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Abstract

Recently, it was shown for the DL EL that subsumption and in-
stance problem w.r.t. cyclic terminologies can be decided in polyno-
mial time. In this paper, we show that both problems remain tractable
even when admitting general concept inclusion axioms and simple role
inclusion axioms.
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1 MOTIVATION 1

1 Motivation

In the area of DL based knowledge representation, the utility of general
TBoxes, i.e., TBoxes that allow for general concept inclusion (GCI) ax-
ioms, is well known. For instance, in the context of the medical terminology
Galen [20], GCIs are used especially for two purposes [18]:

• indicate the status of objects: instead of introducing several concepts
for the same concept in different states, e.g., normal insulin secretion,
abnormal but harmless insulin secretion, and pathological insulin secretion,
only insulin secretion is defined while the status, i.e., normal, abnormal

but harmless, and pathological is implied by GCIs of the form . . . v
∃has status.pathological.

• to bridge levels of granularity and add implied meaning to concepts. A
classical example [12] is to use a GCI like

ulcer u ∃has loc.stomach

v ulcer u ∃has loc.(lining u ∃is part of.stomach)

to render the description of ‘ulcer of stomach’ more precisely to ‘ulcer
of lining of stomach’ if it is known that ‘ulcer of stomach’ is specific of
the lining of the stomach.

It has been argued that the use of GCIs facilitates the re-use of data in
applications of different levels of detail while retaining all inferences obtained
from the full description [20]. Hence, to examine reasoning w.r.t. general
TBoxes has a strong practical motivation.

Research on reasoning w.r.t. general TBoxes has mainly focused on very
expressive DLs, reaching as far as, e.g., ALCNR [5] and SHIQ [13], in
which deciding subsumption of concepts w.r.t. general TBoxes is EXPTIME
hard. Fewer results exist on subsumption w.r.t. general terminologies DLs
below ALC. In [10] the problem is shown to remain EXPTIME complete
for a DL providing only conjunction, value restriction and existential re-
striction. The same holds for the small DL AL which allows for conjunction,
value and unqualified existential restriction, and primitive negation [8]. Even
for the simple DL FL0, which only allows for conjunction and value restric-
tion, subsumption w.r.t. cyclic TBoxes with descriptive semantics is PSPACE
hard [15], implying hardness for general TBoxes.
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Recently, however, it was shown for the DL EL that subsumption and
instance problem w.r.t. cyclic terminologies can be decided in polynomial
time [4, 3]. In the present paper we show that even w.r.t. general ELH-
TBoxes, including GCIs and simple role inclusion axioms, subsumption and
instance problem remain tractable. A surprising result given that DL sys-
tems usually employed for reasoning over general terminologies implement—
highly optimized—EXPTIME algorithms [14, 11]. Similarly, Racer [11], the
only practicable reasoner for ABox reasoning w.r.t. general TBoxes uses an
EXPTIME algorithm for the very expressive DL ALCNHR+ .

The paper is organized as follows. Basic definitions related to general
ELH TBoxes are introduced in Section 2. In Sections 3 and 4 we show how to
decide subsumption and instance problem, respectively, w.r.t. general ELH-
TBoxes in polynomial time.

2 General TBoxes in ELH
Concept descriptions are inductively defined with the help of a set of concept
constructors, starting with a set Ncon of concept names and a set Nrole of
role names. In this paper, we consider the DL ELH which provides the
concept constructors top-concept (>), conjunction (C uD), and existential
restrictions (∃r.C).

As usual, the semantics of concept descriptions is defined in terms of an
interpretation I = (∆I , ·I). The domain ∆I of I is a non-empty set and
the interpretation function ·I maps each concept name P ∈ Ncon to a subset
P I ⊆ ∆I and each role name r ∈ Nrole to a binary relation rI ⊆ ∆I×∆I .
The extension of ·I to arbitrary concept descriptions is defined inductively
as follows.

>I := ∆I

(C uD)I := CI ∩DI

(∃r.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

For a given the DL L, an L-terminology (called L-TBox) is a finite set T
of axioms of the form C v D (called GCI ) or C

.
= D (called definition) or

r v s (called simple role inclusion axiom (SRI)), where C and D are concept
descriptions defined in L and r, s ∈ Nrole. A concept name A ∈ Ncon is called
defined in T iff T contains one or more axioms of the form A v D or A

.
= D.
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The size of T is defined as the sum of the sizes of all axioms in T . Denote
by NTcon the set of all concept names occurring in T and by NTrole the set of
all role names occurring in T . A TBox that contains GCIs is called general.
Denote by ELH the extension of EL by SRIs in TBoxes.

An interpretation I is a model of T iff for every GCI C v D ∈ T it holds
that CI ⊆ DI , for every definition C

.
= D it holds that CI = DI , and for

every SRI r v s it holds that rI ⊆ sI . A concept description C is satisfiable
w.r.t. T iff there exists a model I such that CI 6= ∅. A concept description
C subsumes a concept description D w.r.t. T (C vT D) iff CI ⊆ DI in every
model I of T . C and D are equivalent w.r.t. T (C ≡T D) iff they subsume
each other w.r.t. T .

An L-ABox is a finite set of assertions of the form A(a) (called concept
assertion) or r(a, b) (called role assertion), where A ∈ Ncon, r ∈ Nrole, and
a, b are individual names from a set Nind. I is a model of a TBox T together
with an ABox A iff I is a model of T and aI ∈ ∆I such that all assertions
in A are satisfied, i.e., aI ∈ AI for all A(a) ∈ A and (aI , bI) ∈ rI for all
r(a, b) ∈ A. An individual name a is an instance of C w.r.t. T (A |=T C(a))
iff aI ∈ AI for all models I of T together with A. Denote by NAind the set of
all individual names occurring in an ABox A.

The above semantics for TBoxes and ABoxes is usually called descriptive
semantics [17]. In case of an empty TBox, we write C v D instead of C v∅ D
and analogously C ≡ D instead of C ≡∅ D.

Example 1 As an example of what can be expressed with an ELH-TBox,
consider the following TBox showing in an extremely simplified fashion a
part of a medical terminology.

Pericardium v Tissue u ∃cont in.Heart

Pericarditis v Inflammation

u ∃has loc.Pericardium

Inflammation v Disease u ∃acts on.Tissue

Disease u ∃has loc.∃comp of.Heart v Heartdisease

u ∃is state.NeedsTreatment

cont in v comp of

The TBox contains four GCIs and one SRI, stating, e.g., that Pericardium
is tissue contained in the heart and that a diesease located in a component
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of the heart is a heart disease and requires treatment. Without going into
detail, one can check that Pericarditis would be classified as a heart disease
requiring treatment because, as stated in the TBox, Pericarditis is a disease
located in the Pericardium contained in the heart, and everything contained
in something is a component of it.1

3 Subsumption in ELH with GCIs

We aim to show that subsumption of ELH concepts w.r.t. general TBoxes can
be decided in polynomial time. A natural question is whether we may not
simply utilize an existing decision procedure for a more expressive DL which
might exhibit polynomial time complexity when applied to ELH TBoxes.
Using the standard tableaux algorithm deciding consistency of general ALC-
TBoxes [2] as an example, one can show that this approach in general does
not bear fruit, eveb for the sublanguage EL.

In order to decide subsumption C v?
T D w.r.t. an EL-TBox, an intuitive

decision procedure to choose would be the ALC tableaux algorithm deciding
consistency of ALC-concepts w.r.t. ALC terminologies [1]. The DL ALC ex-
tends EL by value restrictions (∀), disjunction (t), and negation (¬). We
can decide C v?

T D by deciding satisfiability of C u ¬D w.r.t. T .
The following example presents a general EL-TBox for which the ALC

tableaux algorithm takes exponentially many steps in the worst case. We
use the standard ALC tableaux as describied in [1].

Example 2 For n ∈ N, let Ncon := {A,B,C,D} ∪ {Ai | 1 ≤ i ≤ n} ∪ {Bi |
1 ≤ i ≤ n} and Nrole := {r}. Define the TBox Tn as follows:

C
.
= A

D
.
= ∃r.B

∃r.B v B

A v ∃r.A
∃r.Ai u ∃r.Bi v B for every1 ≤ i ≤ n

1The example is only supposed to show the features of ELH and in no way claims to
be adequate from a Medical KR point of view.
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To be able to apply the tableaux algorithm, the GCIs in Tn are represented
as tautologies:

B t ∀r.¬B
¬A t ∃r.A

B t ∀r.¬Ai t ∀r.¬Bi for every1 ≤ i ≤ n

Figure 1 shows (in an abridged way) the first four steps of the tableaux
computation for T . The tableaux algorithm starts in Step 0 with a model of
one vertex x0 labeled by C u ¬D. A so-called ’blocking’ techniqe is used to
avoid the generation of infinitely many vertices for a model: if the label of
the new vertex w is a subset of a label of an old vertex v then w is removed,
redirecting the edge pointing to w to the old vertex v.

Since x0 could not be blocked, all GCIs are added to the label of x0, yield-
ing the situation denoted as Step 1 in Figure 1. In the tableaux, disjunction is
dealt with by means of nondeterminism: a GCI of the form CtD is resolved
by nondeterministically choosing between C or D to add to the label set of
the vertex under consideration (see [1] for details). Since the concept name
A is already contained in the label of x0, the only possibility to satisfy the
GCI ¬At ∃r.A (shown boxed in Step 1) is to introduce an r-successor x1 to
x0. Several other GCIs in the label of x0 have to be satisfied. In particular,
if the algorithm chooses the disjunct ∀r.¬B from the GCI B t ∀r.¬B then
¬B is added to the label set of x1. Moreover, for every 1 ≤ i ≤ n the GCI

B t ∀r.¬Ai t ∀r.¬Bi 1 ≤ i ≤ n

must be satisfied for x0. Since ¬B is already in the label of x1, thus ruling
out choosing B, the algorithm for every i has to include either ¬Ai or ¬Bi

into the label of x1. Hence a set S1 is added to the label set of x1, where S1

corresponds to a tuple s̄1 with

s̄1 ∈ {¬A1,¬B1} × · · · × {¬An,¬Bn} =: S. (∗)

Without going into detail further, Steps 3 and 4 in Figure 1 illustrate that
the tableaux algorithm necessarily adds a successor x2 of x1 whose label set
consists of A,¬B and another set S2 representing another nondeterministic
choice from S, see (∗). Hence, the introduction of x2 can be blocked only if
the algorithm nondeterministically chose S1 = S2.
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Step 0

x0 : {A u ∀r.¬B} GCIs−−−−→

Step 1 Step 2

x0 : {A u ∀r.¬B} x0 : {A u ∀r.¬B}

{ ¬A t ∃r.A ,B t ∀r.¬B} {¬A t ∃r.A,B t ∀r.¬B}

{B t ∀r.¬Ai t ∀r.¬Bi | i}
add r-successor−−−−−−−−−→ {B t ∀r.¬Ai t ∀r.¬Bi | i}yr

x1 : {A,¬B}

S1

Step 3 Step 4

x0 : {A u ∀r.¬B} x0 : {A u ∀r.¬B}

{¬A t ∃r.A,B t ∀r.¬B} {¬A t ∃r.A,B t ∀r.¬B}

{B t ∀r.¬Ai t ∀r.¬Bi | i} {B t ∀r.¬Ai t ∀r.¬Bi | i}yr yr
x1 : {A,¬B} x1 : {A,¬B}

GCIs−−−−→ { ¬A t ∃r.A ,B t ∀r.¬B} {¬A t ∃r.A,B t ∀r.¬B}

{∀r.¬Ai t ∀r.¬Bi | i}
add r-successor−−−−−−−−−→ {∀r.¬Ai t ∀r.¬Bi | i}

S1 S1yr
x2 : {A,¬B}

S2

Figure 1: ALCI tableaux computation
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Obviously, the situation for x2 resembles that of x1, implying that another
successor x3 is introduced and so on. As there exist exponentially many sets
Sj mutually incomparable w.r.t. the subset relation the nondeterminism of
the tableaux algorithm might give rise to an exponentially long line of suc-
cessors before a vertex xk is introduced in whose label the set Sk necessarily
is a repitition of a label set seen before.

Hence, the standard tableaux algorithm in the worst case needs exponen-
tially many steps to decide the subsumption C vT D.

Hence, new techniques are required exploiting the simpler structure of
general ELH-TBoxes better. The first step in our approach is to transform
TBoxes into a normal form which limits the use of complex concept descrip-
tions to the most basic cases.

Definition 3 (Normalized ELH TBox) Let T be an ELH-TBox over Ncon

and Nrole. T is normalised iff (i) T contains only GCIs and SRIs, and, (ii)
all of the GCIs have one of the following forms:

A v B

A1 u A2 v B

A v ∃r.B
∃r.A v B.

where A,A1, A2, B represent concept names from N>con.

Such a normal form can easily be computed in polynomial time and does
not increase the size of the TBox more than polynomially. The following
definition provides normalization rules by which an arbitrary EL-TBox can
be transformed into a normalized one. The normalization rules are inspired
by [16] where a similar problem is solved for ALC-TBoxes containing only
definitions.

Definition 4 (Normalization rules) Let T be an ELH-TBox over Ncon and
Nrole. For every ELH-concept description C,D,E over Nrole∪{>} and for ev-
ery r ∈ Nrole, the ELH-normalization rules are defined modulo commutativity
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of conjunction (u) as follows:

NF1 C
.
= D −→ {C v D, D v C}

NF2 Ĉ uD v E −→ {Ĉ v A, A uD v E}
NF3 ∃r.Ĉ v D −→ {Ĉ v A, ∃r.A v D}

NF4 C v ∃r.D̂ −→ {C v ∃r.A, A v D̂}
NF5 C v D u E −→ {C v D, C v E}

where Ĉ, D̂ denote non-atomic concept descriptions and A denotes a new
concept name from Ncon. Applying a rule G −→ S to T changes T to
(T \ {G}) ∪ S. The normalized TBox norm(T ) is defined by exhaustively
applying Rules NF1 to NF3 and, after that, exhaustively applying Rules NF4

and NF5.

The size of T is increased only linearly by exhaustive application of
Rule NF1. Since this rule never becomes applicable as a consequence of
Rules NF2 to NF5, we may restrict our attention to Rules NF2 to NF5. A single
application of one of the Rules NF2 to NF3 increases the size of T only by a
constant, introducing a new concept name and splitting one GCI into two.
Exhaustive application therefore produces an ontology of linear size in the
size of T .

After exhaustive application of Rules NF1 to NF3, the left-hand side of
every GCI is of constant size. Hence, applying Rules NF4 and NF5 exhaustively
similarly yields an ontology of linear size in T . Conseqently, the following
lemma holds.

Lemma 5 The normalized TBox norm(T ) can be computed in linear time
in the size of T . The resulting ontology is of linear size in the size of T .

Our strategy is now, for every concept name A ∈ NTcon and >, to compute
a set of concept names S∗(A) with the following property: whenever in some
point x in a model of T the concept A holds then every concept in S∗(A)
necessarily also holds in x. Similarly, for every role r we want to represent
by S∗(r) the set of all roles included in r. The simple structure of GCIs
in normalized TBoxes allows us to define such sets as follows. To simplify
Notation, let NT ,>con := NTcon ∪ {>}.
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ISR If s ∈ Si(r) and s v t ∈ T and t 6∈ Si+1(r)
then Si+1(r) := Si+1(r) ∪ {t}

IS1 If A1 ∈ Si(A) and A1 v B ∈ T and B 6∈ Si+1(A)
then Si+1(A) := Si+1(A) ∪ {B}

IS2 If A1, A2 ∈ Si(A) and A1 u A2 v B ∈ T
and B 6∈ Si+1(A) then Si+1(A) := Si+1(A) ∪ {B}

IS3 If A1 ∈ Si(A) and A1 v ∃r.B ∈ T
and B1 ∈ Si(B) and s ∈ Si(r) and ∃s.B1 v C ∈ T
and C 6∈ Si+1(A) then Si+1(A) := Si+1(A) ∪ {C}

Figure 2: Rules for implication sets

Definition 6 (Implication set) Let T denote a normalized ELH-TBox T
over Ncon and Nrole. For every A ∈ NT ,>con (r ∈ NTrole) and every i ∈ N, the set
Si(A) (Si(r)) is defined inductively, starting by S0(A) := {A,>} (S0(r) :=
{r}). For every i ≥ 0, Si+1(A) (Si+1(r)) is obtained by extending Si(A)
(Si(r)) by exhaustive application of the extension rules shown in Figure 2.
The implication set S∗(A) of A is defined as the infinite union S∗(A) :=⋃
i≥0 Si(A). Analogously, S∗(r) :=

⋃
i≥0 Si(r).

Note that the successor Si+1(A) of some Si(A) is generally not the result
of only a single rule application. Si+1(A) is complete only if no more rules
are applicable to any Si(B) or Si(r). Implication sets induce a reflexive and
transitive but not symmetric relation on NT ,>con and NTrole, since B ∈ S∗(A)
does not imply A ∈ S∗(B).

We have to show that the idea underlying implication sets is indeed cor-
rect. Hence, the occurrence of a concept name B in S∗(A) implies that
A vT B and vice versa.

Theorem 7 For every normalised ELH-TBox over Ncon and Nrole, (i) for
every r, s ∈ NTrole, s ∈ S∗(r) implies r vT s, and (ii) for every A,B ∈ NT ,>con

it holds that B ∈ S∗(A) iff A vT B.

Proof. (i) Proof by induction over n. As S0(r) = {r}, the claim holds
trivially. For n > 0 we know by Rule ISR that there exists a role t ∈ Sn−1(r)
and a SRI t v s ∈ T . By induction hypothesis r vT t which by transitivity
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of role inclusion axioms yields r vT s. For the reverse direction, r vT s
immediately implies a finite chain

{r v t0} ∪ {ti v ti+1 | 0 ≤ i ≤ k − 1} ∪ {tk v s} ⊆ T

of SRIs in T , implying by a finite number of applications of Rule ISR that
s ∈ Sk+1(r).

(ii) (⇒) It suffices to show for every model I of T and for every B ∈ S∗(A)
that x ∈ AI implies x ∈ BI . Assume a model I of T with a witness x ∈ AI
and let B ∈ S∗(A). Proof by induction over n where n is the least index with
B ∈ Sn(A).

(n = 0) Then, Sn(A) = {A} implying B = A. As x was chosen a witness
of A the claim holds.

(n > 0) In Step n − 1, B can have been included into Sn(A) by any of
the Rules IS1 to IS6. We distinguish one case for each rule.

(IS1) There exists a concept name A1 ∈ Sn−1(A) and a GCI G := A1 v
B ∈ T . By induction hypothesis (IH), x ∈ AI1 , implying by G that also
x ∈ BI .

(IS2) There exist two concept names A1, A2 ∈ Sn−1(A) and a GCI G :=
A1 u A2 v B ∈ T . By IH, A1, A2 ∈ Sn−1(A) yields x ∈ AI1 and x ∈ AI2 ,
implying by G that x ∈ BI .

(IS3) There exist concept names A1 ∈ Sn−1(A), A2 ∈ NT ,>con , and A3 ∈
Sn−1(A2) and two GCIs G := A1 v ∃r.A2 and H := ∃s.A3 v B with
s ∈ Sn−1(r). By IH, r v s, implying by G that x ∈ (∃r.A2)I . Since A3 ∈
Sn−1(A2) and , the IH implies x ∈ AI1 and x ∈ (∃s.A3)I , yielding by H that
x ∈ BI .

(⇐) It suffices to show that if B 6∈ S∗(A) then we can construct a model
I of T with a witness x ∈ AI \BI .

We construct a (possibly infinite) canonical model I(A) of A w.r.t. T by
means of the following definition. I(A) is defined iteratively starting by I0(A).
Define ∆I0(A) := {xA} and BI0(A) := {xA | B = A} for all B ∈ NT ,>con . For
i ≥ 0, the model Ii+1 is defined as an extension of Ii obtained by exhaustive
application of the following generation rules.

CM1 If A v B ∈ T then, for every individual x ∈ ∆Ii with x ∈ AIi and
x 6∈ BIi , add x to BIi+1

CM2 If A u B v C ∈ T then, for every individual x ∈ ∆Ii with x ∈
AIi ∩BIi and x 6∈ CIi+1 , add x to CIi+1
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CM3 If A v ∃r.B ∈ T then, for every individual x ∈ ∆Ii with x ∈ AIi

for which no r-successor y ∈ ∆Ii+1 with y ∈ BIi+1 exists, introduce a
new individual y to ∆Ii+1 and include y into BIi+1 and include (x, y)
into rIi+1

CM4 If ∃r.A v B ∈ T then, for every pair (x, y) ∈ sIi with s vT r and
y ∈ AIi and x 6∈ BIi+1 , include x into BIi+1

The above rules are applied fairly, i.e., every rule applicable to already exist-
ing elements x ∈ ∆Ii will be applied before applying rules to new elements.
The canonical model I(A) is defined as the infinite union I(A) :=

⋃
i≥0 Ii(A).

We first prove that I(A) in fact is a model of A w.r.t. T . Assume that
xA 6∈ AI(A). In this case there is a y ∈ ∆I(A) for which a GCI G ∈ T is
violated. As T is normalized, it suffices to distinguish four cases for the
violated GCI G.

• If G = B v C ∈ T then y ∈ BI(A) but y 6∈ CI(A). Consider the least
index n with y ∈ BIn(A). By definition, Rule CM1 causes y to be added
to CIn+1 ⊆ CI , contradicting the assumption.

• If G = BuC v D ∈ T then y ∈ BI(A)uCI(A) but y 6∈ DI(A). Consider
the least index n with y ∈ BIn(A) u CIn(A). Rule CM2 causes y to be
added to DIn+1 ⊆ DI , in contradiction to the assumption.

• If G = B v ∃r.C ∈ T then y ∈ BI(A) but y has no appropriate r-
successor. Consider the least n with y ∈ BIn(A). By Rule CM3, a new
element z is introduced to ∆In+1 , the pair (y, z) added to rIn+1 , and z
added to CIn+1 , again in contradiction to the assumption.

• If G = ∃r.B v C ∈ T then there exists an edge (y, z) ∈ sI(A) with
s vT r such that z ∈ BI(A) but y 6∈ CI(A). Consider the least n
with z ∈ BIn(A). As s vT r and (y, z) ∈ sIn(A), Rule CM4 adds y to
CIn+1(A) ⊆ CI(A), contradicting the assumption.

Having proven I(A) to be a model of A w.r.t. T it remains to show
that BI(A) 6⊆ AI(A). To this end, we show for every n ∈ N, for every
A,B ∈ NT ,>con , A 6= B, and for every x ∈ AIn(A): if {C | C ∈ xIt(A)} = {A}
for some minimally chosen t ∈ N and x ∈ BIn(A) then B ∈ S∗(A). Note that
B ∈ S∗(A) holds if B ∈ Sm(A) for some m ∈ N since Sm(A) ⊆ S∗(A).

(n = 0) Trivial since BI0(A) = ∅ implies that the premise x ∈ BIn(A) does
not hold.
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(n ≥ 0) Let {C | C ∈ xIt(A)} = {A} for some t < n and let x ∈
BIn(A) \ BIn−1(A). In the definition of In(A) there are four rules which can
have caused the inclusion of x into BIn(A):

• (CM1) Then then there is a GCI G := A1 v B ∈ T and x ∈ AIn−1(A)
1 .

If t = n − 1 then A1 = A, implying B ∈ S1(A) by Rule IS1 with G. If
t < n − 1 then, by induction hypothesis (IH), A1 ∈ S∗(A), implying
A1 ∈ Sm(A) for some m ∈ N, yielding B ∈ Sm+1(A) by Rule IS1 with
G.

• (CM2) Then there is a GCI G := A1 u A2 v B ∈ T and x ∈ AIn−1(A)
1 ∩

A
In−1(A)
2 . If t = n − 1 then A1 = A2 = A, implying B ∈ S1(A) by

Rule IS2 with G. If t < n − 1 then, by IH, {A1, A2} ⊆ S∗(A). Hence,
{A1, A2} ⊆ Sm(A) for some m ∈ N, implying B ∈ Sm+1(A) by Rule IS2

with G.

• (CM4) Then there is a GCI G := ∃r.A1 v B ∈ T and y ∈ ∆In−1(A) with

(x, y) ∈ sIn−1(A) with s vT r and y ∈ AIn−1(A)
1 , implying t < n−1 since

x and y cannot be created at the same time. Hence, firstly, there is a
GCI H := C v ∃s.D ∈ T and an index t ≤ k < n − 1 with x ∈ CIk ,
implying (x, y) ∈ sIk+1(A) and y ∈ DIk+1 . Secondly, y ∈ AIk+1

1 . By IH,
A1 ∈ S∗(D). If t = k then C = A, otherwise, by IH, C ∈ S∗(A). In both
cases there exists a least index m with C ∈ Sm(A) and A1 ∈ Sm(D),
implying B ∈ Sm+1(A) by Rule IS3 with G and H.

We have shown how to decide subsumption w.r.t. general ELH-TBoxes.
It remains to show that our decision procedure works in polynomial time. In
contrast to the correctness proof this is relatively easy.

Lemma 8 For every normalised ELH-TBox over Ncon and Nrole and for ev-
ery A ∈ NT ,>con , the implication set S∗(A) can be computed in polynomial time
in the size of T .

Proof. To show decidability in polynomial time it suffices to show that,
(i) T can be normalized in polynomial time (see above), and, (ii) for all
A ∈ NT ,>con and r ∈ NTrole, the sets S∗(A) and S∗(r) can be computed in
polynomial time in the size of T . Every Si+1(A) and Si+1(r) depends only
on sets with index i. Hence, once Si+1(A) = Si(A) and Si+1(r) = Si(r)
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ISR If s ∈ Si(r) and s v t ∈ T and t 6∈ Si+1(r)
then Si+1(r) := Si+1(r) ∪ {t}

IS1 If A1 ∈ Si(α) and A1 v B ∈ T and B 6∈ Si+1(α)
then Si+1(α) := Si+1(α) ∪ {B}

IS2 If A1, A2 ∈ Si(α) and A1 u A2 v B ∈ T
and B 6∈ Si+1(α) then Si+1(α) := Si+1(α) ∪ {B}

IS3 If A1 ∈ Si(α) and A1 v ∃r.B ∈ T
and B1 ∈ Si(B) and s ∈ Si(r) and ∃s.B1 v C ∈ T
and C 6∈ Si+1(α) then Si+1(α) := Si+1(α) ∪ {C}

IS4 If r(a, b) ∈ A and B ∈ Si(b) and s ∈ Si(r)
and ∃s.B v C ∈ T and C 6∈ Si+1(a)
then Si+1(a) := Si+1(a) ∪ {C}

Figure 3: Rules for implication sets (subsumption and instance problem)

holds for all A, r the complete implication sets are obtained. This happens
after a polynomial number of steps, since Si(A) ⊆ NTcon and Si(r) ⊆ NTrole. To
compute Si+1(A) and Si+1(r) from the Si(B) and Si(s) costs only polynomial
time in the size of T .

Theorem 9 Subsumption in ELH w.r.t. GCIs can be decided in polynomial
time.

4 The instance problem in ELH with GCIs

We show that the instance problem in ELH w.r.t. general TBoxes can be
decided in polynomial time. To this end, the approach to decide subsumption
by means of implication sets for concept names presented in the previous
section is extended to ABox individuals. For every individual name a ∈ NAind,
we want to compute a set S∗(a) of concept names with the following property:
if A ∈ S∗(a) then in every model I of T together with A the individual aI is
a witness of A (and vice versa). To extend the definition of implication sets
in this way we generalize Rules IS1 to IS3 to individual names and introduce
a new Rule IS4 specifically for individual names.

Definition 10 (Implication set) Let T denote a normalized ELH-TBox T
over Ncon and Nrole and A an ABox over Nind, NTcon and NTrole. For every
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A ∈ NT ,>con , r ∈ NTrole, and a ∈ NAind and every i ∈ N, the sets Si(A), Si(r),
and Si(a) are defined inductively, starting by S0(A) := {A,>}, S0(r) :=
{r}, and S0(a) := {A | A(a) ∈ A} ∪ {>}, respectively. For every i ≥ 0,
Si+1(A), Si+1(r), and Si+1(a) are obtained by extending Si(A), Si(r), and
Si(a), respectively, by exhaustive application of the extension rules shown in
Figure 3, where α ∈ NT ,>con ∪NAind. The implication set S∗(A) of A is defined
as the infinite union S∗(A) :=

⋃
i≥0 Si(A). Analogously, S∗(r) :=

⋃
i≥0 Si(r)

and S∗(a) :=
⋃
i≥0 Si(a).

Since the above definition extends Definition 6 without adding new rules
for concept-implication sets S∗(A), Lemma 7 still holds. The following lemma
shows that the idea underlying individual-implication sets S∗(a) is also cor-
rect in the sense that A ∈ S∗(a) iff A |=T A(a). W.l.o.g. we assume that
every individual name a ∈ NAind has at most one concept assertion A(a) ∈ A.
For every a with {A1(a), A2(a)} ⊆ A this can be satisfied by (i) introducing
new TBox definitions of the form

Aa v A1 u A2

A1 u A2 v Aa,

whereAa is a new concept name, and, (ii) modifyingA to (A\{A1(a), A2(a)})∪
{Aa(a)}. Iterating this modification yields a normalized TBox T ′ of linear
size in T with the required property.

Lemma 11 Let T be a normalized ELH-TBox over Ncon and Nrole and A an
ABox over Nind, NTcon and NTrole. For every A0 ∈ NTcon and every a0 ∈ NAind,
A0 ∈ S∗(a0) iff A |=T A0(a0).

Proof. (⇒) Consider an arbitrary model I of T together with A and ar-
bitrary A ∈ NTcon and a ∈ A with A ∈ S∗(a). We prove that aI ∈ AI . If
A ∈ S∗(a) then there exist a minimal n ∈ N with A ∈ Sn(a). Proof prove by
induction over n.

• (n = 0) Then A = > or A(a) ∈ A. The claim holds trivially.

• (n > 0) There are four cases to distinguish for the rule which caused
the inclusion of A into Sn(a).

(IS1) By induction hypothesis (IH), aI ∈ AI1 for some A1 ∈ NT ,>con with
A1 v A ∈ T . Obviously, aI ∈ AI because I is a model of T .
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(IS2) Analogous. By IH, aI ∈ AI1 ∩ AI2 for some A1, A2 ∈ NT ,>con with
A1 u A2 v A ∈ T . Hence, aI ∈ AI because I is a model of T .

(IS3) By IH, a ∈ AI1 for some A1 and A1 v ∃r.B ∈ T for some A1, B ∈
NT ,>con and r ∈ NTrole. Hence, aI ∈ (∃r.B)I . Moreover, there exist
B1 ∈∈ NT ,>con and s ∈ S∗(r) with B1 ∈ S∗(B) and ∃s.B1 v A ∈ T .
By Lemma 7, r vT s and B v B1, implying aI ∈ (∃s.B1)I , yielding
aI ∈ AI .
(IS4) Then, r(a, b) ∈ A, B ∈ Si(b), s ∈ S∗(r), and ∃r.B v A ∈ T . By
IH bI ∈ BI . Hence, aI ∈ (∃r.B)I , implying aI ∈ (∃s.B)I , yielding
a ∈ AI since I is a model of T .

(⇐) Assume that A0 6∈ S∗(a0). We construct a model I of T and A
where aI 6∈ AI . To this end, construct a (possibly infinite) canonical model
I(A) of T together with A by means of the following definition. I(A) is
defined iteratively starting by I0(A). Define ∆I0(A) := {xa | a ∈ NAind},
BI0(A) := {xa | B(a) ∈ A}, rI0(A) := {(xa, xb) | r(a, b) ∈ A}, and aI0(A) :=
{xa} for all B ∈ NT ,>con , r ∈ NTrole, and a ∈ NAind. Note that, w.l.o.g., every
a ∈ NAind is assumed to have at most one assertion A(a) ∈ A. For i ≥ 0, the
model Ii+1(A) is defined as an extension of Ii(A) obtained by exhaustive
application of the following generation rules.

CM1 If A v B ∈ T then, for every individual x ∈ ∆Ii(A) with x ∈ AIi(A)

and x 6∈ BIi+1(A), add x to BIi+1(A);

CM2 If A u B v C ∈ T then, for every individual x ∈ ∆Ii(A) with x ∈
AIi(A) ∩BIi(A) and x 6∈ CIi+1(A), add x to CIi+1(A);

CM3 If A v ∃r.B ∈ T then, for every individual x ∈ ∆Ii(A) with x ∈ AIi(A)

for which no r-successor in the interpretation of B4exists, introduce
a new individual y to ∆Ii+1(A) and include y into BIi+1(A) and include
(x, y) into rIi+1(A);

CM4 If ∃r.A v B ∈ T then, for every pair (x, y) ∈ sIi(A) with s vT r and
y ∈ AIi(A) and x 6∈ BIi+1(A), include x into BIi+1(A);

The above rules are applied fairly, i.e., every rule applicable to already ex-
isting elements x ∈ ∆Ii(A) will be applied before applying rules to new ele-
ments. The canonical model I(A) is defined as the infinite union I(A) :=⋃
i≥0 Ii(A).
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Note that the above generation rules are identical to those used in Lemma 7,
where a canonical model I(A) of some A ∈ NT ,>con is constructed starting from
one individual xA with xA ∈ AI0(A). In case of I(A), we start with one in-
dividal xa for every a ∈ NAind with xa ∈ AI0(A) iff A(a) ∈ A. As every
individual name has at most one concept assertion A(a) ∈ A, the correctness
of the construction in Lemma 7 immediately implies xa ∈ AI for every a
with A(a) ∈ A. By definition of I0(A), all role assertions r(a, b) ∈ A are
also satisfied. Hence, I(A) is a model of T together with A.

It remains to show that a
I(A)
0 6∈ AI(A)

0 . For every A ∈ NT ,>con and a ∈ NAind,
xa ∈ AI(A) implies xa ∈ AIn(A) \ AIn−1(A) for some n ∈ N. We prove by
induction over n that this implies a ∈ S∗(A).

• (n = 0) xa ∈ AI0(A) by definition implies A(a) ∈ A. Hence, A ∈ S0(a)
by definition of S0(a).

• (n > 0) Then xa is added to In(A) by one of the generation Rules CM1,
CM2, or CM4.

(CM1) Then there exists a concept name A1 ∈ NT ,>con with xa ∈ AIn−1(A)
1

and a GCI G := A1 v A ∈ T . By induction hypothesis (IH) A1 ∈
S∗(a), implying A1 ∈ Sm(a) \ Sm−1(a) for some index m. Rule IS1 with
G implies A ∈ Sm+1(a).

(CM2) Analogous. There exist concept names A1, A2 ∈ NT ,>con and a

GCI G := A1 u A2 v B ∈ T with xa ∈ A
In−1(A)
1 ∩ AIn−1(A)

2 . By IH,
{A1, A2} ⊆ S∗(a), implying {A1, A2} ⊆ Sm(a)\Sm−1(a) for some index
m. Rule IS2 with G implies A ∈ Sm+1(a).

(CM4) Then there exists an individual y ∈ ∆In−1(A) and roles r, s ∈ NTrole

with s vT r such that (xa, y) ∈ sIn−1(A) and y ∈ BIn−1(A), where
B ∈ NT ,>con and G := ∃r.B v A ∈ T . By Lemma 7, r ∈ S∗(s), implying
r ∈ Sm(s) \ Sm−1(s) for some index m.

If y = xb for some b ∈ NAind then, by definition of the canonical model,
s(a, b) ∈ A, and, by IH, B ∈ S∗(b), implying B ∈ Sm′(b) \ Sm′−1(b)
for some index m′. Rule IS4 with G implies A ∈ Sm′′+1(a), where m′′

denotes the maximum of m and m′.

If y is not represented by some b ∈ NAind then it has been added to the
model by Rule CM3. Hence, there exist concept names C,D ∈ NT ,>con

and an index t < n−1 such that xa ∈ CIt(A) and H := C v ∃s.D ∈ T .
By IH, C ∈ S∗(a). By Rule CM3, (xa, y) ∈ sIt+1(A) and y ∈ DIt+1(A).
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By Lemma 7, B ∈ S∗(D). Hence, C ∈ Sm(a) and B ∈ Sm(D) for some
index m. For the least m, Rule IS3 with G and H implies A ∈ Sm+1(a).

Note that the above lemma can be shown without assuming that every
individual name has at most one concept assertion in A. Nevertheless, this
assumption allows us to exploit the analogy to Lemma 7.

We have shown that the instance problem in ELH w.r.t. general TBoxes
is decidable. The proof of decidability in polynomial time is analogous to
Lemma 8: regarding computational complexity, the individual-implication
sets S∗(a) have the same properties as concept-implication sets. The new
Rule IS4 also does not increase the complexity of computing the sets S∗(a)
significantly.

Theorem 12 The instance problem in ELH w.r.t. GCIs can be decided in
polynomial time.

5 Conclusion

We have seen how subsumption and instance problem in ELH w.r.t. general
TBoxes can be decided in polynomial time. Moreover, the implication sets
computed for one TBox T can be used to decide all subsumptions between
defined (or primitive) concepts in T . Hence, classifying T requires only a
single computation of the implication sets for T . The same holds for the
instance problem, where a single computation of the relevant implication
sets suffices to classify T and decide all instance problems w.r.t. defined (or
primitive) concepts occurring in T .

Since subsumption and instance problem remain tractable under the tran-
sition from cyclic to general EL-TBoxes, the second natural question is how
far the DL can be extended further preserving tractability. Obviously, adding
value restrictions makes subsumption NP hard even for the empty TBox [9].
Moreover, it can be shown that adding one of the constructors number re-
striction, disjunction, or allsome [7] makes subsumption co-NP hard even
without GCIs.

It is open, however, whether subsumption and instance problem w.r.t.
general TBoxes remain tractable when extending ELH by inverse roles. Ex-
tending our subsumption algorithm by more expressive role constructors
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might lead the way to a more efficient reasoning algorithm for the repre-
sentation language underlying the Galen [19] terminology, where inverse
roles and complex role inclusion axioms can be expressed. While the polyno-
mial upper bound would undoubtedly be exceeded, still a complexity better
than EXPTIME might be feasible.
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[11] Volker Haarslev and Ralf Möller. racer system description. Lecture
Notes in Computer Science, 2083:701–712, 2001.

[12] Ian Horrocks, Alan L. Rector, and Carole A. Goble. A description logic
based schema for the classification of medical data. In Knowledge Rep-
resentation Meets Databases, 1996.

[13] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reason-
ing for expressive description logics. In Harald Ganzinger, David
McAllester, and Andrei Voronkov, editors, Proceedings of the 6th Inter-
national Conference on Logic for Programming and Automated Reason-
ing (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence,
pages 161–180. Springer-Verlag, September 1999.

[14] Ian R. Horrocks. Using an expressive description logic: FaCT or fiction?
In Anthony G. Cohn, Lenhart Schubert, and Stuart C. Shapiro, editors,



REFERENCES 20

KR’98: Principles of Knowledge Representation and Reasoning, pages
636–645. Morgan Kaufmann, San Francisco, California, 1998.

[15] Yevgeny Kazakov and Hans De Nivelle. Subsumption of concepts in
FL0 for (cyclic) terminologies with respect to descriptive semantics is
pspace-complete. In Proceedings of the 2003 International Workshop on
Description Logics (DL2003), CEUR-WS, 2003.

[16] C. Lutz. Complexity of terminological reasoning revisited. In Proceed-
ings of the 6th International Conference on Logic for Programming and
Automated Reasoning LPAR’99, Lecture Notes in Artificial Intelligence,
pages 181–200. Springer-Verlag, September 6 – 10, 1999.

[17] B. Nebel. Terminological cycles: Semantics and computational prop-
erties. In J. F. Sowa, editor, Principles of Semantic Networks: Ex-
plorations in the Representation of Knowledge, pages 331–361. Morgan
Kaufmann Publishers, San Mateo (CA), USA, 1991.

[18] A. Rector. Medical informatics. In Franz Baader, Diego Calvanese,
Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, ed-
itors, The Description Logic Handbook: Theory, Implementation, and
Applications, pages 406–426. Cambridge University Press, 2003.

[19] A. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A. Nowlan, and
W. D. Solomon. The grail concept modelling language for medical
terminology. Artificial Intelligence in Medicine, 9:139–171, 1997.

[20] A. Rector, W. Nowlan, and A. Glowinski. Goals for concept representa-
tion in the galen project. In Proceedings of the 17th annual Symposium
on Computer Applications in Medical Care, Washington, USA, SCAMC,
pages 414–418, 1993.

[21] K. Spackman. Normal forms for description logic expressions of clinical
concepts in snomed rt. Journal of the American Medical Informatics
Association, (Symposium Supplement), 2001.


