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Abstract

In the area of Description Logic (DL) based knowledge represen-
tation, research on reasoning w.r.t. general terminologies has mainly
focused on very expressive DLs. Recently, though, it was shown for
the DL EL, providing only the constructors conjunction and existential
restriction, that the subsumption problem w.r.t. cyclic terminologies
can be decided in polynomial time, a surprisingly low upper bound.
In this paper, we show that even admitting general concept inclusion
(GCI) axioms and role hierarchies in EL terminologies preserves the
polynomial time upper bound for subsumption. We also show that
subsumption becomes co-NP hard when adding one of the construc-
tors number restriction, disjunction, and ‘allsome’, an operator used
in the DL k-rep. An interesting implication of the first result is that
reasoning over the widely used medical terminology snomed is possi-
ble in polynomial time.
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1 Motivation

In the area of Description Logic (DL) based knowledge representation, in-
tensional knowledge of a problem domain is represented in the form of a
terminology (TBox) which declares general properties of concepts relevant
to the domain [19]. In its most basic form, a TBox contains concept def-
initions of the form A

.
= C which define a concept name A by a concept

description C. Concept descriptions are terms built from primitive concepts
by means of language constructors provided by the DL. The meaning of A
w.r.t. the TBox is defined by interpreting the TBox w.r.t. a model-theoretic
semantics, which allows formally well-defined reasoning over the terminology.

In addition, general TBoxes can contain universally true implications,
so-called general concept inclusion (GCI) axioms of the form C v D, where
both C and D are arbitrary concept descriptions. A model respects a GCI
C v D iff the extension of C is a subset of the extension of D. Hence, D is
implied whenever C holds.

From an application point of view, the utility of general TBoxes for DL
knowledge bases has long been observed. For instance, in the context of
the medical terminology Galen [24], GCIs are used especially for two pur-
poses [22]:

• indicate the status of objects: instead of introducing several concepts
for the same concept in different states, e.g., normal insulin secretion,
abnormal but harmless insulin secretion, and pathological insulin secretion,
only insulin secretion is defined while the status, i.e., normal, abnormal

but harmless, and pathological is implied by GCIs of the form . . . v
∃has status.pathological.

• to bridge levels of granularity and add implied meaning to concepts. A
classical example [14] is to use a GCI like

ulcer u ∃has loc.stomach

v ulcer u ∃has loc.(lining u ∃is part of.stomach)

to render the description of ‘ulcer of stomach’ more precisely to ‘ulcer
of lining of stomach’ if it is known that ‘ulcer of stomach’ is specific of
the lining of the stomach.
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It has been argued that the use of GCIs facilitates the re-use of data in
applications of different levels of detail while retaining all inferences obtained
from the full description [24]. Hence, to examine reasoning w.r.t. general
TBoxes has a strong practical motivation.

There is also a strong motivation to consider the DL EL, providing only
the constructors conjunction and existential restriction. The widely used
medical terminology Snomed [8] corresponds to an EL TBox [25]. The
representation language underlying the medical terminology Galen [24] in
which GCIs are used extensively, similarly can be represented by a general
EL TBoxe, requiring additional constructs for roles, though.

Research on reasoning w.r.t. general TBoxes has been mainly focused on
very expressive DLs, reaching as far as, e.g., ALCNR [7] and SHIQ [15], in
which deciding subsumption of concepts w.r.t. general TBoxes is EXPTIME
hard. Fewer results exist on subsumption w.r.t. general terminologies DLs
below ALC. In [12] the problem is shown to remain EXPTIME complete for a
DL providing only conjunction, value restriction and existential restriction.
The same holds for the small DL AL which allows for conjunction, value
and unqualified existential restriction, and primitive negation [10]. Even
for the simple DL FL0, which only allows for conjunction and value restric-
tion, subsumption w.r.t. cyclic TBoxes with descriptive semantics is PSPACE
hard [17], implying hardness for general TBoxes.

Recently, however, it was shown for the DL EL that the subsumption
problem w.r.t. cyclic terminologies can be decided in polynomial time [6].
Given the practical utility of general TBoxes on the one hand and this sur-
prisingly low upper bound on the other, the present paper aims to explore
how far the polynomial time bound reaches when extending cyclic EL-TBoxes
further. We show that admitting both GCIs and simple role inclusion axioms
at the same time preserves the upper bound for subsumption. In contrast,
by extending EL by one of the constructors number restriction, disjunction,
and allsome, subsumption is shown to be co-NP hard.

The paper is organized as follows. Section 2 introduces basic notions
essential to study the DLs under consideration. In Section 3 we present
a polynomial time algorithm to decide subsumption in ELH w.r.t. general
TBoxes and simple role inclusion axioms. Section 4 is dedicated to the co-
NP hard extensions of EL.
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2 Description Logics

Syntax Semantics EL EL
U
EL
N
EL
∀∃

L ∀
∃

> ∆I x x x x x
C uD CI ∩DI x x x x x
C tD CI ∪DI x
∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI} x x x x
∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI ⇒ y ∈ CI}
∀∃r.C ∀r.C u ∃r.C x x
(≤ n r), n ∈ N {x ∈ ∆I | #{y | (x, y) ∈ rI} ≤ n} x
(≥ n r), n ∈ N {x ∈ ∆I | #{y | (x, y) ∈ rI} ≥ n} x

Table 1: Syntax and semantics of concept descriptions.

Concept descriptions are inductively defined with the help of a set of
concept constructors, starting with a set Ncon of concept names and a set
Nrole of role names. In this paper, we consider concept descriptions built
from the constructors shown in Table 1. All concept descriptions under
consideration provide the constructors top-concept (>) and conjunction (Cu
D) but otherwise differ from one another. Our point of departure will be the
DL EL which also allows for existential restrictions (∃r.C). The DL ELU
extends EL by disjunction (t) while ELN extends EL by number restrictions
(≥ n r) and (≤ n r). The DL EL∀∃ extends EL by the constructor allsome
(∀∃r.C). The DL L∀∃ is obtained by removing existential restrictions from
EL∀∃. (see Table 1).

As usual, the semantics of concept descriptions is defined in terms of an
interpretation I = (∆I , ·I). The domain ∆I of I is a non-empty set and
the interpretation function ·I maps each concept name P ∈ Ncon to a subset
P I ⊆ ∆I and each role name r ∈ NR to a binary relation rI ⊆ ∆I×∆I .
The extension of ·I to arbitrary concept descriptions is defined inductively,
as shown in the second column of Table 1.

For a given the DL L, an L-terminology (called L-TBox) is a finite set T
of axioms of the form C v D (called GCI ) or C

.
= D (called definition) or

r v s (called simple role inclusion axiom (SRI)), where C and D are concept
descriptions defined in L and r, s ∈ Nrole. A concept name A ∈ Ncon is called
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defined in T iff T contains one or more axioms of the form A v D or A
.
= D.

The size of T is defined as the sum of the sizes of all axioms in T . Denote
by NTcon the set of all concept names occurring in T and by NTrole the set of
all role names occurring in T . A TBox that contains GCIs is called general.
Denote by ELH the DL EL admitting SRIs in TBoxes.

An interpretation I is a model of T iff for every GCI C v D ∈ T it holds
that CI ⊆ DI , for every definition C

.
= D it holds that CI = DI , and for

every SRI r v s it holds that rI ⊆ sI . A concept description C is satisfiable
w.r.t. T iff there exists a model I such that CI 6= ∅. A concept description
C subsumes a concept description D w.r.t. T (C vT D) iff CI ⊆ DI in every
model I of T . C and D are equivalent w.r.t. T (C ≡T D) iff they subsume
each other w.r.t. T . This semantics for TBoxes is usually called descriptive
semantics [20]. In case of an empty TBox, we write C v D instead of C v∅ D
and analogously C ≡ D instead of C ≡∅ D.

Example 1 As an example of what can be expressed with an ELH-TBox,
consider the following TBox showing in an extremely simplified fashion a
part of a medical terminology.

Pericardium v Tissue u ∃cont in.Heart

Pericarditis v Inflammation

u ∃has loc.Pericardium

Inflammation v Disease u ∃acts on.Tissue

Disease u ∃has loc.∃comp of.Heart v Heartdisease

u ∃is state.NeedsTreatment

cont in v comp of

The TBox contains four GCIs and one SRI, stating, e.g., that Pericardium
is tissue contained in the heart and that a diesease located in a component
of the heart is a heart disease and requires treatment. Without going into
detail, one can check that Pericarditis would be classified as a heart disease
requiring treatment because, as stated in the TBox, Pericarditis is a disease
located in the Pericardium contained in the heart, and everything contained
in something is a component of it.1

1The example is only supposed to show the features of ELH and in no way claims to
be adequate from a Medical KR point of view.
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3 Reasoning in ELH with GCIs

We aim to show that subsumption of ELH concepts w.r.t. general TBoxes can
be decided in polynomial time. A natural question is whether we may not
simply utilize an existing decision procedure for a more expressive DL which
might exhibit polynomial time complexity when applied to ELH TBoxes.
Using the standard tableaux algorithm deciding consistency of general ALC-
TBoxes [4] as an example, one can show that this approach in general does
not bear fruit, eveb for the sublanguage EL.

In order to decide subsumption C v?
T D w.r.t. an EL-TBox, an intuitive

decision procedure to choose would be the ALC tableaux algorithm deciding
consistency of ALC-concepts w.r.t. ALC terminologies [1]. The DL ALC ex-
tends EL by value restrictions (∀), disjunction (t), and negation (¬). We
can decide C v?

T D by deciding satisfiability of C u ¬D w.r.t. T .
The following example presents a general EL-TBox for which the ALC

tableaux algorithm takes exponentially many steps in the worst case. We
use the standard ALC tableaux as describied in [1].

Example 2 For n ∈ N, let Ncon := {A,B,C,D} ∪ {Ai | 1 ≤ i ≤ n} ∪ {Bi |
1 ≤ i ≤ n} and Nrole := {r}. Define the TBox Tn as follows:

C
.
= A

D
.
= ∃r.B

∃r.B v B

A v ∃r.A
∃r.Ai u ∃r.Bi v B for every1 ≤ i ≤ n

To be able to apply the tableaux algorithm, the GCIs in Tn are represented
as tautologies:

B t ∀r.¬B
¬A t ∃r.A

B t ∀r.¬Ai t ∀r.¬Bi for every1 ≤ i ≤ n

Figure 1 shows (in an abridged way) the first four steps of the tableaux
computation for T . The tableaux algorithm starts in Step 0 with a model of
one vertex x0 labeled by C u ¬D. A so-called ’blocking’ techniqe is used to
avoid the generation of infinitely many vertices for a model: if the label of
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the new vertex w is a subset of a label of an old vertex v then w is removed,
redirecting the edge pointing to w to the old vertex v.

Since x0 could not be blocked, all GCIs are added to the label of x0, yield-
ing the situation denoted as Step 1 in Figure 1. In the tableaux, disjunction is
dealt with by means of nondeterminism: a GCI of the form CtD is resolved
by nondeterministically choosing between C or D to add to the label set of
the vertex under consideration (see [1] for details). Since the concept name
A is already contained in the label of x0, the only possibility to satisfy the
GCI ¬At ∃r.A (shown boxed in Step 1) is to introduce an r-successor x1 to
x0. Several other GCIs in the label of x0 have to be satisfied. In particular,
if the algorithm chooses the disjunct ∀r.¬B from the GCI B t ∀r.¬B then
¬B is added to the label set of x1. Moreover, for every 1 ≤ i ≤ n the GCI

B t ∀r.¬Ai t ∀r.¬Bi 1 ≤ i ≤ n

must be satisfied for x0. Since ¬B is already in the label of x1, thus ruling
out choosing B, the algorithm for every i has to include either ¬Ai or ¬Bi

into the label of x1. Hence a set S1 is added to the label set of x1, where S1

corresponds to a tuple s̄1 with

s̄1 ∈ {¬A1,¬B1} × · · · × {¬An,¬Bn} =: S. (∗)

Without going into detail further, Steps 3 and 4 in Figure 1 illustrate that
the tableaux algorithm necessarily adds a successor x2 of x1 whose label set
consists of A,¬B and another set S2 representing another nondeterministic
choice from S, see (∗). Hence, the introduction of x2 can be blocked only if
the algorithm nondeterministically chose S1 = S2.

Obviously, the situation for x2 resembles that of x1, implying that another
successor x3 is introduced and so on. As there exist exponentially many sets
Sj mutually incomparable w.r.t. the subset relation the nondeterminism of
the tableaux algorithm might give rise to an exponentially long line of suc-
cessors before a vertex xk is introduced in whose label the set Sk necessarily
is a repitition of a label set seen before.

Hence, the standard tableaux algorithm in the worst case needs exponen-
tially many steps to decide the subsumption C vT D.

Hence, new techniques are required exploiting the simpler structure of
general ELH-TBoxes better. The first step in our approach is to transform
TBoxes into a normal form which limits the use of complex concept descrip-
tions to the most basic cases.
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Step 0

x0 : {A u ∀r.¬B} GCIs−−−−→

Step 1 Step 2

x0 : {A u ∀r.¬B} x0 : {A u ∀r.¬B}

{ ¬A t ∃r.A ,B t ∀r.¬B} {¬A t ∃r.A,B t ∀r.¬B}

{B t ∀r.¬Ai t ∀r.¬Bi | i}
add r-successor−−−−−−−−−→ {B t ∀r.¬Ai t ∀r.¬Bi | i}yr

x1 : {A,¬B}

S1

Step 3 Step 4

x0 : {A u ∀r.¬B} x0 : {A u ∀r.¬B}

{¬A t ∃r.A,B t ∀r.¬B} {¬A t ∃r.A,B t ∀r.¬B}

{B t ∀r.¬Ai t ∀r.¬Bi | i} {B t ∀r.¬Ai t ∀r.¬Bi | i}yr yr
x1 : {A,¬B} x1 : {A,¬B}

GCIs−−−−→ { ¬A t ∃r.A ,B t ∀r.¬B} {¬A t ∃r.A,B t ∀r.¬B}

{∀r.¬Ai t ∀r.¬Bi | i}
add r-successor−−−−−−−−−→ {∀r.¬Ai t ∀r.¬Bi | i}

S1 S1yr
x2 : {A,¬B}

S2

Figure 1: ALCI tableaux computation
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Definition 3 (Normalized ELH TBox) Let T be an ELH-TBox over Ncon

and Nrole. T is normalised iff (i) T contains only GCIs and SRIs, and, (ii)
all of the GCIs have one of the following forms:

A v B

A1 u A2 v B

A v ∃r.B
∃r.A v B.

where A,A1, A2, B represent concept names from N>con.

Such a normal form can easily be computed in polynomial time and does
not increase the size of the TBox more than polynomially. The following
definition provides normalization rules by which an arbitrary EL-TBox can
be transformed into a normalized one. The normalization rules are inspired
by [18] where a similar problem is solved for ALC-TBoxes containing only
definitions.

Definition 4 (Normalization rules) Let T be an ELH-TBox over Ncon and
Nrole. For every ELH-concept description C,D,E over NT ,>con and Nrole, for
every r ∈ Nrole, and every ρ ∈ {v, .=}, the ELH-normalization rules are
defined modulo commutativity of conjunction (u) as follows:

NF1 Ĉ uD ρ E −→ {A .
= Ĉ, A uD ρ E}

NF2 C ρ D u Ê −→ {C ρ D u A, A .
= Ê}

NF3 ∃r.Ĉ ρ D −→ {A .
= Ĉ, ∃r.A ρ D}

NF4 C ρ ∃r.D̂ −→ {C ρ ∃r.A, A .
= D̂}

NF5 C v D u E −→ {C v D, C v E}
NF6 C

.
= D −→ {C v D, C v D},

where Ĉ, D̂ denote concept descriptions that are no concept names and A
denotes a new concept name from Ncon not occurring in T . Applying a rule
R := G −→ S to T changes T to (T \ {G}) ∪ S. The normalized TBox
norm(T ) is defined by first exhaustively applying Rules NF1 to NF4 and, after
that, exhaustively applying Rule NF5 and, after that, exhaustively applying
Rule NF6.
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The number of possible applications of Rules NF1 to NF4 is limited linearly
in the size of T . Each of these rules increases the size of T only by a
constant. Hence, applying Rules NF1 to NF4 exhaustively increases the size of
T only polynomially. The resulting Tbox may still violate the definition of
normalized TBoxes in two respects. Firstly, it may contain GCIs of the form
A ρ B u C with A,B,C ∈ N>con. Secondly, it may contain GCIs with ρ =

.
=.

As C ∈ Ncon, a single application of Rule NF5 therefore also increases the size
of T only by a constant. Applying the rule exhaustively produces a TBox
of linear size in the input. Replacing all GCIs of the C

.
= D by Rule NF6

obviously has the same property: the size of T increased only linearly and
the rule can be applied only a linear number of times. It is easy to see that
normalization also takes only polynomial time.

Our strategy is now, for every concept name A ∈ NTcon and >, to compute
a set of concept names S∗(A) with the following property: whenever in some
point x in a model of T the concept A holds then every concept in S∗(A)
necessarily also holds in x. Similarly, for every role r we want to represent
by S∗(r) the set of all roles included in r. The simple structure of GCIs
in normalized TBoxes allows us to define such sets as follows. To simplify
Notation, let NT ,>con := N>con ∪ {>}.

Definition 5 (Implication set) Let T denote a normalized ELH-TBox T
over Ncon and Nrole. For every A ∈ NT ,>con (r ∈ NTrole) and every i ∈ N, the set
Si(A) (Si(r)) is defined inductively, starting by S0(A) := {A,>} (S0(r) :=
{r}). For every i ≥ 0, Si+1(A) (Si+1(r)) is obtained by extending Si(A)
(Si(r)) by exhaustive application of the extension rules shown in Figure 2.
The implication set S∗(A) of A is defined as the infinite union S∗(A) :=⋃
i≥0 Si(A). Analogously, S∗(r) :=

⋃
i≥0 Si(r).

Note that the successor Si+1(A) of some Si(A) is generally not the result
of only a single rule application. Si+1(A) is complete only if no more rules
are applicable to any Si(B) or Si(r). Implication sets induce a reflexive and
transitive but not symmetric relation on NT ,>con and NTrole, since B ∈ S∗(A)
does not imply A ∈ S∗(B).

We have to show that the idea underlying implication sets is indeed cor-
rect. Hence, the occurrence of a concept name B in S∗(A) implies that
A vT B and vice versa.
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ISR If s ∈ Si(r) and s v t ∈ T and t 6∈ Si+1(r)
then Si+1(r) := Si+1(r) ∪ {t}

IS1 If A1 ∈ Si(A) and A1 v B ∈ T and B 6∈ Si+1(A)
then Si+1(A) := Si+1(A) ∪ {B}

IS2 If A1, A2 ∈ Si(A) and A1 u A2 v B ∈ T
and B 6∈ Si+1(A) then Si+1(A) := Si+1(A) ∪ {B}

IS3 If A1 ∈ Si(A) and A1 v ∃r.B ∈ T
and B1 ∈ Si(B) and s ∈ Si(r) and ∃s.B1 v C ∈ T
and C 6∈ Si+1(A) then Si+1(A) := Si+1(A) ∪ {C}

Figure 2: Rules for implication sets

Theorem 6 For every normalised ELH-TBox over Ncon and Nrole, (i) for
every r, s ∈ NTrole, s ∈ S∗(r) implies r vT s, and (ii) for every A,B ∈ NT ,>con

it holds that B ∈ S∗(A) iff A vT B.

Proof. (i) Proof by induction over n. As S0(r) = {r}, the claim holds
trivially. For n > 0 we know by Rule ISR that there exists a role t ∈ Sn−1(r)
and a SRI t v s ∈ T . By induction hypothesis r vT t which by transitivity
of role inclusion axioms yields r vT s. For the reverse direction, r vT s
immediately implies a finite chain

{r v t0} ∪ {ti v ti+1 | 0 ≤ i ≤ k − 1} ∪ {tk v s} ⊆ T

of SRIs in T , implying by a finite number of applications of Rule ISR that
s ∈ Sk+1(r).

(ii) (⇒) It suffices to show for every model I of T and for every B ∈ S∗(A)
that x ∈ AI implies x ∈ BI . Assume a model I of T with a witness x ∈ AI
and let B ∈ S∗(A). Proof by induction over n where n is the least index with
B ∈ Sn(A).

(n = 0) Then, Sn(A) = {A} implying B = A. As x was chosen a witness
of A the claim holds.

(n > 0) In Step n − 1, B can have been included into Sn(A) by any of
the Rules IS1 to IS6. We distinguish one case for each rule.

(IS1) There exists a concept name A1 ∈ Sn−1(A) and a GCI G := A1 v
B ∈ T . By induction hypothesis (IH), x ∈ AI1 , implying by G that also
x ∈ BI .
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(IS2) There exist two concept names A1, A2 ∈ Sn−1(A) and a GCI G :=
A1 u A2 v B ∈ T . By IH, A1, A2 ∈ Sn−1(A) yields x ∈ AI1 and x ∈ AI2 ,
implying by G that x ∈ BI .

(IS3) There exist concept names A1 ∈ Sn−1(A), A2 ∈ NT ,>con , and A3 ∈
Sn−1(A2) and two GCIs G := A1 v ∃r.A2 and H := ∃s.A3 v B with
s ∈ Sn−1(r). By IH, r v s, implying by G that x ∈ (∃r.A2)I . Since A3 ∈
Sn−1(A2) and , the IH implies x ∈ AI1 and x ∈ (∃s.A3)I , yielding by H that
x ∈ BI .

(⇐) It suffices to show that if B 6∈ S∗(A) then we can construct a model
I of T with a witness x ∈ AI \BI .

We construct a (possibly infinite) canonical model I(A) of A w.r.t. T by
means of the following definition. I(A) is defined iteratively starting by I0(A).
Define ∆I0(A) := {xA} and BI0(A) := {xA | B = A} for all B ∈ NT ,>con . For
i ≥ 0, the model Ii+1 is defined as an extension of Ii obtained by exhaustive
application of the following generation rules.

CM1 If A v B ∈ T then, for every individual x ∈ ∆Ii with x ∈ AIi and
x 6∈ BIi , add x to BIi+1

CM2 If A u B v C ∈ T then, for every individual x ∈ ∆Ii with x ∈
AIi ∩BIi and x 6∈ CIi+1 , add x to CIi+1

CM3 If A v ∃r.B ∈ T then, for every individual x ∈ ∆Ii with x ∈ AIi

for which no r-successor y ∈ ∆Ii+1 with y ∈ BIi+1 exists, introduce a
new individual y to ∆Ii+1 and include y into BIi+1 and include (x, y)
into rIi+1

CM4 If ∃r.A v B ∈ T then, for every pair (x, y) ∈ sIi with s vT r and
y ∈ AIi and x 6∈ BIi+1 , include x into BIi+1

The above rules are applied fairly, i.e., every rule applicable to already exist-
ing elements x ∈ ∆Ii will be applied before applying rules to new elements.
The canonical model I(A) is defined as the infinite union I(A) :=

⋃
i≥0 Ii(A).

We first prove that I(A) in fact is a model of A w.r.t. T . Assume that
xA 6∈ AI(A). In this case there is a y ∈ ∆I(A) for which a GCI G ∈ T is
violated. As T is normalized, it suffices to distinguish four cases for the
violated GCI G.

• If G = B v C ∈ T then y ∈ BI(A) but y 6∈ CI(A). Consider the least
index n with y ∈ BIn(A). By definition, Rule CM1 causes y to be added
to CIn+1 ⊆ CI , contradicting the assumption.
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• If G = BuC v D ∈ T then y ∈ BI(A)uCI(A) but y 6∈ DI(A). Consider
the least index n with y ∈ BIn(A) u CIn(A). Rule CM2 causes y to be
added to DIn+1 ⊆ DI , in contradiction to the assumption.

• If G = B v ∃r.C ∈ T then y ∈ BI(A) but y has no appropriate r-
successor. Consider the least n with y ∈ BIn(A). By Rule CM3, a new
element z is introduced to ∆In+1 , the pair (y, z) added to rIn+1 , and z
added to CIn+1 , again in contradiction to the assumption.

• If G = ∃r.B v C ∈ T then there exists an edge (y, z) ∈ sI(A) with
s vT r such that z ∈ BI(A) but y 6∈ CI(A). Consider the least n
with z ∈ BIn(A). As s vT r and (y, z) ∈ sIn(A), Rule CM4 adds y to
CIn+1(A) ⊆ CI(A), contradicting the assumption.

Having proven I(A) to be a model of A w.r.t. T it remains to show
that BI(A) 6⊆ AI(A). To this end, we show for every n ∈ N, for every
A,B ∈ NT ,>con , A 6= B, and for every x ∈ AIn(A): if {C | C ∈ xIt(A)} = {A}
for some minimally chosen t ∈ N and x ∈ BIn(A) then B ∈ S∗(A). Note that
B ∈ S∗(A) holds if B ∈ Sm(A) for some m ∈ N since Sm(A) ⊆ S∗(A).

(n = 0) Trivial since BI0(A) = ∅ implies that the premise x ∈ BIn(A) does
not hold.

(n ≥ 0) Let {C | C ∈ xIt(A)} = {A} for some t < n and let x ∈
BIn(A) \ BIn−1(A). In the definition of In(A) there are four rules which can
have caused the inclusion of x into BIn(A):

• (CM1) Then then there is a GCI G := A1 v B ∈ T and x ∈ AIn−1(A)
1 .

If t = n − 1 then A1 = A, implying B ∈ S1(A) by Rule IS1 with G. If
t < n − 1 then, by induction hypothesis (IH), A1 ∈ S∗(A), implying
A1 ∈ Sm(A) for some m ∈ N, yielding B ∈ Sm+1(A) by Rule IS1 with
G.

• (CM2) Then there is a GCI G := A1 u A2 v B ∈ T and x ∈ AIn−1(A)
1 ∩

A
In−1(A)
2 . If t = n − 1 then A1 = A2 = A, implying B ∈ S1(A) by

Rule IS2 with G. If t < n − 1 then, by IH, {A1, A2} ⊆ S∗(A). Hence,
{A1, A2} ⊆ Sm(A) for some m ∈ N, implying B ∈ Sm+1(A) by Rule IS2

with G.

• (CM4) Then there is a GCI G := ∃r.A1 v B ∈ T and y ∈ ∆In−1(A) with

(x, y) ∈ sIn−1(A) with s vT r and y ∈ AIn−1(A)
1 , implying t < n−1 since

x and y cannot be created at the same time. Hence, firstly, there is a
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GCI H := C v ∃s.D ∈ T and an index t ≤ k < n − 1 with x ∈ CIk ,
implying (x, y) ∈ sIk+1(A) and y ∈ DIk+1 . Secondly, y ∈ AIk+1

1 . By IH,
A1 ∈ S∗(D). If t = k then C = A, otherwise, by IH, C ∈ S∗(A). In both
cases there exists a least index m with C ∈ Sm(A) and A1 ∈ Sm(D),
implying B ∈ Sm+1(A) by Rule IS3 with G and H.

We have shown how to decide subsumption w.r.t. general ELH-TBoxes.
It remains to show that our decision procedure works in polynomial time. In
contrast to the correctness proof this is relatively easy.

Lemma 7 For every normalised ELH-TBox over Ncon and Nrole and for ev-
ery A ∈ NT ,>con , the implication set S∗(A) can be computed in polynomial time
in the size of T .

Proof. To show decidability in polynomial time it suffices to show that,
(i) T can be normalized in polynomial time (see above), and, (ii) for all
A ∈ NT ,>con and r ∈ NTrole, the sets S∗(A) and S∗(r) can be computed in
polynomial time in the size of T . Every Si+1(A) and Si+1(r) depends only
on sets with index i. Hence, once Si+1(A) = Si(A) and Si+1(r) = Si(r)
holds for all A, r the complete implication sets are obtained. This happens
after a polynomial number of steps, since Si(A) ⊆ NTcon and Si(r) ⊆ NTrole. To
compute Si+1(A) and Si+1(r) from the Si(B) and Si(s) costs only polynomial
time in the size of T .

Theorem 8 Subsumption in ELH w.r.t. GCIs can be decided in polynomial
time.

4 Co-NP hard extensions

The surprisingly low upper bound for the subsumption problem in ELH w.r.t.
general TBoxes gives rise to the question whether it might be possible to
extend ELH by other constructors without losing polynomiality. From a
knowledge representaton perspective, particularly useful constructors might
be number restrictions (≤ n r) and (≥ n r), and disjunction (t). The DL k-

rep [9] provides the constructor ‘allsome’ (∀∃) to capture the meaning often
associated with ‘for all’ statements in natural language. A concept ∀∃.C is
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equivalent to ∀.Cu∃r.C. A a value restriction ∀.C alone cannot be expressed
by means of allsome.

In the following sections we show that adding one of the constructors
number restriction, disjunction, and allsome makes the subsumption prob-
lem co-NP hard—even without GCIs. In case of number restriction and
disjunction (Sections 4.1 and 4.2, resp.), co-NP hardness holds even for sub-
sumption w.r.t. the empty TBox. In case of allsome (Section 4.3), the lower
bound holds already for acyclic TBoxes without GCIs or SRIs.

4.1 EL+ number restriction

We show co-NP hardness of the subsumption problem in ELN by reducing
bin-packing to consistency of ELN concepts. Since ELN can express incon-
sistency as (≤ 0 r)u(≥ 1 r), inconsistency can be reduced to non-subsumption
of ELN concepts, yielding the desired reduction.

Definition 9 (bin-packing) Let U be a nonempty finite set. Let s : U →
N

+ and let b, k ∈ N+. Then, P := (U, s, b, k) is a Bin-Packing problem. A
solution to P is a partition of U into k pairwise disjoint sets U1, . . . , Uk such
that for all i ∈ {1, . . . , k} it holds that Σu∈Uis(u) ≤ b.

Bin-packing is an NP-complete problem in the strong sense [11, p. 226],
implying that we may assume unary encoding for the numbers in P . Given
P , we construct a concept CP which is satisfiable iff P has a solution.

The intuition behind CP is to use a concept description of fixed depth 2
and, (i) express on toplevel that at most k bins, i.e., k pairwise disjoint sets
U1, . . . , Uk, exist, (ii) express on the first role level that every bin weighs at
most b, and (iii) use the second role level to represent the weights s(u) of the
objects u ∈ U . The following definition formalizes this notion.

Definition 10 (Bin-packing concept) Let P = (U, s, b, k) be a Bin-Packing
problem. Let ` := dlg(Σu∈Us(u))e. Define NP

prim := ∅ and NP
role := {r} ∪

{r1, . . . , r`}. Let

CP :=

{
`

u
i=1

Ci

∣∣∣ Ci ∈ {(≤ 0 ri), (≥ 1 ri)}
}



4 CO-NP HARD EXTENSIONS 15

Let fP : {(u, i) | u ∈ U, 1 ≤ i ≤ s(u)} → CP be an injective mapping. The
ELN -concept description CP is defined as follows:

CP := (≤ k r) u u
u∈U
∃r.
(

(≤ b r) u
s(u)

u
i=1
∃r.fP (u, i)

)
Note that Σu∈Us(u) ≤ |CP | < 2·Σu∈Us(u) so that fP in fact exists and can

be computed easily in polynomial time in the size of P with unary number
encoding. The above definition is well-defined only w.r.t. the mapping fP of
which in general many different ones exist. Nevertheless, for our purpose an
arbitrary but fixed instance of fP suffices.

The motivation behind the function f(u, i) is to provide a simple method
to count binarily from 0 to σu∈Us(u), the sum of the weights of all elements
in U . The concept description f(u, i) on the second role level, i.e., in the
leaves of CP , enforce that no two leaves can be represented by the same
element in a model of CP . This is guaranteed that by the fact that two
arbitrary but different leaves in CP differ in negating or not negating at least
one number restriction for a role ri. The following lemma proves formally
that the reduction is correct.

Lemma 11 Let P = (U, s, b, k) be a Bin-Packing problem and CP the cor-
responding concept description over NP

prim and NP
role. Then,

1. For every u, v ∈ U , i ∈ {1, . . . , s(u)}, and j ∈ {1, . . . , s(v)} it holds
that fP (u, i) u fP (v, j) ≡ ⊥ iff u 6= v or i 6= j.

2. P has a solution iff CP is satisfiable.

Proof. (1,⇐) If u = v and i = j then fP (u, i) u fP (v, j) ≡ fP (u, i) ∈ CP .
Every concept description in CP is consistent because each of its conjuncts
imposes a number restriction on a different role.

(1,⇒) Then the injectivity of fP implies that fP (u, i) and fP (v, j) are
two distinct concepts in CP . Hence, there exists an index t such that fP (u, i)
contains the conjunct (≤ 0 rt) and fP (u, i) contains the conjunct (≥ 1 rt)
or vice versa. Hence, the conjunction fP (u, i) u fP (v, j) is subsumed by
(≤ 0 rt) u (≥ 1 rt) ≡ ⊥.

(2,⇒) Denote by U1, . . . , Uk a solution to P . Define a model I of CP as
follows:

∆I := {w, z} ∪ {xi | 1 ≤ i ≤ k} ∪ {yuj | u ∈ U, 1 ≤ j ≤ s(u)}.
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Let

rI :=
k⋃
i=1

(
{(w, xi)} ∪ {(xi, yuj) | u ∈ Ui, 1 ≤ j ≤ s(u)}

)
and for every t ∈ {1, . . . , `}, let

rIt := {(yuj, z) | u ∈ U, 1 ≤ j ≤ s(u), fP (u, j) v (≥ 1 rt)}.

We show that w ∈ CP I , i.e., w is a witness of CP . The definition of rI shows
that w has exactly k successors w.r.t. the role r, namely x1, . . . , xk. Hence,
the number restriction on the toplevel of CP is satisfied. For the rest of CP ,
consider an arbitrary u ∈ U and select i ∈ {1, . . . , k} such that u ∈ Ui.
It suffices to show that xi ∈ (≤ b r)I and that xi ∈ (∃r.fP (u, j))I for all
1 ≤ j ≤ s(u).

Due to the definition of rI , xi has exactly one successor yui for every
element u ∈ Ui and for every 1 ≤ j ≤ s(u). Hence, the total number of
successors of xi equals Σu∈Uis(u) which does not exceed b, the size limit for
every Ui.

Consider an arbitrary j ∈ {1, . . . , s(u). Since (xi, yuj) ∈ RI it suffices to
show that yuj ∈ fP (u, j)I . By definition, f(u, j) = u`t=1 Ct with Ct = (≤ 0rt)
or Ct = (≥ 1rt) for every t ∈ {1, . . . , `}. For every t, the pair (yuj, z) occurs in
rIt iff Ct = (≥ 1 rt). Hence yuj has no successor w.r.t. every role rt occurring
in a number restriction (≤ 0 rt) and has t as successor w.r.t. every role rt
occurring in a number restriction (≥ 1 rt). Thus, yuj is a witness of fP (u, j).

(2,⇐) To ease notation, for all u ∈ U let

Cu := (≤ b r) u
s(u)

u
j=1
∃r.fP (u, j).

Hence, CP can be written as

CP = (≤ k r) u u
u∈U
∃r.Cu.

Denote by I a model of CP and denote by w a witness w ∈ CP I . Due to the
number restriction on the toplevel of CP , w has at most k successors w.r.t.
r. The |U | existential restrictions on the other hand guarantee that at least
one successor exists. Denote by X := {x1, . . . , xk′} the set of r-successors of
w. If k′ < k then w.l.o.g., k− k′ isolated vertices xk′+1, . . . , xk may be added
to ∆I .



4 CO-NP HARD EXTENSIONS 17

Define the partition of U as follows: starting from 1, for i = 1, . . . , k let

Ui := {u ∈ U | xi ∈ CuI , ∀j < i : u 6∈ Uj}.

Note that the above definition is well-defined only w.r.t. an order on {1, . . . , k}
by which to compute the Ui. We have to show that U1, . . . , Uk in fact is a
partition of U and that for every 1 ≤ i ≤ k the overall size Σu∈Uis(u) does
not exceed b.

As w ∈ CP I , every Cu must have a witness in the set X. Thus, the union
over all subsets Ui yields U . The restriction u 6∈ Uj in the definition of every
Ui ensures that for every u ∈ U at most one index i exists with u ∈ Ui.
Hence, U1, . . . , Uk is a partition of U .

Let i ∈ {1, . . . , k}. By definition, Ui contains a subset of all u ∈ U of
which xi is a witness. If Ui is nonempty, then two facts are implied. Firstly,
xi has at most b successors w.r.t. r because of the number restriction in
one Cu. Secondly, xi has at least σu∈Uis(u) successors w.r.t. r. This holds
due to the existential restrictions of the form ∃r.fP (u, j) in every Cu with
u ∈ Ui: for every u ∈ Ui and for every j ∈ {1, . . . , s(u)}, denote by yuj the
r-successor of xi implied by ∃r.fP (u, j). Assume that yuj = yu′j′ for some
u, v ∈ Ui, j ∈ {1, . . . , s(u)}, and j′ ∈ {1, . . . , s(u)}. Then, yuj is a witness of
fP (u, j) ∩ fP (u′, j′), in contradiction to Claim (1) of the proof.

As satisfiability of ELN concepts can be reduced to subsumption, i.e., a
concept description C is satisfiable if and only if C 6v ⊥ ≡ (≤ 0 r) u (≥ 1 r),
we immediately obtain the following hardness results:

Corollary 12 Deciding satisfiability in ELN w.r.t. the empty TBox is NP-
hard. Deciding subsumption in ELN w.r.t. the empty TBox is co-NP-hard.

4.2 EL+ disjunction

We show co-NP hardness of the subsumption problem in ELU by reducing
monotone 3sat to non-subsumption of ELU -concept descriptions. The
monotone problem differs from 3sat only in that every clause contains ei-
ther only negated or only unnegated literals.

Definition 13 (monotone 3sat) Let U be a set of variables and S+, S−

be two sets of clauses over U such that every s ∈ S+ contains exactly 3
un-negated variables and every s ∈ S− exactly 3 negated ones. Then, P :=
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(U, S+, S−) is called a Monotone 3Sat problem. A solution to P is a truth
assignment t : U → {0, 1} satisfying S+ ∪ S−.

Monotone 3sat is an NP-complete problem [11, p. 259]. We can imme-
diately represent the clauses in S+ and S− in ELU¬, an extension of ELU by
atomic negation. The conjunction over all clauses is then split into C u D,
C containing all positive clauses and D all negative ones. Satisfiability of
C uD is reduced to ELU -non-subsumption by deciding C 6v nnf(¬D) where
nnf denotes the negation normal form of ¬D. The following lemma provides
the formal proof.

Lemma 14 Let P = (U, S+, S−) be a Monotone 3Sat problem. Then there
exist ELU-concept descriptions C,D such that P has a solution iff C 6v D.

Proof. Let Nprim := U and Nrole := ∅. We can immediately translate
S+ ∪ S− into an ELU¬-concept description CP of the following form:

CP := u
s∈S+
t
u∈s

u u u
s∈S−
t
¬u∈s
¬u.

It is easy to see that P has a solution iff CP is satisfiable. The satisfiability
of CP is eqiuvalent to the non-subsumption

C := u
s∈S+
t
u∈s

u 6v ¬ u
s∈S−
t
¬u∈s
¬u ≡ t

s∈S−
u
¬u∈s

u =: D.

Observe that both C and D are concept descriptions in ELU .

Corollary 15 Deciding subsumption of ELU-concept descriptions w.r.t. the
empty TBox is co-NP-hard.

The above reduction implies co-NP-hardness of the subsumption prob-
lem even for the very small description logic providing only conjunction and
disjunction.

4.3 EL+ allsome

We show co-NP hardness of subsumption in EL∀∃ by reduction of the sub-
sumption problem in FL0 w.r.t. acyclic simple terminologies to the analogous
problem in L∀∃, a sublanguage of EL∀∃ without existential restrictions. The
first problem is known to be co-NP hard.
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Our aim is to translate acyclic simple FL0-TBoxes, i.e., containing no
GCIs or SRIs, into subsumption-preserving equivalent ones over L∀∃, thereby
reducing the subsumption problem from one DL to the other. To this end,
we introduce a normal form for FL0-TBoxes that simplifies the translation.

Definition 16 (translation function) Let T be an arbitrary FL0-TBox over
Ncon, and Nrole. T is called reduced iff none of the following transformation
rules can be applied to any concept description D with C

.
= D ∈ T or any

of its subdescriptions:

∀r.> −→ >
E −→ > iff E

.
= > ∈ T

F u > −→ F ,

where r ∈ NTrole, E represents an arbitrary defined concept, and F an arbi-
trary concept description over NTcon, and NTrole. For a reduced TBox T , the
translated TBox trans(T ) is defined by syntactically replacing all ∀-quantors
by ∀∃-quantors: trans(T ) := T {∀/∀∃}.

Note that the above definition is correct only in the sense that all sub-
sumption relations are preserved. While a model of trans(T ) can always be
shown to be model of T , the reverse direction need not hold.

To prove correctness of the translation we first devise a formal-language
characterization of subsumption for L∀∃-concept descriptions. Note that we
may restrict our attention to subsumption w.r.t. the empty TBox since acyclic
TBoxes can be expanded until no defined concepts occur on right-hand sides
of concept definitions. In FL0, the equivalence ∀r.(CuD) ≡ ∀r.Cu∀r.D gives
rise to a particularly simple representation of concept descriptions, called
unfolding in [21] or concept centered normal form in [3]. Given a concept
description C, the idea is to exploit the above equivalence from left to right
until conjunction in C occurs only on toplevel, implying that all value restric-
tions are of the form ∀r1.∀r2. · · · ∀rn.A with A ∈ Nprim. The word r1r2 . . . rn
can then be used to represent the corresponding restriction C imposes w.r.t.
A.

The same principle holds for L∀∃: a concept description ∀∃r.(C u D)
by definition equals ∀r.(C u D) u ∃r.(C u D). Because of the propagation
from value to existential restrictions, replacing ∃r.(C uD) by ∃r.> preserves
equivalence. Duplicating ∃r.>, the propagation argument in the reverse di-
rection yields ∀∃r.C u ∀∃r.D. We will use the above normalization to define
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so-called role languages for atomic concepts occurring in concept descrip-
tions. To ease notation, we start by extending the constructors ∀ and ∀∃ to
words over Nrole. In the remainder of this section, we may w.l.o.g. assume
that Ncon and Nrole are not only finite but limited by the concept names and
role names occurring in the concept descriptions C,D for which we want to
decide C v D.

Definition 17 (Word restrictions) For all A ∈ Nprim, r ∈ Nrole, w ∈ N∗role,
and for Q ∈ {∀,∀∃}, the concept description Qw.A is inductively defined by:

Qε.A := A

Qrw.A := Qr.Qw.A

As we need to refer to the (already existing) role-language characteri-
zation for FL0, we simultaneously introduce role languages for FL0-concept
descriptions and L∀∃-concept descriptions. Obviously, while > can be ignored
for FL0 it must be treated as an ordinary concept name in L∀∃.

Definition 18 (Role languages) Let C be an FL0-concept description. Then,
for Q = ∀ and for arbitrary A,B ∈ Nprim the formal language LA(C) is in-
ductively defined by:

LA(>) := ∅
LA(B) := {ε | A = B}

LA(u
i
Ci) :=

⋃
i

LA(Ci)

LA(Qr.C) := {r} · LA(C)

For L∀∃-concept descriptions (Q = ∀∃) the top-concept > is treated like a
primitive concept. Hence, the inductive definition is extended to arbitrary
A,B ∈ Nprim ∪ {>} and the definition LA(>) := ∅ is removed.

The language LA(C) contains all words r1 . . . rn over Nrole with C v
Qr1. · · ·Qrn.A, where Q = ∀ in case of FL0 and Q = ∀∃ in case of L∀∃.
In [21] it was shown that the set of all role languages of a given FL0-concept
description in fact characterizes the concept up to equivalence. The following
lemma holds:
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Lemma 19 Let C be an FL0-concept description over Nprim and Nrole. Then,
C ≡ u

A∈Nprim

u
w∈LA(C)

∀w.A

In [2], subsumption of FL⊥ concept descriptions C v D was characterized
by the role languages of C and D. For the sublanguage FL0, we can imme-
diately derive the following characterization of subsumption of FL0-concept
descriptions.

Lemma 20 Let C,D be FL0-concept descriptions over Nprim and Nrole. Then,
C v D iff LA(C) ⊇ LA(D) for all A ∈ Nrole.

We aim at a similar characterization of subsumption for L∀∃. Therefore,
our first step is to prove that L∀∃-concept descriptions can in fact also be
characterized by their role languages.

Lemma 21 Let C,D be L∀∃-concept descriptions over Nprim and Nrole and
let r ∈ Nrole. Then, ∀∃r.(C uD) ≡ ∀∃r.C u ∀∃r.D

Proof. Due to the semantics of ∀∃-restrictions it is easy to transform L∀∃-
concept descriptions into equivalent FLE-concept descriptions: it holds that
∀∃r.C is equivalent to ∀r.C u ∃r.>. Hence, ∀∃r.(C u D) is equivalent to
∀r.(C u D) u ∃r.> which again is equivalent to ∀r.C u ∀r.D u ∃r.> u ∃r.>
which can be simplified to ∀∃r.C u ∀∃r.D.

This immediately yields the extension of Lemma 19 to L∀∃-concept de-
scriptions. Note that in contrast to the analogous case of FL0, in L∀∃ allsome
restrictions containing only > are not irrelevant.

Lemma 22 Let C be an L∀∃-concept description over Nprim and Nrole. Then,
C ≡ u

A∈Nprim

u
w∈LA(C)

∀∃w.A u u
w∈L>(C)

∀∃w.>.

The following lemma provides a role-language characterization of sub-
sumption of L∀∃ concept descriptions w.r.t. the empty TBox. Obviously, the
interesting part is the treatment of the >-concept for which an additional
equation is introduced.

Lemma 23 Let C,D be L∀∃-concept descriptions over Nprim and Nrole. Then,
C v D iff
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1. LA(C) ⊇ LA(D) for all A ∈ Nrole; and

2. L>(C) ∪
⋃
A∈Nprim

LA(C) ∪ {ε} ⊇ L>(D).

Proof. (⇒) Assume that one of the above conditions is violated. In the first
case there exists an atomic concept A ∈ Nprim with LA(C) 6⊇ LA(D). Hence,
there is a word w ∈ LA(D) such that w 6∈ LA(C). We can now construct
a model I of C which is no model of D. Let ∆I := {a0, . . . , a|w|+1}. Let
AI := ∆I \ {a|w|}. For all B ∈ Nprim \ {A}, let BI := ∆I . For all r ∈ Nrole,
define

rI := {(ai, ai+1) | 0 ≤ i ≤ |w|} ∪ {(a|w|+1, a|w|+1)}.

The model I is constructed in such a way that every vertex ai has a successor
w.r.t. every role r ∈ Nrole. Moreover, every vertex except a|w| is a witness of
all atomic concepts B ∈ Nprim. Only a|w| is a witness of all atomic concepts
except A.

Since w 6∈ LA(C) ist is easy to see that a0 is a witness of C but not a
witness of D, where a w-chain of successors must lead to a witness of A. This
contradicts CI ⊆ DI as implied by C v D.

If the second condition is violated, we similarly find a word w ∈ L>(D) \
{ε} with w 6∈ L>(C) and w 6∈ LA(C) for every A ∈ Nprim. Since |w| ≥ 1
we may write w as vs with s ∈ Nrole. Let ∆J := {a0, . . . , a|w|}. For all
A ∈ Nprim, let AJ := ∆J , i.e., all atomic concepts hold in every vertex of J .
For all r ∈ Nrole, define

rJ := {(ai, ai+1) | 0 ≤ i ≤ |v| − 1} ∪ {(a|v|, a|v|+1) | r 6= s} ∪ {(a|v|+1, a|v|+1)}.

In the model J every vertex ai except a|v| has a successor w.r.t. every role r ∈
Nrole. The vertex a|v| has a successor w.r.t. every role except s. It is therefore
easy to see that a0 is a witness of C but none of D where an s-successor must
be present after travelling a v-path. This contradicts CI ⊆ DI .

(⇐) Then we know that C is equivalent to

u
A∈Nprim

u
w∈LA(C)

∀∃w.A u u
w∈L>(C)

∀∃w.>

and analogously for D. Using the subset relations from Condition 1, we can
write C as

u
A∈Nprim

u
w∈LA(D)

∀∃w.A u u
A∈Nprim

u
w∈LA(C)

∀∃w.A u u
w∈L>(C)

∀∃w.>.
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Since ∀∃w.A @ ∀∃w.> we may (1) add subdescriptions ∀∃w.> for which w
also occurs in a subdescription referring to some A ∈ Nprim; and (2) add >.

u
A∈Nprim

u
w∈LA(D)

∀∃w.A u u
A∈Nprim

u
w∈LA(C)

∀∃w.A

u u
w∈L>(C)

∀∃w.> u u
w∈
⋃
A∈Nprim∪{ε}

LA(C)
∀∃w.>

Exploiting the subset relation in Condition 2 the concept C can be further
rewritten to

u
A∈Nprim

u
w∈LA(D)

∀∃w.A u u
A∈Nprim

u
w∈LA(C)

∀∃w.A

u u
w∈L>(D)

∀∃w.> u u
w∈L>(C)

∀∃w.> u u
w∈
⋃
A∈Nprim∪{ε}

LA(C)
∀∃w.>

which equals

D u u
A∈Nprim

u
w∈LA(C)

∀∃w.A

u u
w∈L>(C)

∀∃w.> u u
w∈
⋃
A∈Nprim∪{ε}

LA(C)
∀∃w.>.

Hence, C is equivalent to or more specific than D, i.e., C v D.

The above characterizaton of subsumption allows a straightforward proof
of correctness of the translation from FL0 to L∀∃.

Lemma 24 Let T be an acyclic reduced FL0-TBox over Ncon, and Nrole. Let
A,B ∈ Ndef . Then, A vT B iff A vtrans(T ) B.

Proof. Let A
.
= C and B

.
= D ∈ T . Denote by T̃ the TBox resulting from

unfolding2 the original TBox T . In T̃ no defined concepts occur on any right-
hand side of a concept definition. Denote by C̃0, D̃0 the concept descriptions
C and D, respectively, from the unfolded TBox C̃. Analogously, denote by
C̃∀∃, D̃∀∃ the concept descriptions C and D, respectively, from the translated
and unfolded TBox ˜trans(C). It is easy to see that A vT B iff C̃0 v D̃0

and A vtrans(T ) B iff C̃∀∃ v D̃∀∃. Hence, it suffices to show that C̃0 v D̃0 iff

2Note that here ‘unfolding’ is not used in the sense of [21] but only means to iteratively
replace all defined concepts in C and D by their respective definitions. The correct word
in the sense of [21] would be ‘expanding’.
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C̃∀∃ v D̃∀∃. As T is reduced the translated TBox trans(T ) differs from T
only in the quantors occurring on the right-hand side of concept definitions.
This implies LA(C̃0) = LA(C̃∀∃) and LA(D̃0) = LA(D̃∀∃) for all A ∈ Nprim.

(⇐) The subsumption C̃∀∃ v D̃∀∃ especially implies LA(C̃∀∃) ⊇ LA(C̃∀∃)
for all A ∈ Nprim. As argued above, the equality of the role languages of C̃∀∃
and C̃0, and D̃∀∃ and D̃0, respectively, immediately yields LA(C̃0) ⊇ LA(C̃0)
for all A ∈ Nprim. By the characterization of subsumption for FL0 we thus
infer C̃0 v D̃0.

(⇒) As seen above we already know that LA(C̃∀∃) ⊇ LA(D̃∀∃) for all A.
In order to prove C̃∀∃ v D̃∀∃ it suffices to show that

L>(C̃∀∃) ∪
⋃

A∈Nprim

LA(C̃∀∃) ∪ {ε} ⊇ L>(D̃∀∃).

We show that L>(D̃0), which equals L>(D̃∀∃), is either empty or contains
only the empty word ε. Proof by induction on the cardinality |T | of T .

• |T | = 1
Then T = {B .

= D}. Since T is reduced the inapplicability of the first
and third reduction rule guarantees that > can occur in D only on the
topmost role level and hence L>(D̃0) does not contain a word of lenght
greater than 0.

• |T | > 1
Let E

.
= F denote a concept definition in T where F does not contain

defined concepts. Such a definition exists because of the acyclicity of
T . If E = B and hence F = D then it suffices to prove the claim w.r.t.
the TBox {B .

= D} so that the first case, i.e., |T | = 1, applies.

If E 6= B then the definition of E is or is not required for the unfolding
of D. If it is not then we may prove the claim w.r.t. the TBox T \{E .

=
F} for which the claim holds by induction hypothesis.

If E is required for the unfolding then the fact that F contains no
defined concepts implies that D can be unfolded to a concept D′ in
which E is the only remaining defined concept. By induction hypothesis
(for T \ {E .

= F}, treating E as an atomic concept) we know that >
does not occur in D′. The fact that E occurs in D′ implies that F 6= >
in the reduced TBox T , because otherwise the second reduction rule
would be applicable to T . Moreover, > does not occur in F because



5 CONCLUSION 25

otherwise the first or the third reduction rule would be applicable.
Hence, replacing E by F in D′, i.e., unfolding D completely produces
a concept description in which > does not occur.

It is shown in [21] that subsumption in FL0 w.r.t acyclic TBoxes (con-
taining only definitions) is co-NP hard. By means of the above reduction, we
can immediately infer the following.

Corollary 25 Deciding subsumption in L∀∃ w.r.t. acyclic TBoxes without
GCIs or SRIs is co-NP-hard.

5 Conclusion

We have seen how subsumption in ELH w.r.t. general TBoxes can be decided
in polynomial time. Moreover, it has been shown that the polynomial upper
bound does not reach as far as to the DLs ELN , ELU , and EL∀∃, where the
subsumption problem is co-NP hard even without GCIs.

The attractive complexity and relatively simple structure of the subsump-
tion algorithm naturally motivates the question of how efficient an imple-
mentation might be. Even more so, since (i) real-world terminologies such
as Snomed exist which can be classified by our algorithm, and, (ii) the
DL systems usually employed for general terminologies implement—highly
optimized—EXPTIME algorithms [16, 13].

Two directions of future investigation suggest themselves: firstly, to study
other inference problems w.r.t. general ELH-TBoxes; and secondly, to extend
ELH by additional constructors.

Regarding the first direction, the instance problem might be interesting.
The problem is solvable in polynomial time w.r.t. cyclic EL terminologies with
descriptive semantics [5]. As we have just seen that the subsumption problem
remains polynomial under the transition from cyclic to general terminologies,
the same might hold for the instance problem.

For the second direction, desirable constructors might be features, inverse
roles, or probably even complex role inclusion axioms. This (far reaching)
extension would enable one to reason over the representation language un-
derlying the Galen [23] terminology. While the polynomial upper bound
would undoubtedly be exceeded by this extension, still a complexity better
than EXPTIME might be feasible.
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