊆ G(Σ), it is G′-consistent for all sets of ground atoms G′ with
Supp(KB) ⊆ G′. Thus, we can say that KB is consistent iff it is G(Σ)-consistent, i.e., iff it has
a model (with respect to G(Σ)). However, as we want to formulate independence results with
respect to concrete sets G later on, we will maintain the notions of G-consistency and G-models.

2.2 Maximum Entropy Reasoning

For every G-consistent knowledge base, there is a distinct G-model based on the principle of
maximum entropy (ME-principle) [13, 9]. This maximum entropy distribution (ME-distribution)
PME(G,KB) is the unique probability distribution that maximizes entropy among all G-models
of KB. According to [10], the ME-distribution is the one distribution which fits best to com-
monsense. It is defined as follows.

Definition 5 (Maximum Entropy Distribution). Let KB be a G-consistent knowledge base. The
maximum entropy distribution PME(G,KB) relative to G and KB is defined by

PME(G,KB) = arg max
P(G)|=KB

−
∑

ω∈Ω(G)
P(G)(ω) 6=0

P(G)(ω) · logP(G)(ω).

According to [6], there is a product representation of the maximum entropy distribution
based on the solution of a nonlinear equation system. Before we recall this representation, we
have to introduce some further notations. For this, let r = (B|A)〈C〉[p] be a conditional, let
G ⊆ G(Σ) be a set of ground atoms, and let ω ∈ Ω(G). Then,

app(G, r)(ω) = |{(B′|A′)[p] ∈ Grnd(r) | Supp((B′|A′)[p]) ⊆ G and ω |= A′}|,
ver(G, r)(ω) = |{(B′|A′)[p] ∈ Grnd(r) | Supp((B′|A′)[p]) ⊆ G and ω |= A′B′}|,

5
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φ(G, r)(ω) = ver(G, r)(ω)− p · app(G, r)(ω).

The functions app(G, r)(ω) and ver(G, r)(ω) count the number of those ground instances of
r which are applicable respectively verified in ω and which additionally consist of ground atoms
in G only. The function φ(G, r)(ω) is a determining factor of the aforementioned nonlinear
equation system and hence of the ME-distribution relative to KB = (F ,B) itself, as it can
be used to combine the logical information of a conditional r ∈ B provided by app(G, r) and
ver(G, r), as well as its probabilistic information p.

We now illustrate the product representation of the ME-distribution.

Proposition 2. Let KB = (F ,B) be a knowledge base with B = {r1, . . . , rn}. Further, let
G ⊆ G(Σ) be a set of ground atoms with Supp(KB) ⊆ G. The maximum entropy distribution

PME(G,KB) exists iff the vector function ~S(G,KB)(x1, . . . , xn) = (S1, . . . ,Sn) with

Si = Si(G,KB)(x1, . . . , xn) =
∑

ω∈Ω(G)|F

φ(G, ri)(ω) ·
n∏
j=1

x
φ(G,rj)(ω)
j , i = 1, . . . , n, (1)

has a root in (R>0)n.2 Once such a root (α1, . . . , αn) is given, which we call the effect of
PME(G,KB), the maximum entropy distribution PME(G,KB) is characterized by

PME(G,KB)(ω) =

{
α0(G,KB) ·

∏n
i=1 α

φ(G,ri)(ω)
i iff ω ∈ Ω(G)|F

0 iff ω ∈ Ω(G) \ Ω(G)|F
,

where α0(G,KB) is a normalizing constant defined by

α0(G,KB) =

 ∑
ω∈Ω(G)|F

n∏
i=1

α
φ(G,ri)(ω)
i

−1

.

We now consider the reasoning tasks of drawing nonmonotonic inferences at maximum
entropy from ME-distributions and revising epistemic states represented by ME-distributions.
For the first task, the principle of maximum entropy yields a nonmonotonic inference relation,
which answers the question:

“With which probability should a conditional be believed
based on a given knowledge base and according to the principle of maximum entropy?”

This inference relation satisfies important postulates for nonmonotonic inferences such as
inclusion, idempotence, cumulativity, and loop [6] and is defined as follows.

Definition 6 (Nonmonotonic Inference Relation). Let KB be a G-consistent knowledge base.
We say that KB infers a conditional r under the principle of maximum entropy, or KB ME-
infers r for short, which is written

KB |∼ME r, iff PME(G,KB) |= r. (2)

Note that if KB ME-infers r for some set of ground atoms G with Supp(KB) ⊆ G, then KB
ME-infers r for every G with Supp(KB) ⊆ G, which makes the inference relation |∼ME indepen-
dent of G (at least if G covers all ground atoms that may occur in KB). The inference relation

2Finding a root of the vector function ~S(G,KB) is mathematically the same as solving the nonlinear equation

system ~S(G,KB) = ~0.

6
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(2) is also potent enough to subsume the inference of factual knowledge, as the probability p in
the query conditional is not restricted to p ∈ (0, 1), i.e., we may define for logical reasons

KB |∼ME F iff KB |∼ME (F |>)[1], F ∈ FOL.

As another reasoning task, we investigate belief revision respectively revising epistemic
states. Belief revision is the process of integrating new information into existing knowledge
without generating any inconsistency. Therefore, it answers the question:

“How should a probability distribution, which represents an agent’s epistemic state,
be revised according to recent knowledge of the agent?”

The essential of belief revision is to tread the new information as more reliable than the
prior knowledge and to adjust the prior knowledge such that integrating the new information
is uncritical. Following the principle of conditional preservation [6], the revised probability
distribution P∗(G,KB) should have minimal cross-entropy relative to the prior distribution
P(G), i.e.,

P∗(G,KB) = arg min
Q(G)|=KB

∀ω∈Ω(G).P(G)(ω)⇒Q(G)(ω)

∑
ω∈Ω(G)
Q(G)(ω)6=0

Q(G)(ω) · log
Q(G)(ω)

P(G)(ω)
.

To maintain compatibility between the prior distribution P(G) and the posterior distribution
P∗(G,KB), we assume the recent knowledge KB to be P(G)-consistent.

Definition 7 (P(G)-consistency). Let P(G) : Ω(G) → [0, 1] be a probability distribution, and
let KB be a knowledge base with Supp(KB) ⊆ G. KB is called P(G)-consistent iff there is a
probability distribution P ′(G) : Ω(G)→ [0, 1] with P ′(G) |= KB which is P(G)-continuous, i.e.,
P(G)(ω) = 0 implies P ′(G)(ω) = 0 for all ω ∈ Ω(G).

If KB is P(G)-consistent, then P∗(G,KB) is guaranteed to exist (cf. [1]) and is called the
c-revision of P(G) with respect to KB.

Both reasoning tasks, drawing inferences and revising epistemic states, require to solve
a nonlinear equation system, either to calculate the distribution PME(G,KB) as an agent’s
epistemic state, or the (posterior) distribution P∗ME(G,KB′) after revision with KB′, for which
also an equation system based representation similar to Proposition 2 exists (cf. [6]). As these
calculations are expensive and non-transparent, it would be beneficial to restrict the calculations
to those parts of the equation systems, and hence of the knowledge bases themselves, that really
affect the output. In the next sections, we propose some independence results for maximum
entropy distributions that accomplish this request, i.e., not only the distributions themselves
decompose into independent parts but also the generating equation systems. Therewith, the
problem sizes of maximum entropy calculations can be reduced dramatically, which we will
illustrate by an example.

3 Independence Based on Syntax Splitting

In this section, we show that syntactically independent parts of a knowledge base can be treated
independently when calculating the maximum entropy distribution PME(G,KB), which results
in a product representation of PME(G,KB). We further show how this product representation
affects drawing inferences at maximum entropy as well as performing c-revision.

First of all, we explain the notion of syntactical independence.

7
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Definition 8 (Syntactically Independent Knowledge Bases). Let KB1 and KB2 be knowledge
bases. We call KB1 and KB2 syntactically independent iff Supp(KB1) ∩ Supp(KB2) = ∅.

We introduce some further notations. For this, let KB1 = (F1,B1) and KB2 = (F2,B2) be
knowledge bases.

1. We write KB1 v KB2 iff both F1 ⊆ F2 and B1 ⊆ B2.

2. We abbreviate the knowledge base (F1 ∪ F2,B1 ∪ B2) with KB1 t KB2

and with KB1 ṫ KB2 if both unions F1 ∪ F2 and B1 ∪ B2 are disjoint.

Definition 9 (Syntax Partition). Let G ⊆ G(Σ) be a set of ground atoms, and let {G1, . . . ,Gm}
be a partition of G. Further, let KB be a knowledge base. If there are KB1, . . . ,KBm v KB such
that Supp(KBi) ⊆ Gi for i = 1, . . . ,m and KB1 ṫ . . . ṫ KBm = KB, we call (KB1, . . . ,KBm)
a syntax partition of KB, and we say that KB (syntactically) splits over (G1, . . . ,Gm)G into
(KB1, . . . ,KBm).

Note that {KB1, . . . ,KBm} does not have to be a “partition” of KB in the proper sense as
some KB′ ∈ {KB1, . . . ,KBm} may be empty.

In the situation of Definition 9, the (partial) knowledge bases KB1, . . . ,KBm are pairwise
syntactically independent, and whenever pairwise syntactically independent knowledge bases
KB1, . . . ,KBm v KB with KB1 ṫ . . . ṫ KBm = KB exist, one can find G1, . . . ,Gm ⊆ G(Σ)
such that KB splits over (G1, . . . ,Gm)⋃m

i=1 Gi into (KB1, . . . ,KBm) (just choose the supports

Supp(KB1), . . . ,Supp(KBm)). However, {G1, . . . ,Gm} does not have to be a partition of
⋃m
i=1 Gi

in this case, which is the reason why we prefer the “indirect” decomposition of KB into syntac-
tically independent parts as in Definition 9.3

The next proposition states that the maximum entropy distribution PME(G,KB) factor-
izes into the product over PME(Gi,KBi) for i = 1, . . . ,m if KB splits over (G1, . . . ,Gm)G into
(KB1, . . . ,KBm), which is the main result of this section.

Proposition 3. Let KB be a G-consistent knowledge base that splits over (G1, . . . ,Gm)G into
(KB1, . . . ,KBm). Then,

PME(G,KB)(ω) =

m∏
i=1

PME(Gi,KBi)(ω|Gi), ω ∈ Ω(G). (3)

A proof of Proposition 3 can be found in the appendix.
As a benefit, the inference query “Does PME(KB) |∼ME (B|A)[p] hold?” is only affected by

those factors PME(Gi,KBi) of PME(G,KB) which satisfy Supp((B|A)[p]) ∩ Gi 6= ∅.

Proposition 4. Let KB be a G-consistent knowledge base that splits over (G1,G2)G into
(KB1,KB2). Further, let r = (B|A)〈C〉[p] be a conditional with Supp(r) ⊆ G1. Then,

PME(G,KB) |∼ME (B|A)〈C〉[p] iff PME(G1,KB1) |∼ME (B|A)〈C〉[p].

Similarly, when revising a belief state, only the affected parts of the epistemic state have to
be adjusted.

3The fact that all the sets of ground atoms G1, . . . ,Gm are non-empty simplifies the formalization of Propo-
sition 3 and its proof.

8
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Proposition 5. Let P∗(G,KB) be the c-revision of the probability distribution P(G) with respect
to the newly acquired knowledge in KB. If KB splits over (G1, . . . ,Gm)G into (KB1, . . . ,KBm)
and P(G) factorizes over {G1, . . . ,Gm}, i.e.,

P(G)(ω) =

m∏
i=1

P(Gi)(ω|Gi), ω ∈ Ω(G),

then

P∗(G,KB)(ω) =

m∏
i=1

P∗(Gi,KBi)(ω|Gi), ω ∈ Ω(G). (4)

As a possible situation in which Proposition 5 could be applied, think about P(G) being a
maximum entropy distribution based on a knowledge base that already split over (G1, . . . ,Gm)G .
Then, P(G) indeed factorizes over {G1, . . . ,Gm}.

While the syntactical splitting of a knowledge base KB is a very natural and basic crite-
rion for the independence of the maximum entropy distribution PME(G,KB), we show a more
advanced criterion in the next section which comprises semantical information in the notion of
isomorphic operands. Beforehand, we conclude this section with an illustrating example.

Example 4. We consider an agent who knows that every penguin is a bird and Tweety indeed
is a penguin. Further, he believes that typical birds are usually able to fly, say with probability
0.9, but Tweety as a penguin is an atypical bird for which this statement is not true. Actually,
the agent has never seen Tweety fly. Therefore, he assumes that Tweety can not fly with
probability 0.99. Formally, the knowledge of the agent can be represented as follows:

Let Pred = {B/1, F/1, P/1} be the set of predicates with the meanings “x is a bird” (B(x)),
“x is able to fly” (F (x)), and “x is a penguin” (P (x)). Further, let Const be the set of birds;
in particular, tweety ∈ Const. Then, the knowledge of the agent is KB = (F ,B) with

F = {∀x ∈ Const.P (x)⇒ B(x), P (tweety)},
B = {(F (x)|B(x))〈x ∈ Const \ {tweety}〉[0.9], (¬F (tweety)|>)[0.99]}.

Without loss of generality, we assume that there are k birds and the unnamed birds (= all birds
except Tweety) are associated with the constants a1, . . . , ak−1. The set of ground atoms over Σ,

G(Σ) = {B(tweety), F (tweety), P (tweety)} ∪
k−1⋃
i=1

{B(ai), F (ai), P (ai)}

can be partitioned into {Gt,G′} with

Gt = {B(tweety), F (tweety), P (tweety)},

G′ =

k−1⋃
i=1

{B(ai), F (ai), P (ai)}.

Moreover, (Gt,G′)G(Σ) is a syntax partition for KB, as KB splits over (Gt,G′)G(Σ) into (KBt,KB′)
with

KBt = ({P (tweety)⇒ B(tweety), P (tweety)}, {(¬F (tweety)|>)[0.99]}),

KB′ = (

k−1⋃
i=1

{P (ai)⇒ B(ai)}, {(F (x)|B(x))〈x ∈ Const \ {tweety}〉[0.9]}).
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Here, we used the fact that the formula ∀x ∈ Const.P (x) ⇒ B(x) is semantically equivalent to
the set of formulas

⋃
a∈Const{P (a)⇒ B(a)}. According to Proposition 3, it finally holds that

PME(G(Σ),KB)(ω) = PME(Gt,KBt)(ω|Gt) · PME(G′,KB′)(ω|G′), ω ∈ Ω(G(Σ)).

Hence, reasoning about Tweety is independent of the knowledge about the unnamed birds and
vice versa.

4 Independence Based on Isomorphic Operands

While the focus in the previous Section 3 is on investigating independent parts of a knowledge
base KB as a whole, we now want to separate single syntactically independent ground instances
of the conditionals in KB. However, the fact that the ground instances of the conditionals in
KB can be grouped into syntactically independent sets is not sufficient to establish the desired
factorization of the ME-distribution PME(G,KB). Instead, we additionally need to postulate a
certain isomorphism property between the syntactically independent ground instances.

Definition 10 (Isomorphic Instance Separating Partition). Let G ⊆ G(Σ) be a set of ground
atoms, and let {G1, . . . ,Gm} be a partition of G. Further let KB = (F ,B) be a knowledge base.
We call {G1, . . . ,Gm}G an instance separating partition for KB iff

1. there are F1, . . . ,Fm ⊆ F such that F = F1 ∪̇ . . . ∪̇ Fm
and Supp(Fi) ⊆ Gi for i = 1, . . . ,m,

2.
⋃m
k=1{r′ ∈ Grnd(r) | Supp(r′) ⊆ Gk} = Grnd(r), r ∈ B.

We call {G1, . . . ,Gm}G isomorphic iff for all pairs Gi,Gj ∈ {G1, . . . ,Gm}, there is a bijection
ρ : Ω(Gi)|Fi

→ Ω(Gj)|Fj
such that

φ(Gi, r)(ω) = φ(Gj , r)(ρ(ω)), ω ∈ Ω(Gi)|Fi
, r ∈ B.

If {G1, . . . ,Gm}G is an instance separating partition for KB, we say that {G1, . . . ,Gm}G sat-
isfies the instance separating property. This property is purely syntactical and enables one
to group all conditionals (and facts) in KB into syntactically independent sets. The isomor-
phism property of {G1, . . . ,Gm}G instead is semantically driven, as it exploits the evaluation of
the ground instances of the conditionals in KB. It states that the different ground instances
somehow all “behave” the same. Informally, across all possible worlds, the ground instances
are evaluated the same, however the evaluation with respect to a particular possible world
may be different. Unfortunately, one can show that the isomorphy between the elements in
{G1, . . . ,Gm}G alone is not sufficient to prove the following central independence result of this
section, i.e., one may not skip the instance separating property of {G1, . . . ,Gm}G to obtain the
factorization of the ME-distribution.

In the next proposition we use the following definitions: Let r be a conditional, and let
G ⊆ G(Σ) be a set of ground atoms. Then, rG denotes the conditional r where the free variables
in r may only be substituted with constants from G. Further, let KB = (F ,B) be a knowledge
base. Then, KBG = (FG ,BG) where

FG = {F ∈ F | Supp(F ) ⊆ G},
BG = {rG | r ∈ B}.

10
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Proposition 6. Let KB = (F ,B) be a G-consistent knowledge base, and let {G1, . . . ,Gm}G be
an isomorphic instance separating partition for KB. Then,

PME(G,KB)(ω) =

m∏
i=1

PME(Gi,KBGi)(ω|Gi), ω ∈ Ω(G).

Example 5. We continue Example 4 and define Gi = {B(ai), F (ai), P (ai)} as well as Fi =
{P (ai) ⇒ B(ai)} for i = 1, . . . , k − 1. Then, {G1, . . . ,Gk−1}G′ is an isomorphic instance
separating partition for KB′. In order to see this, consider the bijection ρ : Ω(Gi)|Fi → Ω(Gj)|Fj

which simply replaces the constant ai by aj in every (partial) possible world in Ω(Gi)|Fi
for

1 ≤ i, j ≤ k − 1. Following Proposition 6,

PME(G′,KB′)(ω) =

k−1∏
i=1

PME(Gi,KB′Gi)(ω|Gi), ω ∈ Ω(G′),

i.e., even every unnamed bird in the szenario of Example 4 can be investigated on its own. A
more in-depth analysis shows that the probability distributions PME(Gi,KB′Gi) for i = 1, . . . , k−1
are identically up to a permutation of constants, which means, that only one of these distri-
butions actually has to be calculated in oder to determine PME(G′,KB′). In total, when taking
both independence results into account, it is sufficient to calculate two probability distributions
(PME(Gt,KBt) and PME(Gi,KB′Gi) for any i ∈ {1, . . . , k − 1}), each defined over six possible
worlds only, in order to determine the entire maximum entropy distribution PME(G,KB) from
Example 4. Following the näıve way of directly calculating PME(G,KB) instead means calculat-

ing a probability distribution defined over 23k

possible worlds and hence crucially depends on
the size of Const.

We now discuss a problem class for which the precondition of Proposition 6 is satisfied,
i.e., we indicate a class of knowledge bases for which there are isomorphic instance separating
partitions. For this, we consider a fragment of FOL consisting of Boolean combinations of unary
predicates.

Definition 11 (BOOL). Let ΣBOOL = (Pred1,Const) be a first-order signature consisting of
a finite set of unary predicates Pred1 and a finite set of constants Const. Further, let x be a
variable. Then, BOOL is the smallest set such that

1. A(x) ∈ BOOL for every unary predicate A ∈ Pred1,

2. ¬A(x) ∈ BOOL for every A(x) ∈ BOOL,

3. A(x) ∧B(x) ∈ BOOL for every A(x), B(x) ∈ BOOL,

4. A(x) ∨B(x) ∈ BOOL for every A(x), B(x) ∈ BOOL.

The definition of BOOL implies that formulas in BOOL are Boolean combinations of unary
predicates with one free variable and without constants. In particular, for every formula
F ∈ BOOL, there are |Const| many ground instances, and different ground instances of the
same formula are syntactically independent. Furthermore, every ground instance of F can
be converted into any other just by exchanging the substituted constant. This leads to the
following proposition.

11
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Proposition 7. Let KB = (∅,B) be a G(ΣBOOL)-consistent knowledge base with B = {r1, . . . , rn}
and ri = (Bi|Ai)[pi] such that Ai, Bi ∈ BOOL for i = 1, . . . , n. Then,

PME(G(ΣBOOL),KB) =
∏

c∈Const

PME(Gc,KBGc)(ω|Gc), ω ∈ Ω(G(ΣBOOL)),

where Gc = {A(c) | A ∈ Pred1}.

Hence, Proposition 7 states that calculating the ME-distribution relative to KB can be
reduced to calculating |Const| many ME-distributions, each relative to a distinct ground in-
stantiation KBGc

of KB including all the facts and believes about the particular constant c,
when the original knowledge base KB is a knowledge base without facts and with conditionals
built upon formulas in BOOL. In other words, the influence of a single domain element on the
ME-distribution is independent from the other domain elements.

We conclude this section with a proposition which states how the independence result in
Proposition 6 facilitates drawing inferences from knowledge bases built upon formulas in BOOL.

Proposition 8. Let KB = (∅,B) be a G(ΣBOOL)-consistent knowledge base with B = {r1, . . . , rn}
and ri = (Bi|Ai)[pi] such that Ai, Bi ∈ BOOL for i = 1, . . . , n. Further, let (B|A)[p] be a con-
ditional with A,B ∈ BOOL and |Const| = k. Then,

PME(G,KB) |∼ME (B|A)[p] iff PME(Gc,KBGc
) |∼ME (B(c)|A(c))[p]

for an arbitrary constant c ∈ Const.

Proposition 8 makes it possible to transfer knowledge about a certain domain element to the
entirety of all domain elements and vice versa, since all the domain elements are interchangeable.
In particular, the inferred probability p of the query conditional (B|A)[p] with A,B ∈ BOOL is
independent of |Const|, i.e., of the domain size.

5 Conclusion and Future Work

We investigated maximum entropy reasoning (ME-reasoning) based on the aggregating seman-
tics for relational conditional knowledge bases. We showed that under certain circumstances the
ME-distribution factorizes into independent parts. One sufficient precondition for this is present
when the knowledge base itself splits into syntactically independent parts. As a consequence,
ME-reasoning tasks such as drawing inferences at maximum entropy and revising epistemic
states by using c-revision may be performed on the single factors of the ME-distribution. This
can help to reduce computational costs and the frequently criticized intricacy of ME-reasoning.
Another more complex precondition for the factorization of the ME-distribution is fulfilled if
the ground instances of the conditionals in the knowledge base satisfy a certain isomorphism
property. As a concrete instance of knowledge bases which show this property, we discussed
knowledge bases consisting of conditionals whose premises and conclusions are Boolean combi-
nations of unary predicates.

In future work, we want to intensify our studies on independence results for maximum
entropy distributions, in particular with regard to conditional independencies.
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Appendix

We exemplarily prove Proposition 3. The basic strategy of this proof also applies to the proofs
of the further propositions in Section 3 and Section 4. We stick to Convention 1 when it is
appropriate, and we assume that the preconditions of Proposition 3 hold.

The following lemma is preparatory work for the proof of Proposition 3.

Lemma 1. Let KB = (F ,B) be a G-consistent knowledge base that splits over (G1, . . . ,Gm)G
into (KB1, . . . ,KBm). Further let r ∈ B. Then,

φ(G, r)(ω) =

m∑
k=1

φ(Gk, r)(ω|Gk).

Proof. It is

φ(G, r)(ω) = φ(

m⋃
k=1

Gk, r)(
m∧
k=1

ω|Gk) =

m∑
k=1

φ(Gk, r)(
m∧
k=1

ω|Gk) =

m∑
k=1

φ(Gk, r)(ω|Gk).

Proof of Proposition 3. Let G′ =
⋃m−1
i=1 Gi and KB′ =

⊔m−1
i=1 KBi. We prove that

PME(G,KB)(ω) = PME(G′,KB′)(ω|G′) · PME(Gm,KBm)(ω|Gm) for all ω ∈ Ω(G).

Then, Equation (4) follows by induction. Let F = {F1, . . . , Fk}. Without loss of generality, we
assume that KB′ = (F ′,B′) with F ′ = {F1, . . . , Fs} and B′ = {r1, . . . , rt} and KBm = (Fm,Bm)
with Fm = {Fs+1, . . . , Fk} and Bm = {rt+1, . . . , rn}. Let i ∈ {1, . . . , t}. Let (α1, . . . , αn) be
the effect of PME(G,KB). Then, according to Equation (1),

0 =
∑

ω∈Ω(G)|F

φ(G, ri)(ω) ·
n∏
j=1

α
φ(G,rj)(ω)
j

=
∑

ω′∈Ω(G′)|F′

∑
ωm∈Ω(Gm)|Fm

(
φ(G′, ri)(ω′) + φ(Gm, ri)(ωm)︸ ︷︷ ︸

=0

)
·
n∏
j=1

α
φ(G′,rj)(ω′)+φ(Gm,rj)(ωj)
j

=
∑

ω′∈Ω(G′)|F′

∑
ωm∈Ω(Gm)|Fm

φ(G′, ri)(ω′) ·
t∏

j=1

α
φ(G′,rj)(ω′)
j ·

n∏
j=t+1

α
φ(Gm,rj)(ωm)
j

=
( ∑
ω′∈Ω(G′)|F′

φ(G′, ri)(ω′) ·
t∏

j=1

α
φ(G′,rj)(ω′)
j

)
·
( ∑
ωm∈Ω(Gm)|Fm

n∏
j=t+1

α
φ(Gm,rj)(ωm)
j

)
︸ ︷︷ ︸

>0

=
∑

ω′∈Ω(G′)|F′

φ(G′, ri)(ω′) ·
t∏

j=1

α
φ(G′,rj)(ω′)
j

= Si(G′,KB′)(α1, . . . , αt).

Analogously, for i ∈ {t+ 1, . . . , n}, it follows that

0 =
∑

ωm∈Ω(Gm)|Fm

φ(Gm, ri)(ωm) ·
n∏

j=t+1

α
φ(Gm,rj)(ωm)
j = Si(Gm,KBm)(αt+1, . . . , αn).
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Hence, the maximum entropy distributions PME(G′,KB′) and PME(Gm,KBm) exist, and they
have the effects (α1, . . . , αt) resp. (αt+1, . . . , αn). Further, there is the following connection
between the normalizing constants of PME(G,KB), PME(G′,KB′), and PME(Gm,KBm):

α0(G,KB) =
( ∑
ω∈Ω(G)

n∏
j=1

α
φ(G,rj)(ω)
j

)−1

=
( ∑
ω′∈Ω(G′)

∑
ωm∈Ω(Gm)

t∏
j=1

α
φ(G′,rj)(ω′)
j ·

n∏
j=t+1

α
φ(Gm,rj)(ωm)
j

)−1

=
( ∑
ω′∈Ω(G′)

n∏
j=1

α
φ(G′,rj)(ω′)
j

)−1

·
( ∑
ωm∈Ω(Gm)

n∏
j=1

α
φ(Gm,rj)(ωm)
j

)−1

= α0(G′,KB′) · α0(Gm,KBm)

For ω ∈ Ω(G)|F it eventually follows that

PME(G,KB)(ω) = α0(G,KB) ·
n∏
j=1

α
φ(G,KB)(ω)
j

= α0(G′,KB′) · α0(Gm,KBm) ·
t∏

j=1

α
φ(G′,KB′)(ω|G′ )
j ·

n∏
j=t+1

α
φ(Gm,KBm)(ω|Gm )
j

= α0(G′,KB′) ·
t∏

j=1

α
φ(G′,KB′)(ω|G′ )
j · α0(Gm,KBm) ·

n∏
j=t+1

α
φ(Gm,KBm)(ω|Gm )
j

= PME(G′,KB′)(ω|G′) · PME(Gm,KBm)(ω|Gm).

In the case where F 6= ∅, for every ω ∈ Ω(G)\Ω(G)|F , at least one of the factors PME(G′,KB′)(ω′)
and PME(Gm,KBm)(ωm) is zero, as every F ∈ F is either in KB′ or KBm, which completes the
proof.
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