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Abstract

Language equations are equations where both the constants occurring in
the equations and the solutions are formal languages. They have first been
introduced in formal language theory, but are now also considered in other
areas of computer science. In the present paper, we restrict the attention
to language equations with one-sided concatenation, but in contrast to
previous work on these equations, we allow not just union but all Boolean
operations to be used when formulating them. In addition, we are not just
interested in deciding solvability of such equations, but also in deciding
other properties of the set of solutions, like its cardinality (finite, infinite,
uncountable) and whether it contains least/greatest solutions. We show
that all these decision problems are ExpTime-complete.
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1 Introduction

Equations with formal languages as constant parameters and unknowns have been
studied since the 1960s, when two basic concepts of the theory of computation,
finite automata and context-free grammars, were respectively represented as sys-
tems of equations with union and one-sided concatenation [5] and with union and
unrestricted concatenation [9]. This topic was further studied in the monographs
on algebraic automata theory by Salomaa [19] and Conway [8].

For example, it is well-known that the equation X = AX ∪ B, where A,B are
fixed formal languages, has A∗B as a solution. If the empty word does not belong
to A, then this is the only solution. Otherwise, A∗B is the least solution (w.r.t.
inclusion), and all solutions are of the form C∗B for C ⊇ A. Depending on A
and the available alphabet, the equation may thus have finitely many, countably
infinitely many, or even uncountably many solutions. The above equation is an
equation with one-sided concatenation since concatenation occurs only on one
side of the variable. In contrast, the equation X = aXb ∪ XX ∪ ε is not one-
sided.1 Its least solution is the Dyck language of balanced parentheses generated
by the context-free grammar S → aSb | SS | ε, whereas its greatest solution is
{a, b}∗.

Both examples are resolved equations in the sense that their left-hand sides consist
of a single variable. If only monotonic operations (in the examples: union and
concatenation) are used, then such resolved equations always have a least and
greatest solution due to the Tarski–Knaster fixpoint theorem [22]. Once the
resolved form of equations is no longer required or non-monotonic operations (like
complement) are used, a given language equation need no longer have solutions,
and thus the problem of deciding solvability of such an equation becomes non-
trivial. The same is true for other decision problems, like asking for the existence
of a least/greatest solution or determining the cardinality of the set of solutions.

In the case of language equations with unrestricted concatenation, the solvability
problem becomes undecidable since the intersection emptiness problem of context-
free languages can easily be encoded [7]. A systematic study of the hardness of
decision problems for language equations with unrestricted concatenation (i.e.,
the position of these problems in the arithmetic hierarchy) was carried out by
Okhotin [15, 16, 17], who also characterized recursive and recursively enumerable
sets by solutions of language equations. A surprising proof of the computational
universality of very simple language equations of the form LX = XL has recently
been given by Kunc [11]. Though such equations are syntactically close to word
equations [12], like the equation aX = Xa, there is no strong relationship between
the two types of equations since the unknowns stand for different mathematical
objects: a single word in the case of word equations versus a set of words in the
case of language equations.

1As usual, we omit set parentheses for singleton languages.
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Language equations with one-sided concatenation usually do not have undecidable
decision problems. In fact, many properties of the solution sets of such equations,
such as existence and uniqueness of their solutions, can be expressed in Rabin’s
monadic second-order logic on infinite trees [18]. This implies the decidability
of these problems, but only yields a non-elementary complexity upper-bound
[21]. Language equations with one-sided concatenation can also be regarded as
a particular case of equations on sets of terms, known as set constraints, which
received significant attention [1, 6, 10] since they can, e.g., be used in program
analysis. In fact, language equations with one-sided concatenation correspond to
monadic set constraints, where all function symbols are unary. Thus, decidability
results for set constraints also yield decidability results for the corresponding
language equations. However, since set constraints are in general more complex
than monadic set constraints, this does not necessarily yield optimal complexity
bounds.

Language equations with one-sided concatenation and union have been studied in
the context of unification problems in description logics: Baader and Narendran
[3] show that the existence of a finite solution (i.e., a solution where all unknowns
are replaced by finite languages) is an ExpTime-complete problem; Baader and
Küsters [2] show the same for the existence of an arbitrary (possibly infinite)
solution. In the latter work, it is also shown that a solvable equation always
has a greatest solution, and that this solution is regular (i.e., consists of regular
languages).

The present paper extends the results of [2] in two directions. On the one hand,
we consider language equations with one-sided concatenation and all Boolean op-
erations, and on the other hand we consider additional decision problems, like
determining the existence of least/greatest solutions and the cardinality of the
solution set. All these problems turn out to be ExpTime-complete for language
equations with one-sided concatenation and any set of available Boolean opera-
tions between {∪} and {∪,∩,¬}.

After a preliminary section in which we give the relevant definitions, we first con-
centrate in Section 3 on showing the ExpTime upper-bounds for the mentioned
decision problems in the case of the most general type of one-sided equations
where all Boolean operations are available. This is done by translating language
equations into a special kind of looping tree automata, showing a 1–1-relationship
between the solutions of the equation and the runs of the corresponding automa-
ton, and then characterizing the relevant properties of solution sets by decidable
properties of the automaton. Thus, we have a uniform approach for solving all
decision problems by one automaton construction. The decision procedures for
the respective problems only differ in what property of the constructed automa-
ton must be decided. In Section 4, we then show the ExpTime lower-bounds
for the mentioned decision problems in the case of one-sided language equations
with union: the reduction is from the intersection emptiness problem for de-
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terministic looping tree automata, whose ExpTime-completeness easily follows
from the ExpTime-completeness of the same problem for deterministic top-down
tree automata on finite trees [20, 2]. Again, the hardness proofs are uniform: one
reduction shows hardness of all decision problems under consideration.

2 Preliminaries

In this section, we first introduce the languages equations investigated in this
paper, and show that they can be transformed into a simpler normal form. Then,
we introduce some notions regarding automata working on infinite trees, which
will be important for showing both the upper and the lower complexity bounds.

2.1 Language equations with one-sided concatenation

For a fixed alphabet Σ, we consider systems of equations of the following general
form:

ψ1(X1, . . . , Xn) = ξ1(X1, . . . , Xn),
...

ψm(X1, . . . , Xn) = ξm(X1, . . . , Xn),

(1)

where the form of the expressions ψi and ξi is defined inductively:

• any variable Xi is an expression;

• any regular language L ⊆ Σ∗ is an expression;

• a concatenation ϕL of an expression ϕ and a regular language L ⊆ Σ∗ is an
expression;

• if ϕ, ϕ′ are expressions, then so are (ϕ ∪ ϕ′), (ϕ ∩ ϕ′) and (∼ϕ).

We assume that the regular languages in expressions are given by non-deterministic
finite automata or regular expressions. If the expressions in such a system con-
tain neither intersection nor complement, then we call it a system of language
equations with one-sided concatenation and union.

A solution of a general system (1) is a vector of languages (L1, . . . , Ln) such
that a substitution of Lj for Xj for all j turns each instantiated equation into
an equality. Solutions can be compared w.r.t. inclusion of their components: we
define (L1, . . . , Ln) � (L′

1, . . . , L
′
n) iff Li ⊆ L′

i holds for i = 1, . . . , n. In addition
to the problem of deciding whether a system has a solution or not, we consider
additional decision problems that look more closely at properties of the set of
solutions: its cardinality (is there a unique solution, are there finitely or infinitely
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many solutions, are there countably or uncountably many solutions) and whether
it contains least/greatest elements w.r.t. �.

In order to design algorithms for solving these decision problems, it is more
convenient to consider language equations in the following normal form: a single
equation

ϕ(Z1, . . . , Zk) = ∅, (2)

in the unknowns Z1, . . . , Zk, where the constant regular languages occurring in ϕ
are singleton languages {a} for a ∈ Σ, which we simply write as a.

The next lemma implies that w.r.t. all decision problems concerned with the
cardinality of the set of solutions (including the existence of a solution), the
restriction to equations of form (2) is without loss of generality.

Lemma 2.1 For every system (1) in the unknowns X1, . . . , Xn we can construct
in polynomial time an equation (2) in the unknowns X1, . . . , Xn, Y1, . . . , Ym for
some m ≥ 0 such that the set of solutions of (2) is

{(
L1, . . . , Ln, η1(L1, . . . , Ln), . . . , ηm(L1, . . . , Ln)

) ∣∣ (L1, . . . , Ln) solves (1)
}

for some functions η1, . . . ηm : (2Σ∗

)n → 2Σ∗

.

Proof sketch: Regular languages in (1) can be expressed by employing resolved
equations for additional variables Y1, . . . , Ym. For example, the expression (∼X)a∗b
can be replaced by Y2 if we add the resolved equations Y2 = Y1b and Y1 =
Y1a ∪ ∼X. Since resolved equations of this form have a unique solution, any
value for X yields unique values for Y1, Y2. Every equation ψi = ξi has the same
solutions as (ψi ∩ ∼ξi) ∪ (ξ ∩ ∼ψi) = ∅, and the system ϕ1 = ∅, ϕ2 = ∅ has the
same solutions as ϕ1 ∪ ϕ2 = ∅.

Regarding the existence of least/greatest solutions, we must be more careful. For
example, when representing (∼X)a∗b by Y2 and the equations Y2 = Y1b, Y1 =
Y1a ∪∼X, a larger value for X yields smaller values for Y1, Y2. Thus, even if the
original system has a least/greatest solution, the new one need not have one. The
solution to this problem will be that when defining the relation � on solutions,
we do not necessarily compare solutions w.r.t. all components, but only w.r.t.
to the components corresponding to a set of focus variables.2 In this case, the
constructed system (2) with unknownsX1, . . . , Xn, Y1, . . . , Ym has a least/greatest
solution w.r.t. the focus variables X1, . . . , Xn iff the original system (1) has a
least/greatest solution.

2Note that � is then no longer a partial order but only a preorder.
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2.2 Automata on infinite trees

Given a ranked alphabet Γ where every symbols has a rank > 0, infinite trees
over Γ are defined in the usual way, i.e., every node in the tree is labeled with
an element of f ∈ Γ and has rank of f many successor nodes. A looping tree au-
tomaton3 A = (Q,Γ, Q0,∆) consists of a finite set of states Q, a ranked alphabet
Γ, a set of initial states Q0 ⊆ Q, and a transition function ∆ : Q× Γ → 2Q∗

that
maps each pair (q, f) to a subset of Qk where k is the rank of f . This automaton
is deterministic if |Q0| = 1 and |∆(q, f)| ≤ 1 for all pairs (q, f). A run r of A on
a tree t labels the nodes of t with elements of Q such that the root is labeled with
q0, and the labels respect the transition function, i.e., if node v has label t(v) in
t and label r(v) in r, then the tuple (q1, . . . , qk) labeling the sucessors of v in r
must belong to ∆(q, t(v)). The tree t is accepted by A if there is a run of A on
t. The language accepted by A is defined as

L(A) := {t | t is an infinite tree over Γ that is accepted by A}.

It is well-known that the emptiness problem for looping tree automata, i.e., the
question whether the accept language is non-empty, is decidable in linear time
(see, e.g., [4]). However, the intersection emptiness problem, i.e., given looping
tree automata A1, . . . ,Ak, is L(A1) ∩ . . . ∩ L(Ak) empty or not, is ExpTime-
complete even for deterministic automata [20, 2]. This result will be used to
show the complexity lower-bounds in Section 4.

When showing the complexity upper-bounds in Section 3, we actually employ a
very restricted form of looping automata. First, we restrict the attention to a
ranked alphabet Γ containing a single symbol γ of some fixed rank k > 0. Thus,
there is only one infinite tree, and the labeling of its nodes by γ can be ignored.
Given an arbitrary finite alphabet Σ := {a1, . . . , ak} of cardinality k, every node
in this tree can uniquely be represented by a word w ∈ Σ∗, where ai corresponds
to the ith successor. Second, we consider not arbitrary lopping tree automata
working on this tree, but tree automata induced by word automata. A non-
deterministic finite automaton (NFA) A = (Q,Σ, Q0, δ) working on words over Σ
induces a looping tree automaton A = (Q,Γ, Q0,∆) working on the infinite tree
over Γ as follows:

∆(q, γ) := {(q1, . . . , qk) | qi ∈ δ(q, ai) for i = 1, . . . , k}.

We call such an automaton looping tree automaton with independent transitions
(ILTA) since in every component the successor states can be chosen independently
from what is chosen in another component. In the following, we do not distinguish
between the NFA and the ILTA it represents. For example, we will talk about
runs of the NFA, but mean the runs of the corresponding ILTA. The runs of the

3The difference between looping tree automata and Büchi tree automata [23] is that there
is no acceptance condition involving final states.
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NFA A = (Q,Σ, Q0, δ) can thus be represented as functions r : Σ∗ → Q such that
r(ε) ∈ Q0 and r(wa) ∈ δ(r(w), a) for all w ∈ Σ∗ and a ∈ Σ. In addition, when
defining an ILTA, we will usually introduce just the corresponding NFA, and call
it ILTA. In the next section, we are not interested in the tree language accepted
by an ILTA (which is either empty or a singleton set); instead, we are interested
in the runs themselves.

We call an NFA A = (Q,Σ, Q0, δ) and the ILTA it respresents trim if every state
is reachable from an initial state, and δ(q, a) 6= ∅ for all q ∈ Q and a ∈ Σ.
It is easy to see that every NFA can be transformed into an trim NFA that is
equivalent in the sense of having the same runs. In such a trim NFA, every finite
or infinite path can be completed to a run containing it. In addition, it has a run
iff Q is non-empty.

Lemma 2.2 For every ILTA A = (Σ, Q,Q0, δ) an equivalent trim ILTA B =
(Σ, Q′, Q′

0, δ
′) can be constructed in polynomial time.

Proof. The construction proceeds in two steps. First, we construct the set

Qdefin := {q ∈ Q | ∀w ∈ Σ∗. δ(q, w) 6= ∅}.

The complement of this set can be computed in polynomial time by the following
iteration:

Q(0) := {q ∈ Q | ∃a ∈ Σ. δ(q, a) = ∅},

Q(i+1) := Q(i) ∪ {q ∈ Q | ∃a ∈ Σ. δ(q, a) ⊆ Q(i)}.

Obviously, there is an n ≤ |Q| such that Q(n) = Q(n+1) =
⋃

i≥0Q
(i), and it is easy

to show that Qdefin = Q \Q(n).

Let A′ := (Σ, Qdefin, Q0 ∩Qdefin, δ
′) be the ILTA obtained by restricting A to the

set of states Qdefin, i.e., δ′(q, a) := δ(q, a) ∩ Qdefin for all q ∈ Qdefin, a ∈ Σ. It is
easy to show that A′ satisfies the second condition in the definition of trim, i.e.,
δ′(q, a) 6= ∅ holds for all q ∈ Qdefin, a ∈ Σ. In fact, assume that δ′(q, a) = ∅

for some q ∈ Qdefin. Then δ(q, a) ⊆ Qdefin = Q(n), which implies q ∈ Q(n+1) =
Q(n) = Qdefin, contradicting our assumption that q ∈ Qdefin. In addition, A′ has
the same set of runs as A since it is easy to see that no state in Qdefin can occur
in a run: if q = r(u) for a run r of A, then r(uw) ∈ δ(q, w) for all words w, and
thus q ∈ Qdefin.

Second, we construct the set

Qreach := {q ∈ Qdefin | ∃q0 ∈ Q0 ∩Qdefin.∃w ∈ Σ∗. q ∈ δ′(q0, w)}.

This set can obviously be computed by a simple polynomial-time search in the
graph corresponding to the automaton A′: test whether q is reachable from some
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initial state q0. Now, define B := (Σ, Qreach, Q0 ∩ Qreach, δ
′′) where δ′′(q, a) =

δ′(q, a) ∩Qreach for all q ∈ Qreach, a ∈ Σ.

It is easy to see that B is trim. In fact, by the definition of Qreach, every state
of B is reachable from some initial state. In addition, since q ∈ Qreach implies
q′ ∈ Qreach for all states q′ ∈ δ′(q, a), the second condition in the definition of
trim remains satisfied. Finally, B has the same set of runs as A′ since any state
in a run r of A′ is reachable from the initial state r(ε).

3 The complexity upper-bounds

In this section we show that all the decision problems for language equations with
one-sided concatenation introduced above can be solved within deterministic ex-
ponential time. To this purpose, we show how to translate a given language equa-
tion in normal form ϕ = ∅ into an ILTA such that there is a 1–1-correspondence
between the solutions of the equation and the runs of the corresponding ILTA.
The states of this ILTA are sets of subexpressions of ϕ.

3.1 Translating language equations into ILTA

Let Σ = {a1, . . . , am}, and ϕ(X1, . . . , Xn) be an expression. In the following, we
assume that ϕ is fixed, and denote the set of its subexpressions by Φ. We assume
that ε,X1, . . . , Xn ∈ Φ (otherwise, we simply add them). Let Φ0 = {ψa | ψa ∈
Φ} ∪ {ε} and Φ1 = Φ0 ∪ {X1, . . . , Xn}. We define two elementary operations on
subsets of Φ. The first of them, select, maps a set q0 ⊆ Φ0 to a finite collection
of subsets of Φ1:

select(q0) = {q ⊆ Φ1 | q \ {X1, . . . , Xn} = q0}

Note that |select(q0)| = 2n, and the elements of select(q0) correspond to different
choices of a set of variables.

The other operation, closure, completes a subset q ⊆ Φ1 by computing all ap-
plicable Boolean operations over these subexpressions. In order to define the set
closure(q) ⊆ Φ, we specify for every expression ξ ∈ Φ whether ξ ∈ closure(q) or
not by induction on the structure of ξ:

Base case: For each ξ ∈ {ε,X1, . . . , Xn}, let ξ ∈ closure(q) iff ξ ∈ q.

Induction step: Consider ξ ∈ Φ \ {ε,X1, . . . , Xn} and assume that the member-
ship of all proper subexpressions of ξ in closure(q) has already been defined.
There are four cases depending on the top operation of ξ:

• If ξ is of the form ψc, then ξ ∈ closure(q) iff ξ ∈ q.
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• If ξ = ψ ∪ η, then ξ ∈ closure(q) iff {ψ, η} ∩ closure(q) 6= ∅.

• If ξ = ψ ∩ ξ, then ξ ∈ closure(q) iff {ψ, η} ⊆ closure(q).

• If ξ = ∼ψ, then ξ ∈ closure(q) iff ψ is not in closure(q).

The following property of this operator will be used later on.

Lemma 3.1 Let L = (L1, . . . , Ln) be a vector of languages and w ∈ Σ∗. Then

closure({ξ ∈ Φ1 | w ∈ ξ(L)}) = {ξ ∈ Φ | w ∈ ξ(L)}.

Proof. Let q := {ξ ∈ Φ1 | w ∈ ξ(L)}. We prove that ξ ∈ closure(q) iff w ∈ ξ(L)
by induction on the structure of ξ.

Base case. If ξ ∈ Φ1, then, by the definition of closure, ξ ∈ closure(q) iff ξ ∈ q.
The latter, according to the definition of q, holds iff w ∈ ξ(L).

Induction step. Let ξ = ψ ∪ η. By the definition of closure, ψ ∪ η ∈ closure(q) iff
ψ ∈ closure(q) or η ∈ closure(q). By the induction hypothesis, ψ ∈ closure(q)
iff w ∈ ψ(L), and η ∈ closure(q) iff w ∈ η(L). Therefore, ψ ∪ η ∈ closure(q) iff
w ∈ ψ(L) or w ∈ η(L), which is equivalent to w ∈ ψ(L)∪η(L) = (ψ∪η)(L). The
proof for intersection and complement is analogous.

Definition 3.2 The ILTA A = (Σ, Q,Q0, δ) induced by the expression ϕ is de-
fined as

• Q := 2Φ,

• Q0 := {closure(q) | q ∈ select({ε})}, and

• δ(q, a) := {closure(q′) | q′ ∈ select({ψa ∈ Φ | ψ ∈ q})}.

Note that |Q0| = 2n and |δ(q, a)| = 2n for all q ∈ Q and a ∈ Σ. Intuitively, the
nondeterminism is used to “guess” the values of the variables.

There exists a one-to-one correspondence between the runs of A and n-tuples of
languages over Σ. First, we show how to associate a run with every vector of
languages. The run rL : Σ∗ → Q corresponding to L = (L1, . . . , Ln) is defined
inductively as:

rL(ε) = closure({ε} ∪ {Xi | ε ∈ Li}) (3a)

rL(wa) = closure({ψa ∈ Φ | ψ ∈ rL(w)} ∪ {Xi | wa ∈ Li}) (3b)

It is easy to see that rL is indeed a run of A.

Conversely, a given run r : Σ∗ → Q induces the vector of languages Lr :=
(Lr

1, . . . , L
r
n), where Lr

i := {w |Xi ∈ r(w)}.
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Lemma 3.3 The mapping of runs to vectors of languages introduced above is a
bijection, and the mapping of vectors of languages to runs is its inverse.

Proof. First, we prove that going from a vector L = (L1, . . . , Ln) to the cor-
responding run, and then back to the corresponding vector is the identity, i.e.,
yields L. Let LrL = (L′

1, . . . , L
′
n) be the vector of languages corresponding to rL.

Then we have

L′
i = {w |Xi ∈ rL(w)} = {w |Xi ∈ {Xj | w ∈ Lj}} = Li.

The first identity holds by the definition of rL and the fact that closure does not
alter the membership of unknowns Xj. This proves that L = LrL . In particular,
this implies that the mapping from runs to vectors is surjective. To complete the
proof, it is enough to show that this mapping is also injective.

We show that different runs correspond to different vectors. If r 6= r′, this means
that r(w) 6= r′(w) for some w ∈ Σ∗. Let w be one of the shortest of such strings.
Let L and L′ be the vectors corresponding to r and r′, respectively. If w = ε,
then, by (3a), {Xi | ε ∈ Li} 6= {Xi | ε ∈ L′

i}, and so there exists an index i such
that Li 6= L′

i. If w = ua for some u ∈ Σ∗ and a ∈ Σ, then, by (3b), {ψa ∈ Φ |ψ ∈
r(u)}∪{Xi |ua ∈ Li} 6= {ψa ∈ Φ |ψ ∈ r(u)}∪{Xi |ua ∈ Li}. Since r(u) = r′(u),
the first parts are equal, and therefore {Xi | ua ∈ Li} 6= {Xi | ua ∈ L′

i}, which, as
in the previous case, implies that the i-th components of L and L′ differ.

Next, we prove that, for each run rL, the set of subexpressions in a state rL(w)
(for each string w ∈ Σ) contains exactly those subexpressions that produce this
string when replacing X1, . . . , Xn by L1, . . . , Ln:

Lemma 3.4 Let L = (L1, . . . , Ln) be a vector of languages and rL be the corre-
sponding run. Then, for every w ∈ Σ∗ and ξ ∈ Φ we have w ∈ ξ(L) iff ξ ∈ rL(w).

Proof. Induction on the length of w.

Base case: w = ε. According to (3a), it has to be proved that

closure({ε} ∪ {Xi | ε ∈ Li}) = {ξ ∈ Φ | ε ∈ ξ(L)}. (4)

It is easy to see that

{ε} ∪ {Xi | ε ∈ Li} = {ξ ∈ Φ1 | ε ∈ ξ(L)}. (5)

Indeed, looking at the right-hand side of (5), ε ∈ ε(L) by definition, clearly
ε /∈ ψc(L) for all ψ and c, and as for Xi, its membership in both sides is defined
identically. By Lemma 3.1, (5) implies (4).
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Induction step: w = ua for a ∈ Σ. According to (3b) we must prove

closure({ψa ∈ Φ | ψ ∈ rL(w)} ∪ {Xi | ua ∈ Li}) = {ξ ∈ Φ | ua ∈ ξ(L)}. (6)

To show this, it is sufficient to establish the correctness of the following statement:

{ψa ∈ Φ | ψ ∈ rL(w)} ∪ {Xi | ua ∈ Li} = {ξ ∈ Φ1 | ua ∈ ξ(L)}. (7)

Obviously, ua /∈ ε(L) and ua /∈ ψc(L) for any ψ and c 6= a. The statement
ua ∈ ψa(L) is equivalent to u ∈ ψ(L), which, by the induction hypothesis, holds
iff ψ ∈ rL(w). This shows (7). Finally, (6) follows by Lemma 3.1.

Since the vector L = (L1, . . . , Ln) is a solution of ϕ(X1, . . . , Xn) = ∅ iff w 6∈ ϕ(L)
for all w ∈ Σ∗, this lemma implies the following characterization of the runs
corresponding to solutions:

Proposition 3.5 The vector L = (L1, . . . , Ln) is a solution of the equation
ϕ(X1, . . . , Xn) = ∅ iff ϕ /∈ rL(w) for every w ∈ Σ∗.

Consequently, if we remove from A all states containing ϕ, then we obtain
an automaton whose runs are in a 1–1-correspondence with the solutions of
ϕ(X1, . . . , Xn) = ∅. In addition, we can make this automaton trim without
losing any runs/solutions. Let us call the resulting ILTA Aϕ. Obviously, the size
of Aϕ is exponential in the size of ϕ, and this automaton can be constructed in
exponential time.

Proposition 3.6 For every language equation ϕ(X1, . . . , Xn) = ∅ of the form
(2) one can construct in exponential time a trim ILTA Aϕ whose states are sub-
sets of the set of strict subexpressions of ϕ such that the mapping r 7→ Lr =
(Lr

1, . . . , L
r
n) defined as Lr

i := {w | Xi ∈ r(w)} is a bijection between the runs of
AL and the solutions of ϕ(X1, . . . , Xn) = ∅.

Let us illustrate the construction of Aϕ with a small example. Consider the
following language equation over the alphabet Σ = {a} and in the variables
X,Y :

∼(X ∪ Y a) = ∅ (8)

The set of subexpressions of ϕ := ∼(X ∪ Y a) is

Φ = {ε, Y a,X, Y,X ∪ Y a,∼(X ∪ Y a)},

and the subsets Φ0 and Φ1 are given by

Φ0 = {ε, Y a} and Φ1 = {ε, Y a,X, Y }.
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Figure 1: The trim ILTA for the equation (8), where all arcs are labeled by a.

Instead of first constructing the automatonA, then removing the states containing
ϕ, and finally making the resulting automaton trim, we immediately construct
an automaton consisting of those states not containing ϕ, and where every state
is reachable from an initial state. First, consider the initial states of the original
automaton A constructed from ϕ. The set select({ε}) contains four elements:
{ε}, {ε,X}, {ε, Y }, and {ε,X, Y }. After closure is applied, the following initial
states are obtained: q0 = {ε,∼(X∪Y a)}, q′0 = {ε,X,X∪Y a}, q′′0 = {ε, Y,∼(X∪
Y a)}, and q′′′0 = {ε,X, Y,X ∪ Y a}. The states q0 and q′′0 contain ϕ, and thus are
not states of Aϕ. Consequently, we start our construction with the set of initial
states Q0 := {q′0, q

′′′
0 }.

Now, consider the transitions from q′′′0 by a. The only concatenation in {ψa ∈
Φ | ψ ∈ q′′′0 }) is Y a, and then closure(q) for all q ∈ select({Y a}) yields the
states q1 = {Y a,X ∪ Y a}, q′1 = {Y a,X,X ∪ Y a}, q′′1 = {Y a, Y,X ∪ Y a}, and
q′′′1 = {Y a,X, Y,X ∪ Y a}. None of these states contains ϕ, and thus we define
δ(q′′′0 , a) := {q1, q′1, q

′′
1 , q

′′′
1 }.

Next, consider the transitions from q′0 by a. There is no concatenation in the
set {ψa ∈ Φ | ψ ∈ q′0}), and thus we must construct the closures of the sets
in select(∅), which yields the states q2 = {∼(X ∪ Y a)}, q′2 = {X,X ∪ Y a},
q′′2 = {Y,∼(X∪Y a)}, and q′′′2 = {X,Y,X∪Y a}. If we remove the states containing
ϕ, then we obtain δ(q′0, a) := {q′2, q

′′′
2 }.

If we continue this process until all states reachable from the initial states are
constructed, then we obtain the ILTA shown in Figure 1. Since this automaton
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is already trim, it is the automaton Aϕ for the equation (8).

3.2 Counting the number of solutions

As an immediate consequence of Proposition 3.6, (unique) solvability of a lan-
guage equation can be characterized as follows:

Proposition 3.7 A language equation ϕ = ∅ with one-sided concatenation has

• at least one solution iff the corresponding trim ILTA AL is non-empty.

• exactly one solution iff the corresponding ILTA AL is non-empty and deter-
ministic.

Before we can characterize the case of finitely many solutions, we must introduce
some notation.

Definition 3.8 Let A = (Σ, Q,Q0, δ) be an ILTA. A state q ∈ Q is cyclic if
q ∈ δ(q, w) for some w ∈ Σ+, and it is branching if |δ(q, a)| > 1 for some a ∈ Σ.

Paths in an ILTA are defined as usual, i.e., a path in A is a (finite or infinite)
sequence q1a1q2a2 . . . a`−1q`, . . . ∈ Q(ΣQ)∗∪Q(ΣQ)ω, such that qi+1 ∈ δ(qi, ai) for
all i (1 6 i < `). If there is such a path, then qi is reachable from q1 for all i > 1.

Lemma 3.9 A trim ILTA A = (Σ, Q,Q0, δ) has finitely many runs iff no branch-
ing state is reachable from any cyclic state.

Proof. If there are no paths from cyclic to branching states, then every infinite
path in the ILTA can contain branching states only among the first |Q| nodes, and
after that the transitions become completely deterministic. Therefore, the first
|Q| levels of every run determine it completely, and tus the number of different
runs is bounded by the number of different mappings from {w ∈ Σ∗ | |w| 6 |Q|}
to Q, which is finite.

Suppose the condition does not hold, i.e., there exists a cyclic state p, with
p ∈ δ(p, u) for u ∈ Σ+, and a branching state q, with q′, q′′ ∈ δ(q, a), q 6= q′, such
that q ∈ δ(p, v) for some v ∈ Σ∗. Let pαp ∈ Q(ΣQ)+ be a path from p to p by u,
and let pβq ∈ Q(ΣQ)∗ be a path from p to q by v. Without loss of generality we
may assume that the path pαp contains at most one occurrence of q; it could be
shortened otherwise. For the same reason, we can also assume that the path pβq
does not contain any internal occurrences of q. If pαp contains an occurrence of
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q, and the next symbol in the path is a, assume without loss of generality that
the next state is q′.

Since A is assumed to be trim, there is a q0 ∈ Q0 and w ∈ Σ∗ such that p ∈
δ(q0, w). Let q0γp be the corresponding path. Then, for every ` > 0, there exists
the following finite path in A:

q0γp(αp)
`βqaq′′ (9)

Since A is trim, we can construct a run r` of A such that (i) rL contains this
path, and (ii) every transition from q by a except for the last one in this path
goes to q′. Then the earliest occurrence of the transition from q by a to q ′′ in r`

takes place at the end of the finite path (9), which makes the runs corresponding
to different numbers `1, `2 pairwise distinct.

The condition in this lemma can obviously be tested in time polynomial in the
size of the ILTA since it is basically a reachability problem. The conditions in the
previous proposition can trivially be tested in time polynomial in the size of Aϕ.
Since the size of Aϕ is exponential in the size of ϕ, we thus obtain the following
complexity upper-bounds:

Theorem 3.10 The problems of testing whether a language equation with one-
sided concatenation has a solution, a unique solution, or finitely many solutions
are decidable in exponential time.

Note that an ExpTime decision procedure for the solvability problem was already
sketched in [1]. The other two results are new. Regarding the cardinality of the
solution set, it remains to show how we can decide whether an equation has
countably or uncountably many solutions. For this purpose, we adapt Niwiński’s
condition for countability of the language accepted by a Rabin tree automaton
[13] to our situation of counting runs of ILTAs.4 If A is an ILTA and q one of its
states, then a q-run is defined like a run, with the only exception that instead of
requiring that the root is labeled with an initial state we require that it is labeled
with q. Two q-runs r1, r2 are called essentially different if there are words v1, v2,
w such that

• r1(v1) = q = r2(v2) and v1, v2 are not the empty word,

• r1(w) 6= r2(w) and w has neither v1 nor v2 as prefix.

Proposition 3.11 (Niwiński) An ILTA has uncountably many runs iff it has
a state q such that there are two essentially different q-runs.

4Actually, we never use that the automaton has independent transitions, and thus the results
shown below also hold for arbitrary looping tree automata.
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In contrast to the previous conditions, it is not immediately clear how this con-
dition can be decided in time polynomial in the size of the ILTA. One possibility
is to reduce this problem to the emptiness problem for Büchi tree automata.

Proposition 3.12 For a given ILTA A we can decide in polynomial time whether
it has uncountably many runs or not.

Proof. Given two runs r1, r2, we denote by (r1, r2) the tree whose nodes u ∈ Σ∗

are labeled with (r1(u), r2(u)). For every state q of A we construct a Büchi
automaton Bq that accepts exactly the trees (r1, r2) where r1, r2 are essentially
different q-runs. We can then apply the emptiness test for Büchi automata to Bq

for each states q to test whether there are essentially different q-runs of A. Recall
that a Büchi tree automaton differs from a looping tree automaton in that it has
a set of final states, and that a run of such an automaton is accepting if in every
path at least one final state occurs infinitely often. Also recall that the emptiness
test for Büchi tree-automata is polynomial in the size of the automaton [24].

The states of the Büchi automaton Bq are of the form (q1, q2,M) where q1, q2
are states of A and M is a subset of {qfirst?, qsecond?, diff?, initial}. The idea
underlying the third component M is the following:

• if M contains qfirst? then we are looking for a q in the first component in
the subtree below;

• if M contains qsecond? then we are looking for a q in the second component
in the subtree below;

• diff? says we are looking for a node with different first and second compo-
nent in the subtree below;

• initial is present only in the initial state.

The automaton Bq starts with the initial state (q, q, {qfirst?, qsecond?, diff?, initial}).
If it is in the state (q1, q2,M) and it reads the symbol (q1, q2), then it can make
the follwing transitions:5

(q1, q2,M), (q1, q2) → ((p11, p21,M1), . . . , (p1m, p2m,Mm))

whenever the following conditions are satisfied:

1. q1 → (p11, . . . , p1m) and q2 → (p21, . . . , p2m) are transitions in the ILTA
(now represented as a tree automaton, not an NFA).

5If it reads a symbol different from the first two components of its state, then no transition
is possible.
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2. M1, . . . ,Mn are subsets of M \ {initial}.

3. If qfirst? in M then

• qfirst? belongs to exactly one of M1, . . . ,Mm, or

• q1 = q and diff?, initial 6∈M , and qfirst? belongs to none ofM1, . . . ,Mm.

Note that these two cases are not exclusive. The choice of which to take
realizes the non-deterministic decision whether the current node is v1 (sec-
ond case) or not (first case). In case we have diff? ∈ M , we cannot choose
the second case since this would then violate the condition that v1 cannot
be a prefix of w. The same is true if initial is in M since this would violate
the condition that v1 cannot be the empty word. In the first case, we also
make a non-deterministic decision in which successor tree v1 will be found.

4. If qsecond? in M then

• qsecond? belongs to exactly one of M1, . . . ,Mm, or

• q2 = q and diff?, initial 6∈ M , and qsecond? belongs to none of
M1, . . . ,Mm.

The explanation for this is analogous to the one for qfirst?. Note that we
can, of course, also decide that v1 = v2 if both q1 and q2 are equal to q.

5. If diff? in M then

• diff? belongs to exactly one of M1, . . . ,Mm, or

• q1 6= q2 and diff? belongs to none of M1, . . . ,M2m.

We are looking for the difference in the first or second subtree. If q1 is
different from q2, we can also decide that this is w.

This completes the description of the transition relation of Bq. The set of final
states of Bq consists of all the states (q1, q2,M) where M is empty.

It is easy to see that this automaton indeed accepts exactly the trees (r1, r2)
where r1 and r2 are essentially different q-runs of A. In fact, in a run of Bq we
eventually get rid of all states with non-empty M in all paths if appropriate nodes
v1, v2, w are found.

As an immediate consequence of this proposition we obtain:

Theorem 3.13 The problem of testing whether a language equation with one-
sided concatenation has countably many solutions is decidable in exponential time.
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Let us apply our method to determine the cardinality of the set of solutions of
the equation (8), whose trim ILTA is given in Figure 1. The ILTA is non-empty,
and hence the equation has solutions. It is non-deterministic (actually, it has two
initial states, and each of its states has multiple transitions by a), and hence the
equation has multiple solutions. There are paths from cyclic states to branching
states. For example, consider the state {X,X ∪ Y a}, which is cyclic because
of the self-loop, and which is itself branching. Consequently, there are infinitely
many solutions.

Finally, let us construct a pair of essentially different q-runs, corresponding to
the condition of Proposition 3.11. Let q = {X,X ∪ Y a}, w = a, v1 = aa and
v2 = aaa. The required runs are as follows (since the branching is unary, trees
degrade to paths):

{X, X ∪ Y a}
a

−→ {X, X ∪ Y a}
a

−→ {X, X ∪ Y a}
a

−→ · · ·
w l v1 ↑ v2 ↓

{X, X ∪ Y a}
a

−→ {X, Y, X ∪ Y a}
a

−→ {X, aY, X ∪ Y a}
a

−→ {X, X ∪ Y a}
a

−→

The existence of these paths implies that the ILTA has uncountably many runs,
and therefore the equation has uncountably many solutions.

3.3 Least and greatest solutions

As pointed out at the end of Subsection 2.1, we must compare solution vectors not
on all components, but only on those components corresponding to a set of focus
variables. Let ϕ(X1, . . . , Xn, Y1, . . . , Y`) = ∅ be a language equation with one-
sided concatenation, and X1, . . . , Xn be the set of focus variables. Given vectors
of languages L = (L1, . . . , Ln, Ln+1, . . . , Ln+`), L = (L′

1, . . . , L
′
n, L

′
n+1, . . . , L

′
n+`)

we define L � L′ iff Li ⊆ L′
i for all i = 1, . . . , n.

Let Aϕ = (Σ, Q,Q0, δ) be the ILTA corresponding to the above language equation
with focus variables X1, . . . , Xn. We define a preorder on its set of states Q as
follows:

q 4 q′ iff q ∩ {X1, . . . , Xn} ⊆ q′ ∩ {X1, . . . , Xn}.

This preorder on states defines the following preorder on runs of A: for any
r, r′ : Σ∗ → Q we say that r 4 r′ if r(w) 4 r′(w) for all w ∈ Σ∗.

As an easy consequence of the definition of the mapping L 7→ rL we obtain that
this mapping is a preorder isomorphism:

Lemma 3.14 Let L,L′ be vectors of languages. Then L � L′ iff rL 4 rL′.

Consequently, to decide whether the equation ϕ = ∅ has a least/greatest solution
w.r.t. �, it is enough to decide whether Aϕ has a least run w.r.t. 4. In the follow-
ing, we show how to decide in polynomial time whether a given ILTA has a least
run w.r.t. a preorder on its states. (Greatest runs can be treated analogously.)
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Definition 3.15 Let A = (Σ, Q,Q0, δ) be an ILTA, let 4 be a preorder on Q.
Define another preorder v on Q as follows: q v q′ iff there exists a run r with
root label q such that, for every run r′ with root label q′, we have r 4 r′.

Lemma 3.16 For every trim ILTA A = (Σ, Q,Q0, δ) and for every polynomial
time decidable preorder 4 on Q, the corresponding preorder v on Q can be con-
structed in time polynomial in |Q|.

Proof. We show that the complement of the corresponding preorder v can be
computed as

R =
∞⋃

k=0

Rk, (10a)

where

R0 = {(q, q′) | q 64 q′}, (10b)

Rk+1 = Rk ∪ {(q, q′) | ∃a ∈ Σ.∀qa ∈ δ(q, a).∃q′a ∈ δ(q′, a). Rk(qa, q
′
a)} (10c)

From this it immediately follows that R, and thus also its complement v can be
computed in polynomial time.

By (10b,10c), R satisfies the following equation

R = {(q, q′) | q 64 q′ or ∃a ∈ Σ.∀qa ∈ δ(q, a).∃q′a ∈ δ(q′, a). R(qa, q
′
a)},

and therefore

¬R = {(q, q′) | q 4 q′ and ∀a ∈ Σ.∃qa ∈ δ(q, a).∀q′a ∈ δ(q′, a). ¬R(qa, q
′
a)}. (11)

It is sufficient to prove that (i) R(q, q′) implies q 6v q′ and (ii) ¬R(q, q′) implies
q v q′.

Part i: We prove that Rk(q, q
′) for some k > 0 implies q 6v q′ by induction on k.

Base case: if R0(q, q
′), then q 64 q′ by (10b). Therefore, for every run r with root

label q and for every run r′ with root label q′ we know that r(ε) = q 64 q′ = r′(ε),
and thus, clearly, q 6v q′.

Induction step: let Rk+1(q, q
′), and let a ∈ Σ be the symbol promised in (10c).

In order to show that q 6v q′, consider an arbitrary run r starting from q. Let
qa = r(a) and define a run ra with root qa as ra(u) = r(au) for all u ∈ Σ∗.

According to (10c), for the state qa there exists a state q′a ∈ δ(q′, a), such that
Rk(qa, q

′
a). By the induction hypothesis, this implies qa 6v q′a. That is, for the run

ra with root qa there exists a run r′a with root q′a such that ra 64 r′a, i.e., ra(w) 64
r′a(w) for some w ∈ Σ∗. Since A is trim, there exists a run r′ with root in q′ such
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that r′(au) = r′a(u) for all u ∈ Σ∗. We thus have r(aw) = ra(w) 64 r′a(w) = r′(aw)
and hence r 64 r′, which completes the proof that q 6v q′.

Part ii: We show that ¬R(q, q′) implies q v q′.

Let us construct a run r starting from q and simultaneously verify that for every
run r′ starting from q′ we have r 4 r′. The run r is defined inductively on the
length of w such that, for every r′ starting from q′, we have ¬R(r(u), r′(u)) for
all prefixes u of w.

Base case: w = ε. Here r(ε) = q, r′(ε) = q′ and ¬R(q, q′) by assumption.

Induction step. Consider a string w ∈ Σ∗ and assume ¬R(r(u), r′(u)) for all
prefixes of w. In particular, ¬R(r(w), r′(w)), and, by (11), for every a ∈ Σ there
exists a certain state qa ∈ δ(r(w), a) satisfying the property stated in (11). Define
r(wa) as qa, and consider the state q′a := r′(wa) =∈ δ(r′(w), a): because of our
choice of qa we have for this q′a that ¬R(qa, q

′
a) holds. This finishes the induction

step.

Having constructed such a run r, it is left to notice that, by (11), ¬R(r(w), r ′(w))
for all w ∈ Σ∗ implies r(w) 4 r′(w) for all w, and hence r 4 r′, which proves
q v q′.

The following lemma is now an easy consequence of the definitions of a least run
and of v.

Lemma 3.17 An ILTA A = (Σ, Q,Q0, δ) has a least run with respect to a pre-
order 4 on Q iff Q0 has a least element with respect to v.

Since the size of Aϕ is exponential in the size of ϕ, we thus obtain the following
complexity upper bound for deciding the existence of a least solution. (Greatest
solutions can be treated analogously.)

Theorem 3.18 The problem of testing whether a language equation with one-
sided concatenation has a least (greatest) solution is decidable in ExpTime.

Let us return to the example: the equation (8) and the corresponding ILTA
given in Figure 1. In order to determine whether the ILTA has a minimal run,
we need to construct the preorders “4” and “v”. Let us name the states of this
automaton by numbers, as shown in Figure 2. Note that we have only represented
the variables contained in each state since this is the relevant information for
determining the preorders.

The preorder 4 is computed simply by containment of variable components, and
hence, for instance, 0 4 0, 0 4 1, 0 4 3, 0 4 5, 0 4 7, 1 4 3, 1 4 7, etc. On the
other hand, 0 64 4, 0 64 6, 1 64 0, etc.
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Figure 2: The automaton from Fig. 1 with its states numbered, showing the
variables only.

The computation of 6v begins with computing the negation of 4:

R0 = {(0, 4), (0, 6), (1, 0), (1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 6), (3, 0),
(3, 2), (3, 4), (3, 5), (3, 6), (5, 4), (5, 6), (6, 0), (6, 2), (6, 4), (6, 5),
(7, 0), (7, 2), (7, 4), (7, 5), (7, 6)}.

More elements are added to R in the next steps of the iteration. For instance,
consider the pair (2, 3) /∈ R0 and consider all transitions (with a) from 2, which
yield the states 2 and 3. For the transition from 2 to 3 there exists a transition
from 3 to 6, and we have (3, 6) ∈ R0. For the transition from 2 to 2 the same
transition from 3 to 6 yields a pair (2, 6) ∈ R0. Therefore, (2, 3) ∈ R1.

Using this pair, we can determine that (0, 2) ∈ R2. Indeed, for the transition from
0 to 2 there is a transition from 2 to 3, and we have (2, 3) ∈ R1. For the transition
from 0 to 3 there exists a transition from 2 to 2, and we have (3, 2) ∈ R0 ⊆ R1.

Proceeding in this way we eventually determine that R = Q × Q, i.e., v = ∅.
Therefore, the elements of Q0 are incomparable with respect to v, and hence
Lemma 3.17 implies that the automaton does not have a least run. Consequently,
the equation does not have a least solution.

Let us now consider the case where X is the only focus variable. The revised
version of Figure 2, is given in Figure 3, where only the focus variable X is shown.
The values of the relation 4 are presented on the left-hand side of Table 1. In
this case, q 4 q′ for most pairs of states, except for those where q contains X
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Figure 3: The automaton from Fig. 2, but now showing only the focus variable
X.

while q′ does not. Thus, we have

R0 = {(0, 4), (0, 6), (1, 4), (1, 6), (2, 4), (2, 6),
(3, 4), (3, 6), (5, 4), (5, 6), (7, 4), (7, 6)}

We can determine that (2, 3) ∈ R1 in the same way as in the previous case.
However, (3, 2) 6∈ R0, and thus (0, 2) is not put into R2. Overall, the iteration
adds only the following pairs to R:

R \R0 = {(0, 1), (0, 3), (0, 7), (2, 1), (2, 3), (2, 7), (4, 1),
(4, 3), (4, 6), (4, 7), (5, 1), (5, 3), (5, 7)}

The relation v contains the remaining 39 pairs. It is represented on the right-
hand side of Table 1.

Since 1 v 0, 1 is the least element of Q0. By Lemma 3.17, this implies that the
automaton has a least run, and thus the equation has a least solution w.r.t. the
focus variable X.

3.4 Computing regular solutions

Until now, we have considered only decision problems, which require a yes/no
answer. If a language equation has a (unique, least, greatest) solution, one might
also be interested not just in knowing that it exists, but also in computing such
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4 0 1 2 3 4 5 6 7
0 + + + + − + − +
1 + + + + − + − +
2 + + + + − + − +
3 + + + + − + − +
4 + + + + + + + +
5 + + + + − + − +
6 + + + + + + + +
7 + + + + − + − +

v 0 1 2 3 4 5 6 7
0 + − + − − + − −
1 + + + + − + − +
2 + − + − − + − −
3 + + + + − + − +
4 + − + − + + − −
5 + − + − − + − −
6 + + + + + + + +
7 + + + + − + − +

Table 1: The relations 4 and v for the case of the focus variable X.

a solution. However, solutions are vectors of possibly infinite languages, so how
can one represent such solutions in a finite way? If the solution is regular, i.e., if
all its components are regular, then it can be respresented by finite automata for
the component languages. Although in general solutions of language equations
with one-sided concatenation need not be regular, one can show that a solv-
able language equation always has a regular solution, and that least and greatest
solutions are always regular. One way of showing this is to express (least, great-
est) solutions in Rabin’s monadic second-order logic [18], and use well-known
results for this logic. Our representation of solutions by runs of an effectively
constructable ILTA provides an easy and natural way of constructing regular so-
lutions. It also yields a standalone proof of regularity of unique/least/greatest
solutions of language equations with one-side concatenation.

For the case of a unique solution, the deterministic trim ILTA Aϕ itself can be
used as a deterministic finite automaton (DFA) for the solutions.

Lemma 3.19 Assume that the language equation ϕ(X1, . . . , Xn) = ∅ has a

unique solution (L1, . . . , Ln), and let A
(i)
ϕ be the DFA obtained from Aϕ by us-

ing the set Fi := {q | Xi ∈ q} as set of final states (i = 1, . . . , n). Then we have

Li := L(A
(i)
ϕ ).

In order to obtain automata representing a least solution, we must modify the
constructed ILTA into an ILTA that has a unique least run. Let A = (Σ, Q,Q0, δ)
be an ILTA that has one or more least runs with respect to a preorder “4” on Q.
Define the corresponding preorder “v” as in Section 3.3. Let B = (Σ, Q,Q′

0, δ
′)

be an ILTA, in which Q′
0 := {q0} for any q0 ∈ Q0 that is a least element in Q0

with respect to v (such a q0 exists by Lemma 3.17), and

δ′(q, a) :=





{q′}, where q′ is any least element of δ(q, a),
if such an element exists

∅, if δ(q, a) has no least element

for each q ∈ Q and a ∈ Σ.
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Lemma 3.20 The automaton B has a unique run, which is among the least runs
of A.

Proof. Since |Q′
0| 6 1 and |δ′(q, a)| 6 1 for all q and a, B has at most one run.

It has to be proved that B has a run r and this run is one of the least runs of
A. The run r : Σ∗ → Q is defined inductively on the length of a string. The
induction hypothesis is that for every n > 0 there exists a least run r̂ of A such
that r(w) = r̂(w) for every w ∈ Σ∗ with |w| 6 n.

Base case. Let r̂ be any least run of A and define r(ε) := r̂(ε).

Induction step. Let r(u) = r̂(u) for all u ∈ Σ∗ such that |u| 6 n, where r̂ is a
least run of A. We need to define r(wa) for every w ∈ Σ∗ of length n and for
every a ∈ Σ. For every such w and a, consider the state q := r(w).

Let us first show that δ(q, a) contains a least element with respect to “v”. Let
q̂a = r̂(wa) and define the run r̂a from q̂a as r̂a(v) = r̂(wav) for all v ∈ Σ∗.
If δ(q, a) does not contain a least element, then for this state q̂a there exists a
state q′a, such that q̂a 6v q′a. The latter implies that for the run r̂a from q̂a there
exists a run r′a from q′a, such that r̂a 64 r′a, i.e., r̂a(v0) 64 r′a(v0) for some v0 ∈ Σ∗.
Construct a new run r′ as follows: r′(wav) = r′a(v) for all v ∈ Σ∗ and r′(u) = r̂(u)
for all v ∈ Σ∗ \ waΣ∗. Then r̂(wav0) 64 r′(wav0), and therefore r̂ 64 r′, which
contradicts the assumption that r̂ is one of the least runs.

We have thus proved that there are least elements with respect to “v” in δ(q, a),
and therefore δ′(q, a) = {qa}, where qa is one of these least elements. Then there
exists a run ra from qa such that ra 4 r′a for every run r′a from qa; in particular,
ra 4 r̂a. Define r(wa) as ra(ε) and also denote rw,a := ra.

In order to support the induction hypothesis, we need to show that there exists
another least run r̃ of A, such that r(u) = r̃(u) for all u of length up to n + 1.
Define such a run r̃ as follows:

r̃(u) = r̂(u) (for all u ∈ Σ∗ such that |u| 6 n),

r̃(wav) = rw,a(v) (for all w ∈ Σn, a ∈ Σ and v ∈ Σ∗).

Then r̃ 4 r̂, and since r̂ is one of the least runs of A, r̃ is also one of the least
runs of A. This completes the induction step.

Given a language equation ϕ = ∅ with one-sided concatenation that has a least
solution, its ILTA Aϕ has a least run. Thus, the automaton B constructed from
Aϕ has a unique run, which is a least run of Aϕ. This least run corresponds to
the least solution of the equation, and DFAs for the components of this solution
can be obtained as described above for the case of a unique solution.
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Theorem 3.21 If a language equation with one-sided concatenation has a least
(greatest) solution, then all components of this solution are regular, and finite
automata recognizing them can be effectively constructed.

Let us now conclude our example by computing the DFA for the least solution
of the equation (8) w.r.t. the focus variable X. The relevant ILTA is shown in
Figure 3. The least element in Q0 is 1.

Figure 4: The DFA for the least X in the equation (8).

Let us determine least elements in δ(q, a) for all states q. Consider the transitions
from 1 to 4, 5, 6 and 7. According to Table 1, 6 v 4, 6 v 5, 6 v 6 and 6 v 7, and
therefore 6 is a least element in δ(1, a) (in fact the only least element). Hence,
the deterministic transition from 1 by a is routed to 6. Proceeding in this way, we
obtain the DFA given in Figure 4. Once the unreachable states are eliminated,
we obtain an automaton with the states 1 and 6, which recognizes the language
{ε}. This is the value of X in the least solution with respect to the set of focus
variables {X}.

4 The complexity lower-bounds

We show that the decision problems for language equations introduced in Sec-
tion 2 are ExpTime-hard already for language equations with one-sided concate-
nation and union. For solvability, this was already shown in [2]. Since it was also
shown there that such an equation has a solution iff it has a greatest solution,
ExpTime-hardness of the existence of a greatest solution follows from this result
as well. In the following we will concentrate on the remaining decision problems.
Similar to [2], we show ExpTime-hardness by a reduction from the intersection
emptiness problem for deterministic looping tree automata. First, we show how
trees can be represented as languages.
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4.1 Representing infinite trees by languages

Given a ranked alphabet Γ, we use the alphabet ΣΓ := {f [i] | f ∈ Σ, 1 6 i 6

rank f} as the alphabet underlying our language equations. For every infinite
tree t over Γ, we define a representation of t as a string language over ΣΓ:

S(t) = {f [i1]
1 . . . f

[i`]
` | ` > 0, t has a path with labels f1, . . . , f`, f`+1, in

which f1 labels the root of t, and each fj+1 labels

the ij-th successor of the node with label fj}

(12)

The strings in S(t) unambiguously encode finite prefixes of paths in t. Obviously,
for every infinite tree f(t1, . . . , tk), the following holds:

S(f(t1, . . . , tk)) = {ε} ∪
k⋃

i=1

{f [i]u | u ∈ S(ti)}

The following lemma characterizes the languages of the form S(t):

Lemma 4.1 The language L ⊆ Σ∗
Γ is of the form L = S(t) for some infinite tree

t iff

I. ε ∈ L;

II. for every w ∈ L there exists a unique symbol f ∈ Γ, such that wf [1] ∈ L;

III. if wf [i] ∈ L, then wf [j] ∈ L for every j (1 6 j 6 rank f);

IV. for every w ∈ Σ∗
Γ and f [i] ∈ ΣΓ, wf

[i] ∈ L implies w ∈ L.

Proof. First, we show the “only-if” direction. Thus, assume that L = S(t).
(I) ε ∈ S(t) by (12).

(II) If w = f
[i1]
1 . . . f

[i`]
` ∈ S(t), then, by (12), there exists a corresponding path

in t; the symbol f we are looking for is the i`-th successor of the last vertex in
this path, i.e., the one labeled with f`. Since f has rank at least one, wf [1] also
belongs to S(t).
(III) If wf [i] ∈ S(t), then the condition in (12) is met, and it is the same for
wf [j].
(IV) If the condition in (12) is met for wf [i], then this obviously implies that the
condition is also satisfied for w.

Second, we show the “if” direction. Thus assume that L satisfies the conditions I–
IV. Let us construct an infinite tree t with vertices labeled with Γ, maintaining
the following invariant:
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For every constructed vertex v labeled with f , consider the path lead-
ing to this vertex. If this path is labeled with f1, . . . , f`, f`+1 where
f1 labels the root, f`+1 = f labels v, and each fj+1 labels the ij-th

successor of fj, then the string f
[i1]
1 . . . f

[i`]
` f [1] belongs to L.

Base case. By conditions I and II, there is a unique symbol f0 ∈ Γ, such that
f

[1]
0 ∈ L. Let us label the root with f0.

Induction step. Consider a path to any vertex labeled with a symbol f of rank
n, and the corresponding string w = f

[i1]
1 . . . f

[i`]
` f [1] ∈ L. By condition III,

wf [2], . . . , wf [n] ∈ L. By condition II applied n times, there exist unique symbols
g1, . . . , gn ∈ Γ, such that wf [i]g

[1]
i ∈ L for all i. Let us supply the vertex labeled

with f with n successors, which are respectively labeled with g1, . . . , grank f . By
our choice of the symbols gi, the invariant is also satisfied for the paths leading
to these new vertices.

This completes our description of the inductive definition of the tree t. It re-
mains to be shown that L = S(t). First note that, by construction, all strings
corresponding to finite paths in t belong to L. Hence we have S(t) ⊆ L. Second,
assume that L 6= S(t), and let wf [i] be the shortest string in L that is not in S(t).
Then, wf [i] ∈ L by condition III. In addition, by condition IV, we have w ∈ L,
and also w ∈ S(t) since it is shorter than wf [i]. Thus, when extending the vertix
in t corresponding to the last node on the path represented by w, we would have
chosen the (unique) symbol f with wf [1] ∈ L to label the corresponding successor
node. But then wf [i] ∈ S(t).

The mapping S is extended in the obvious way to sets of trees: S(T ) :=
⋃

t∈T S(t).
We also consider the “inverse” operation

S−1(L) := {t | S(t) ⊆ L}. (13)

Lemma 4.2 For every set of trees T , T ⊆ S−1(S(T )) and S(S−1(S(T ))) = S(T ).

Proof. (I) If t ∈ T , then S(t) ⊆ S(T ) by the definition of S(T ), and hence
t ∈ S−1(S(t)) according to (13).

(II) “⊆” If w ∈ Σ∗
Γ is in S(S−1(S(T ))), then there exists a tree t ∈ S−1(S(T )),

such that w ∈ S(t). Hence, S(t) ⊆ S(T ), and therefore w ∈ S(T ).

“⊇” By the first part of the proof, T ⊆ S−1(S(T )), which implies S(T ) ⊆
S(S−1(S(T ))) by the monotonicity of S.
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4.2 Representing looping tree automata by language equa-
tions

Let A = (Q,Γ, {q0},∆) be a deterministic looping tree automaton over Γ, where
∆ is represented as a partial function from Q × Γ to Q∗. We introduce another
partial function q : Σ∗

Γ → Q that simulates the operation of A on a finite prefix
of a single path encoded as in (12). Define q(w) inductively on the length of w:

• q(ε) = q0, and

• q(uf [i]) is defined as the i-th component of ∆(q(u), f) if this transition is
defined, and undefined otherwise.

Basically, if q(u) is defined, then it gives the unique label of the node correspond-
ing to u in a run of A on a tree containing the path encoded by u.

Now define a system of language equations (14) over the alphabet ΣΓ ∪Q, which
simulates the computation of the automaton A. The set of variables of this
equation is {Xq,f |∆(q, f) is defined} ∪ {X0}, and the system consists of the two
equations

⋃

∆(q, f) is defined

Xq,f · {q} = {q0} ∪
⋃

∆(q,f)=(q1,...,qk)

Xq,f · {f
[1]q1, . . . , f

[k]qk} (14a)

X0 =
⋃

∆(q, f) is defined

Xq,f (14b)

The following lemma establishes some basic properties of solutions of this system.

Lemma 4.3 For every solution (. . . , Lq,f , . . . , L0) of (14),

I. w ∈ Lq,f iff q(w) = q and wf [i] ∈ L0 for all i (1 6 i 6 rank f).

II. If w ∈ Lq,f for some q ∈ Q, then there exists an infinite tree t such that
{wf [1], . . . , wf [rank f ]} ⊆ S(t) ⊆ L0.

Proof. Denote by L ⊆ Σ∗
ΓQ the common value of the left-hand side and the

right-hand side of (14a) under the substitution Xq,f = Lq,f .

Part I. Let us first show by induction on the length of w that w ∈ Lq,f implies
that q(w) is defined and equals q.

Base case. If ε ∈ Lq,f , then, by the left-hand side of the equation, q ∈ L.
According to the right-hand side, this implies q = q0 = q(ε).

Induction step. Let w = uh[i], where u ∈ Σ∗
Γ and h[i] ∈ ΣΓ. If uh[i] ∈ Lq,f , then

uh[i]q ∈ L by the left-hand side. Therefore, by the right-hand side, there exists
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a state p ∈ Q such that u ∈ Lp,h, ∆(p, h) = (q1, . . . , qk) and q = qi. By the
induction hypothesis, u ∈ Lp,h implies q(u) = p. Combining this with the value
of ∆, we obtain q(uh[i]) = qi = q.

Now let us demonstrate that w ∈ Lq,f implies wf [i] ∈ L0 for all i. Since the
variable Xq,f exists, the transition ∆(q, f) is defined, and thus yields a tuple
(q1, . . . , qk) ∈ Qk, where k = rank f . By the right-hand side of the equation,
wf [i]qi ∈ L, and therefore, by the left-hand side, there exists a symbol g ∈ Γ,
such that wf [i] ∈ Lqi,g ⊆ L0.

It remains to prove the converse claim that wf [i] ∈ L0 implies w ∈ Lq(w),f . If
wf [i] ∈ L0, then wf [i] ∈ Lp,h for some p ∈ Q and h ∈ Γ. Hence, by the left-hand
side, wf [i]p ∈ L. By the right-hand side, there exists a state q ∈ Q, such that
∆(q, f) = (q1, . . . , qk), where p = qi and w ∈ Lq,f . As shown in the proof of the
“only-if” direction, w ∈ Lq,f implies q(w) = q, and thus we have w ∈ Lq(w),f .
This concludes the proof of Part I of the lemma.

Part II. Let w ∈ Lq,f for some q ∈ Q. We construct a tree t by induction on the
length of paths, while satisfying as an invariant that all paths in t are represented
by strings in L0.

Base case. The empty path is represented by ε. The empty word ε is in L0

since the right-hand side of the equation yields q0 ∈ L, and thus there must be a
symbol f such that ∆(q0, f) is defined and ε ∈ Lq0,f ⊆ L0.

Induction step. Let the tree contain a finite path represented by x ∈ Σ∗
Γ. By the

induction hypothesis, x ∈ L0, and hence x ∈ Lp,h for some p ∈ Q, h ∈ Γ. By
Part I, p = q(x). The symbol h is defined not necessarily uniquely. If wf has a
prefix xg, then xg ∈ L0. In fact, one can use the implication from right to left of
Part I to show that any prefix of an element of L0 also belongs to L0. But then
xg ∈ L0 and p = q(x) yield x ∈ Lp,g by Part I. Hence, we can choose h = g.
Otherwise the choice of h is arbitrary.

We continue the path represented by x with a vertex with label h. This yields
rankh longer strings of the form xh[j] (1 6 j 6 rankh). Since x ∈ Lp,h, by Part I,
xh[i] ∈ L0, which shows that the invariant of the construction remains true.

Based on this lemma and the properties of the mapping S mentioned above, we
can show the following characterization of solutions of (14). In particular, this
characterization shows that the language L0 substituted for X0 determines the
whole solution.

Lemma 4.4 A vector of languages (. . . , Lq,f , . . . , L0) is a solution of (14) iff

∅ ⊂ S−1(L0) ⊆ L(A), (15)

Lq,f = {w | q(w) = q, wf [i] ∈ L0 for all i} (q ∈ Q, f ∈ Γ), (16)
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and there exists a set of trees T such that L0 = S(T ).

Proof. First, we show the “only-if” direction. Consider an arbitrary solution
(. . . , Lq,f , . . . , L0) of (14). For every w ∈ L0, let Tw be the set of all trees t such
that w ∈ S(t) ⊆ L0. According to Part II of Lemma 4.3, there exists at least one
such tree, and thus we obtain

{w} ⊆ S(Tw) ⊆ L0.

Summing up these inequalities for all w ∈ L0, we obtain

⋃
w∈L0

{w} ⊆
⋃

w∈L0
S(Tw) ⊆

⋃
w∈L0

L0

|| || ||
L0 ⊆ S(

⋃
w∈L0

Tw) ⊆ L0,

which shows L0 = S(
⋃

w∈L Tw). Thus, if we define T :=
⋃

w∈L0
Tw, then the last

condition in the statement of the lemma is satisfied. It remains to show that the
other conditions hold as well.

• To see that S−1(L0) 6= ∅, note that q0 ∈
⋃

q,f Lq,f · {q} by (14a), and hence
ε ∈

⋃
f Lq0,f ⊆ L0. The tree tε associated with ε by Part II of Lemma 4.3

is in Tε ⊆ T , and hence, by Lemma 4.2, tε ∈ S−1(S(T )) = S−1(L0).

• Next, we prove S−1(L0) ⊆ L(A). Suppose there exists a tree t ∈ S−1(L0)
(that is, S(t) ⊆ L0) such that t /∈ L(A). Because t is not accepted by
the looping automaton A, there is no run of A on t, i.e., when trying to
construct the (unique) run of A on t, starting from the root, we encounter
a node in which there are no possible transitions. Using the definition of
the function q this means that there is a string w ∈ S(t) such that q(w) is
undefined. However, we have w ∈ S(t) ⊆ L0, and thus there exists a pair
(q, f) such that w ∈ Lq,f . But then, according to Part I of Lemma 4.3,
q(w) = q, which yields a contradiction.

• (16) is given by Part I of Lemma 4.3.

To show the “if” direction, let us start by considering the case where L0 = S(t)
for a tree t ∈ L(A). The first claim is that substituting

Lt
q,f := {w | q(w) = q, wf [i] ∈ S(t) for all i} (17)

for Xq,f (for q ∈ Q, f ∈ Γ s.t. ∆(q, f) is defined) turns (14a) into an equality.

The value of the left-hand side of (14a) under this substitution is

⋃

∆(q, f) is defined

Lt
q,f · {q} = {w · q(w) | ∃f.∀i. wf [i] ∈ S(t)} = {w · q(w) | w ∈ S(t)}.
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The latter equality follows from Lemma 4.1: if wf [i] ∈ S(t), then w ∈ S(t) by
Part IV of that lemma; conversely, if w ∈ S(t), then wf [1] ∈ S(t) for some f by
Part II, and then wf [i] ∈ S(t) for all i by Part III.

The right-hand side of (14a) looks as follows under this substitution:

{q0} ∪
⋃

∆(q,f)=(q1,...,qk) L
t
q,f · {f

[1]q1, . . . , f
[k]qk} =

= ε · q(ε) ∪ {uf [i] · q(uf [i]) | ∀i. uf [i] ∈ S(t)} =

= {w · q(w) | w ∈ S(t)}.

This proves that the the substitution that replaces X t
q,f by Lt

q,f satisfies the
equation (14a). In order to show that the equation (14b) is satisfied as well if we
replace X0 by L0 = S(t), we must prove that S(t) =

⋃
q,f L

t
q,f :

“⊆” If w ∈ S(t), then q(w) is defined since t ∈ L(A). By Lemma 4.1 (Parts II
and III), there exists an f ∈ Γ such that wf [i] ∈ S(t) for all i (1 6 i 6

rank f). Therefore, w ∈ Lt
q(w),f .

“⊇” If w ∈ Lt
q,f for some pair (q, f), then wf [1] ∈ S(t). Hence, by Part IV of

Lemma 4.1, we have w ∈ S(t).

This completes the proof of the “if” direction for the case where T = {t} for a
tree t ∈ L(A).

Now, let L0 = S(T ) for an arbitrary set of trees T such that (15) and (16) hold.
We have T ⊆ L(A) since T ⊆ S−1(S(T )) = S−1(L0) ⊆ L(A), where the first
inclusion holds by Lemma 4.2 and the second by our assumption.

For every t ∈ T ⊆ L(A), consider the vector of languages (. . . , Lt
q,f , . . . , L

t
0)

corresponding to t, defined by (17) and by Lt
0 := S(t). We have shown above

that this vector is a solution of the system (14). Consider the componentwise
union of these vectors for all t ∈ T , i.e., the vector (. . . , Lq,f , . . . , L0) defined as
Lq,f :=

⋃
t∈T L

t
q,f and L0 :=

⋃
t∈T L

t
0 = S(T ). As a union of solutions, it is a

solution as well.6

It remains to show that the components Lq,f indeed satisfy (16):

Lq,f =
⋃

t∈T

{w | q(w) = q, wf [i] ∈ S(t) for all i}

= {w | q(w) = q, wf [i] ∈ S(T ) for all i}.

This completes the proof of the “if” direction.

6Note that the system (14) is a system of language equations with one-sided concatenation
and union, for which this property is well-known [2].
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4.3 Complexity of the decision problems

The next theorem summarizes the main results of this paper.

Theorem 4.5 The problems of testing, for a given system of language equations
with one-sided concatenation and any set of Boolean operations containing union,
whether

1. it has a solution,

2. it has a unique solution,

3. it has finitely many solutions,

4. it has countably many solutions,

5. it has a least (greatest) solution with respect to componentwise inclusion

are all ExpTime-complete.

Given the results shown in Section 3 and in [1, 2], it is enough to prove that
testing whether a language equation with one-sided concatenation and union has
a unique solution, finitely many solutions, countably many solutions, and a least
solution, respectively, are ExpTime-hard problems.

All four cases are proved by a single reduction from the ExpTime-complete in-
tersection emptiness problem for deterministic looping tree automata [20, 2]. Let
A1, . . . ,An be deterministic looping tree automata over a common ranked alpha-
bet Γ, and assume without loss of generality that their sets of states Q1, . . . , Qn

are pairwise disjoint and that the initial state q
(i)
0 of every Ai is not reachable,

i.e., it never occurs on the right-hand side of a transition.

We augment Γ with a new unary symbol ftriv, and transform each automa-
ton Ai into an automaton A′

i over the alphabet Γ′ = Γ ∪ {ftriv} by adding

the extra transition (q
(i)
0 , ftriv) → q

(i)
0 . The set of trees accepted by A′

i equals
{f `

triv(t)) | ` > 0, t ∈ L(Ai)} ∪ {ttriv}, where ttriv denotes an infinite branch with
all vertices labeled by ftriv. Consequently, the intersection

⋂n

i=1 L(A′
i) is equal to

{f `
triv(t)) | ` > 0, t ∈

⋂n

i=1 L(Ai)} ∪ {ttriv}.

For each automaton A′
i, construct two language equations of the form (14), and

consider the resulting system of 2n equations, which share a common variable
X0. It is easy to show that the vector of languages Ltriv := (. . . , L

(i)
q,f , . . . , L0)

defined by

L0 := S(ttriv) and

L
(i)
q,f determined by L0 and A′

i according to (16) in Lemma 4.4.
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is always a solution of the system. In fact, S(ttriv) = (f
[1]
triv)

∗, and therefore

S−1(L0) = S−1((f
[1]
triv)

∗) = {ttriv}, which is a subset of L(A′
i) for all i. Thus, the

condition (15) in Lemma 4.4 is also satisfied, and n applications of that lemma
show that the constructed vector satisfies each pair of equations, and is therefore
is a solution of the whole system.

Whether the system has any other solutions depends on whether
⋂n

i=1 L(Ai) is
empty or not.

Lemma 4.6 If
⋂n

i=1 L(Ai) = ∅, then the system of language equations has a
unique solution.

Proof. If
⋂n

i=1 L(Ai) = ∅, then
⋂n

i=1 L(A′
i) = {ttriv}. We prove that in this case

the system has the unique solution Ltriv.

Consider any solution (. . . , L
(i)
q,f , . . . , L0), and let us apply Lemma 4.4 to the i-th

pair of equations. We obtain:

∅ ⊂ S−1(L0) ⊆ L(A′
i) (1 6 i 6 n), (18a)

L0 = S(Ti) (for some set of trees Ti) (18b)

and that all the languages L
[i]
q,f are completely determined by L0.

Intersecting (18a) for all i, we obtain S−1(L0) ⊆
⋂n

i=1 L(A′
i), where the latter

equals {ttriv} by assumption. The inclusions ∅ ⊂ S−1(L0) ⊆ {ttriv} imply

S−1(L0) = {ttriv}.

Application of S to both sides yields

S(S−1(L)) = S(ttriv).

Recalling that L0 = S(Ti) for some set of trees Ti (where i ∈ {1, . . . , n} is
arbitrary), we obtain

S(S−1(S(Ti))) = S(ttriv).

The left-hand side of the last equality equals S(Ti) by Lemma 4.2, and hence we
have

L0 = S(Ti) = S(ttriv).

Therefore, L0 is uniquely determined, and since the rest of the components of the
solution are in turn completely determined by L0, the solution is unique.

Lemma 4.7 If
⋂n

i=1 L(Ai) 6= ∅, then the system of language equations has a
uncountably many solutions.
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Proof. If
⋂n

i=1 L(Ai) 6= ∅, then there exists a tree t0 ∈
⋂n

i=1 L(Ai), and f `
triv(t0) ∈⋂n

i=1 L(A′
i) for all ` > 0. We construct uncountably many solutions of the system

as follows.

For every non-empty set of integers ∅ ⊂ N ⊆ N, define the set of trees

TN = {f `
triv(t0) | ` ∈ N}. (19)

Note that TN is a subset of
⋂n

i=1 L(A′
i). We prove that the vector of languages

(. . . , L
(i)
q,f,N , . . . , L0,N ) determined by L0,N := S(TN) according to (16) is a solution

of the system, and that different sets N yield different solutions.

First, let us show that this vector satisfies the conditions of Lemma 4.4 for every
i-th pair of equations constructed with respect to Ai, and hence is a solution of
the system:

• S−1(L0,N ) 6= ∅ since ∃` ∈ N , and hence f `
triv(t0) ∈ TN ⊆ S−1(S(TN)) =

S−1(L0,N ), where the inclusion is by Lemma 4.2.

• Let us prove that S−1(L0,N ) ⊆ L(Ai). Consider any tree t ∈ S−1(L0,N )
and let us consider its starting chain (possibly empty) of nodes labelled
ftriv. There are two cases: either the chain of ftriv is infinite, in which case
t = ttriv ∈ L(A) and the claim is proved, or the tree can be represented in
the form f `

triv(t
′), where ` > 0 and the root node of t′ is not ftriv.

By definition, t ∈ S−1(L0,N ) implies S(t) ⊆ L0,N = S(TN). On the

other hand, S(t) = (f
[1]
triv)

` · S(t′), where none of the strings in S(t′) starts

with f
[1]
triv. Then, by (19), all strings in S(t) must be in (f

[1]
triv)

` · S(t0) =
S(f `

triv(t0)), and therefore S(t′) ⊆ S(t0). We claim that t′ = t0.

Suppose to the contrary that t′ 6= t0. Then there is a (possibly empty)

common finite path in t′ and t0, encoded as w = f
[i1]
1 . . . f

[ik]
k , which is

extended with a node labelled g in t′, and with a node labelled h 6= g in t0.
Then wg[1] must be in S(t′) ⊆ S(t0). Thus we obtain wg[1] ∈ S(t0), which
means that the path w in t0 is extended with both a node labelled g and a
node labeled h 6= g, which contradicts Part II of Lemma 4.1.

Now, t′ = t0 implies t = f `
triv(t

′) = f `
triv(t0) ∈ L(Ai).

The second claim is that solutions corresponding to different sets of integers are
different. It has to be proved that, for any sets N 6= N ′, S(TN) 6= S(TN ′).
Let w ∈ S(t0) \ {ε}. Consider any number ` in the symmetric difference of N
and N ′, and suppose without loss of generality that ` ∈ N and ` /∈ N ′. Then
(f

[1]
triv)

`w ∈ S(TN)\S(TN ′). Thus we have constructed uncountably many pairwise
distinct solutions of the system.
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Since the constructed system of language equations has either exactly one solution
or uncountably many solutions, we can conclude that it has a unique solution
(finitely many solutions, countably many solutions) iff the intersection of the
languages generated by the n given deterministic looping tree automata is empty.
This proves that the problem of deciding whether a system of language equations
with one-sided concatenation and union has a unique solution (finitely many
solutions, countably many solutions) is ExpTime-hard. It remains to consider
the case of a least solution.

Lemma 4.8 If
⋂n

i=1 L(Ai) 6= ∅, then the system of language equations does not
have a least solution.

Proof. Consider the two solutions induced by L0 := S(ttriv) and L′
0 := S(T{0}) =

S(t0), where t0 and T{0} are defined as in the proof of the previous lemma. If the
system has a least solution, then its X0-component must be a subset of both L0

and L′
0, i.e., less or equal to

S(ttriv)︸ ︷︷ ︸
=(f

[1]
triv

)∗

∩S(t)︸︷︷︸
⊆Σ∗

Γ

= {ε}.

However, according to Lemma 4.4, this component must be of the form S(T )
for some non-empty set of trees T , and thus has to be infinite, which yields a
contradiction. Therefore, no solution of the system can be less than both solutions
given above, which shows that there is no least solution among the solutions of
the system.

Since the constructed system of language equations has either exactly one solution
(and thus a least solution) or no least solution, we can conclude that it has a least
solution iff the intersection of the languages generated by the n given deterministic
looping tree automata is empty. This proves that the problem of deciding whether
a system of language equations with one-sided concatenation and union has a least
solution is ExpTime-hard. This completes the proof of Theorem 4.5.

5 Conclusion

We have shown that several interesting decision problems for basically all kinds of
language equations with one-sided concatenation are ExpTime-complete: solv-
ability, existence of a unique (least, greatest) solution, and determining the car-
dinality (finite, countable, uncountable) of the set of solutions. The complexity
upper-bounds are shown for all decision problems by a uniform translation into
a looping tree automaton with independent transitions, i.e., a non-deterministic
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finite automaton that is viewed as a looping tree automaton. Accordingly, the
complexity lower-bounds are shown by a uniform reduction from the intersection
emptiness problem for deterministic looping tree automata. Though the transla-
tion of deterministic looping tree automata into language equations is identical
to the one given in [2], we believe that the proof of correctness of the reduction is
simpler and much easier to comprehend than the one given there. In addition, our
translation is also used to show ExpTime-hardness of decision problems other
than solvability.

The decision procedures based on the construction of an ILTA have been im-
plemented. This implementation does not just answer yes or no. In case there
is a unique (least, greatest) solution, we know that its components are regular
languages, and the implementation constructs deterministic finite automata for
these components (see Section 3.4).

Acknowledgment

We thank Thomas Wilke for alerting us to the work of Niwiński, and Moshe Vardi
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