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Abstract

Motivated by a chemical process engineering application, we introduce
a new concept constructor in Description Logics (DLs), an n-ary variant of
the existential restriction constructor, which generalizes both the usual ex-
istential restrictions and so-called qualified number restrictions. We show
that the new constructor can be expressed in ALCQ, the extension of the
basic DL ALC by qualified number restrictions. However, this represen-
tation results in an exponential blow-up. By giving direct algorithms for
ALC extended with the new constructor, we can show that the complexity
of reasoning in this new DL is actually not harder than the one of reason-
ing in ALCQ. Moreover, in our chemical process engineering application,
a restricted DL that provides only the new constructor together with con-
junction, and satisfies an additional restriction on the occurrence of roles
names, is sufficient. For this DL, the subsumption problem is polynomial.
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1 Introduction

Description Logics (DLs) [3] are a class of knowledge representation formalisms in
the tradition of semantic networks and frames, which can be used to represent the
terminological knowledge of an application domain in a structured and formally
well-understood way. DL systems provide their users with inference services (like
computing the subsumption hierarchy) that deduce implicit knowledge from the
explicitly represented knowledge. For these inference services to be feasible, the
underlying inference problems must at least be decidable, and preferably of low
complexity. This is only possible if the expressiveness of the DL employed by
the system is restricted in an appropriate way. Because of this restriction of
the expressive power of DLs, various application-driven language extensions have
been proposed in the literature (see, e.g., [4, 10, 23, 17]), some of which have been
integrated into state-of-the-art DL systems [16, 14].

The present paper considers a new concept constructor that is motivated by a
process engineering application [24]. This constructor is an n-ary variant of the
usual existential restriction operator available in most DLs. To motivate the
need for this new constructor, assume that we want to describe a chemical plant
that has a reactor with a main reaction, and in addition a reactor with a main
and a side reaction. Also assume that the concepts Reactor with main reaction
and Reactor with main and side reaction are defined such that the first concept
subsumes the second one. We could try to model this chemical plant with the
help of the usual existential restriction operator as

Plant u ∃has part.Reactor with main reaction u
∃has part.Reactor with main and side reaction.

However, because of the subsumption relationship between the two reactor con-
cepts, this concept is equivalent to

Plant u ∃has part.Reactor with main and side reaction,

and thus does not capture the intended meaning of a plant having two reac-
tors, one with a main reaction and the other with a main and a side reaction.
To overcome this problem, we consider a new concept constructor of the form
∃r.(C1, . . . , Cn), with the intended meaning that it describes all individuals hav-
ing n different r-successors d1, . . . , dn such that di belongs to Ci (i = 1, . . . , n).
Given this constructor, our concept can correctly be described as

Plant u ∃has part.(Reactor with main reaction,
Reactor with main and side reaction).

The situation differs from other application-driven language extensions in that
the new constructor can actually be expressed using constructors available in the
DL ALCQ, which can be handled by state-of-the-art DL systems (Section 3).
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Name Syntax Semantics

conjunction C u D CI ∩ DI

negation ¬C ∆I \ CI

at-least qualified
number restriction

> n r.C {x | card({y | (x, y) ∈ rI ∧ y ∈ CI}) ≥ n}

Table 1: Syntax and semantics of ALCQ.

Thus, the new constructor can be seen as syntactic sugar; nevertheless, it makes
sense to introduce it explicitly since this speeds up reasoning. In fact, expressing
the new constructor with the ones available in ALCQ results in an exponential
blow-up. In addition, the translation introduces many “expensive” constructors
(disjunction and qualified number restrictions). For this reason, even highly op-
timized DL systems like Racer [14] cannot handle the translated concepts in a
satisfactory way. In contrast, the direct introduction of the new constructor into
ALCQ does not increase the complexity of reasoning (Section 4). Moreover, in
the process engineering application [24] mentioned above, the rather inexpressive
DL EL(n) that provides only the new constructor together with conjunction is suf-
ficient. In addition, only concept descriptions are used where in each conjunction
there is at most one n-ary existential restriction for each role. For this restricted
DL, the subsumption problem is polynomial (Section 5). If this last restriction
is removed, then subsumption is in coNP, but the exact complexity of the sub-
sumption problem in EL(n) is still open (Section 6). If one allows to impose
disjointness statements between concept names (Section 7), then subsumption
between restricted EL(n)-concept descriptions remains polynomial. In the case of
unrestricted EL(n)-concept descriptions, subsumption can then be shown to be
coNP-complete.

2 The DL ALCQ

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set NC of concept names and a set NR of role names. The
constructors determine the expressive power of the DL. In this section, we re-
strict the attention to the DL ALCQ, whose concept descriptions are formed
using the constructors shown in Table 1. Using these constructors, several other
constructors can be defined as abbreviations:

• C tD := ¬(¬C u ¬D) (disjunction),

• > := A t ¬A for a concept name A (top-concept),

• ∃r.C := > 1 r.C (existential restriction),

• ∀r.C := ¬∃r.¬C (value restriction),
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• 6n r.C := ¬(> (n+ 1) r.C) (at-most restriction).

The semantics of ALCQ-concept descriptions is defined in terms of an interpre-
tation I = (∆I , ·I). The domain ∆I of I is a non-empty set of individuals and
the interpretation function ·I maps each concept name A ∈ NC to a subset AI

of ∆I and each role r ∈ NR to a binary relation rI on ∆I . The extension of
·I to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1. Here, the function card yields the cardinality of the given set.

A general ALCQ-TBox is a finite set of general concept inclusions (GCIs) C v D
where C,D are ALCQ-concept descriptions. The interpretation I is a model of
the general ALCQ-TBox T iff it satisfies all its GCIs, i.e., if CI ⊆ DI holds for
all GCIs C v D in T .

We use C ≡ D as an abbreviation of the two GCIs C v D, D v C. An
acyclic ALCQ-TBox is a finite set of concept definitions of the form A ≡ C
(where A is a concept name and C an ALCQ-concept description) that does
not contain multiple definitions or cyclic dependencies between the definitions.
Concept names occurring on the left-hand side of a concept definition are called
defined whereas the others are called primitive.

Given two ALCQ-concept descriptions C,D we say that C is subsumed by D w.r.t.
the general TBox T (C vT D) iff CI ⊆ DI for all models I of T . Subsumption
w.r.t. an acyclic TBox and subsumption between concept descriptions (where T
is empty) are special cases of this definition. In the latter case we write C v D
in place of C v∅ D. The concept description C is satisfiable (w.r.t. the general
TBox T ) iff there is an interpretation I (a model I of T ) such that CI 6= ∅.

The complexity of the subsumption problem in ALCQ depends on the presence
of GCIs. Subsumption of ALCQ-concept descriptions (with or without acyclic
TBoxes) is PSpace-complete and subsumption w.r.t. a general ALCQ-TBox is
ExpTime-complete [25].1 These results hold both for unary and binary coding of
the numbers in number restriction, but in this paper we restrict the attention to
unary coding (where the size of the number n is counted as n rather than log n).

3 The new constructor

The general syntax of the new constructor is

∃r.(C1, . . . , Cn)

1In [25], acyclic TBoxes are not considered, but it is easy to show that the usual approach
for handling acyclic TBoxes without using exponential space [19] extends to ALCQ (see [7]).
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where r ∈ NR, n ≥ 1, and C1, . . . , Cn are concept descriptions. We call this
expression an n-ary existential restriction. Its semantics is defined as

∃r.(C1, . . . , Cn)I := {x | ∃y1, . . . , yn. (x, y1) ∈ rI ∧ . . . ∧ (x, yn) ∈ rI ∧
y1 ∈ CI

1 ∧ . . . ∧ yn ∈ CI
n ∧

∧
1≤i<j≤n yi 6= yj}.

We call the DL whose concept descriptions are formed using the constructors
conjunction, negation, and n-ary existential restriction EL(n)C. It is an im-
mediate consequence of the semantics of n-ary existential restrictions that the
at-least restriction >n r.C can be expressed by the n-ary existential restriction
∃r.(C, . . . , C).2 Consequently, all of ALCQ can be expressed within EL(n)C.

Conversely, can we express n-ary existential restrictions within ALCQ? We have
seen in the introduction that, in general, ∃r.(C1, . . . , Cn) cannot be replaced by
the conjunction ∃r.C1 u . . . u ∃r.Cn since this conjunction does not ensure the
existence of n different r-successors. However, ALCQ provides us with the more
expressive qualified number restriction constructor. Let us first consider the case
n = 2. We claim that ∃r.(C1, C2) can be expressed by the ALCQ-concept de-
scription

D := (> 1 r.C1) u (> 1 r.C2) u (> 2 r.(C1 t C2)).

It is clear that any individual belonging to ∃r.(C1, C2) also belongs to D. Con-
versely, assume that x belongs to D. Then x has two distinct r-successors y1, y2,
both belonging to C1 t C2. If one of them belongs to C1 and the other to C2,
then we are done. Otherwise, we have two cases: (i) both belong to C1 u¬C2, or
(ii) both belong to ¬C1uC2. We restrict our attention to the first case (since the
second is symmetric). Due to the conjunct > 1 r.C2 in D, x has an r-successor in
C2, which is different from y1 since y1 does not belong to C2. Consequently, there
are two distinct r-successors of x, one belonging to C1 and the other belonging
to C2, which shows that x belongs to ∃r.(C1, C2).

This result can be extended to arbitrary n.

Theorem 3.1 The n-ary existential restriction constructor can be expressed within
ALCQ, and thus ALCQ and EL(n)C have the same expressive power.

To prove this theorem we show that ∃r.(C1, . . . , Cn) can be expressed by the
ALCQ-concept description

Dn := u
{i1,...,ik}⊆{1,...,n}

(> k r.(Ci1 t . . . t Cik)).

It is again clear that any individual belonging to the concept ∃r.(C1, . . . , Cn) also
belongs to Dn. The other direction is an easy consequence of Hall’s theorem

2Since we assume unary coding of numbers in number restrictions, this translation is linear.
Otherwise, it would be exponential.
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[15]. Let F = (S1, . . . , Sn) be a finite family of sets. This family has a system
of distinct representatives (SDR) iff there are n distinct elements s1, . . . , sn such
that si ∈ Si (i = 1, . . . , n).

Theorem 3.2 (Hall) The family F = (S1, . . . , Sn) has an SDR iff card(Si1 ∪
. . . ∪ Sik) ≥ k for all {i1, . . . , ik} ⊆ {1, . . . , n}, where i1, . . . , ik are distinct.

Now, assume that the individual x belongs to Dn. For i = 1, . . . , n, let Si be the
set of r-successors of x that belong to Ci. By the definition of Dn, the family
(S1, . . . , Sn) satisfies the condition of Hall’s theorem, and thus it has an SDR.
This SDR obviously shows that x belongs to ∃r.(C1, . . . , Cn).

The proof of Theorem 3.1 shows that the subsumption problem in EL(n)C can
be reduced to the subsumption problem in ALCQ, and thus DL systems like
Racer that can handle ALCQ can in principle be used to compute subsump-
tion in EL(n)C. However, the translation from EL(n)C into ALCQ is obviously
exponential. In addition, the constructs it introduces (disjunctions and qualified
number restrictions) are hard to handle for tableau-based subsumption algorithms
like the one used by Racer. In fact, faced with the ALCQ-translations of the
EL(n)C-concept descriptions

C := ∃r.(A1 uB1, A2 uB2, A3 uB3, A4 uB4),
D := ∃r.(A1, A2, A3, A4),

it takes Racer3 57 minutes to find out that C v D. For the 5-ary variant of this
example, Racer did not finish its computation within 4 hours.

This problem can be due either to the inherently higher complexity of reasoning
in EL(n)C, or to the translation. We will see in the next section that the latter is
the culprit.

4 Complexity of reasoning in EL(n)C

The exponential translation of EL(n)C-concepts into ALCQ-concepts together
with the known complexity of the subsumption problem in ALCQ (see Section 2)
yields the following complexity upper-bounds for the subsumption problem in
EL(n)C: ExpSpace for subsumption of concept descriptions and 2ExpTime for
subsumption w.r.t. a general TBox. The next theorem shows that these upper-
bounds are not optimal.

3Racer Version 1.7.23; on a Pentium 4 machine, 2 Ghz, 2 GB memory; under Redhat
Linux.
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Theorem 4.1 The subsumption problem in EL(n)C is PSpace-complete for sub-
sumption between concept descriptions and ExpTime-complete for subsumption
w.r.t. a general TBox.

The hardness results are an immediate consequence of the corresponding hardness
results [12] for the subsumption problem in ALC (which allows for conjunction,
negation, and existential restrictions). Since EL(n)C is closed under negation, it
is enough to prove the upper bounds for the satisfiability problem. To show the
PSpace-upper bound, we adapt the “witness algorithm” (also called K-worlds
algorithm) commonly used in modal logics to show that satisfiability in the modal
logic K is in PSpace (see, e.g., [8]). The ExpTime-upper bound is proved by
an adaptation of Pratt’s “elimination of Hintikka sets” approach to show that
satisfiability in propositional dynamic logic (PDL) is in ExpTime (see also [8]).
But first, we must introduce some notation.

In the following, we assume that all concept descriptions are built using only
the constructors conjunction, negation, and n-ary existential restriction. We use
sub(C) to denote the set of all subconcepts of C, sub(T ) to denote

⋃

CvD∈T

(sub(C) ∪ sub(D)),

and define the closure of C and T as

cl(C, T ) := sub(C) ∪ sub(T ) ∪ {¬D | D ∈ sub(C) ∪ sub(T )}.

We use cl(C) as an abbreviation for cl(C, ∅). Let Γ be a set of concept descriptions.
A set Ψ ⊆ Γ is a type for Γ iff it satisfies the following conditions:

• for all C uD ∈ Γ: C uD ∈ Ψ iff {C,D} ⊆ Ψ;

• for all ¬(C uD) ∈ Γ: ¬(C uD) ∈ Ψ iff {¬C,¬D} ∩ Ψ 6= ∅;

• for all ¬C ∈ Γ: ¬C ∈ Ψ iff C /∈ Ψ.

Intiuitively, a type for cl(C, T ) can be used to describe to which subconcepts of
C, T an individual of a given interpretation belongs or not. Individuals having
identical types behave the same w.r.t. subconcepts of C, T , and thus, in the al-
gorithms, types can be used to represent the relevant properties of individuals.
Basically, the ExpTime-upper bound is due to the fact that there are only expo-
nentially many types for cl(C, T ). In case T is empty, there are still exponentially
many types, but the way one goes through them is such that only polynomially
many of them need to be held in memory at the same time.

Let Γ be a set of concept descriptions. Then rol∃(Γ) denotes the set of role
names r such that ∃r.(C1, . . . , Ck) ∈ Γ for some sequence of concept descriptions
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C1, . . . , Ck; moreover, for every role name r we set

r-con(Γ) := {C1, . . . , Ck | ∃r.(C1, . . . , Ck) ∈ Γ or ¬∃r.(C1, . . . , Ck) ∈ Γ},
r-cl(Γ) := {D,¬D | D ∈ sub(E) for some E ∈ r-con(Γ)},
Nr(Γ) :=

∑
∃r.(C1,...,Ck)∈Γ k.

Finally, let Ψ ⊆ Γ, Φ0, . . . ,Φn−1 a (possibly empty) sequence of subsets of Γ, and
r a role name. Then Φ0, . . . ,Φn−1 is a successor candidate for Ψ w.r.t. r and Γ if,
for all ∃r.(C1, . . . , Ck) ∈ Γ, we have ∃r.(C1, . . . , Ck) ∈ Ψ iff there are i1, . . . , ik < n
such that Cj ∈ Φij for 1 ≤ j ≤ k and ij 6= i` for 1 ≤ j < ` ≤ k.

Lemma 4.2 Let Γ be a set of concept descriptions and Ψ,Φ0, . . . ,Φn−1 subsets of
Γ. It is decidable in polynomial time whether Φ0, . . . ,Φn−1 is a successor candidate
for Ψ w.r.t. r and Γ.

Proof. It is enough to show that, for each ∃r.(C1, . . . , Ck) ∈ Γ, we can decide in
polynomial time whether there are i1, . . . , ik < n such that Cj ∈ Φij for 1 ≤ j ≤ k
and ij 6= i` for 1 ≤ j < ` ≤ k.

For each j, 1 ≤ j ≤ k we define the set

Sj := {i | 0 ≤ i < n and Cj ∈ Φi}.

Then (S1, . . . , Sk) has an SDR iff there are distinct indices i1, . . . , ik < n such that
Cj ∈ Φij for 1 ≤ j ≤ k. The existence of an SDR can be decided in polynomial
time by a reduction to the maximum bipartite matching problem (see Section 5.2
for more details).

define procedure EL(n)C-World(∆, Γ)

if ∆ is not a type for Γ then

return false

for all r ∈ rol∃(∆) do

non-deterministically choose an n ≤ Nr(Γ) and sets Ψ0, . . . , Ψn−1 ⊆ r- cl(∆)

if Ψ0, . . . , Ψn−1 is not a successor candidate for ∆ w.r.t. r and Γ then

return false

for all i < n do

if EL(n)C-World(Ψi, r- cl(∆)) = false then

return false

return true

Figure 1: The procedure EL(n)C-World.
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The following lemma shows that the procedure EL(n)C-World introduced in Fig. 1
decides the satisfiability of EL(n)C-concept descriptions. Since, with every recur-
sive call of the procedure, the maximal role depth of concept descriptions occur-
ring in its arguments decreases, the resursion depth of the algorithm is bounded
polynomially.4 Thus, EL(n)C-World is a non-deterministic polynomial space al-
gorithm for EL(n)C-satisfiability. Because of Savitch’s theorem, which says that
PSpace = NPSpace, this yields the desired PSpace upper-bound.

Lemma 4.3 The EL(n)C-concept description C0 is satisfiable iff there exists a
set Ψ ⊆ cl(C0) with C0 ∈ Ψ such that EL(n)C-World(Ψ, cl(C0)) returns true.

Proof. First suppose that C0 ∈ Ψ and EL(n)C-World(Ψ, cl(C0)) returns true.
Let T be the recursion tree of a successful run of EL(n)C-World(Ψ, cl(C0)), i.e.,
T = (V,E, `∆, `Γ) is a finite tree where the node labelling function `∆ (`Γ) assigns,
to each node, the first (second) argument of the corresponding recursive call.
Additionally, we assume that, for each node v ∈ V except the root, `R(v) returns
the role name that the for all loop was processing when making the recursion
call that generated v. We define an interpretation I as follows:

∆I := V

AI := {v ∈ V | A ∈ `∆(v)}

rI := {(v, v′) | v′ is a successor of v in T and `R(v′) = r }

We prove by structural induction on C that, for all v ∈ ∆I and all C ∈ `Γ(v),
we have v ∈ CI iff C ∈ `∆(v). For the root v0 this implies v0 ∈ CI

0 since
C0 ∈ Ψ = `∆(v0).

The base case is straightforward by the definition of I. The Boolean cases are
easy since, for each v ∈ V , `∆(v) is a type and `Γ(v) is closed under building
subconcepts. The remaining case concerns the n-ary existential restriction con-
structor.

For the “if” direction, let v ∈ V and ∃r.(C1, . . . , Ck) ∈ `∆(v). Then r ∈
rol∃(`∆(v)), and there exists a successor candidate Ψ0, . . . ,Ψn−1 for `∆(v) w.r.t. r
and `Γ(v) and (distinct) nodes v1, . . . , vn−1 such that, for i < n, `∆(vi) = Ψi, vi is
a successor of v in T , and `R(vi) = r. By the definition of I, we have (v, vi) ∈ rI

for i < n, and by the definition of successor candidates, there are k distinct in-
dices i1, . . . , ik such that Cj ∈ Ψij for 1 ≤ j ≤ k. The induction hypothesis yields
vij ∈ CI

j for 1 ≤ j ≤ k. This shows that v ∈ (∃r.(C1, . . . , Ck))
I .

For the “only if” direction, let v ∈ (∃r.(C1, . . . , Ck))
I . Then there are distinct

nodes v1, . . . , vk ∈ ∆I such that, for 1 ≤ j ≤ k, (v, vj) ∈ rI and vj ∈ CI
j . By

the construction of I, the nodes v1, . . . , vk are (distinct) successors of v in T
and `R(vj) = r for 1 ≤ j ≤ k. It follows that r ∈ rol∃(v), and the definition

4The role depth of a concept is the nesting depth of existential constructors in this concept.
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of the procedure EL(n)C-World implies that there exists a successor candidate
Ψ0, . . . ,Ψn−1 for `∆(v) w.r.t. r and `Γ(v) and distinct indices i1, . . . , ik such that
`∆(vj) = Ψij for 1 ≤ j ≤ k. Since Cj ∈ r-cl(`∆(v)) = `Γ(vj), we can apply the
induction hypothesis. Thus, vj ∈ CI

j implies Cj ∈ `∆(vj) = Ψij for 1 ≤ j ≤ k.
By the definition of successor candidates, this implies ∃r.(C1, . . . , Ck) ∈ `∆(v).

Now assume that C0 is satisfiable, let I be a model of C0, and x0 ∈ CI
0 . For

x ∈ ∆I and Γ a set of concepts, we define

tpΓ(x) := {C ∈ Γ | x ∈ CI}.

We use I to guide the non-deterministic choices of EL(n)C-World. To describe
this in more detail, it is convenient to pass an element of ∆I as a “virtual”
third argument to EL(n)C-World. Initially, we call EL(n)C-World with arguments
(tp

cl(C0)(x0), cl(C0), x0).

Now, assume EL(n)C-World is called with arguments (∆,Γ, x). By induction, we
assume that ∆ = tpΓ(x). For every role r ∈ rol∃(∆) we must execute the body
of the for all loop. First, we must determine the number n of components of
the successor candidate to be chosen. For every ∃r.(C1, . . . , Ck) ∈ ∆ we have
x ∈ ∃r.(C1, . . . , Ck)

I , and thus there are k distinct r-successors x1, . . . , xk of x
in I such that xi ∈ CI

i for i = 1, . . . , k. For a given such concept description
∃r.(C1, . . . , Ck) ∈ ∆ there may be more than one such tuple of r-successor; then
we just select an arbitrary one of them. Let y0, . . . , yn−1 be the collection of all
r-successors of x that are selected if we go through all ∃r.(C1, . . . , Ck) ∈ ∆ in this
way. By the definition of Nr(Γ), we have n ≤ Nr(Γ), and thus n is an eligible
choice for the size of the successor candidate. The components Ψ0, . . . ,Ψn−1 of
the successor candidate are obtained by setting Ψi := tpr-cl(∆)(yi) for i < n. As

the additional third argument, we pass yi to the recursive call of EL(n)C-World

with first two arguments Ψi and r-cl(∆). It is routine to show that, when guided
in this way, the algorithm returns true.

Let us now turn to the case of satisfiability w.r.t. a general TBox. Let C be a
concept and T a TBox. A set Ψ ⊆ cl(C, T ) is a type for C and T if it is a type
for cl(C, T ) and additionally satisfies the following property: for all D v E ∈ T ,
D ∈ Ψ implies E ∈ Ψ.

A type Γ is called moribund w.r.t. a set of types T if there exists a role name
r ∈ rol∃(Γ) such that there is no sequence Φ0, . . . ,Φn−1 ∈ T with n ≤ Nr(Γ) that
is a successor candidate for Γ w.r.t. r and cl(C, T ).

Lemma 4.4 The procedure EL(n)C-Elim introduced in Fig. 2 decides satisfiability
of C0 w.r.t. T in exponential time.

Proof. The repeat loop of EL(n)C-Elim terminates after at most exponentially
many steps since there are exponentially many types and, in each elimination
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define procedure EL(n)C-Elim(C, T )

Set i := 0 and T0 to the set of all types for C and T

repeat

Ti+1 := {Γ ∈ Ti | Γ is not moribund in Ti}

i := i + 1

until Ti = Ti−1

if there is a Γ ∈ Ti with C ∈ Γ then

return true

return false

Figure 2: The procedure EL(n)C-Elim.

round, at least one type is eliminated. Checking whether a type is moribund can
be done in exponential time since there are at most exponentially many sequences
of types of length at most Nr(Γ). By Lemma 4.2, for each such sequence, it can
be checked in polynomial time whether it is a successor candidate. Thus, EL(n)C-
Elim is a (deterministic) exponential time procedure.

Assume that EL(n)C-Elim terminates returning true, let T be the set of types that
have not been eliminated, and let ΓC0

∈ T be such that C0 ∈ ΓC0
. Let Γ ∈ T and

r ∈ rol∃(Γ). Since Γ was not eliminated, it has a successor candidate Ψ0, . . . ,Ψn−1

where all the components Ψi also belong to T. It should be noted, however, that
these types need not be pairwise distinct. For this reason, it is not enough to
take just the types in T as the elements of our model. To have enough copies of
each type available, we define

N := max{Nr(cl(C0, T )) | r ∈ rol∃(cl(C0, T ))},

and generate N copies of each type in T. Now, the interpretation I is defined as
follows:

• ∆I := {(Γ, i) | 1 ≤ i ≤ N and Γ ∈ T}.

• AI := {(Γ, i) ∈ ∆I | A ∈ Γ} for all concept names A.

• Let (Γ, i) ∈ ∆I and r ∈ rol∃(Γ), and assume that Γ contains m existential
restrictions for r. Since Γ was not eliminated, these restrictions have suc-
cessor candidates Ψj

1, . . . ,Ψ
j
nj

for 1 ≤ j ≤ m. By our definition of Nr, we

know that
∑m

i=1 nj ≤ Nr(Γ) ≤ N . Thus, we can define the set

{(Ψj
i , i+

j−1∑

ν=1

nν) | 1 ≤ j ≤ m and 1 ≤ i ≤ nj}

to be the set of r-successors of Γ in I.

12



It is straightforward to prove by structural induction C that, for all (Γ, i) ∈ ∆I

and all C ∈ cl(C, T ), we have (Γ, i) ∈ CI iff C ∈ Γ.

It follows that (ΓC0
, 1) ∈ CI

0 . In addition, if D v E ∈ T and (Γ, i) ∈ DI , then
D ∈ Γ, and thus E ∈ Γ by the definition of the notion “type for C0 and T .”
Thus, we also have (Γ, i) ∈ EI . To sum up, we have shown that I is a model of
T that interprets C0 as a non-empty set.

Conversely, assume that C0 is satisfiable w.r.t. T , and let I be a model T such
that x0 ∈ C0 for some x0 ∈ ∆I . For x ∈ ∆I , we define

tp(x) := {C ∈ cl(C, T ) | x ∈ CI}.

It is readily checked that no type in T := {tp(x) | x ∈ ∆I} is eliminated by
EL(n)C-Elim. Since tp(x0) contains C0, EL

(n)C-Elim returns true.

5 A tractable sublanguage

In the chemical process engineering application mentioned above [24], the full
expressive power of EL(n)C is actually not needed. This application is concerned
with supporting the construction of mathematical models of process systems by
storing building blocks for such models in a class hierarchy. In order to retrieve
building blocks, one can then either browse the hierarchy or formulate query
classes. In both cases, the existence of efficient algorithms for computing sub-
sumption between class descriptions is an important prerequisite.

5.1 Restricted EL(n)-concept descriptions

The frame-like formalism for describing classes of such building blocks introduced
in [24] can be expressed in the sublanguage EL(n) of EL(n)C, which allows for
conjunction, n-ary existential restrictions, and the top concept. Moreover, since
in each frame a given slot-name can be used only once, it is sufficient to consider
restricted EL(n)-concept descriptions where in each conjunction there is at most
one n-ary existential restriction for each role: an EL(n)-concept description is
restricted iff it is of the form

A1 u . . . u An u ∃r1.(B1,1, . . . , B1,k1
) u . . . u ∃rm.(Bm,1, . . . , Bm,km

),

where A1, . . . , An are concept names, r1, . . . , rm are distinct role names, and
B1,1, . . . , Bm,km

are restricted EL(n)-concept descriptions. For example, the EL(n)-
concept description ∃r.(A,∃r.(B,C))u∃s.(A,A) is restricted whereas the descrip-
tion ∃r.(A,∃r.(B,C)) u ∃r.(A,A) is not.

13



As in the case of EL [5], the corresponding DL with unary existential restrictions,
each restricted EL(n)-concept description C can be translated into an EL(n)-
description tree TC , where the nodes are labeled with sets of concept names
and the edges are labeled with role names. Formally, this tree is described by
a tuple TC = (V,E, v0, `), where V is the finite set of nodes, E ⊆ V × NR × V
is the set of NR-labeled edges, v0 ∈ V is the root, and ` : V −→ 2NC is the
node labeling function. The set of all concept names occurring in the top-level
conjunction of C yields the label `(v0) of the root v0, and each existential restric-
tion ∃r.(C1, . . . , Cn) in this conjunction yields n r-successor of v0 that are the
roots of the trees corresponding to Ci. For example, the restricted EL(n)-concept
descriptions

A u ∃r.(A,B u ∃r.(B,A),∃r.(A,A uB)) and A u ∃r.(A,B,∃r.(A,A))

yield the description trees depicted in Fig. 3.
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Figure 3: Two EL(n)-description trees.

In [5], it was shown that subsumption between EL-concept descriptions corre-
sponds to the existence of a homomorphism between the corresponding descrip-
tion trees. In EL(n) we must additionally require that the homomorphism is
injective.

Definition 5.1 Given two EL(n)-description trees T1 = (V1, E1, v0,1, `1) and T2 =
(V2, E2, v0,2, `2), a homomorphism ϕ : T1 −→ T2 is a mapping ϕ : V1 −→ V2 such
that

1. ϕ(v0,1) = v0,2,

2. `1(v) ⊆ `2(ϕ(v)) for all v ∈ V1, and

3. (ϕ(v), r, ϕ(w)) ∈ E2 for all (v, r, w) ∈ E1.

This homomorphism is an embedding iff the mapping ϕ : V1 −→ V2 is injective.
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For example, mapping yi to xi for i = 1, . . . , 6 yields an embedding from the
description tree on the right-hand side of Fig. 3 to the description tree on the
left-hand side. If we changed the label of x6 to {B}, then there would still exist
a homomorphism between the two trees (mapping both y5 and y6 onto x5), but
not an embedding.

Theorem 5.2 Let C,D be restricted EL(n)-concept descriptions and TC , TD the
corresponding description trees. Then C v D iff there exists an embedding from
TD into TC.

The proof of this theorem is similar to the proof of the corresponding result for
EL [5].

First, note that any interpretation can be viewed as a graph. An EL(n)-graph is
of the form G = (V,E, `), where V is a non-empty set, E ⊆ V × NR × V , and
` : V −→ 2NC .5 A given interpretation I can be represented by an EL(n)-graph
GI = (V,E, `), where

• V = ∆I ;

• given a node u ∈ ∆I , its label is

`(u) = {A | A is a concept names such that u ∈ AI},

• and E = {(u, r, v) | (u, v) ∈ rI}.

Conversely, any EL(n)-graph G obviously represents an interpretation IG. For
example, the EL(n)-graph depicted on the left-hand side of Fig. 3 represents the
interpretation I = (∆I , ·I), where

• ∆I = {x1, . . . , x8};

• AI = {x1, x2, x5, x6, x8} and BI = {x3, x6, x7};

• rI = {(x1, x2), (x1, x3), (x1, x4), (x3, x7), (x3, x8), (x4, x5), (x4, x6)}.

Definition 5.3 Given two EL(n)-graphs G1 = (V1, E1, `1) and G2 = (V2, E2, `2),
a mapping ϕ : V1 −→ V2 is an EL(n)-homomorphism of G1 into G2 iff it satisfies
2. and 3. of Definition 5.1, and the following local injectivity condition:

(u, r, v) ∈ E ∧ (u, r, v′) ∈ E ∧ v 6= v′ ⇒ ϕ(v) 6= ϕ(v′).

5Note that EL(n)-description trees are also EL(n)-graphs.
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Obviously, any embedding between EL(n)-description trees is also an EL(n)-homo-
morphism. Conversely, if ϕ : T1 −→ T2 is an EL(n)-homomorphism between
the EL(n)-description trees T1, T2 that maps the root of T1 onto the root of T2,
then ϕ is an embedding between these trees. In addition, if ϕ1 : T1 −→ T2 is
an embedding between EL(n)-description trees and ϕ2 : T2 −→ G is an EL(n)-
homomorphism, then their composition ϕ1 ◦ ϕ2 : T1 −→ G is also an EL(n)-
homomorphism.

Lemma 5.4 Let C be a restricted EL(n)-concept description, I an interpretation,
and d0 ∈ ∆I. Then d0 ∈ CI iff there is an EL(n)-homomorphism ϕ : TC −→ GI

that maps the root of TC onto d0.

Proof. The restricted EL(n)-concept description C is of the form

A1 u . . . u An u ∃r1.(B1,1, . . . , B1,k1
) u . . . u ∃rm.(Bm,1, . . . , Bm,km

),

where A1, . . . , An are concept names, r1, . . . , rm are distinct role names, and
B1,1, . . . , Bm,km

are restricted EL(n)-concept descriptions. Thus, the correspond-
ing EL(n)-description tree TC = (V,E, `) has the following form:

• it has a root v0 with label `(v0) = {A1, . . . , An};

• for 1 ≤ i ≤ m and 1 ≤ j ≤ ki, this root has an ri-successor vi,j that is the
root of the EL(n)-description tree TBi,j

corresponding to Bi,j.

Let GI = (∆I , EI , `I).

First, assume that d0 ∈ CI . Then d0 ∈ AI
i for i = 1, . . . , n, which shows that

`(v0) ⊆ `I(d0). Thus, if we define ϕ(v0) = d0, then 2. of Definition 5.1 is satisfied.
In addition, for 1 ≤ i ≤ m and 1 ≤ j ≤ ki there are elements di,j ∈ ∆I such that

• (d0, di,j) ∈ rIi ,

• di,j 6= di,j′ for j 6= j ′, and

• di,j ∈ BI
i,j.

By induction, there are EL(n)-homomorphisms ϕi,j : TBi,j
−→ GI such that

ϕi,j(vi,j) = di,j . We define ϕ : TC −→ GI as follows:

ϕ(v) :=

{
d0 if v = v0,
ϕi,j(v) if v is a node in TBi,j

.

It is easy to see that ϕ is indeed a well-defined EL(n)-homomorphism.

Second, assume that there is an EL(n)-homomorphism ϕ : TC −→ GI such that
ϕ(v0) = d0. By 2. of Definition 5.1, `(v0) = {A1, . . . , An} ⊆ `I(d0), which shows
that d0 ∈ AI

i for i = 1, . . . , n. To show d0 ∈ CI , it remains to be shown that
there are di,j ∈ ∆I (for 1 ≤ i ≤ m and 1 ≤ j ≤ ki) such that
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• (d0, di,j) ∈ rIi ,

• di,j 6= di,j′ for j 6= j ′, and

• di,j ∈ BI
i,j.

If we define di,j := ϕ(vi,j), then the fact that ϕ is an EL(n)-homomorphism implies
that the first and the second point are satisfied. In addition, the restriction ϕi,j

of ϕ to TBi,j
is an EL(n)-homomorphism such that ϕi,j(vi,j) = di,j. By induction,

this shows that the third point is satisfied as well.

We are now ready to prove Theorem 5.2.

First assume that there is an embedding ϕ : TD −→ TC such that ϕ(v0) = u0

where u0 is the root of TC and v0 is the root of TD. To show C v D, let I be
an interpretation, and assume that d0 ∈ CI . By Lemma 5.4, there is an EL(n)-
homomorphism ϕ′ : TC −→ GI such that ϕ′(u0) = d0. But then ϕ◦ϕ′ : TD −→ GI

is an EL(n)-homomorphism such that ϕ ◦ ϕ′(v0) = ϕ′(ϕ(v0)) = ϕ′(u0) = d0. By
Lemma 5.4, this implies d0 ∈ DI .

Second, assume that C v D. The EL(n)-description tree TC is an EL(n)-graph,
and thus represents an interpretation I. Let u0 be the root of TC . Since the
identity map is an EL(n)-homomorphism from TC into TC that maps u0 onto u0,
Lemma 5.4 yields u0 ∈ CI . But then C v D implies u0 ∈ DI . By Lemma 5.4, this
means that there is an EL(n)-homomorphism ϕ : TD −→ TC such that ϕ(v0) = u0

where v0 is the root of TD. As noted above, such an EL(n)-homomorphism is
actually an embedding. This completes the proof of Theorem 5.2.

5.2 Deciding the existence of an embedding

To show that subsumption between restricted EL(n)-concept descriptions is a
polynomial-time problem, it remains to be shown that the existence of an em-
bedding can be decided in polynomial time. First, let us recall the well-known
bottom-up approach for testing for the existence of a homomorphism [22, 5].

Let T1 = (V1, E1, v0,1, `1) and T2 = (V2, E2, v0,2, `2) be two EL(n)-description trees,
and assume that we want to check whether there is a homomorphism from T1 to
T2. The idea underlying the polynomial time test is to compute, for each v ∈ V1,
the set δ(v) of all nodes w ∈ V2 such that there is a homomorphism from the
subtree of T1 with root v to the subtree of T2 with root w. Once these sets δ are
computed for all nodes of T1, we can simply check whether v0,2 belongs to δ(v0,1).
The sets δ(v) are computed in a bottom-up fashion, where a node is treated only
after all its successor nodes have been considered:6

6For example, one can use a postorder tree walk [11] of the nodes of T1 to realize this.
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1. If v is a leaf of T1, then δ(v) simply consists of all the nodes w ∈ V2 such
that `1(v) ⊆ `2(w).

2. Let v be a node of T1 and let (v, r1, v1), . . . , (v, rk, vk) be all the edges in E1

with first component v. Since we work bottom up, we know that the sets
δ(v1), . . . , δ(vk) have already been computed. The set δ(v) consists of all
the nodes w ∈ V2 such that

(a) `1(v) ⊆ `2(w) and

(b) for each i, 1 ≤ i ≤ k there exists a node wi ∈ δ(vi) such that (w, ri, wi) ∈
E2.

It is easy to show that this indeed yields a polynomial-time algorithm for checking
the existence of a homomorphism between two EL(n)-description trees.

If we want to test for the existence of an embedding, we must modify Step 2 of
this algorithm. In fact, we must ensure that distinct r-successors of v can be
mapped to distinct r-successors of w. This can be achieved as follows:

2′. Let v be a node of T1, and for each role r let (v, r, v1,r), . . . , (v, r, vkr ,r) be
the edges in E1 with first component v and label r. Since we work bottom
up, we know that the sets δ(v1,r), . . . , δ(vkr ,r) have already been computed.
The set δ(v) consists of all the nodes w ∈ V2 satisfying the following two
properties:

(a) `1(v) ⊆ `2(w),

(b) for all roles r, the family Fr(w) := (S1,r(w), . . . , Skr,r(w)) has an SDR,
where the members of this family are defined as

Si,r(w) := {w′ ∈ δ(vi,r) | (w, r, w′) ∈ E2}.

Obviously, the existence of an SDR for Fr(w) allows us to map the r-successors
of v to distinct r-successors of w, and thus construct an embedding. For this
algorithm to be polynomial, it remains to be shown that the existence of an
SDR can be decided in polynomial time. Note that Hall’s characterization of
the existence of an SDR obviously does not yield a polynomial-time procedure.
However, checking for the existence of an SDR is basically the same as solving
the maximum bipartite matching problem, which can be done in polynomial time
since it can be reduced to a network flow problem [11].

To be more precise, let (L ∪ R,E) be a bipartite graph, i.e., L ∩ R = ∅ and
E ⊆ L × R. A matching is a subset M of E such that each node in L ∪ R
occurs at most once in M . This matching is called maximum iff there is no
other matching having a larger cardinality. As shown in [11], such a maximum
matching can be computed in time polynomial in the cardinality of V and E.
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Let F = (S1, . . . , Sn) be a finite family of finite sets, and let L := {1, . . . , n}
and R = S1 ∪ . . . ∪ Sn.7 We define the set of edges of the bipartite graph
GF = (L ∪R,E) as follows:

E := {(i, s) | s ∈ Si}.

It is easy to see that the family F has an SDR iff the corresponding bipartite
graph GF has a maximum matching of cardinality n. In fact, (1, s1), . . . , (n, sn)
is a maximum matching iff s1, . . . , sn is an SDR.

Thus, we have shown that the existence of an embedding can be decided in
polynomial time. Together with Theorem 5.2, this yields the following tractability
result:

Corollary 5.5 Subsumption between restricted EL(n)-concept descriptions can be
decided in polynomial time.

A first implementation of this polynomial-time algorithm behaves much better
than the translation approach on the example concept descriptions C,D from
Section 3 and their obvious extensions to larger n. For small n, the subsumption
relationship is found immediately (i.e., with no measurable run-time), and even
for n = 100, the runtime (of our unoptimized implementation) is just 1 second.
One could argue that the comparison of these results with the performance of
Racer on the ALCQ-translations of C,D and their extensions to larger n is
unfair since the culprit is the exponential translation rather than Racer. How-
ever, this is the only known translation of EL(n)-concept descriptions into a DL
that can be handled by Racer, and it is the one originally used in the process
engineering application.

5.3 Acyclic TBoxes

The frame-like formalism employed in the process engineering application allows
to inherit properties from other frames. To represent this feature within our DL
approach, a TBox is needed. However, it is sufficent to consider only acyclic
EL(n)-TBoxes that are restricted in a similar way as restricted EL(n)-concept
descriptions. Formally, an acyclic EL(n)-TBox is called restricted iff its concept
definitions are of the form

A ≡ P1 u . . . u Pn u ∃r1.(A1,1, . . . , A1,`1) u . . . u ∃rm.(Am,1, . . . , Am,`m
),

where A,A1,1, . . . , Am,`m
are defined concepts, P1, . . . , Pn are primitive concepts,

and r1, . . . , rm are distinct role names.

7Without loss of generality we can assume that L ∩ R = ∅.
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In the presence of TBoxes, it is obviously sufficient to have an algorithm that de-
cides subsumption between defined concepts. In principle, subsumption between
the defined concepts A and B w.r.t. an acyclic and restricted TBox can be decided
by first expanding A and B into EL(n)-concept descriptions by replacing defined
concept names by their definitions until no more defined concepts occur. Then,
subsumption between the expanded concept descriptions can be decided without
reference to a TBox. The definition of a restricted EL(n)-TBox makes sure that
the expanded EL(n)-concept descriptions are actually restricted, and thus one can
use the algorithm described in Section 5.2 to decide subsumption between them.
However, it is well-know that the expansion process may lead to an exponential
blow-up of the concept descriptions it is applied to [20]. Thus, the approach
described above yields a subsumption algorithm that may need exponential time.

In this section we show how to obtain a polynomial-time subsumption algorithm
in the presence of restricted acyclic EL(n)-TBoxes. To formulate this algorithm,
it is convenient to assume that TBoxes are in a certain form: an EL(n)-TBox
T is in normal form if it is acyclic, restricted, and, for all concept definitions
A
.
= C ∈ T , each defined concept name occurs at most once in C. It is not hard

to see that every restricted acyclic EL(n)-TBox can be converted into normal form
by introducing additional defined concept names. For example, the TBox

A1
.
= ∃r.A2 u ∃s.(A2, A3)

A2
.
= C

A3
.
= D

can be rewritten into

A1
.
= ∃r.A2 u ∃s.(A′

2, A3)

A2
.
= C

A′
2

.
= C

A3
.
= D.

This conversion can be carried out in polynomial time, and it causes an at most
quadratic blowup in size. In the following we assume that all TBoxes are in
normal form.

Similar to our representation of restricted EL(n)-concept descriptions as trees, we
represent EL(n)-TBoxes in normal form as EL(n)-directed acyclic graphs (DAGs),
where the nodes (which are the defined concept names) are labelled with sets of
primitive concept names, and the edges are labelled with role names. Formally,
an EL(n)-DAG is given by a tuple GT = (V,E, `), where V is a set of nodes,
E ⊆ V ×NR × V is a set of NR-labeled edges that form a directed acyclic graph,
and ` : V −→ 2NC is the node labelling function. A given TBox T in normal
form can be translated into the following EL(n)-DAG GT = (VT , ET , `T ):

• VT is the set of defined concept names in T ;
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• if A ≡ P1 u . . . u Pn u ∃r1.(A1,1, . . . , A1,`1) u . . . u ∃rm.(Am,1, . . . , Am,`m
) is

in T , then `T (A) = {P1, . . . , Pn} and A is the source of the edges

(A, r1, A1,1), . . . , (A, r1, A1,`1), . . . , (A, rm, Am,1), . . . , (A, rm, Am,`m
) ∈ ET .

Note that EL(n)-DAGs are a special kind of EL-graphs as introduced for cyclic
EL-TBoxes in [1]. The fact that the TBox T is assumed to be in normal form
makes sure that, for every node A of GT , its successor nodes are distinct defined
concepts of T . For a node v in an EL(n)-DAG G = (V,E, `) we write SG(v) to
denote the set {u | (v, r, u) ∈ E for some r ∈ NR} of its successor nodes.

Definition 5.6 Let G = (V,E, `) be an EL(n)-DAG. For v, v′ ∈ V , we say that
v is embeddable into v′ in G if

1. `(v) ⊆ `(v′) and

2. there exists an injection ϕ : SG(v) → SG(v′) such that, for all u ∈ SG(v),

(a) (v, r, u) ∈ E implies (v′, r, ϕ(u)) ∈ E;

(b) u is embeddable into ϕ(u).

It is easily seen that being embeddable is well-defined as the recursive use of
“embeddable” in the definition refers only to nodes for which the maximum length
of a path to a sink (i.e., a node without successor nodes) is strictly smaller.

Theorem 5.7 Let T be an EL(n)-TBox in normal form and A,B defined concepts
in T . Then A vT B iff B is embeddable into A in GT .

Proof. Let Â and B̂ be the results of expanding A and B w.r.t. T . It is well-
known that A vT B iff Â v B̂. By Theorem 5.2, the latter holds iff there exists
an embedding from TB̂ into TÂ. For proving Theorem 5.7, it thus suffices to show
that there exists an embedding from TB̂ into TÂ iff B is embeddable into A in GT .
This is proved in what follows. Let GT = (VT , ET , `T ), TÂ = (VA, EA, vA, `A),
and TB̂ = (VB, EB, uB, `B).

The proof of the if-direction is by induction on the depth of TB̂. Assume that B
is embeddable into A in GT , and let ϕ be the injection witnessing Property 2 in
the definition of embeddable.

For the induction start, let the depth of TB̂ be zero. Then B is a defined concept
name with definition

B ≡ P1 u . . . u Pn,

where P1, . . . , Pn are primitive concepts. By Property 1 of embeddable and by
the construction of TB̂ and TÂ, we have `B(uB) = `T (B) ⊆ `T (A) = `A(vA).
Thus, the mapping ψ := {uB 7→ vA} is an embedding from TB̂ to TÂ.
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For the induction step, let A ≡ C and B ≡ D be the definitions of A and B in
T . Since B is embeddable into A in GT , by Property 2a of embeddable, and by
construction of GT , every role occurring in an existential restriction in D also
occurs in an existential restriction in C. Thus, C and D can be written as

C = P1 u . . . u Pn u ∃r1.(A1,1, . . . , A1,`1) u . . . u ∃rm.(Am,1, . . . , Am,`m
),

D = Q1 u . . . uQn′ u ∃r1.(B1,1, . . . , B1,`′
1
) u . . . u ∃rm′ .(Bm′,1, . . . , Bm′,`′

m′
),

with m′ ≤ m. Let

IC := {(i, j) | 1 ≤ i ≤ m and 1 ≤ j ≤ `i} and
ID := {(i, j) | 1 ≤ i ≤ m′ and 1 ≤ j ≤ `′i}.

Because T is assumed to be in normal form, the following holds for GT :

(a) For (i, j) ∈ IC , the node A is connected (only) via ri to Ai,j . Moreover,
mapping (i, j) to Ai,j yields a bijection between IC and {Ai,j | (i, j) ∈ IC}.

(b) For (i, j) ∈ ID, the node B is connected (only) via ri to Bi,j . Moreover,
mapping (i, j) to Bi,j yields a bijection between ID and {Bi,j | (i, j) ∈ ID}.

Similar properties are satisfied in TÂ and TB̂:

(c) The root vA of TÂ has exactly one successor vi,j for each (i, j) ∈ IC . More-

over, vA is connected to vi,j (only) via ri, and vi,j is the root of the EL(n)-tree
T

Âi,j
obtained by expanding Ai,j.

(d) The root uB of TB̂ has exactly one successor ui,j for each (i, j) ∈ ID. More-

over, uB is connected to ui,j (only) via ri, and ui,j is the root of the EL(n)-tree
T

B̂i,j
obtained by expanding Bi,j .

Let (i, j) ∈ ID. By Property 2a of embeddable and due to the first part of
(a) and (b) above, ϕ(Bi,j) = Ai,k for some (i, k) ∈ IC . By Property 2b of
embeddable, Bi,j is embeddable into Ai,k in GT . The induction hypothesis thus
yields embeddings ψi,j from T

B̂i,j
into T

Âi,k
.

Now define the mapping ψ : VB → VA by setting ψ(uB) := vA and taking the
union of all the mappings ψi,j. We claim that ψ is an embedding from TB̂ into TÂ.
As the ψi,j are embeddings and their domains are disjoint, it suffices to consider
uB and its successors. Property 1 of homomorphisms (mapping of root to root)
is clearly satisfied. For Property 2 (inclusion of node labels), we can show as in
the induction start that `B(uB) ⊆ `A(vA). Concerning Property 3 (edge labels),
let (uB, ri, ui,j) ∈ EB. Then ψi,j(ui,j) = vi,k for some k with 1 ≤ k ≤ `i. By (c)
above, we have (vA, ri, vi,k) ∈ EA as required.
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It remains to be shown that ψ is an embedding. Thus, let ui,j , ui′,j′ be distinct
successors of uA. We must show that vi,k := ψi,j(ui,j) 6= ψi′,j′(ui′,j′) =: vi′,k′ .
Since ui,j 6= ui′,j′ , the index pairs (i, j), (i′, j′) are distinct elements of ID, and
thus Bi,j , Bi′,j′ are distinct defined concepts. By the definition of the mappings
ψi,j and ψi′,j′ , we have ϕ(Bi,j) = Ai,k and ϕ(Bi′,j′) = Ai′,k′ , and thus Ai,k, Ai′,k′

are distinct defined concepts by the definition of embeddable. This shows that
the index pairs (i, k), (i′, k′) are distinct elements of IC , and thus vi,k 6= vi′,k′ by
Property (c) above. Note that this also implies that the codomains of ψi,j and
ψi′,j′ are disjoint.

The proof of the only-if-direction is again by induction on the depth of TB̂. Let
ψ be an embedding from TB̂ to TÂ.

For the induction start, let the depth of TB̂ be zero. Since ψ(uB) = vA and by
construction of TB̂ and TÂ, we have `T (B) = `B(uB) ⊆ `A(vA) = `T (A). As
the depth of TB̂ is zero, B does not have any outgoing edges in GT . Thus, B is
embeddable into A in GT .

For the induction step, let A ≡ C and B ≡ D be the definitions of A and B in T .
Since ψ(uB) = vA, by Property 3 of homomorphisms, and by construction of TÂ

and TB̂, every role name occurring in an existential restriction in D also occurs
in an existential restriction in C. Thus, C and D can be written exactly as in the
proof of the if-direction. Let IC and ID be defined as above. The successors of
A and B in GT , of vA in TÂ, and of uB in TB̂ also satisfy the properties (a)–(d)
stated in the proof of the if-direction.

We must show that B is embeddable into A in GT . For Property 1 of embeddable,
we can show as in the induction start that `T (B) ⊆ `T (A). For Property 2, define
the mapping ϕ : SG(B) → SG(A) by setting, for each (i, j) ∈ ID, ϕ(Bi,j) = Ai′,j′

if ψ(ui,j) = vi′,j′ .

First, we show that ϕ is an injection. If Bi1,j1 6= Bi2,j2 , then (i1, j1) 6= (i2, j2), and
thus ui1,j1 6= ui2,j2 . Since ψ is an embedding, this implies that vi′

1
,j′

1
:= ψ(ui1,j1) 6=

ψ(ui2,j2) =: vi′
2
,j′

2
. Finally, this implies Ai1,j1 6= Ai′

2
,j′

2
by Property (a) above.

It thus remains to be shown that ϕ satisfies Properties 2a and 2b of embeddable.
For Property 2a, let (i, j) ∈ ID. By Property (b), (B, r,Bi,j) ∈ ET implies r = ri.
Due to Property 3 of homomorphisms, ψ(ui,j) = vi,k for some (i, k) ∈ IC . Thus,
ϕ(Bi,j) = Ai,k. By Property (a) above, we have (A, ri, Ai,k) ∈ ET as required. To
show Property 3a, consider again a tuple (i, j) ∈ ID. We must show that Bi,j is
embeddable into ϕ(Bi,j) in GT . Let ψ(ui,j) = vi,k. Then ϕ(Bi,j) = Ai,k. Clearly,
ψ is an embedding from T

B̂i,j
(the subtree of TB with root ui,j) into T

Âi,k
(the

subtree of TA with root vi,k). It follows by the induction hypothesis that Bi,j is
embeddable into Ai,k in GT , as required by Property 3a.

It remains to note that, to deciding whether B is embeddable into A in GT , we can
use the marking algorithm for testing for the existence of an embedding between
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description trees presented in Section 5.2: the bottom-up labelling strategy of
“treating a node only after all its successor nodes have been considered” works
also on DAGs, and it is not hard to verify that B is embeddable into A in GT iff
A occurs in the marking δ(B) of B.

Corollary 5.8 Subsumption in EL(n) w.r.t. a restricted acyclic TBox can be de-
cided in polynomial time.

6 Unrestricted EL(n)-concept descriptions

In such concept descriptions, several n-ary existential restrictions for the same
role r can occur in a conjunction, such as in the description

Cu := A u ∃r.(A,B) u ∃r.(∃r.A u ∃r.A).

If we translate this unrestricted EL(n)-concept description into a description tree,
then we obtain the tree on the right-hand side of Fig. 3, which is also obtained
as a translation of the restricted EL(n)-concept description

Cr := A u ∃r.(A,B,∃r.(A,A)).

To distinguish between these two descriptions, we introduce distinctness classes :
for each node x in the tree and each role r, the r-successors of x are partitioned
into such classes. For example, in the tree corresponding to Cu, the r-successors
of y1 are partitioned into the sets {y2, y3}, {y4}, whereas there is only one dis-
tinctness class {y2, y3, y4} for these nodes in the tree corresponding to Cr.

The notion of an embedding must take these distinctness classes into account.
Instead of requiring that the homomorphism ϕ is injective, we require that it is
injective on distinctness classes.

Definition 6.1 Given two EL(n)-description trees T1, T2 that are equipped with
distinctness classes, a homomorphism ϕ : T1 −→ T2 is called an embedding iff
for each node x in T1 and each distinctness class {x1, . . . , xk} of the r-successors
of x, the nodes ϕ(x1), . . . , ϕ(xk) are distinct r-successors of ϕ(x).

However, if we just change the notion of an embedding in this way, then Theo-
rem 5.2 obviously does not hold for unrestricted EL(n)-concept descriptions. In
fact, if ϕ(x1), . . . , ϕ(xk) do not belong to the same distinctness class in T2, then
we cannot be sure that they really represent distinct individuals. For example, if
C = ∃r.A u ∃r.B and D = ∃r.(A,B), then there is an embedding from TD into
TC , but D does not subsume C.
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Figure 4: Identification of EL(n)-description trees.

Thus, an obvious conjecture could be that the embedding must respect distinct-
ness classes, i.e., we must require ϕ(x1), . . . , ϕ(xk) to belong to the same dis-
tinctness class. However, the following example shows that this requirement is
too strong. Let C = ∃r.Au∃r.(B,B) and D = ∃r.(A,B). There is no embedding
from TD to TC that respects distinctness classes, but it is easy to see that D
subsumes C.

Before we can formulate a correct characterization of subsumption between un-
restricted EL(n)-concept descriptions, we must introduce some notation.

Definition 6.2 Given an EL(n)- description tree T = (V,E, v0, `) where role
successors are partitioned into distinctness classes, an identification on T is an
equivalence relation ∼ on V such that v1 ∼ v2 implies that

• there are u1, u2 ∈ V and a role r such that v1 is an r-successor of u1, v2 is
an r-successor of u2, and u1 ∼ u2;

• if v1 6= v2, then v1, v2 do not belong to the same distinctness class.

Any identification ∼ on T induces a description tree T/∼ whose nodes are the
∼-equivalence classes [v]∼ := {u ∈ V | u ∼ v}, whose root is [v0]∼, and whose
edges and node labels are defined as follows:

E∼ := {([u]∼, r, [v]∼) | there is u′ ∈ [u]∼, v
′ ∈ [v]∼ such that (u′, r, v′) ∈ E},

`∼([u]∼) :=
⋃

u′∈[u]∼
`(u′).

Note that the first condition on identifications in the above definition ensures
that the graph defined this way is indeed a tree with root [v0]∼.

For example, the EL(n)-description tree TC corresponding to C = ∃r.Au∃r.(B,B)
is depicted on the left-hand side of Fig. 4, where the r-successors of x1 are par-
titioned into the distinctness classes {x2}, {x3, x4}. There are three different
identifications: the identity relation, the relation where in addition x2 ∼ x3, and
the relation where in addition x2 ∼ x4. The EL(n)-description tree induced by
the identity relation is TC itself, whereas the trees induced by the other two iden-
tifications are isomorphic to the tree depicted on the right-hand side of Fig. 4.
Obviously, there is an embedding of the EL(n)-description tree TD corresponding
to D = ∃r.(A,B) into each of these two trees.
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Theorem 6.3 Let C,D be (unrestricted) EL(n)-concept descriptions and TC , TD

the corresponding description trees. Then C v D iff for every identification ∼
on TC there exists an embedding from TD into TC/∼.

Before proving this theorem, let us point out that it yields an NP-algorithm
for testing non-subsumption of unrestricted EL(n)-concept descriptions: guess in
non-deterministic polynomial time an identification ∼ of TC , and then check in
polynomial time (by a simple adaptation of the algorithm described in Section 5.2)
whether there is an embedding from TD into TC/∼.

Corollary 6.4 The subsumption problem for (unrestricted) EL(n)-concept de-
scriptions is in coNP.

Before we can prove Theorem 6.3, we must first show that the auxiliary definitions
and results from Section 5.1 can be adapted to the case of unrestricted EL(n)-
concept descriptions.

Definition 6.5 Let T1 = (V1, E1, v0,1, `1) be an EL(n)-description tree that is
equipped with distinctness classes, and let G2 = (V2, E2, `2) be an EL(n)-graph.
The mapping ϕ : V1 −→ V2 is an EL(n)-homomorphism iff it satisfies 2. and 3.
of Definition 5.1, and is injective on the distinctness classes of T1, i.e.,

if v 6= v′ belong to the same distinctness class of T1, then ϕ(v) 6= ϕ(v′).

If G2 is also an EL(n)-description tree and ϕ maps the root of T1 onto the root of
G2, then it is easy to see that ϕ is an embedding in the sense of Definition 6.1.

With this adapted notion of an EL(n)-homomorphism, the following analogon of
Lemma 5.4 can easily be proved.

Lemma 6.6 Let C be an (unrestricted) EL(n)-concept description, I an inter-
pretation, and d0 ∈ ∆I. Then d0 ∈ CI iff there is an EL(n)-homomorphism
ϕ : TC −→ GI that maps the root of TC onto d0.

In order to prove “⇒” of Theorem 6.3, we assume that C v D. Let u0 be the root
of TC , and ∼ an identification on TC . The EL(n)-description tree TC/∼ represents
an interpretation I. It is easy to see that the mapping

θ : TC −→ TC/∼ : u 7→ [u]∼

is an EL(n)-homomorphism with θ(u0) = [u0]∼. By Lemma 6.6, this implies
[u0]∼ ∈ CI , and thus [u0]∼ ∈ DI . But then Lemma 6.6 also implies that there is
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an EL(n)-homomorphism ϕ : TD −→ TC/∼ such that ϕ(v0) = [u0]∼, where v0 is
the root of TD. As noted above, this homomorphism is in fact an embedding.

In order to prove “⇐” of Theorem 6.3, we assume that for every identification ∼
on TC there exists an embedding from TD into TC/∼. To show that this implies
C v D, let I be an interpretation, and assume that d0 ∈ CI . By Lemma 6.6,
this implies that there is an EL(n)-homomorphism ϕ : TC −→ GI such that
ϕ(u0) = d0, where u0 is the root of TC . This homomorphism induces a binary
relation ∼ϕ on the nodes of TC , which we define by induction on the depth of
nodes:

• The root u0 of T is the only node on depth 0, and we have u0 ∼ϕ u0.

• Assume that ∼ϕ is already defined on nodes of depth n for n ≥ 0. If v1, v2

are nodes on depth n+ 1, then

v1 ∼ϕ v2 iff there are nodes u1 ∼ϕ u2 on depth n and a role r such that
v1 is an r-successor of u1, v2 is an r-successor of u2, and
ϕ(v1) = ϕ(v2).

It is easy to see that ∼ϕ is an identification on TC .

The EL(n)-homomorphism ϕ : TC −→ GI induces the following mapping from
the nodes of TC/∼ϕ to the nodes of GI :

ϕ̂([u]∼ϕ
) := ϕ(u).

Note that the definition of ∼ϕ implies that ϕ̂ is well-defined.

By our assumption, there is an embedding ψ : TD −→ TC/∼ϕ. We claim that
the composition ψ ◦ ϕ̂ is an EL(n)-homomorphism from TD into GI such that
ψ ◦ ϕ̂(v0) = d0, where v0 is the root of TD. By Lemma 6.6, this implies d0 ∈ DI ,
which completes the proof of Theorem 6.3.

To prove the claim, first note that ψ◦ϕ̂(v0) = ϕ̂(ψ(v0)) = ϕ̂([u0]∼ϕ
) = ϕ(u0) = d0.

Second, let v be a node of TD and assume that A belongs to its label in TD. Since
ψ is an embedding, this implies that A belongs to the label of [u]∼ϕ

:= ψ(v).
Thus, there is u′ ∼ϕ u such that A belongs to the label of u′ in TC . Since ϕ is
an EL(n)-homomorphism, this implies that A belongs to the label of ϕ(u′) in GI .
However, since u′ ∼ϕ u we know that ϕ(u′) = ϕ(u) = ϕ̂([u]∼ϕ

) = ϕ̂(ψ(v)). This
shows that A belongs to the label of ψ ◦ ϕ̂(v) in GI .

Third, assume that (v1, r, v2) is an edge in TD. Let [u1]∼ϕ
:= ψ(v1) and [u2]∼ϕ

:=
ψ(v2). Since ψ is an embedding, ([u1]∼ϕ

, r, [u2]∼ϕ
) is an edge in TC/∼ϕ. By the

definition of TC/∼ϕ, this means that there are u′1 ∼ϕ u1 and u′2 ∼ϕ u2 such that
(u′1, r, u

′
2) is an edge in TC . Since ϕ is an EL(n)-homomorphism, this implies that

(ϕ(u′1), r, ϕ(u′2)) is an edge in GI . However, since u′1 ∼ϕ u1 and u′2 ∼ϕ u2 we
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have, for i = 1, 2, that ϕ(u′i) = ϕ(ui) = ϕ̂([ui]∼ϕ
) = ϕ̂(ψ(vi)). This shows that

(ψ ◦ ϕ̂(v1), r, ψ ◦ ϕ̂(v2)) is an edge in GI .

Finally, assume that v1, v2 are distinct r-successors of a common parent node v in
TD that belong to the same distinctness class. Let [u]∼ϕ

:= ψ(v), [u1]∼ϕ
:= ψ(v1),

and [u2]∼ϕ
:= ψ(v2). Since ψ is an embedding, we know that ψ(v1) 6= ψ(v2),

and thus u1 6∼ϕ u2. If we can show that this implies ϕ(u1) 6= ϕ(u2), then we are
done: since, for i = 1, 2, we have ϕ(ui) = ϕ̂([ui]∼ϕ

) = ϕ̂(ψ(vi)), we then also have
ψ ◦ ϕ̂(v1) 6= ψ ◦ ϕ̂(v2).

To show that u1 6∼ϕ u2 implies ϕ(u1) 6= ϕ(u2), it is sufficient to show that, in
TC , there are nodes w1 ∼ϕ w2 such that u1 is an r-successor of w1 and u2 is an
r-successor of w2. Since ψ is an embedding, we know that, in TC/∼ϕ, the node
[ui]∼ϕ

= ψ(vi) is an r-successor of [u]∼ϕ
= ψ(v), for i = 1, 2. By the definition of

TC/∼ϕ, this implies that there are nodes w′
i, u

′
i such that w′

i ∼ϕ u and u′i ∼ϕ ui,
and u′i is an r-successor of w′

i. By the definition of ∼ϕ, u′i ∼ϕ ui implies that
there is a node wi ∼ϕ w

′
i such that ui is an r-successor of wi. Transitivity of ∼ϕ

yields w1 ∼ϕ w2.

This finishes the proof of Theorem 6.3.

7 Adding disjointness statements

In the chemical process engineering application motivating this paper, the real-
world concepts expressed by concept names are often disjoint. For example, an
object cannot be both an apparatus and a plant. Disjointness statements of the
form dis(P,Q), where P,Q are concept names, allow us to express such additional
knowledge. An interpretation I is a model of a set of disjointness statements D
iff P I ∩QI = ∅ for all statements dis(P,Q) in D. Satisfiability and subsumption
w.r.t. D are defined in the usual way: C is satisfiable w.r.t. D iff there is a model
I of D such that CI 6= ∅; and C is subsumed by D w.r.t. D (C vD D) iff CI ⊆ DI

for all models I of D.

The following lemma shows that (un)satisfiability w.r.t. a set of disjointness state-
ments is easy to decide.

Lemma 7.1 The EL(n)-concept description C is unsatisfiable w.r.t. the set of
disjointness statements D iff there is a disjointness statement dis(P,Q) in D and
a node v in TC whose label contains P and Q.

Proof. If there is a disjointness statement dis(P,Q) in D and a node v in TC

containing P and Q, then C is obviously unsatisfiable w.r.t. D.

Conversely, assume that, for all disjointness statement dis(P,Q) in D and all
nodes v in TC , the label of v does not contain both P and Q. The EL(n)-
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description tree TC represents an interpretation I. Because of our assumption,
this interpretation is in fact a model of D. The identity map is an EL(n)-
homomorphism from TC into TC that maps the root u0 of TC onto u0. By
Lemma 6.6, this implies that u0 ∈ CI , and thus C is satisfiable.

How does adding disjointness statements influence the complexity of the subsump-
tion problem? Both for restricted and for unrestricted EL(n)-concept descriptions,
the characterization of the subsumption problem (Theorem 5.2 and Theorem 6.3)
can easily be extended to deal with disjointness statements.

For restricted EL(n)-concept descriptions, the only effect that disjointness state-
ments have is that they can make concepts unsatisfiable.

Theorem 7.2 Let C,D be restricted EL(n)-concept descriptions. Then C vD D
iff

1. either C is unsatisfiable w.r.t. D, or

2. both C and D are satisfiable w.r.t. D and C v D.

Proof. The “if” direction of the theorem is trivial.

To show the “only-if” direction, assume that C vD D and that C is satisfiable
w.r.t. D. The EL(n)-description tree TC represents an interpretation I, and the
assumption that C is satisfiable w.r.t. D implies that I is a model of D (see the
proof of Lemma 7.1). In addition, as shown in the proof of Lemma 7.1, the root
u0 of TC satisfies u0 ∈ CI . Thus, C vD D yields that u0 ∈ DI . By Lemma 5.4,
this implies that there is an EL(n)-homomorphism ϕ : TD −→ GI = TC such
that ϕ(v0) = u0. As noted in Section 5.1, such a homomorphism is actually an
embedding. By Theorem 5.2, this implies that C v D.

Corollary 7.3 For restricted EL(n)-concept descriptions, subsumption w.r.t. dis-
jointness statements can be decided in polynomial time.

The effect of disjointness statements is less trivial if we consider unrestricted
EL(n)-concept descriptions. The reason is that disjointness statements can enforce
r-successors to be interpreted by distinct objects even though they do not belong
to the same distinctness class. This problem does not occur for restricted EL(n)-
concept descriptions since there all r-successors of a given node belong to the
same distinctness class.

Before we can formulate a characterization of subsumption w.r.t. disjointness
statements in the unrestricted case, we must modify the definition of an identifi-
cation such that it takes disjointness statements into account.
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Definition 7.4 Let D be a set of disjointness statements and T = (V,E, v0, `)
an EL(n)-description tree where role successors are partitioned into distinctness
classes. The identification ∼ on T is compatible with D iff u ∼ v implies
{P,Q} 6⊆ `(u) ∪ `(v) for all dis(P,Q) in D.

Let C be an (unrestricted) EL(n)-concept description. If the identification ∼ on
TC is compatible with D, then the interpretation I represented by the tree TC/∼
is a model of D. In particular, the identity relation is compatible with D iff C is
satisfiable w.r.t. D. If C is unsatisfiable w.r.t. D, then no identification on TC is
compatible with D.

Theorem 7.5 Let D be a set of disjointness statements, C,D (unrestricted)
EL(n)-concept descriptions, and TC , TD the corresponding description trees. Then
C vD D iff for every identification ∼ on TC that is compatible with D there exists
an embedding from TD into TC/∼.

Proof. The proof of “⇒” is basically identical to the proof of “⇒” of Theorem 6.3.
The only additional fact to note is that the compatibility of ∼ with D implies
that the interpretation I represented by the tree TC/∼ is a model of D.

The proof of “⇐” is also very similar to the proof of “⇐” of Theorem 6.3. Here
the only additional thing to note is that the fact that I is a model of D implies
that ∼ϕ is compatible with D. In fact, assume to the contrary that there are
nodes v1 ∼ϕ v2 in TC and a disjointness statement dis(P,Q) in D such that
{P,Q} ⊆ `(u)∪ `(v). But then the label of ϕ(v1) = ϕ(v2) in GI contains both P
and Q, which shows that I does not satisfy the disjointness statement dis(P,Q).

Again, this theorem yields an NP-algorithm for non-subsumption, and thus the
subsumption problem is in coNP. In the presence of disjointness constraints, we
can also prove the matching lower bound.8

Corollary 7.6 The subsumption problem for (unrestricted) EL(n)-concept de-
scriptions w.r.t. disjointness statements is coNP-complete.

Proof. The coNP-upper bound can be show as in the case of unrestricted EL(n)-
concept descriptions without disjointness statements.

We show coNP-hardness by a reduction of graph 3-colorability to non-subsumption.
A given undirected graph G = (V,E) is 3-colorable iff there is a mapping f :
V −→ {1, 2, 3} such that {u, v} ∈ E implies f(u) 6= f(v). It is well-known (see

8The idea for this reduction is due to an anonymous referee.
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[13]) that the 3-colorability problem, i.e., the question whether a given graph is
3-colorable, is NP-complete.

Let G = (V,E) be an undirected graph with n vertices, i.e., V = {v1, . . . , vn}.
Without loss of generality we assume that this graph has no loops, i.e., {u, v} ∈ E
implies u 6= v. Let A1, . . . , An be concept names. The graph G = (V,E) is
represented by the set of disjointness statements

DG := {dis(Ai, Aj) | {vi, vj} ∈ E}.

Let C := ∃r.A1 u . . .u ∃r.An and D := ∃r.(>,>,>,>). We claim that C 6vDG
D

iff G is 3-colorable.

Without loss of generality we may assume that the EL(n)-description tree TC

corresponding to C has nodes v0, v1, . . . , vn where v0 is the root, and v1, . . . , vn

are the r-successors of v0 such that vi has label {Ai}. Note that every node vi

belongs to a singleton distinctness class.

First, assume that G is 3-colorable, and let f : V −→ {1, 2, 3} be the correspond-
ing mapping. The binary relation

∼f := {(vi, vj) | f(vi) = f(vj)}

is an identification on TC . In addition, since {vi, vj} ∈ E implies f(vi) 6= f(vj),
it is compatible with DG. Since in TC/∼f the root has at most 3 different r-
successors, there cannot be an embedding from TD into TC/∼f . By Theorem 7.5,
this implies C 6vDG

D.

Conversely, assume that C 6vDG
D. Then there is an identification ∼ on TC such

that

• ∼ is compatible with DG; and

• there is no embedding from TD into TC/∼.

The second fact implies that the root of TC/∼ has at most 3 r-successors. In
the following, we treat the case where it has exactly 3 r-successors. (The other
two cases can be treated similarly.) Thus, the root [v0]∼ of TC/∼ has three r-
successors u1, u2, u3. These r-successors are ∼-equivalence classes, which partition
the r-successors v1, . . . , vn of v0 in TC . We define

f∼ : {v1, . . . , vn} −→ {1, 2, 3} : vi 7→ ν where ν is such that uν = [vi]∼.

Let {vi, vj} ∈ E. Then dis(Ai, Aj) belongs to DG, and thus the compatibility of
∼ with DG implies that vi 6∼ vj. Consequently, f(vi) 6= f(vj), which shows that
G is 3-colorable.
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8 Related and future work

Polynomiality of the subsumption problem in EL was shown in [5] as a by-product
of the characterization of subsumption via the existence of homomomorphisms
between the corresponding description trees. This result can also be obtained
as a consequence of the fact that the containment problem Q1 ⊆ Q2 for con-
junctive queries is polynomial if Q2 is acyclic [26, 21]. Since it is easy to see
that EL(n)-concept descriptions can be expressed by acyclic conjunctive queries
with disequations [18], one might conjecture that polynomiality of subsumption
in EL(n) follows from the corresponding result for acyclic conjunctive queries with
disequations. This is not true, however. In fact, the containment problem for con-
junctive queries becomes considerably harder if disequations (i.e., atoms of the
form x 6= y for variables x, y) are allowed to occur in the conjunctive queries. For
general conjunctive queries with disequations, the containment problem is Πp

2-
complete rather than NP-complete as in the case of conjunctive queries without
disequations. Surprisingly, the problem remains Πp

2-complete if Q2 is restricted
to being acyclic [18]. And even if both queries contain only disequations (and no
database predicates), it is not hard to show by a reduction of the complement of
the graph homomorphism problem that the containment problem is coNP-hard.
Thus, the polynomiality result shown in the present paper does not follow from
known results for containment of conjunctive queries with disequations.

In [9], it was shown that subsumption in EL remains polynomial even in the
presence of GCIs, and this result was recently extended to a DL extending EL by
several other interesting constructors [2]. Unfortunately, the results in [2] imply
that subsumption in EL(n) becomes ExpTime-hard in the presence of GCIs.

The most interesting topics for future research are, on the one hand, to show that
the exponential translation from EL(n)C into ALCQ given in Section 3 is optimal,
i.e., to prove that there is no polynomial translation. On the other hand, the exact
complexity of subsumption between unrestricted EL(n)-concept descriptions is not
yet known. The best complexity upper-bound that we currently have is coNP
(see Corollary 6.4). We conjecture that the problem is coNP-hard, but have not
yet found an appropriate reduction from a coNP-complete problem.

References

[1] Franz Baader. Terminological cycles in a description logic with existential
restrictions. In Proc. 18th Int. Joint Conf. on Artificial Intelligence, 2003.

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL-
envelope. In Proc. 19th Int. Joint Conf. on Artificial Intelligence, 2005.
To appear.

32



[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[4] Franz Baader and Philipp Hanschke. Extensions of concept languages for
a mechanical engineering application. In Proc. 16th German Workshop on
Artificial Intelligence, volume 671 of LNCS, 1992. Springer-Verlag.
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