
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

PSpace Automata with Blocking

for Description Logics

Franz Baader Jan Hladik Rafael Peñaloza

LTCS-Report 06-04

Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
http://lat.inf.tu-dresden.de

Hans-Grundig-Str. 25
01062 Dresden

Germany

PSpace Automata with Blocking

for Description Logics

Franz Baader
Institute for Theoretical Computer Science, TU Dresden, Germany

(franz.baader@tu-dresden.de)

Jan Hladik
Institute for Theoretical Computer Science, TU Dresden, Germany

(jan.hladik@tu-dresden.de)

Rafael Peñaloza
Intelligent Systems Department, University of Leipzig, Germany

(penaloza@informatik.uni-leipzig.de)

February 27, 2007

Abstract

In Description Logics (DLs), both tableau-based and automata-
based algorithms are frequently used to show decidability and com-
plexity results for basic inference problems such as satisfiability of
concepts. Whereas tableau-based algorithms usually yield worst-case
optimal algorithms in the case of PSpace-complete logics, it is often
very hard to design optimal tableau-based algorithms for ExpTime-
complete DLs. In contrast, the automata-based approach is usually
well-suited to prove ExpTime upper-bounds, but its direct application
will usually also yield an ExpTime-algorithm for a PSpace-complete
logic since the (tree) automaton constructed for a given concept is
usually exponentially large. In the present paper, we formulate condi-
tions under which an on-the-fly construction of such an exponentially
large automaton can be used to obtain a PSpace-algorithm. We il-
lustrate the usefulness of this approach by proving a new PSpace

upper-bound for satisfiability of concepts w.r.t. acyclic terminologies
in the DL SI, which extends the basic DL ALC with transitive and
inverse roles.

1

1 Introduction

Description Logics (DLs) [2] are a successful family of logic-based knowl-
edge representation formalisms, which can be used to represent the con-
ceptual knowledge of an application domain in a structured and formally
well-understood way. DL systems provide their users with inference services
that deduce implicit knowledge from the explicitly represented knowledge.
For these inference services to be feasible, the underlying inference problems
must at least be decidable, and preferably of low complexity. For this reason,
investigating the computational complexity of reasoning in DLs of differing
expressive power has been one of the most important research topics in the
field for the last 20 years. Since Description Logics are closely related to
Modal Logics (MLs) [16], results and techniques can be transferred between
the two areas.

Two of the most prominent methods for showing decidability and com-
plexity results for DLs and MLs are the tableau-based [8, 4] and the
automata-based [18, 7] approach. Both approaches basically depend on the
tree-model property of the DL/ML under consideration: if a concept/formula
is satisfiable, then it is also satisfiable in a tree-shaped model. They differ
in how they test for the existence of a tree-shaped model. Tableau-based
algorithms try to generate such a model in a top-down non-deterministic
manner, starting with the root of the tree. Automata-based algorithms con-
struct a tree automaton that accepts exactly the tree-shaped models of the
concept/formula, and then test the language accepted by this automaton for
emptiness. The usual emptiness test for tree automata is deterministic and
works in a bottom-up manner. This difference between the approaches also
leads to different behaviour regarding elegance, complexity, and practicabil-
ity.

If the logic has the finite tree model property, then termination of tableau-
based algorithms is usually easy to achieve. If, in addition, the tree models
these algorithms are trying to construct are of polynomial depth (as is the
case for the PSpace-complete problem of satisfiability in the basic DL ALC,
which corresponds to the multi-modal variant of the ML K), then one can
usually modify tableau-based algorithms such that they need only polyno-
mial space: basically, they must only keep one path of the tree in memory
[17]. However, the automaton constructed in the automata-based approach
is usually exponential, and thus constructing it explicitly before applying
the emptiness test requires exponential time and space. In [9], we formulate
conditions on the constructed automaton that ensure—in the case of finite
tree models of polynomially bounded depth—that an on-the-fly construction
of the automaton during a non-deterministic top-down emptiness test yields

2

a PSpace algorithm.
If the logic does not have the finite tree model property, then apply-

ing the tableau-based approach in a straightforward manner leads to a non-
terminating procedure. To ensure termination of tableau-based algorithms
in this case, one must apply an appropriate cycle-checking technique, called
“blocking” in the DL literature [4]. This is, for example, the case for satis-
fiability in ALC w.r.t. so-called general concept inclusions (GCIs) [1]. Since
blocking usually occurs only after an exponential number of steps and since
tableau-based algorithms are non-deterministic, the best complexity upper-
bound that can be obtained this way is NExpTime. This is not optimal
since satisfiability in ALC w.r.t. GCIs is “only” ExpTime-complete. The
ExpTime upper-bound can easily be shown with the automata-based ap-
proach: the constructed automaton is of exponential size, and the (bottom-
up) emptiness test for tree automata runs in time polynomial in the size of
the automaton. Although the automata-based approach yields a worst-case
optimal algorithm in this case, the obtained algorithm is not practical since
it is also exponential in the best case: before applying the emptiness test, the
exponentially large automaton must be constructed. In contrast, optimised
implementations of tableau-based algorithms usually behave quite well in
practice [10], in spite of the fact that they are not worst-case optimal. There
have been some attempts to overcome this mismatch between practical and
worst-case optimal algorithms for ExpTime-complete DLs. In [5] we show
that the so-called inverse tableau method [19] can be seen as an on-the-
fly implementation of the emptiness test in the automata-based approach,
which avoids the a priori construction of the exponentially large automa-
ton. Conversely, we show in [3] that the existence of a sound and complete
so-called ExpTime-admissible tableau-based algorithm for a logic always im-
plies the existence of an ExpTime automata-based algorithm. This allows us
to construct only the (practical, but not worst-case optimal) tableau-based
algorithm, and get the optimal ExpTime upper-bound for free.

In the present paper, we extend the approach from [9] mentioned above
such that it can also deal with PSpace-complete logics that do not have the
finite tree model property. A well-known example of such a logic is ALC
extended with transitive roles [14]. To illustrate the power of our approach,
we use the more expressive DL SI as an example, which extends ALC with
transitive and inverse roles. In addition, we also allow for acyclic concept
definitions. To the best of our knowledge, the result that satisfiability in SI
w.r.t. acyclic concept definitions is in PSpace is new.

3

2 The description logic SI

The basic description logic ALC (attributive language with complements)
[17] provides concepts (unary relation symbols) and roles (binary relation
symbols) and allows for the use of conjunction, disjunction and negation as
well as existential and universal quantification for concepts. Thus, we can
describe a man who has at least one unmarried child and all of whose children
are married or happy as:

Man u ∃has-child.¬Married u ∀has-child.(Married t Happy)

SI is an extension of ALC, where I stands for inverse roles and S stands
for transitive roles due to the similarity between ALC with transitive roles
and the multi-modal logic S4m (see e.g. [6]). Using these constructs, we can
stipulate that the relation has-offspring is transitive and describe a king one
of whose ancestors was also a king and all of whose descendants are also
kings as follows:

King u ∃has-offspring−.King u ∀has-offspring.King

In description logics, a terminology is stored in a knowledge base called TBox,
which consists of concept definitions A

.
= C and general concept inclusion

axioms C v D, so we can define humans as the union of men and women,
and we can state that if a man is married, then he has a wife.

Human
.
= Man t Woman

Man u Married v ∃has-wife.Woman

SI also contains a top concept > and a bottom concept ⊥, standing for a
tautology and an unsatisfiable concept, respectively. Formally, SI is defined
as follows:

Definition 1 (Syntax of SI) Let NC be a set of concept names and NR

be a set of role names, where NT ⊆ NR is the set of transitive role names.
Then the set of SI roles is defined as NR ∪{r− | r ∈ NR}, and the set of SI
concepts is the smallest set that satisfies the following conditions:

• >, ⊥, and all concept names are concepts;

• if C and D are concepts, then ¬C, C tD and C uD are also concepts;

• if C is a concept and r is a role, then ∃r.C and ∀r.C are also concepts.

4

To avoid roles like r−−, we define, for a role r, the inverse of r (r) as r−,
if r is a role name, and as s if r is an inverse role s−. Since a role is transitive
iff its inverse is transitive, we use a predicate trans(r) which is defined as true
iff r or r belongs to NT .

A concept definition has the form A
.
= C, where A is a concept name

and C is a concept. If there exists a concept definition for A, it is called
a defined concept name, otherwise it is called primitive. A general concept
inclusion axiom (GCI) has the form C v D, where C and D are concepts.
An acyclic TBox is a set of concept definitions Ai

.
= Ci, where there is at

most one definition for a concept name and there is no sequence of concept
definitions A1

.
= C1, . . . , An

.
= Cn such that Ci contains Ai+1 for 1 ≤ i < n

and Cn contains A1. A general TBox can additionally contain GCIs.

The definition of acyclic TBoxes ensures that no concepts are defined
recursively (as in Male

.
= ¬Female and Female

.
= ¬Male) and that con-

cept definitions are not abused to define equivalence between complex con-
cepts (as in A

.
= ∀r.C and A

.
= ∃r.D). Thus, an acyclic TBox is essen-

tially a set of macro definitions, which could in principle be completely ex-
panded. However, acyclic TBoxes are still useful because a concept with
expanded definitions may be significantly harder to read for a human and,
more importantly, it may be exponentially larger: the size of the TBox
Tn := {Ai

.
= (∃r.Ai+1) u (∃r.¬Ai+1) | 0 ≤ i ≤ n} is linear in n, whereas

the length of the expanded concept A0 is exponential.

Definition 2 (Semantics of SI) An interpretation I is a pair (∆I , ·I)
where ∆I is a set (called the domain of I) and ·I is a function which assigns
to every concept name A a subset AI of ∆I and to every role name r a subset
rI of ∆I × ∆I . This function is extended to complex concepts and roles as
follows:

• >I := ∆I , ⊥I = ∅,

• (C uD)I := CI ∩DI , (C tD)I := CI ∪DI , (¬C)I := ∆I \ CI ,

• (∃r.C)I := {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ CI},

• (∀r.C)I := {x ∈ ∆I | for all y ∈ ∆I , (x, y) ∈ rI implies y ∈ CI},

• (r−)I := {(y, x) | (x, y) ∈ rI}.

Moreover, we demand that for a transitive role name r it holds that rI =
(rI)tr, where ·tr denotes transitive closure of a relation.

An interpretation I is called a model for a concept C if CI 6= ∅, and a
model for a TBox T if, for every definition A

.
= C ∈ T , AI = CI and for

5

every GCI C v D, CI ⊆ DI . A model of C with respect to T is a model
of C and T . A concept C is called satisfiable (with respect to T) if there is
a model of C (and T). Similarly, we say that a concept C is subsumed by
a concept D, written as C v D (w.r.t. T) if, in every interpretation (every
model for T), CI ⊆ DI .

The subsumption problem and the satisfiability problem are the standard
inference problems for DLs. In the presence of negation and conjunction, they
can be mutually reduced to each other: C is satisfiable iff C is not subsumed
by ⊥, and C is subsumed by D iff C u ¬D is unsatisfiable. In the following,
we will therefore only consider the satisfiability problem.

2.1 Hintikka trees

Tree models of satisfiable SI concepts can be obtained by applying the well-
known technique of unravelling [6]. For example, the SI concept A is sat-
isfiable w.r.t. the general TBox {A v ∃r.A} in a one-element model whose
single element belongs to A and is related to itself via r. The corresponding
unravelled model consists of a sequence d0, d1, d2, . . . of elements, all belong-
ing to A, where di is related to di+1 via r. Intuitively, Hintikka trees are tree
models where every node is labelled with the appropriate concepts for the
element it represents. These concepts are taken from the set of subconcepts
of the concept to be tested for satisfiability and of the concepts occurring in
the TBox. In our example, the nodes di would be labelled by A and ∃r.A
since each di belongs to these concepts.

To simplify the formal definitions, we assume in the following that all
concepts are in negation normal form (NNF), i.e. negation appears only di-
rectly in front of concept names. An SI concept can be transformed into
NNF in linear time using de Morgan’s laws, duality of quantifiers, and elim-
ination of double negation. We denote the NNF of a concept C by nnf(C)
and nnf(¬C) by vC.

Definition 3 (Subconcepts, Hintikka sets) The set of subconcepts of an
SI concept C (sub(C)) is the least set S that contains C and has the following
properties: if S contains ¬A for a concept name A, then A ∈ S; if S contains
D tE or D uE, then {D,E} ⊆ S; if S contains ∃r.D or ∀r.D, then D ∈ S.
For a TBox T , sub(C, T) is defined as follows:

sub(C) ∪
⋃

A
.
=D∈T

({A,¬A} ∪ sub(D) ∪ sub(vD)) ∪
⋃

DvE∈T

sub(vD t E)

A set H ⊆ sub(C, T) is called a Hintikka set for C if the following three
conditions are satisfied: if DuE ∈ H, then {D,E} ⊆ H; if DtE ∈ H, then

6

{D,E} ∩H 6= ∅; and there is no concept name A with {A,¬A} ⊆ H. For a
TBox T , a Hintikka set H is called T -expanded if for every GCI D v E ∈ T ,
it holds that vD t E ∈ H, and for every concept definition A

.
= D ∈ T , it

holds that, if A ∈ H then D ∈ H, and if ¬A ∈ H then vD ∈ H.1

Hintikka trees for C and T are infinite trees of a fixed arity k, which is
determined by the number of existential restrictions, i.e. concepts of the form
∃r.D, in sub(C, T). For a positive integer k, we denote the set {1, . . . , k}
by K. The nodes of a k-ary tree can be denoted by the elements of K∗,
with the empty word ε denoting the root, and ui the ith successor of u.
In the case of labelled trees, we will refer to the label of the node u in the
tree t by t(u). In the definition of Hintikka trees, we need to know which
successor in the tree corresponds to which existential restriction. For this
purpose, we fix a linear order on the existential restrictions in sub(C, T). Let
ϕ : {∃r.D ∈ sub(C, T)} → K be the corresponding ordering function, i.e.
ϕ(∃r.D) determines the successor node corresponding to ∃r.D. In general,
such a successor node need not exist in a tree model. To obtain a full k-
ary tree, Hintikka trees contain appropriate dummy nodes. For technical
reasons, which will become clear later on, the nodes of the Hintikka trees
defined below are not simply labelled by Hintikka sets, but by quadruples
(Γ,Π,Ω, %), where % is the role which connects the node with the father
node, Ω is the complete Hintikka set for the node, Γ ⊆ Ω consists of the
unique concept D contained in Ω because of an existential restriction ∃%.D
in the father node, and Π contains only those concepts that are contained
in Ω because of universal restrictions ∀%E in the father node. We will use a
special new role name λ for nodes that are not connected to the father node
by a role, i.e. the root node and those (dummy) nodes which are labelled
with an empty set of concepts.

Definition 4 (Hintikka trees) The tuple ((Γ0,Π0,Ω0, %0), (Γ1,Π1,Ω1, %1),
. . ., (Γk,Πk,Ωk, %k)) is called C, T -compatible if, for all i, 0 ≤ i ≤ k, Γi ∪
Πi ⊆ Ωi, Ωi is a T -expanded Hintikka set, and the following holds for every
existential concept ∃r.D ∈ sub(C, T):

• if ∃r.D ∈ Ω0, then

1. Γϕ(∃r.D) consists of D;

2. Πϕ(∃r.D) consists of all concepts E for which there is a universal
restriction ∀r.E ∈ Ω0, and additionally ∀r.E if trans(r);

1We will refer to this technique of handling concept definitions as lazy unfolding. Note
that, in contrast to GCIs, concept definitions are only applied if A or ¬A is explicitly
present in H.

7

3. for every concept ∀r.F ∈ Ωϕ(∃r.D), Ω0 contains F , and additionally
∀r.F if trans(r);

4. %ϕ(∃r.D) = r;

• if ∃r.D /∈ Ω0, then Γϕ(∃r.D) = Πϕ(∃r.D) = Ωϕ(∃r.D) = ∅ and %ϕ(∃r.D) = λ.

A k-ary tree t is called a Hintikka tree for C and T if, for every node v ∈ K∗,
the tuple (t(v), t(v1), . . . , t(vk)) is C, T -compatible, and t(ε) has empty Γ-
and Π-components, an Ω-component containing C, and λ as its %-component.
For a role r, we say that a node w is an r-neighbour of a node v if w =
v · ϕ(∃r.D) for some concept D and ∃r.D ∈ Ω(v) or if v = w · ϕ(∃r.D) and
∃r.D ∈ Ω(w).

Our definition of a Hintikka tree ensures that the existence of such a tree
characterises satisfiability of SI concepts. It basically combines the technique
for handling transitive and inverse roles introduced in [11]2 with the technique
for dealing with acyclic TBoxes employed in [9].

Theorem 5 The SI concept C is satisfiable w.r.t. the general TBox T iff
there exists a Hintikka tree for C and T .

Proof. For a node v with t(v) = (Γ,Π,Ω, %), we will refer to the compo-
nents as Γ(v), Π(v) etc.

For the “if” direction, we will show how to construct a model (∆I , ·I)
from a Hintikka tree t. Let ∆I = {v ∈ K∗ | t(v) 6= (∅, ∅, ∅, λ)}. For a role
name r ∈ NR \ NT , we define rI = {(v, w) | w is an r-neighbour of v}. If
r ∈ NT , we define rI as the transitive closure of this relation.

For a primitive concept name A, we define AI = {v ∈ ∆I | A ∈ Ω(v)}.
In order to show that this interpretation can be extended to defined concept
names and that it interprets complex concepts correctly, we define a weight
function o(C) for concept terms C as follows:

• o(A) = 0 for a primitive concept name A;

• o(C uD) = o(C tD) = max{o(C), o(D)} + 1;

• o(∃r.C) = o(∀r.C) = o(C) + 1;

• o(B) = o(C) + 1 for a defined concept name B
.
= C.

Notice that o is well-founded because T is acyclic. We can now show by
induction over the weight of the appearing concepts that if D ∈ Ω(v), then
v ∈ DI :

2there used in the context of tableau-based algorithms.

8

• if A ∈ Ω(v) for a primitive concept name A, v ∈ AI holds by definition;

• if E u F ∈ Ω(v) then, since Ω(v) is a Hintikka set, it contains E and
F , and by induction v ∈ EI ∩ F I holds;

• if EtF ∈ Ω(v) then v ∈ EI ∪F I follows from an analogous argument;

• if ∃r.E ∈ Ω(v) for a role name r then, since t is a Hintikka tree,
(v, v · ϕ(∃r.E)) ∈ rI and E ∈ Ω(v · ϕ(∃r.E)) (inverse roles can be
treated analogously), thus by induction v ∈ (∃r.E)I holds;

• if ∀r.E ∈ Ω(v) for a role r and (v, w) ∈ rI , then (v, w) ∈ rI holds either
because w is an r-neighbour of v in the Hintikka tree, in which case E ∈
Ω(w) holds by definition of C, T -compatible, or r is a transitive role and
(v, w) is in the transitive closure of the relation defined above. In this
case, there exists a sequence of tree nodes v = v0, v1, . . . , vf−1, vf = w
such that for every i < f , vi+1 is an r-neighbour of vi. Since trans(r)
holds, every node label t(vi) for 1 ≤ i ≤ t contains ∀r.E and E because
of the definition of C, T -compatible, thus it follows by induction that
w ∈ EI and v ∈ (∀r.E)I ;

• if B ∈ Ω(v) for a defined concept name B
.
= C, we know that C ∈ Ω(v)

because Ω(v) is T -expanded. Since o(C) < o(B), it follows by induction
that v ∈ CI holds. Thus we can define BI = CI and obtain v ∈ BI .

For a GCI E v F , Ω(v) contains vE t F for every node v. As Ω(v) is
a Hintikka set, it contains F or vE. If it contains F then, as we have just
shown, v belongs to F I . Otherwise, Ω(v) contains vE, and v ∈ (vE)I =
∆I \ EI holds, which implies v /∈ EI . Therefore every node v ∈ EI is also
contained in F I .

For the “only-if” direction, we show how a model (∆I , ·I) for C w.r.t. T
can be used to define a C, T -compatible Hintikka tree t with C ∈ Ω(ε). Let
k be the number of existential concepts in sub(C, T) and ϕ be a function as
in Definition 4. We inductively define a function ϑ : K∗ → ∆I ∪ {ψ} for a
new individual ψ such that ϑ(v) satisfies all concepts in Ω(v).

Since (∆I , ·I) is a model, there exists an element d0 ∈ ∆I with d0 ∈ CI .
So we define ϑ(ε) = d0 and set Γ(ε) = Π(ε) = ∅, Ω(ε) = {E ∈ sub(C, T) |
d0 ∈ EI}, and %(ε) = λ. Then we inductively define, for every node v
for which ϑ is already defined, the labels of v · i, 1 ≤ i ≤ k, as follows: if
Ω(v) contains the existential concept ∃r.E with i = ϕ(∃r.E) then, since ϑ(v)
satisfies ∃r.E, there exists a d ∈ ∆I with (ϑ(v), d) ∈ rI and d ∈ EI , and
thus we set ϑ(v · i) = d, Ω(v · i) = {F ∈ sub(C, T) | d ∈ F I}, %(v · i) = r,
Γ(v · i) = {E}, and Π(v · i) contains every F with ∀r.F ∈ Ω(v) and, if r is

9

transitive, additionally ∀r.F . If ϑ(v) does not belong to (∃r.E)I , we define
ϑ(v · i) = ψ and (Γ(v · i),Π(v · i),Ω(v · i), %(v · i)) = (∅, ∅, ∅, λ).

It follows by construction that Γ(v · i) and Π(v · i) are subsets of Ω(v · i)
and that the tuple ((Γ(v),Π(v),Ω(v), %(v)), (Γ(v ·1),Π(v · i),Ω(v ·1), %(v ·1)),
. . . , (Γ(v ·k),Π(v ·k),Ω(v ·k), %(v ·k))) is C, T -compatible. Note that for every
v ∈ K∗, Ω(v) is a Hintikka set since it follows from the fact that (∆I , ·I) is
a model that if d ∈ (E t [u]F)I , then d ∈ EI ∪ [∩]F I , and that d ∈ EI iff
d /∈ (¬E)I . Á

3 Tree automata

The existence of a Hintikka tree can be decided with the help of so-called
looping automata, i.e. automata on infinite trees without a special accep-
tance condition. After introducing these automata, we will first show how
they can be used to decide satisfiability in SI w.r.t. general TBoxes in expo-
nential time. Then we will introduce a restricted class of looping automata
and use it to show that satisfiability in SI w.r.t. acyclic TBoxes can be
decided in polynomial space.

3.1 Looping automata

The following definition of looping tree automata does not include an alpha-
bet for labelling the nodes of the trees. In fact, when deciding the emptiness
problem for such automata, only the existence of a tree accepted by the au-
tomaton is relevant, and not the labels of its nodes. For our reduction this
implies that the automaton we construct for a given input C, T has as its
successful runs all Hintikka trees for C, T rather than actually accepting all
Hintikka trees for C, T .

Definition 6 (Automaton, run) A looping tree automaton over k-ary
trees is a tuple (Q,∆, I), where Q is a finite set of states, ∆ ⊆ Qk+1 is
the transition relation, and I ⊆ Q is the set of initial states. A run of this
automaton on the (unique) unlabelled k-ary tree t is a labelled k-ary tree
r : K∗ → Q such that (r(v), r(v1), . . . , r(vk)) ∈ ∆ for all v ∈ K∗. The run is
successful if r(ε) ∈ I. The emptiness problem for looping tree automata is the
problem of deciding whether a given looping tree automaton has a successful
run or not.

In order to decide the emptiness problem in time polynomial in the size of
A, one computes the set of all bad states, i.e. states that do not occur in

10

any run, in a bottom-up manner [18, 5]: states that do not occur as first
component in the transition relation are bad, and if all transitions that have
the state q as first component contain a state already known to be bad, then
q is also bad. The automaton has a successful run iff there is an initial state
that is not bad.

For an SI concept C and a general TBox T , we can construct a looping
tree automaton whose successful runs are exactly the Hintikka trees for C
and T .

Definition 7 (Automaton AC,T) For an SI concept C and a TBox T , let
k be the number of existential restrictions in sub(C, T). Then the looping
automaton AC,T = (Q,∆, I) is defined as follows:

• Q consists of all 4-tuples (Γ,Π,Ω, %) such that Γ∪Π ⊆ Ω ⊆ sub(C, T),
Γ is a singleton set, Ω is a T -expanded Hintikka set for C, and % occurs
in C or T or is equal to λ;

• ∆ consists of all C, T -compatible tuples ((Γ0,Π0,Ω0, %0),
(Γ1,Π1,Ω1, %1), . . . , (Γk,Πk,Ωk, %k));

• I := {(∅, ∅,Ω, λ) ∈ Q | C ∈ Ω}.

Lemma 8 AC,T has a successful run iff C is satisfiable w.r.t. T .

Proof. Since the transition relation ∆ is defined exactly as the relation
C, T -compatible, this follows by simple induction. Á

Since the cardinality of sub(C, T) and the size of each of its elements is
linear in the size of C, T , the size of the automaton AC,T is exponential in the
size of C, T . Together with the fact that the emptiness problem for looping
tree automata can be decided in polynomial time, this yields:

Theorem 9 Satisfiability in SI w.r.t. general TBoxes is in ExpTime.

This complexity upper-bound is optimal since ExpTime-hardness follows
from the known hardness result for ALC with general TBoxes [16].

One could also try to solve the emptiness problem by constructing a
successful run in a top-down manner : label the root with an element q0 of I,
then apply a transition with first component q0 to label the successor nodes,
etc. There are, however, two problems with this approach. First, it yields
a non-deterministic algorithm since I may contain more than one element,
and in each step more than one transition may be applicable. Second, one
must employ an appropriate cycle-checking technique (similar to blocking

11

in tableau-based algorithms) to obtain a terminating algorithm. Applied
to the automaton AC,T , this approach would at best yield a (non-optimal)
NExpTime satisfiability test.

3.2 Blocking-invariant automata

In order to obtain a PSpace result for satisfiability w.r.t. acyclic TBoxes,
we use the top-down emptiness test sketched above. In fact, in this case
non-determinism is unproblematic since NPSpace is equal to PSpace by
Savitch’s theorem [15]. The advantage of the top-down over the bottom-up
emptiness test is that it is not necessary to construct the whole automaton be-
fore applying the emptiness test. Instead, the automaton can be constructed
on-the-fly. However, we still need to deal with the termination problem. For
this purpose, we adapt the blocking technique known from the tableau-based
approach. In the following, when we speak about a path in a k-ary tree, we
mean a sequence of nodes v1, . . . , vm such that v1 is the root ε and vi+1 is a
direct successor of vi.

Definition 10 (¾-invariant, m-blocking) Let A = (Q,∆, I) be a loop-
ing tree automaton and ¾ be a binary relation over Q, called the blocking
relation. If q ¾ p, then we say that q is blocked by p. The automaton A
is called ¾-invariant if, for every q ¾ p, and (q0, q1, . . ., qi−1, q, qi+1, . . .,
qk) ∈ ∆, it holds that (q0, q1, . . ., qi−1, p, qi+1, . . .,qk) ∈ ∆. A ¾-invariant
automaton A is called m-blocking if, for every successful run r of A and
every path v1, . . . , vm of length m in r, there are 1 ≤ i < j ≤ m such that
r(vj)¾ r(vi).

Obviously, any looping automaton A = (Q,∆, I) is =-invariant and m-
blocking for every m > #Q (where #Q denotes the cardinality of Q). How-
ever, we are interested in automata and blocking relations where blocking
occurs earlier than after a linear number of transitions.

To test an m-blocking automaton for emptiness, it is sufficient to con-
struct partial runs of depth m. More formally, we define K≤n :=

⋃n

i=0K
i.

A partial run of depth m is a mapping r : K≤m−1 → Q such that
(r(v), r(v1), . . . , r(vk)) ∈ ∆ for all v ∈ K≤m−2. It is successful if r(ε) ∈ I.

Lemma 11 An m-blocking automaton A = (Q,∆, I) has a successful run
iff it has a successful partial run of depth m.

Proof. The “only if” direction is trivial, so only the “if” direction will be
proved. For this purpose, we will show how to construct a complete successful

12

run from a partial one by replacing, for every blocked node v ¾ w, the
subtree starting at v with the subtree starting at w.

Suppose there is a successful partial run r of depth m. This run will be
used to construct a function β : K∗ → K≤m inductively as defined below.
The intuitive meaning of β(v) = w is “w stands for v”, i.e. we will use the
labels of w and w’s successors in the partial run also for v and v’s successors
in the complete run.

• β(ε) := ε,

• for a node v·i, if there is a predecessor w of β(v)·i such that r(β(v)·i)¾
r(w), then β(v · i) := w; and β(v · i) := β(v) · i otherwise.

In the following, we will refer to (direct or indirect) successors of blocked
nodes as indirectly blocked. Notice that the range of β does not contain any
blocked or indirectly blocked nodes, since we start with an non-blocked node
and, whenever we encounter a blocked node, we replace it and its successors
with the blocking one and its successors. Moreover, for every node v with
β(v) 6= v, the depth of v, |v|, is larger than |β(v)|, because β maps a blocked
node to a predecessor and the child of a blocked node to a child of the
predecessor etc.

We will now show by induction over |v| that the function β is well-defined,
more precisely that |β(v)| < m for all v ∈ K∗, and that we can use β to
construct a successful run s from the successful partial run r by setting, for
every node v, s(v) := r(β(v)). For the root, s(ε) = r(ε) holds, thus both s
and r start with the same label. If, for any node v, the successors of v are
not blocked, then the transition (s(v), s(v · 1), . . . , s(v · k)) is contained in ∆
because (r(β(v)), r(β(v) · 1), . . . , r(β(v) · k)) is a transition in the run r. In
this case, since β(v) is not blocked or indirectly blocked, |β(v) · i| < m for all
1 ≤ i ≤ k, because otherwise the path to β(v) · i would have length at least
m without containing a blocked node, in contradiction with the induction
hypothesis that the part of s constructed so far is part of a successful run
and that neither β(v) nor any of its predecessors is blocked.

If any successors of v are blocked, i.e. r(v · i) ¾ r(w) then (r(β(v)),
r(β(v) · 1), . . ., r(β(v) · i), . . ., r(β(v) · k)) ∈ ∆ implies (r(β(v)), r(β(v) · 1),
. . ., r(β(w)), . . . , r(β(v) · k)) ∈ ∆ because of the definition of¾-invariance.
Hence, (s(v), s(v · 1), . . . , s(v · k)) ∈ ∆, and s is a successful run of A. In
this case, since w is a predecessor of β(v) · i and |β(v)| < m, it holds that
|w| < m, and thus |β(v · i)| < m. Observe that w cannot be blocked itself
because β(v) is a successor of w or equal to w and the range of β does not
contain blocked or indirectly blocked nodes, thus the range of β only contains
non-blocked nodes. Á

13

1: if I 6= ∅ then
2: guess an initial state q ∈ I
3: else
4: return “empty”
5: end if
6: if there is a transition from q then
7: guess such a transition (q, q1, . . . , qk) ∈ ∆
8: push(SQ, (q1, . . . , qk)), push(SN, 0)
9: else

10: return “empty”
11: end if
12: while SN is not empty do
13: (q1, . . . , qk) := pop(SQ), n := pop(SN) + 1
14: if n ≤ k then
15: push(SQ, (q1, . . . , qk)), push(SN, n)
16: if length(SN) < m− 1 then
17: if there is a transition from qn then
18: guess a transition (qn, q

′
1, . . . , q

′
k) ∈ ∆

19: push(SQ, (q′1, . . . , q
′
k)), push(SN, 0)

20: else
21: return “empty”
22: end if
23: end if
24: end if
25: end while
26: return “not empty”

Figure 1: The top-down emptiness test for m-blocking automata.

14

For k > 1, the size of a successful partial run of depthm is still exponential
in m. However, when checking for the existence of such a run, one can
perform a depth-first traversal of the run while constructing it. To do this, it
is basically enough to have at most one path of length up to m in memory.3

The algorithm that realizes this idea is shown in Figure 1. It uses two stacks:
the stack SQ stores, for every node in the current path, the right-hand side
of the transition which led to this node, and the stack SN stores, for every
node in the current path, on which component of this right-hand side we are
currently working. If we refer to the depth of SN by d and to the elements in
SN by SN(1)[the bottom element], . . . , SN(d)[the top element], the next node
to be checked is SN(1) · SN(2) · . . . · SN(d) + 1. The entries of SQ and SN
are elements of Qk and K ∪ {0}, respectively, and the number of entries is
bounded by m for each stack.

Figure 2 shows the values stored in each of the stacks SQ and SN at the
beginning of an iteration, and their relation with the traversal of the run.
The circled nodes represent the path followed to reach the node about to
be checked. The values of the elements of the stack are shown next to the
depth in the run to which they correspond. For this reason, the stacks appear
backwards, with their bottom element at the top of the figure, and vice versa.

�

q5

�

q4
�

q4
�

q0

�

q3
�

q2
�

q2

�

q1
�

q0
	

q1

SQ SN

(q4, q4, q0) 1

(q3, q2, q2) 3

(q1, q0, q1) 1

Figure 2: A run and the corresponding data structures.

After starting the algorithm, we first guess an initial state and transition.
If we can find one, we push the labels of the nodes 1, . . . , k onto SQ and the
number 0 onto SN. Then we enter the while loop. As long as the stacks
are not empty, we take the top elements of both stacks. If n > k in line 14,
this indicates that we have checked all nodes on this level, and we backtrack

3This is similar to the so-called trace technique for tableau-based algorithms [17].

15

without pushing anything on the stacks, which means that we will continue
at the next upper level in the next loop. Otherwise, we store the information
that we have to check our next sibling by pushing the same tuple of states
onto SQ and the incremented number n onto SN. Next, we test if we have
already reached the maximum depth in line 16. If the answer is yes, we
backtrack, otherwise we try to find a transition from the current node and
if there is one, we push the relevant information on the stacks, which means
that we will descend into the next lower level in the next loop. If there is no
transition, we reject the input.

Note that the algorithm does not require the automaton A to be explicitly
given. It can be constructed on-the-fly during the run of the algorithm.

Definition 12 Assume that we have a set of inputs I and a construction
that yields, for every i ∈ I, an mi-blocking automaton Ai = (Qi,∆i, Ii)
working on ki-ary trees. We say that this construction is a PSpace on-the-
fly construction if there is a polynomial P such that, for every input i of size
n we have

• mi ≤ P (n) and ki ≤ P (n);

• every element of Qi is of a size bounded by P (n);

• there is a P (n)-space bounded non-deterministic algorithm for guessing
an element of Ii;

• there is a P (n)-space bounded non-deterministic algorithm for guessing,
on input q ∈ Qi, a transition from ∆i with first component q.

The algorithms guessing an initial state (a transition starting with q) are
assumed to yield the answer “no” if there is no initial state (no such transi-
tion).

The following theorem shows that the conditions in Definition 12 are
sufficient to ensure a PSpace result.

Theorem 13 If the automata Ai are obtained from the inputs i ∈ I by a
PSpace on-the-fly construction, then the emptiness problem for Ai can be
decided by a deterministic algorithm in space polynomial in the size of i.

Proof. We will first show by induction that if the algorithm described in
Figure 1 answers “not empty”, then the we can define a successful partial
run r from the qi values used by the algorithm. Since the algorithm answers
“not empty”, there is an initial transition (q, q1, . . . , qk). Then set r(ε) = q

16

and r(i) = qi for all 1 ≤ i ≤ k. Suppose now that the algorithm visits a
node v = a0 · . . . · a` ∈ K∗. Then, by induction hypothesis, r is defined for
the previously visited nodes. If length(SP) < k, then the algorithm guesses
a transition, and r(v · i) = q′i defines a transition in the run. Otherwise, the
algorithm has reached depth m, so we have reached the maximum depth of
the partial run.

Conversely, if there is a successful partial run r, then it is possible to guess
the initial state, and initial transition (r(ε), r(1), . . . , r(k)). By Definition 12,
the space required for guessing the initial state r(ε) and the transition from
r(ε) is bounded by P (n). When the algorithm visits one of these initial
nodes, they have the same labels as in r. Now suppose the algorithm visits
a node v with r(v) = q. If the length of v is smaller than m, then there is
a transition on r, (r(v), r(v · 1), . . . , r(v · k)) which the algorithm can guess
(using space bounded by P (n)) and so it will not return “empty”. At any
time, the stack SQ contains at most mi tuples of ki states and SN contains
at most mi numbers between 0 and ki. Since mi, ki and the size of each state
are bounded by P (m), the space used by these stacks is polynomial in the
size of i.

It follows from Lemma 11 that this emptiness test is sound and complete.
From Savitch’s theorem [15] we obtain the deterministic complexity class.

Á

3.3 Satisfiability in SI w.r.t. acyclic TBoxes

It is easy to see that the construction of the automaton AC,T from a given
SI concept C and a general TBox T satisfies all but one of the conditions
of a PSpace on-the-fly construction. The condition that is violated is the
one requiring that blocking must occur after a polynomial number of steps.
In the case of general TBoxes, this is not surprising since we know that
the satisfiability problem is ExpTime-hard. Unfortunately, this condition
is also violated if T is an acyclic TBox. The reason is that successor states
may contain new concepts that are not really required by the definition of
C, T -compatible tuples, but are also not prevented by this definition. In the
case of acyclic TBoxes, we can construct a subautomaton that avoids such
unnecessary concepts. It has less runs than AC,T , but it does have a successful
run whenever AC,T has one. The construction of this subautomaton follows
the following general pattern.

Definition 14 (Faithful) Let A = (Q,∆, I) be a looping tree automaton
on k-ary trees. The family of functions fq : Q → QS for q ∈ QS is faithful

17

w.r.t. A if I ⊆ QS ⊆ Q, and the following two conditions are satisfied for
every q ∈ QS:

1. if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆;

2. if (q0, q1, . . . , qk) ∈ ∆, then (fq(q0), fq(q1), . . . , fq(qk)) ∈ ∆. 4

The subautomaton AS = (QS,∆S, I) of A induced by this family has the
transition relation ∆S := {(q, fq(q1), . . . , fq(qk)) | (q, q1, . . . , qk) ∈ ∆ and q ∈
QS}.

Instead of testing A for emptiness, we can equivalently test AS.

Lemma 15 Let A be a looping tree automaton and AS its subautomaton
induced by the faithful family of functions fq : Q→ QS for q ∈ QS. Then A
has a successful run iff AS has a successful run.

Proof. Since every successful run of AS is also a successful run of A,
the “if” direction is obvious. For the “only if” direction, we will show how
to transform a successful run r of A into a successful run s of AS. To
do this, we traverse r breadth-first, creating an intermediate run r̂, which
initially is equal to r. At every node v ∈ K∗, we replace the labels of
the direct and indirect successors of v with their respective fr̂(v) values (see
Definition 14). More formally, at node v, we replace r̂(w) with fr̂(v)(r̂(w)) for
all w ∈ {v ·u | u ∈ K+}. By Definition 14, r̂ is still a successful run after the
replacement (note that condition 2 is necessary to ensure transitions from
the successors of v). We define s as the value of r̂ “in the limit”, i.e. for
every node v, s(v) has the value of r̂(v) after v has been processed. Á

Before we can define an appropriate family of functions for AC,T , we must
introduce some notation. For an SI concept C and an acyclic TBox T , the
role depth rdT (C) of C w.r.t. T is the maximal nesting of (universal and
existential) role restrictions in the concept obtained by expanding C w.r.t.
T :

• rdT (A) = 0 for a primitive concept name A,

• rdT (A) = rdT (C) for a defined concept A
.
= C,

• rdT (¬C) = rdT (C), rdT (CtD) = rdT (CuD) = max{rdT (C), rdT (D)},

• rdT (∃r.C) = rdT (∀r.C) = rdT (C) + 1,

4Note that this condition does neither imply nor follow from condition 1, since q0 need
not be equal to q, and it is not required that fq(q) equals q.

18

• rdT (S) = max{rdT (D) | D ∈ S} for a set of concepts S.

Obviously, rdT (C) is polynomially bounded by the size of C, T . For a set of
SI concepts S, its role depth rdT (S) w.r.t. T is the maximal role depth w.r.t.
T of the elements of S. We define sub6n(C, T) := {D | D ∈ sub(C, T) ∧
rdT (D) ≤ n}, and S/r := {D ∈ S | there is an E such that D = ∀r.E}.

The main idea underlying the next definition is the following. If T is
acyclic, then the definition of C, T -compatibility requires, for a transition
(q, q1, . . . , qk) of AC,T , only the existence of concepts in qi = (Γi,Πi,Ωi, %i)
that are of a smaller depth than the maximal depth n of concepts in q if %i is
not transitive. If %i is transitive, then Πi may also contain universal restric-
tions of depth n. We can therefore remove from the states qi all concepts
with a higher depth and still maintain C, T -compatibility.

Definition 16 (Functions fq) For two states q = (Γ,Π,Ω, %) and q′ =
(Γ′,Π′,Ω′, %′) of AC,T with rdT (Ω) = n, we define the function fq(q

′) as
follows:

• if rdT (Γ′) ≥ rdT (Ω), then fq(q
′) := (∅, ∅, ∅, λ);

• otherwise, fq(q
′) := (Γ′,Π′′,Ω′′, %′), where

– P = sub6n(C, T)/%′, if trans(%′); otherwise P = ∅;

– Π′′ = Π′ ∩ (sub6n−1(C, T) ∪ P);

– Ω′′ = Ω′ ∩ (sub6n−1(C, T) ∪ Π′′).

If T is acyclic, then the set Ω′′ defined above is still a T -expanded Hintikka
set.

Lemma 17 The family of mappings fq (for states q of AC,T) introduced in
Definition 16 is faithful w.r.t. AC,T .

Proof. We have to show that both conditions of Definition 14 are satisfied.
Condition 1. The case that a successor is replaced by (∅, ∅, ∅, λ) can-

not occur because in every successor qi of q, the role depth of Γi is strictly
smaller than the maximum depth of Ω. Assume that (q, q1, . . . , qk) ∈ ∆. To
prove that (q, fq(q1), . . . , fq(qk)) is also contained in ∆, we have to show that
this transition satisfies the conditions for C, T -compatibility in Definition 4.
Number 1 and 4 are obvious. Number 3 holds because we do not remove
anything from Ω. Finally, we do not remove any concepts from the Πi sets,
because these concepts have a maximum depth of rdT (Ω), if %i is transitive,
or rdT (Ω)− 1, otherwise. Thus, we only remove concepts from Ωi, and none
of the removed concepts is required.

19

Condition 2. Let (q0, q1, . . . , qk) ∈ ∆. If for some i > 0 with ϕ(∃r.D) =
i, qi is replaced by (∅, ∅, ∅, λ), this means that for the concept D ∈ Γi,
rdT (D) ≥ rdT (Ω). This implies that the corresponding existential concept
∃r.D in Ω0 has a depth which is strictly larger than rdT (Ω), and therefore will
be removed from fq(q0). Otherwise, we again have to show the four conditions
from Definition 4. Number 1 and 4 are again obvious. For number 3, observe
that if ∀r.F ∈ fq(Ωi) with %i = r, then rdT (∀r.F) < n because r 6= %i,
and thus neither F nor ∀r.F will be removed from Ω0. For number 2, if
∀r.E ∈ fq(Ω0), then it holds either that rdT (∀r.E) < n or rdT (∀r.E) = n
and trans(r). In the former case, neither E nor ∀r.E will be removed from
Πi. In the latter case, ∀r.E will not be removed because %i = r and trans(r)
holds. Á

Consequently, AC,T has a successful run iff the induced subautomaton
AS

C,T has a successful run.

Lemma 18 The construction of AS
C,T from an input consisting of an SI

concept C and an acyclic TBox T is a PSpace on-the-fly construction.

Proof. Let i = (C, T) be an input, i.e. an SI concept and TBox. We define
a(i) := #sub(C, T), which means that a(i) is at most quadratic in the size
of i. The blocking relation ¾SI is defined as follows: (Γ1,Π1,Ω1, %1) ¾SI

(Γ2,Π2,Ω2, %2) if Γ1 = Γ2, Π1 = Π2, Ω1/%1 = Ω2/%2, and %1 = %2. We have to
show that there is a polynomial P (n) satisfying the conditions in Definition
12.

Every element of Qi is of a size bounded by P (n). Every state label is a
subset of sub(C, T) and therefore bounded by a(i).

There is a P (n)-space bounded non-deterministic algorithm for guessing
an initial state or successor states for a given state. This is obvious, since
the size of every state is bounded by a(i) and all necessary information for
the successor states can be obtained from the current state.

The automaton AS

C,T is operating on ki-ary trees and mi-blocking, with
mi ≤ P (n) and ki ≤ P (m). The tree width ki is bounded by the number of
existential subconcepts of i and therefore by a(i). In order to show a poly-
nomial bound for mi, we first have to show that AS

C,T is ¾SI-invariant.
For states {q, qi} ⊆ QS with q = (Γ,Π,Ω, %) and qi = (Γi,Πi,Ωi, %i)
let (q0, . . . , qj, . . . , qk) be a transition and qj ¾SI qi. Then the tuple
(q0, . . . , qi, . . . , qk) is also C, T -compatible since Γj = Γi, Πj = Πi, %j = %i

and Ωj contains the same universal concepts involving %j as Ωi.
What is the maximum depth of a blocked node in a successful run?

Firstly, observe that transitions (q, q1, . . . , q
′, . . . , qk) with q = (Γ,Π,Ω, %)

and q′ = (Γ′,Π′,Ω′, %′) where %′ is different from % or not transitive decrease

20

the maximum depth of concepts contained in the state: if %′ is not transi-
tive, then rdT (Ω′) is smaller than rdT (Ω) by definition. If %′ is transitive,
but different from %, then Ω′ can only have concepts of depth rdT (Ω) if these
start with ∀%′. Similarly, Ω can only contain concepts of the same depth as
its predecessor state if they begin with ∀%, which implies that the role depth
decreases after two transitions. (This is the key to obtaining a polynomial
bound, and it does not hold for general TBoxes, where the GCIs maintain
the same role depth in every node.) This depth is bounded by the maxi-
mum depth in sub(C,T) and therefore by a(i), and thus there are only a(i)
such steps possible before depth 0 is reached. After this point, the path will
contain a blocked node, since all further nodes are labelled with (∅, ∅, ∅, λ).

So the role depth can only remain the same along a subpath (a subpath is
a path which does not need to begin at ε) where every transition involves the
same transitive role r. From the definition of ∆, it follows for any subpath
with labels (Γ0,Π0,Ω0, r), (Γ1,Π1,Ω1, r), . . ., (Γ`,Π`,Ω`, r), that Πi ⊆ Πi+1,
for all 1 ≤ i ≤ `− 1, so there are at most a(i) different sets Πi possible. By
the same argument, it also holds on this subpath that Ωi+1/r ⊆ Ωi/r, 1 ≤
i ≤ `− 1. Once again, it is only possible to have a subpath of length m with
different sets. Finally, since Γi contains only one concept, there are also only
a(i) possibilities for this set. In total, every r-subpath of length larger than
a(i)3 must have i < j such that Γj = Γi, Πj = Πi and Ωj/r = Ωi/r, and
hence (Γj,Πj,Ωj, r)¾ (Γi,Πj,Ωi, r). Thus, an r-subpath for a transitive role
r either contains a blocked node or is shorter than a(i)3 and therefore followed
by a transition with a role other than r, which decreases the maximum depth
of concepts contained in Ω. Altogether, we obtain that every path which is
longer than a(i)4 contains a blocked node.

This concludes the proof that the construction of AS
C,T is a PSpace on-

the-fly construction with P (n) = n8. Á

Since we know that C is satisfiable w.r.t. T iff AC,T has a successful
run iff AS

C,T has a successful run, Theorem 13 yields the desired PSpace

upper-bound.

Theorem 19 Satisfiability in SI w.r.t. acyclic TBoxes is in PSpace.

PSpace-hardness for this problem follows directly from the known PSpace-
hardness of satisfiability w.r.t. the empty TBox in ALC [17].

4 Conclusion

We have identified a class of automata for which emptiness can be tested in
a manner that is more efficient than the standard deterministic bottom-up

21

emptiness test. The key to obtaining this result is the employment of the
blocking technique known from tableau algorithms, which allows us to use
instead a a nondeterministic top-down emptiness test which can be aborted
after a “blocked” state is reached. If the number of transitions before this
happens is polynomial in the size of the input, emptiness of the automaton
can be tested on-the-fly using space polynomial in the size of the input rather
than time exponential in the size of the input.

As an example for the application of this method, we have shown how
blocking automata can be used to decide satisfiability of SI concepts w.r.t.
acyclic TBoxes in PSpace.

References

[1] F. Baader, H.-J. Bürckert, B. Hollunder, W. Nutt, and J.H. Siek-
mann. Concept logics. In Computational Logics, Symposium Proceed-
ings, Springer-Verlag, 1990.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-
Schneider (eds). The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[3] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to au-
tomata for description logics. Fundamenta Informaticae, 57(2–4):247–
279, 2003.

[4] F. Baader and U. Sattler. An overview of tableau algorithms for de-
scription logics. Studia Logica, 69:5–40, 2001.

[5] F. Baader and S. Tobies. The inverse method implements the automata
approach for modal satisfiability. In Proc. IJCAR 2001, Sprincer LNCS
2083, 2001.

[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[7] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expres-
sive DLs with fixpoints based on automata on infinite trees. In Proc.
IJCAI’99, 1999.

[8] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics. Rei-
del, 1983.

22

[9] J. Hladik and R. Peñaloza. PSPACE automata for description logics.
In Proceedings of DL 2006, CEUR Workshop Proceedings, 2006.

[10] I. Horrocks and P.F. Patel-Schneider. Optimizing description logic sub-
sumption. J. of Logic and Computation, 9(3):267–293, 1999.

[11] I. Horrocks, U. Sattler, and S. Tobies. A PSpace-algorithm for deciding
ALCNIR+-satisfiability. LTCS-Report 98-08, LuFg Theoretical Com-
puter Science, RWTH Aachen, Germany, 1998.

[12] C. Lutz. Complexity of terminological reasoning revisited. In Proc.
LPAR’99, Springer LNAI 1705, 1999.

[13] B. Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43:235–249, 1990.

[14] U. Sattler. A concept language extended with different kinds of transitive
roles. In Proc. KI’96, Springer LNAI 1137, 1996.

[15] W.J. Savitch. Relationship between nondeterministic and deterministic
tape complexities. J. of Computer and System Sciences, 4:177–192,
1970.

[16] K. Schild. A correspondence theory for terminological logics: Prelimi-
nary report. In Proc. IJCAI’91, 1991.

[17] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991.

[18] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal
logics of programs. J. of Computer and System Sciences, 32:183–221,
1986.

[19] A. Voronkov. How to optimize proof-search in modal logics: new meth-
ods of proving reduncancy criteria for sequent calculi. ACM Transac-
tions on Computational Logic, 2(2), 2001.

23

