
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Description Logic Actions with general TBoxes:

a Pragmatic Approach

Hongkai Liu, Carsten Lutz, Maja Miličić, Frank Wolter

LTCS-Report 06-03

Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
http://lat.inf.tu-dresden.de

Hans-Grundig-Str. 25
01062 Dresden

Germany

Description Logic Actions with general TBoxes:
a Pragmatic Approach

Hongkai Liu1, Carsten Lutz1, Maja Miličić1, Frank Wolter2

1Inst. für Theor. Inf. 2Dept. of CS
TU Dresden, Germany Univ. of Liverpool, UK

Abstract

Action formalisms based on description logics (DLs) have recently
been introduced as decidable fragments of well-established action theo-
ries such as the Situation Calculus and the Fluent Calculus. However,
existing DL action formalisms fail to include general TBoxes, which are
the standard tool for formalising ontologies in modern description logics.
We define a DL action formalism that admits general TBoxes, propose
an approach to addressing the ramification problem that is introduced
in this way, and perform a detailed investigation of the decidability and
computational complexity of reasoning in our formalism.

1 Introduction

Action theories such as the Situation Calculus (SitCalc) and the Fluent Calculus
aim at describing actions in a semantically adequate way [12, 15]. They are
usually formulated in first- or higher-order logic and do not admit decidable
reasoning. For reasoning about actions in practical applications, such theories
are thus not directly suited. There are two obvious ways around this problem:
the first one is to accept undecidability and replace reasoning by programming.
This route is taken by the inventors of action-oriented programming languages
such as Golog [6] and Flux [16], whose semantics is based on the SitCalc and
Fluent Calculus, respectively. The second one is to try to identify fragments of
action theories such as SitCalc that are sufficiently expressive to be useful in
applications, but nevertheless admit decidable reasoning. For example, a simple
such fragment is obtained by allowing only propositional logic for describing
the state of the world and pre- and post-conditions of actions. A much more
expressive formalism was identified in our recent paper [2], where we define action
formalisms that are based on description logics (DLs) [3]. More precisely, we

1

use DL ABoxes to describe the state of the world and pre- and post-conditions
of actions and prove that reasoning in the resulting formalism is decidable [2].
We also show in [2] that, in this way, we actually get a decidable fragment of
SitCalc.

In description logic, TBoxes are used as an ontology formalism, i.e., to de-
fine concepts and describe relations between them. For example, a TBox may
describe relevant concepts from the domain of universities such as lecturers,
students, courses, and libraries. From the reasoning about actions perspective,
TBoxes correspond to state constraints. For example, a TBox for the university
domain could state that every student that is registered for a course has access
to a university library. If we execute an action that registers the student Dirk
for a computer science course, then after the action Dirk should also have access
to a university library to comply with the state constraint imposed by the TBox.
Thus, general TBoxes as state constraints induce a ramificiation problem which
we henceforth call the TBox ramification problem.

Regarding TBoxes, the DL action formalism defined in [2] has two major lim-
itations: first, we only admit acyclic TBoxes which are a much more lightweight
ontology formalism than the general TBoxes that can be found in all state-of-
the-art DL reasoners [?]. For example, the DL formulation of the above ontol-
ogy statement regarding access to libraries requires a general concept inclusion
(GCIs) as offered by general TBoxes. Second, we allow only concept names (but
no complex concepts) in post-conditions and additionally stipulate that these
concept names are not defined in the TBox. In the present paper, we present an
approach to overcoming these limitations while retaining decidability of the most
important reasoning tasks. In particular, we show how to incorporate general
TBoxes into DL action formalisms. This implies dropping the second restriction
as well since there is no clear notion of a concept name “being defined” in a
general TBox.

The main reason for adopting the mentioned restrictions in [2] was that they
disarm the TBox ramification problem. Attempts to automatically solve the
TBox ramificiation problem, e.g. by adopting a Winslett-style PMA semantics
[19], lead to semantic and computational problems: we show in [2] that counter-
intuitive results and undecidability of reasoning are the consequence of adopting
such a semantics. Since there appears to be no general automated solution to
the TBox ramification problem other than resorting to very inexpressive DLs
[?], we propose to leave it to the designer of an action description to fine-tune
the ramifications of the action. This is similar to the approach taken in the
SitCalc and the Fluent Calculus to address the ramification problem. There,
the designer of an action description can control the ramifications of the action
by specifying causal relationships between predicates [7, 14]. While causality
appears to be a satisfactory approach for addressing the ramification problem
that is induced by Boolean state constraints, it seems not powerful enough for

2

Name Syntax Semantics

inverse role r− (rI)−1

nominal {a} {aI}
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

at-least restriction (> n r C) {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI} ≥ n}
at-most restriction (6 n r C) {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI} ≤ n}

Figure 1: Syntax and semantics of ALCQIO.

attacking the ramifications introduced by general TBoxes, which usually involve
complex quantification patterns. We therefore advocate a different approach:
when describing an action, the user can specify the predicates that can change
through the execution of the action, as well as those that cannot change. To
allow an adequate fine-tuning of ramifications, we admit complex statements
about the change of predicates such as “the concept name A can change from
positive to negative only at the individual a, and from negative to positive only
where the complex concept C was satisfied before the action was executed”.

The family of action formalisms introduced in this paper can be parame-
terised with any description logic. We show that, for many standard DLs, the
reasoning problems executability and projection in the corresponding action for-
malism are decidable. We also pinpoint the exact computational complexity of
these reasoning problems. As a rule of thumb, our results show that reasoning in
the action formalism instantiated with a description logic L is of the same com-
plexity as standard reasoning in L extended with nominals (which correspond
to first-order constants [1]). For fine-tuning the ramifications, consistency of ac-
tions is an important property. We introduce two notions of consistency (weak
and strong) and show that weak consistency is of the same complexity as de-
ciding projection while strong consistency is undecidable even when the action
formalism is instantiated with the basic DLALC. Details regarding the technical
results can be found in the report [8].

2 Description Logics

In DLs, concepts are inductively defined with the help of a set of constructors,
starting with a set NC of concept names, a set NR of role names, and (possibly)
a set NI of individual names. In this section, we introduce the DL ALCQIO,
whose concepts are formed using the constructors shown in Figure 1. There,

3

the inverse constructor is the only role constructor, whereas the remaining six
constructors are concept constructors. In Figure 1 and throughout this paper, we
use #S to denote the cardinality of a set S, a and b to denote individual names,
r and s to denote roles (i.e., role names and inverses thereof), A,B to denote
concept names, and C,D to denote (possibly complex) concepts. As usual, we
use > as abbreviation for an arbitrary (but fixed) propositional tautology, ⊥ for
¬>, → and ↔ for the usual Boolean abbreviations, ∃r.C (existential restriction)
for (> 1 r C), and ∀r.C (universal restriction) for (6 0 r ¬C).

The DL that allows only for negation, conjunction, disjunction, and uni-
versal and existential restrictions is called ALC. The availability of additional
constructors is indicated by concatenation of a corresponding letter: Q stands
for number restrictions; I stands for inverse roles, and O for nominals. This
explains the name ALCQIO for our DL, and also allows us to refer to its sub-
languages in a simple way.

The semantics of ALCQIO-concepts is defined in terms of an interpreta-
tion I = (∆I , ·I). The domain ∆I is a non-empty set of individuals and the
interpretation function ·I maps each concept name A ∈ NC to a subset AI of
∆I , each role name r ∈ NR to a binary relation rI on ∆I , and each individual
name a ∈ NI to an individual aI ∈ ∆I . The extension of ·I to inverse roles
and arbitrary concepts is inductively defined as shown in the third column of
Figure 1.

A general concept inclusion axiom (GCI) is an expression of the form C v D,
where C and D are concepts. An expression C

.
= D is an abbreviation for two

GCIs C v D and D v C. A (general) TBox T is a finite set of GCIs. An
ABox is a finite set of concept assertions C(a) and role assertions r(a, b) and
¬r(a, b) (where r may be an inverse role). An interpretation I satisfies a GCI
C v D iff CI ⊆ DI , a concept assertion C(a) iff aI ∈ CI , a role assertion
r(a, b) iff (aI , bI) ∈ rI , and a role assertion ¬r(a, b) iff (aI , bI) /∈ rI . We denote
satisfaction of a GCI C v D by an interpretation I with I |= C v D, and
similar for ABox assertions. An interpretation I is a model of a TBox T (written
I |= T) iff it satisfies all GCIs in T . It is a model of an ABox A (written I |= A)
iff it satisfies all assertions in A.

A concept C is satisfiable w.r.t. a TBox T iff CI 6= ∅ for some model I of T .
An ABox A is consistent w.r.t. a TBox T iff A and T have a common model.

3 Describing Actions

The action formalism proposed in this paper is not restricted to a particular
DL. However, for our complexity results we consider the DL ALCQIO and its
sublogics.

The main syntactic ingredients of our approach to reasoning about actions

4

are action descriptions, ABoxes for describing the current knowledge about the
state of affairs in the application domain, and TBoxes for describing general
knowledge about the application domain similar to state constraints in the Sit-
Calc and Fluent Calculus. On the semantic side, interpretations are used to
describe the state of affairs in the application domain. Thus, the knowledge
described by an ABox is incomplete: ABoxes may admit more than a single
model, and all the corresponding states are considered possible. Before we go
deeper into the semantics, we introduce the syntax of action descriptions. We
use LO to denote the extension of a description logic L with nominals. A con-
cept literal is a concept name or the negation thereof, and a role literal is defined
analogously.

Definition 1 (Action). Let L be a description logic. An atomic L-action
α = (pre, occ, post) consists of

• a finite set pre of L ABox assertions, the pre-conditions ;

• the occlusion pattern occ which is a set of mappings {occϕ1 , . . . , occϕn}
indexed by L ABox assertions ϕ1, . . . , ϕn such that each occϕi

assigns

– to every concept literal B an LO-concept occϕi
(B),

– to every role literal s a finite set occϕi
(s) of pairs of LO-concepts.

• a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ
and ψ are L ABox assertions.

A composite action is a finite sequence of atomic actions α1, . . . , αn. 4

Intuitively, the pre-conditions specify under which conditions the action is appli-
cable. A post-condition ϕ/ψ says that, if ϕ is true before executing the action,
then ψ should be true afterwards. The purpose of the occlusion patterns is
to control ramifications: they provide a description of where concept and role
names may change during the execution of an action. More precisely, suppose
occ = {occϕ1 , . . . , occϕn} and ϕi1 , . . . , ϕim are the assertions which are true be-
fore the action was executed. If A is a concept name, then instances of the
concept

occϕi1
(A) t · · · t occϕim

(A)

may change from A to ¬A during the execution of the action provided, but
instances of ¬(occϕi1

(A) t · · · t occϕim
(A)) may not. Likewise, instances of

occϕi1
(¬A) t · · · t occϕim

(¬A)

may change from ¬A to A. For role names, (C,D) ∈ occϕik
(r) means that pairs

from CI × DI that have been connected by r before the action may lose this

5

connection through the execution of the action, and similarly for the occlusion
of negated role names. More details on how occlusions relate to ramifications
will be given after we have introduced the semantics.

For defining the semantics in a succinct way, it is convenient to introduce
the following abbreviation. For an action α with occ = {occϕ1 , . . . , occϕn}, an
interpretation I, a concept literal B (a concept name or the negation thereof),
and a role literal s (a role name or the negation thereof), we set

(occ(B))I :=
⋃

I|=ϕi

(occϕi
(B))I

(occ(s))I :=
⋃

(C,D)∈occϕi (s),I|=ϕi

(CI ×DI)

Thus, occ(X)I describes those elements of ∆I that may change from X to ¬X
when going to I ′, and similarly for occ(s)I .

Definition 2 (Action semantics). Let α = (pre, occ, post) be an atomic ac-
tion and I, I ′ interpretations sharing the same domain and interpretation of
all individual names. We say that α may transform I to I ′ w.r.t. a TBox T
(I ⇒T

α I ′) iff the following holds:

• I, I ′ are models of T ;

• for all ϕ/ψ ∈ post: I |= ϕ implies I ′ |= ψ (written I, I ′ |= post);

• for each A ∈ NC and r ∈ NR, we have

AI \ AI′ ⊆ (occ(A))I ¬AI \ ¬AI′ ⊆ (occ(¬A))I

rI \ rI′ ⊆ (occ(r))I ¬rI \ ¬rI′ ⊆ (occ(¬r))I

The composite action α1, . . . , αn may transform I to I ′ w.r.t. T (I ⇒T
α1,...,αn

I ′)
iff there are models I0, . . . , In of T with I = I0, I ′ = In, and Ii−1 ⇒T

αi
Ii for

1 ≤ i ≤ n. 4

Let us reconsider the example from the introduction to explain how occlusions
provide a way to control the ramifications induced by general TBoxes. The
TBox T contains the following GCIs which say that everybody registered for a
course has access to a university library, and that every university has a library:

∃registered for.Course v ∃access to.Library

University v ∃has facility.Library

The upper GCI cannot be expressed in terms of an acyclic TBox and is thus
outside the scope of the formalism in [2]. The ABox A which describes the
current state of the world (in an incomplete way) says that computer science is

6

a course held at TU Dresden, SLUB is the library of TU Dresden, and Dirk is
neither registered for a course nor has access to a library:

Course(cs) held at(cs, tud) ¬∃registered for.Course(dirk)
University(tud) has facility(tud, slub) ¬∃access to.Library(dirk)
Library(slub)

The action
α := (∅, occ, {taut/registered for(dirk, cs)})

describes the registration of Dirk for the computer science course. For simplicity,
the set of pre-conditions is empty and taut is some ABox assertion that is trivially
satisfied, say >(cs). To obtain occ, we may start by strictly following the law of
inertia, i.e., requiring that the only changes are those that are explicitly stated
in the post-condition. Thus, occ consists of just one mapping occtaut such that

occtaut(¬registered for) := {({dirk}, {cs})}

and all concept and role literals except ¬registered for are mapped to ⊥ and
{(⊥,⊥)}, respectively. This achieves the desired effect that only the pair (dirk, cs)
can be added to “registered for” and nothing else can be changed.

It is not hard to see that this attempt to specify occlusions for α is too
strict. Intuitively, not allowing any changes is appropriate for Course, Library,
University, held at, has facility and their negations since the action should have
no impact on these predicates. However, not letting ¬access to change leads to
a problem with the ramifications induced by the TBox: as Dirk has no access to
a library before the action and ¬access to is not allowed to change, he cannot
have access to a library after execution of the action as required by the TBox.
Thus, the action is inconsistent in the following sense: there is no model I of
A and T and model I ′ of T such that I ⇒T

α I ′. To take care of the TBox
ramifications and regain consistency, we can modify occ. One option is to set

occtaut(¬access to) := {({dirk}, Library)}

and thus allow Dirk to have access to a library after the action. Another option
is to set

occtaut(¬access to) := {({dirk}, slub)}
which allows Dirk to have access to SLUB after the action, but not to any other
library.

Two remarks regarding this example are in order. First, the occlusion occ
consists only of a single mapping occtaut. The reason for this is that there is only
a single post-condition in the action. If we have different post-conditions ϕ/ψ
and ϕ′/ψ such that ϕ and ϕ′ are not equivalent, there will usually be different
occlusion mappings (indexed with ϕ and ϕ′) to deal with the ramifications that

7

the TBox induces for these post-conditions. Second, the example explains the
need for extending L to LO when describing occlusions (c.f. Definition 1): with-
out nominals, we would not have been able to properly formulate the occlusions
although all other parts of the example are formulated without using nominals
(as a concept-forming operator).

As illustrated by the example, it is important for the action designer to
decide consistency of actions to detect ramification problems that are not prop-
erly addressed by the occlusions. In the following, we propose two notions of
consistency.

Definition 3 (Consistency). Let α = (pre, occ, post) be an atomic action and
T a TBox. We say that

• α is weakly consistent with T iff there are models I, I ′ of T such that
I |= pre and I ⇒T

α I ′.

• α is strongly consistent with T iff for all models I of T and pre, there is a
model I ′ of T such that I ⇒T

α I ′.
4

Intuitively, strong consistency is the most desirable form of consistency: if the
preconditions of an action are satisfied by an interpretation I, then the action
can transform I into a new interpretation I ′. Unfortunately, strong consistency
will turn out to be undecidable. For this reason we introduce also weak con-
sistency, which is still sufficient to detect serious ramification problems. In the
example above, the first attempt to define the occlusions results in an action
that is not even weakly consistent. After each of the two possible modifictions,
the action is strongly consistent. We will see later that weak consistency is
decidable while strong consistency is not.

To check whether an action can be applied in a given situation, the user wants
to know whether it is executable, i.e., whether all pre-conditions are satisfied in
the states of the world considered possible. If the action is executable, he wants
to know whether applying it achieves the desired effect, i.e., whether an assertion
that he wants to make true really holds after executing the action. These two
problems are called executability and projection [12, 2].

Definition 4 (Executability and projection). Let α1, . . . , αn be a composite
action with αi = (prei, occi, posti) for i = 1, . . . , n, let T be a TBox, and A an
ABox.

• Executablity: α1, . . . , αn is executable in A w.r.t. T iff the following con-
ditions are true for all models I of A and T :

– I |= pre1

8

– for all i with 1 ≤ i < n and all interpretations I ′ with I ⇒T
α1,...,αi

I ′,
we have I ′ |= prei+1.

• Projection: The assertion ϕ is a consequence of applying α1, . . . , αn in A
w.r.t. T iff for all models I of A and T and for all I ′ with I ⇒T

α1,...,αn
I ′,

we have I ′ |= ϕ.
4

To make sure that a composite action α = α1, . . . , αn can be successfully ex-
ecuted, α has to be executable and the atomic actions α1, . . . , αn have to be
strongly consistent: without strong consistency, it could be that although the
action α is executable w.r.t. the ABox A describing the knowledge about the
current state of the world, the actual state of the world I is such that there is
no interpretation I ′ with I ⇒T

α I ′. Even worth, such a situation may arise also
after we have already executed some of the atomic actions in the sequence α.

It is not difficult to see that the action formalism just introduced is a gener-
alisation of the one introduced in [2] when composite actions are disallowed, for
details see Appendix A. Clearly, executability can be polynomially reduced to
ABox consequence which is defined as follows: given an ABox A and an asser-
tion ϕ, decide whether I satisfies ϕ in all models I of A. The complexity of this
problem is extensively discussed in [2]. For example, it is NExpTime-complete
for ALCQIO and ExpTime-complete for ALC extended with at most two of
Q, I, and O.

It can also be seen that (i) an action α = (pre, occ, post) is weakly consistent
with a TBox T iff ⊥(a) is not a consequence of applying α in pre w.r.t. T ;
(ii) ϕ is a consequence of applying α = (pre, occ, post) in A w.r.t. T iff the action
(A ∪ pre, occ, post ∪ {>(a)/¬ϕ}) is not weakly consistent with T . Thus, weak
consistency can be reduced to (non-)projection and vice versa and complexity
results carry over from one to the other. In this paper, we will concentrate on
projection.

4 Projection in ExpTime

We show that projection and weak consistency are ExpTime-complete for DL
actions formulated in ALC, ALCO, ALCI, ALCIO. Thus, in these DLs reason-
ing about actions is not more difficult than the standard DL reasoning problems
such as concept satisfiability and subsumption w.r.t. TBoxes. The complexity
results established in this section are obtained by proving that projection in
ALCIO is in ExpTime. We use a Pratt-style type elimination technique as
first proposed in [10].

Let α1, . . . , αn be a composite action with αi = (prei, occi, posti) for 1 ≤ i ≤ n,
T a TBox, A0 an ABox and ϕ0 an assertion. We want to decide whether ϕ0 is

9

a consequence of applying α1, . . . , αn in A0 w.r.t. T . In what follows, we call
α1, . . . , αn, T , A0 and ϕ0 the input. W.l.o.g., we make the following assumptions:

• concepts used in the input are built only from the constructors {a}, ¬, u,
and ∃r.C;

• ϕ0 is of the form ϕ0 = C0(a0), where C0 is a (complex) concept;

• A0 and α1, . . . , αn contain only concept assertions.

The last two assumptions can be made because every assertion r(a, b) can be
replaced with (∃r.{b})(a), and every ¬r(a, b) with (¬∃r.{b})(a).

Before we can describe the algorithm, we introduce several notions and ab-
breviations. With Sub, we denote the set of subconcepts of the concepts which
occur in the input. With Ind, we denote the set of individual names used in the
input, and set Nom := {{a} | a ∈ Ind}. The algorithm that we give in the follow-
ing checks for the existence of a countermodel witnessing that ϕ0 is not a con-
sequence of applying α1, . . . , αn in A0 w.r.t. T . Such a countermodel consists of
n+1 interpretations I0, . . . , In such that I0 |= A0, I0 ⇒T

α1
I1, . . . , In−1 ⇒T

αn
In,

and In 6|= ϕ0. To distinguish the extension of concept and role names in the
different interpretations, we introduce concept names A(i) and role names r(i) for
every concept name A and role name r used in the input, and every i ≤ n. For
a concept C ∈ Sub that is not a concept name, we use C(i), i ≤ n, to denote the
concept obtained by replacing all concept names A and role names r occurring
in C by A(i) and r(i) respectively. We define the set of concepts Cl as:

Cl =
⋃
i≤n

{C(i),¬C(i) | C ∈ Sub ∪ Nom}

The notion of a type plays a central role in the projection algorithm to be
devised.

Definition 5. A set of concepts t ⊆ Cl is a type for Cl iff it satisfies the following
conditions:

• for all ¬D ∈ Cl: ¬D ∈ t iff D 6∈ t;

• for all D u E ∈ Cl: D u E ∈ t iff {D,E} ⊆ t;

• for all C v D ∈ T and i ≤ n, C(i) ∈ t implies D(i) ∈ t;

A type is anonymous if it does not contain a nominal. Let Tano be the set of all
anonymous types. 4

10

Intuitively, a type describes the concept memberships of a domain element in
all n + 1 interpretations. Our algorithm starts with a set containing (almost)
all types, then repeatedly eliminates those types that cannot be realized in a
countermodel witnessing that ϕ0 is not a consequence of applying α1, . . . , αn in
A0 w.r.t. T , and finally checks whether the surviving types give rise to such a
countermodel. The picture is slightly complicated by the presence of ABoxes
and nominals. These are treated via core type sets to be introduced next.

Definition 6. TS is a core type set iff TS is a minimal set of types such that,
for all a ∈ Ind, there is a t ∈ TS with {a} ∈ TS.

A core type set TS is called proper if the following conditions are satisfied:

1. for all C(a) ∈ A0, {a} ∈ t ∈ TS implies C(0) ∈ t;

2. for all C(a)/D(b) ∈ posti, 1 ≤ i ≤ n: if there is a t ∈ TS with {{a}, C(i−1)} ⊆
t then there is a t′ ∈ TS with {{b}, D(i)} ⊆ t′.

4

Intuitively, a core type set carries information about the “named” part of the
interpretations I0, . . . , In, where the named part of an interpretation consists of
those domain elements that are identified by nominals. Let m be the size of the
input. It is not difficult to check that the number of core type sets is exponential
in m. Also, checking whether a core type set is proper can be done in linear
time.

The following definition specifies the conditions under which a type is elim-
inated. We start with introducing some convenient abbreviations. Consider
an action α` = (pre`, occ`, post`). For a role name r and occϕ ∈ occ`, we set
occϕ(r−) := {(Y,X) | (X, Y) ∈ occϕ(r)}, and analogously for occ(¬r−). Let t, t′

be types, T a set of types, C(a) an ABox assertion, B a concept literal, and s a
role literal. We write

• T |= C(a) if there exists a t ∈ T with {{a}, C} ⊆ t;

• t,T |= occ`(B) if there is an occC(a) ∈ occ` such that (i) T |= C(a) and
(ii) for the concept D = occC(a)(B), we have D(`) ∈ t;

• t, t′,T |= occ`(s) if there is an occC(a) ∈ occ` and a pair (D,E) ∈ occC(a)(s)
such that (i) T |= C(a), (ii) D(`) ∈ t, and (iii) E(`) ∈ t′.

Intuitively, t,T |= occ`(B) states that when the action α` is executed in a model
that realizes only types from T, then instances of t may change from B to ¬B.

For a role r, we use Inv(r) to denote r− if r is a role name and s if r = s−.

Definition 7. Let T be a set of types for Cl. Then a type t ∈ T is good in T iff

11

ALCIO-elim(A0, T , α1, . . . , αn, ϕ0)
for all proper core type sets TS do
i := 0;
T0 := TS ∪ Tano

repeat
Ti+1 := {t ∈ Ti | t is good in Ti};
i := i+ 1;

until Ti = Ti−1;

if TS ⊆ Ti and there is a t ∈ Ti with {{a0},¬C(n)
0 } ⊆ t then

return false
endif

endfor
return true

Figure 2: The type elimination algorithm.

• for all concept names A and i < n:

(C1) if {A(i),¬A(i+1)} ⊆ t, then t,T |= occi+1(A);

(C2) if {¬A(i), A(i+1)} ⊆ t, then t,T |= occi+1(¬A).

• for all (∃r.C)(i) ∈ t, there exists a type t′ ∈ T and a set ρ ⊆ {0, . . . , n}
such that for all ` ≤ n, the following conditions are satisfied:

(R1) C(i) ∈ t′ and i ∈ ρ;
(R2) if (¬∃r.D)(`) ∈ t and ` ∈ ρ, then ¬D(`) ∈ t′;
(R3) if (¬∃Inv(r).D)(`) ∈ t′ and ` ∈ ρ, then ¬D(`) ∈ t;
(R4) if n > ` ∈ ρ and `+ 1 6∈ ρ then t, t′,T |= occ`+1(r);

(R5) if n > ` 6∈ ρ and `+ 1 ∈ ρ then t, t′,T |= occ`+1(¬r).
4

Intuitively, the above definition checks whether there can be any instances of t in
an interpretation in which all domain elements have a type in T. More precisely,
t′ is the type that is needed to satisfy the existential restriction (∃r.C)(i) ∈ t.
The set ρ determines the extension of the role r: if ` ∈ ρ, then the instance of t′

that we introduce as a witness for (∃r.C)(i) is reachable via an r-edge from the
instance of t in the interpretation I`.

The type elimination algorithm is given in a pseudo-code notation in Figure 2,
where C0 is the concept from the ABox assertion ϕ0 = C0(a0).

Lemma 8. ALCIO-elim(A0, T , α1, . . . , αn, ϕ0) returns true iff ϕ0 is a conse-
quence of applying α1, . . . , αn in A0 w.r.t. T .

12

Proof. “⇒”. We prove this direction by contraposition. Assume that ϕ0 is not
a consequence of applying α1, . . . , αn in A0 w.r.t. T . Then there are I0, . . . , In

such that Ii ⇒T
αi+1

Ii+1 for all i < n, I0 |= A0, and In 6|= C0(a0). We show that
the algorithm returns false in this case.
Let ∆ := ∆I0 (= · · · = ∆In) and x ∈ ∆. We define

tCl(x) := {C(i) ∈ Cl | x ∈ CIi for some i ≤ n}.

Claim 1. For all x ∈ ∆, tCl(x) is a type for Cl.

Proof: For all x ∈ ∆ and all j ≤ n, the following holds:

• for all ¬C(j) ∈ Cl: (¬C)(j) ∈ tCl(x) iff x ∈ (¬C)Ij iff x 6∈ CIj iff C(j) 6∈
tCl(x);

• for all (C u D)(j) ∈ Cl: (C u D)(j) ∈ tCl(x) iff x ∈ (C u D)Ij iff x ∈ CIj

and x ∈ DIj iff C(j) ∈ tCl(x) and D(j) ∈ tCl(x) iff {C,D} ⊆ tCl(x);

• for all C v D ∈ T , Ij |= T implies that if x ∈ CIj , then x ∈ DIj . Thus,
C(j) ∈ tCl(x) implies D(j) ∈ tCl(x);

This finishes the proof of Claim 1. We set TS := {tCl(a
I0) | a ∈ Ind} and

T := {tCl(x) | x ∈ ∆}. Then we have the following:

Claim 2: TS is a proper core type set.

Proof: By the definition of TS, it is easy to see that it is a core type set.
Moreover, it is proper:

1. for all C(a) ∈ A0, I0 |= A0 implies I0 |= C(a). Thus, we know that
aI0 ∈ CI0 . {a} ∈ t ∈ TS implies C(0) ∈ t(= tCl(a

I0));

2. for all C(a)/D(b) ∈ posti, 1 ≤ i ≤ n: if there is a t ∈ TS with {{a}, C(i−1)} ⊆
t then aIi−1 ∈ CIi−1 . Thus, Ii−1 |= C(a). Since Ii−1 ⇒T

αi
Ii, we know that

Ii |= D(b). Hence, bIi ∈ DIi . Let t′ := tCl(b
Ii). bIi ∈ DIi implies

{{b}, D(i)} ⊆ t′.

Claim 3. For every t ∈ T, t is good in T.

Proof: Let t = tCl(x), for an x ∈ ∆.

(i) for all concept names A and i < n, {A(i),¬A(i+1)} ⊆ tCl(x) holds iff
x ∈ AIi \ A(i+1), which is, by the semantics of actions, equivalent to x ∈
(occi+1(A))Ii . It is not difficult to show that this holds iff t,T |= occi+1(A).
The case {¬A(i), A(i+1)} ⊆ tCl(x) is similar.

13

(ii) Let r be a role and let (∃r.C)(i) ∈ t. Thus x ∈ (∃r.C)Ii and there is a
y ∈ ∆, such that (x, y) ∈ rIi and y ∈ CIi . We define t′ := tCl(y) and
ρ := {i | (x, y) ∈ rIi}. It is not difficult to check that t′ and ρ satisfy
Conditions (R1) to (R5) from Definition 7.

This finishes the proof of Claim 3. Let T0 := TS ∪ Tano and let T′ be the set of
types which “survive” type elimination when it is started with T0. By Claim 3
and since a type t being good in a type set T implies that t is good in any set
T′ ⊇ T, we have that TS ⊆ T ⊆ T′. Moreover, since In |= ¬C0(a0), we have

that ¬C(n)
0 ∈ tCl(a

In
0), and thus {{a0},¬C(n)

0 } ⊆ tCl(a
In
0) ∈ T′.

“⇐”. For this direction, we also show the contrapositive. Assume that ALCIO-
elim(A0, T , α1, . . . , αn, ϕ0) returns false. We show that ϕ0 is not a consequence
of applying α1, . . . , αn in A0 w.r.t. T . To this end, we construct I0, . . . , In such
that I0 |= A0, Ii ⇒T

αi+1
Ii+1 for all i ≤ n, and In 6|= C0(a0).

Since the algorithm returns false, there exists a proper core type set TS and
a type set T such that:

• TS ⊆ T and T \ TS ⊆ Tano

• for every t ∈ T, t is good in T

• there is a t0 ∈ T with {{a0},¬C(n)
0 } ⊆ t0

The types from T will be the elements of the domains of Ii. Let t ∈ T. Since
t is good in T, for every D = (∃r.C)(i) ∈ t we can choose a type t′ and a set of
indices ρ which satisfy Conditions (R1) to (R5) of Definition 7. Then, we call
the chosen t′ a (ρ, r)-successor of t. For t, t′ ∈ T and r a role, set

R(r, t, t′) :=
⋃
{ρ | t′ is a (ρ, r)-successor of t}

Since TS is a core type set and T \ TS ⊆ Tano, for every a ∈ Ind there is exactly
one type t ∈ T such that {a} ∈ t. For every a ∈ Ind, we denote this type with
ta. Now we can define I0, . . . , In as follows: for all i ≤ n,

∆Ii := T

AIi := {t ∈ T | A(i) ∈ t}
rIi := {(t, t′) ∈ T× T | i ∈ R(r, t, t′) ∪R(r−, t′, t)}
aIi := ta

Claim 4: For all t ∈ T and C(i) ∈ Cl, we have t ∈ CIi iff C(i) ∈ t.

Proof. We prove the claim by induction on the structure of C.

14

• C = A and C = {a}: trivial by definition of I0, . . . , In.

• C = ¬D and C = D u E: easy by definition of type.

• C = ∃s.D, where s is a (possibly inverse) role:

“only if”. t ∈ (∃s.D)Ii implies that there exists a t′ such that (t, t′) ∈
sIi and t′ ∈ DIi . By induction, we have that D(i) ∈ t′. Assume that
(∃s.D)(i) 6∈ t. Then (¬∃s.D)(i) ∈ t. By definition of Ii, (t, t′) ∈ sIi implies
that one of the following cases applies:

(i) i ∈ R(s, t, t′). Then (¬∃s.D)(i) ∈ t and Condition (R2) of Definition
7, imply ¬D(i) ∈ t′, which is a contradiction to t′ being a type.

(ii) i ∈ R(Inv(s), t′, t). Then (¬∃s.D)(i) ∈ t and Condition (R3) of Def-
inition 7, imply ¬D(i) ∈ t′, which is a contradiction to t′ being a
type.

Thus (∃s.D)(i) ∈ t.
“if”. Let (∃s.D)(i) ∈ t. Since t is a good type in T, there exists a type
t′ ∈ T and a set ρ 3 i, such that R(s, t, t′) ⊇ ρ and D(i) ∈ t. By definition
of sIi , we have that (t, t′) ∈ sIi . Moreover, since D(i) ∈ t′, by induction we
have that t′ ∈ DIi . Thus, it holds that t ∈ (∃s.D)Ii .

Using Claim 4, the next claim is easily shown.

Claim 5. Let t, t′ ∈ T. For all 0 ≤ i < n the following holds:

(i) for all concept literals B from the input, t,T |= occi+1(B) implies t ∈
(occi+1(B))Ii .

(ii) for all role literals s from the input, t, t′,T |= occi+1(s) implies (t, t′) ∈
(occi+1(s))

Ii .

It use Claims 4 and 5 to show that I0 |= A0, Ii ⇒T
αi
Ii+1 for all i ≤ n, and that

I0 |= ¬C0(a0).

• I0 |= A0: Let C(a) ∈ A0. Since TS is proper, C(0) ∈ ta and, by Claim 4,
we have that aI0 = ta ∈ CI0 .

• Ii ⇒T
αi
Ii+1 for all i ≤ n:

– Ii are models of T : Let C v D ∈ T and t ∈ CIi . By Claim 4, we
have C(i) ∈ t, and since t is a type for Cl, C(i) ∈ t implies D(i) ∈ t.
Hence, t ∈ DIi .

15

– Let C(a)/D(b) ∈ posti and let Ii |= C(a). This means that ta =
aIi ∈ CIi , and thus {{a}, C(i)} ⊆ ta. Since TS is proper, there exists
a t ∈ TS, such that {{b}, D(i+1)} ⊆ t. Obviously, t = tb, and thus
tb = bIi ∈ DIi+1 , i.e. Ii+1 |= D(b).

– for each A ∈ NC and i < n, we have: AIi \ AIi+1 ⊆ (occi+1(A))Ii

and AIi+1 \AIi ⊆ (occi+1(¬A))Ii . We show only the former since the
latter can be shown in a similar way. Let t ∈ AIi and t 6∈ AIi+1 . By
Claim 4, this implies A(i) ∈ t and (¬A)(i+1) ∈ t. Since t is good in
T, we have that t,T |= occi+1(A), and by Claim 5 we obtain that
t ∈ (occi+1(A))Ii .

– for each r ∈ NR and i < n, we have: rIi \ rIi+1 ⊆ (occi+1(r))
Ii

and rIi+1 \ rIi ⊆ (occi+1(¬r))Ii . Again,we show only the former
as the latter can be shown in a similar way. Let (t, t′) ∈ rIi and
(t, t′) 6∈ rIi+1 . By the definition of rIi , i ∈ R(r, t, t′) ∪R(r−, t′, t) and
i+ 1 6∈ R(r, t, t′) ∪R(r−, t′, t).

(i) Let i ∈ R(r, t, t′). By definition of R, t′ is a (ρ, r)-successor of
t for a ρ 3 i. Since i + 1 6∈ R(r, t, t′), we obtain that i + 1 6∈ ρ.
Since t is good in T, by Condition (R4) of Definition 7, we have
that t, t′,T |= occi+1(r). By Claim 5, we obtain that (t, t′) ∈
(occi+1(r))

Ii .

(ii) Let i ∈ R(r−, t′, t). Since i+ 1 6∈ R(r−, t′, t) and t′ is good in T,
similarly as in (i), by Condition (R4) of Definition 7, we have that
t′, t,T |= occi+1(r

−), which is equivalent to t, t′,T |= occi+1(r).
By Claim 5, we obtain that (t, t′) ∈ (occi+1(r))

Ii .

• In |= ¬C0(a0): Since (C0)
(n) ∈ ta0 , by Claim 4, it holds that ta0 = aIn

0 ∈
(C0)

In

❏

The algorithm runs in exponential time: first, we have already argued that there
are only exponentially many core type sets. Second, the number of elimination
rounds is bounded by the number of types, of which there are only exponentially
many. And third, it is easily seen that it can be checked in exponential time
whether a type is good in a given type set. Since concept satisfiability w.r.t.
TBoxes is ExpTime-hard in ALC [3] and concept satisfiability can be reduced
to (non-)projection [2], we obtain the following result.

Theorem 9. Projection, executability and weak consistency are ExpTime-com-
plete in ALC, ALCO, ALCI, and ALCIO.

It is not too difficult to adapt the algorithm given in this section to the DL
ALCQO. Therefore, the reasoning problems from Theorem 9 are also ExpTime-
complete for ALCQ and ALCQO.

16

5 ALCQI and ALCQIO: Beyond ExpTime

In the previous section, we have identified a number of DLs for which both
reasoning about actions and standard DL reasoning are ExpTime-complete.
Another candidate for a DL with such a behaviour is ALCQI, in which sat-
isfiability and subsumption are ExpTime-complete as well [18]. However, it
follows from results in [2] that projection in ALCQI is co-NExpTime-hard. In
the following, we show that it is in fact co-NExpTime-complete, and that the
same holds for the DL ALCQIO. Note that, for the latter DL, also concept
subsumption is co-NExpTime-complete.

Since the action formalism defined in this paper is a generalization of the
one from [2] (see Appendix A), Lemma 8 of [2] implies the following.

Theorem 10. Projection and executability (weak consistency) in ALCQI are
co-NExpTime-hard (NExpTime-hard) even if occlusions for roles are disal-
lowed and only nominals are allowed in the occlusions of concept names.

In the following, we establish a matching co-NExpTime upper bound for
projection in ALCQIO (and thus also ALCQI). The proof proceeds by reduc-
ing projection in ALCQIO to ABox (in)consistency in ALCQIO¬,∩,∪, i.e., the
extension of ALCQIO with the Boolean role constructors ¬, ∩, and ∪ with the
following semantics:

(¬r)I := (∆I ×∆I) \ rI

(r ∩ s)I := rI ∩ sI

(r ∪ s)I := rI ∪ sI

Let α1, . . . , αn be a composite action with αi = (prei, occi, posti) for i = 1, . . . , n,
and let T be a TBox, A0 an ABox and ϕ0 an assertion. We are interested in
deciding whether ϕ0 is a consequence of applying α1, . . . , αn in A0 w.r.t. T . In
what follows, we call α1, . . . , αn, T , A0 and ϕ0 the input. W.l.o.g., we make the
following assumptions:

• ϕ0 is of the form ϕ0 = C0(a0), where C0 is a (possibly complex) concept.

As in the previous section, this assumption can be made because an asser-
tion r(a, b) can be replaced with (∃r.{b})(a), and ¬r(a, b) with (¬∃r.{b})(a).

• Each occlusion pattern occi contains exactly one occlusion pattern that is
unconditional (i.e., indexed by taut) and formulated in ALCQIO¬,∩,∪.

An occlusion pattern {occϕ1 , . . . , occϕn} can be converted into an occlusion
pattern {occtaut} formulated in ALCQIO¬,∩,∪ as follows. First, we may
assume w.l.o.g. that ϕi is of the form Ci(ai) for 1 ≤ i ≤ n (see previous
point). For 1 ≤ i ≤ n, let Pi denote the concept ∀U.({ai} → Ci), where

17

U denotes the universal role, i.e. r ∪¬r for some r ∈ NR. Then, define for
each concept literal A

occtaut(A) := t
1≤i≤n

(Pi u occϕi
(A)

)
Likewise, for each role literal r, define

occtaut(r) := {(Pi u C,Pi uD) | (C,D) ∈ occϕi
}.

Having the occlusion pattern formulated in ALCQIO¬,∩,∪ is unproblem-
atic since our reduction is to ALCQIO¬,∩,∪ anyway. In the following, we
slightly abuse notation and confuse the singleton set occi with the (uncon-
ditional) occlusion mapping contained in it.

The idea of the reduction is to define an ABox Ared and a TBox Tred such that a
single model of them encodes a sequence of interpretations I0, . . . , In such that
I0 |= A0, T and Ii−1 ⇒T

αi
Ii for i = 1, . . . , n. As in the previous section, we use

Sub to denote the set of subconcepts of the concepts which occur in the input
and introduce concept names A(i) and role names r(i) for every concept name A
and every role name r used in the input, for all i ≤ n. For a complex concept
C ∈ Sub, we use C(i), for i ≤ n, to denote the concept obtained by replacing all
concept names A and role names r occurring in C by A(i) and r(i) respectively.

We start by assembling the reduction ABox Ared. First, define a “copy” Aini

of the input ABox A0 as:

Aini := {C(0)(a) | C(a) ∈ A0}∪
{r(0)(a, b) | r(a, b) ∈ A0} ∪ {¬r(0)(a, b) | ¬r(a, b) ∈ A0}

Then, introduce abbreviations, for i ≤ n:

pi(C(a)) := ∀U.({a} → C(i)),
pi(r(a, b)) := ∀U.({a} → ∃r(i).{b}),

pi(¬r(a, b)) := ∀U.({a} → .∀r(i).¬{b}),

Now we can define the components of Ared that take care of post-condition
satisfaction. For 1 ≤ i ≤ n, we define:

A(i)
post := {

(
pi−1(ϕ) → pi(ψ)

)
(a0) | ϕ/ψ ∈ posti}

We assemble Ared as
Ared := Aini ∪

⋃
1≤i≤n

A(i)
post.

Next, we define the components of the TBox Tred. Since all interpretations
I0, . . . , In have to be models of the input TBox T , we define for each i ≤ n, a
copy T (i) of T in the obvious way:

T (i) = {C(i) v D(i) | C v D ∈ T }.

18

To deal with occlusions, we introduce auxiliary role names r
(i)
Dom(C) and r

(i)
Ran(D)

for 0 ≤ i < n and all concepts C,D such that (C,D) ∈ occi(s) for some role

literal s. The following TBox T (i)
aux ensures that r

(i)
Dom(C) and r

(i)
Ran(D) are interpreted

as C(i) ×> and >×D(i), respectively. It contains the following axioms, for all
concepts C,D as above:

C(i) v ∀¬r(i)
Dom(C).⊥ > v ∀r(i)

Ran(D).D
(i)

¬C(i) v ∀r(i)
Dom(C).⊥ > v ∀¬r(i)

Ran(D).¬D
(i)

The following TBox T (i)
fix ensures that concept and role names do not change

unless this is allowed by the occlusion pattern:

• for every concept name A in the input,

A(i) u ¬A(i+1) v (occi+1(A))(i)

¬A(i) u A(i+1) v (occi+1(¬A))(i)

• for every role name r in the input,

> v ∀¬
(⋃

(C,D)∈occi+1(r)

(r
(i)
Dom(C) ∩ r

(i)
Ran(D))

)
∩ (r(i) ∩ ¬r(i+1)).⊥

> v ∀¬
(⋃

(C,D)∈occi+1(¬r)

(r
(i)
Dom(C) ∩ r

(i)
Ran(D))

)
∩ (¬r(i) ∩ r(i+1)).⊥

Finally, we can construct Tred as

Tred :=
⋃

0≤i≤n

T (i) ∪
⋃

0≤i<n

T (i)
aux ∪

⋃
0≤i<n

T (i)
fix .

Then the following lemma holds:

Lemma 11. C0(a0) is a consequence of applying α1, . . . , αn in A0 w.r.t. T iff

Ared ∪ {¬C(n)
0 (a0)} is inconsistent w.r.t. Tred.

Proof. “⇒”: We prove this direction by contraposition. Assume that Ared ∪
{¬C(n)

0 (a0)} is not inconsistent w.r.t. Tred. Thus, there exists a J such that

J |= Tred, J |= Ared, and J |= ¬C(n)
0 (a0). In order to prove that C0(a0) is

not a consequence of applying α1, . . . , αn in A0 w.r.t. T we show that there are
I0, . . . , In such that Ii−1 ⇒T

αi
Ii for all 1 ≤ i ≤ n, I0 |= A0, and In 6|= C0(a0).

We construct Ii for i ≤ n as following:

• ∆Ii := ∆J ;

19

• AIi := (A(i))J for every concept name A;

• rIi := (r(i))J for every role name r;

• aIi := aJ for every individual name a.

By definition of C(i), it is obvious that for all x ∈ ∆J , C ∈ Sub and i ≤ n:

x ∈ CIi iff x ∈ (C(i))J (∗)

We have that Ii−1 ⇒T
αi
Ii for all 1 ≤ i ≤ n since

• Ii |= T : for all C v D ∈ T , we have C(i) v D(i) ∈ Tred. J |= Tred implies
J |= C(i) v D(i). For all x ∈ ∆Ii = ∆J , we have x ∈ (C(i))J implies
x ∈ (D(i))J . By (∗), this yields that x ∈ CIi implies x ∈ DIi .

• Ii−1, Ii |= posti: It follows from the definition of pi that for all ABox asser-
tions ϕ and for all i ≤ n, we have (pi(ϕ))J = ∆J if Ii |= ϕ and (pi(ϕ))J =
∅ otherwise. For all ϕ/ψ ∈ posti, we have (pi−1(ϕ) → pi(ψ))(a0) ∈ Ared.
Assume Ii−1 |= ϕ. Then (pi−1(ϕ))J = ∆Ii−1 by (∗). Thus, J |= Ared

yields (pi−1(ψ))J = ∆J , which implies Ii |= ψ by (∗).

• AIi−1 \ AIi ⊆ (occi(A))Ii−1 and AIi \ AIi−1 ⊆ (occi(¬A))Ii−1 follow from

J |= T (i)
fix .

• rIi−1 \ rIi ⊆ (occi(r))
Ii−1 : Let (x, y) ∈ rIi−1 \ rIi . By the construction of

Ii−1 and Ii, we have (x, y) ∈ (r(i−1) ∩ ¬r(i))J . Then J |= T (i)
fix implies

(x, y) ∈
(⋃

(C,D)∈occi(r)

(r
(i−1)
Dom(C) ∩ r

(i−1)
Ran(D))

)J
.

Hence, there exists a pair (C,D) ∈ occi(r) such that (x, y) ∈ (r
(i−1)
Dom(C) ∩

r
(i−1)
Ran(D))

J . Moreover, J |= T (i)
aux implies x ∈ (C(i−1))J and y ∈ (D(i−1))J .

Thus, by (∗) we have x ∈ CIi−1 and y ∈ DIi−1 which implies (x, y) ∈
(occi(r))

Ii−1 . Analogously, it can be shown that rIi \rIi−1 ⊆ (occi(¬r))Ii−1

holds.

I0 |= A0: for all concept assertions C(a) ∈ A, we have C(0)(a) ∈ Ared. J |= Ared

implies aJ ∈ (C(0))J . Then, by (∗) we know aI0 ∈ CI0 . We can prove the same
result for all role assertions in A from the definition of rI0 and J |= Ared.

In 6|= C0(a0): J |= ¬C(n)
0 (a0) implies aJ0 ∈ (¬C(n)

0)J . Thus, by (∗) we know
aJ0 = aIn

0 ∈ (¬C0)
In .

20

“⇐”: This direction can also be proved by contraposition. Assume that C0(a0)
is not a consequence of applying α1, . . . , αn in A0 w.r.t. T . Thus, there are
I0, . . . , In such that Ii−1 ⇒T

αi
Ii for all 1 ≤ i ≤ n, I0 |= A0, and In 6|= C0(a0).

We define an interpretation J = (∆J , ·J) as follows:

• ∆J := ∆I0(= ∆I1 = · · · = ∆In);

• (A(i))J := AIi for all concept names A and for all i ≤ n;

• (r(i))J := rIi for all role names r and for all i ≤ n;

• aJ := aI0(= aI1 = · · · = aIn) for all individual names a;

• (r
(i)
Dom(C))

J := {CIi ×∆Ii} and (r
(i)
Ran(D))

J := {∆Ii ×DIi} for all i < n.

By definition of C(i), it obvious that for all x ∈ ∆J , C ∈ Sub and i ≤ n:

x ∈ CIi iff x ∈ (C(i))J

Using this observation and the semantics of actions, it is not difficult to show
that indeed J |= Ared, J |= Tred, and J |= ¬C(n)

0 (a0). Thus, Ared ∪ {¬C(n)
0 (a0)}

is consistent w.r.t. Tred.
❏

SinceALCQIO¬,∩,∪ is a fragment of C2 (the 2-variable fragment of first-order
logic with counting), ABox inconsistency in ALCQIO¬,∩,∪ is in co-NExpTime
even if numbers are coded in binary [11]. Since Ared and Tred are polynomial
in the size of the input, Lemma 11 gives us a co-NExpTime upper bound for
projection in ALCQIO and ALCQI.

Theorem 12. Projection and executability are co-NExpTime-complete, while
weak consistency is NExpTime-complete in ALCQIO and ALCQI.

6 Reduction to implemented DLs

Together with a reasoner that is capable of deciding ABox consistency in the
description logic ALCQIO¬,∩,∪, the reduction developed in the previous section
can be used for practical reasoning with ALCQIO actions. Unfortunately, to
the best of our knowledge there exists no available DL reasoner that supports the
Boolean operators on roles. In this section, we identify a restricted version of our
action formalism in which the reduction of projection to ABox consistency does
not need the Boolean role constructors. More precisely, we show that for this
restricted fragment, projection in L can be reduced to ABox (in)consistency in
LO, the extension of L with nominals. The reduction works for ALC extended
with any combination of inverses, nominals, and number restrictions.

21

Definition 13. A restriced L-action α is a triple (pre, occ, post) where pre and
post are as in Definition 1 and occ assigns

1. to every concept literal B an LO-concept occ(B);

2. to every role literal r a finite subset of

{({a}, {b}) | a, b ∈ NI} ∪ {(>,>), (⊥,⊥)}

3. for every role name r, occ(r) = occ(¬r);
4

For assigning a semantics of restricted actions, we simply view the single occlu-
sion mapping occ as an occlusion pattern {occtaut}, where taut is a valid assertion
such as >(a).

We now present the reduction of projection for restricted L-actions to ABox
consistency in LO. Let A0 be an ABox, α1, . . . , αn a composite action with
all αi = (prei, occi, posti) restricted, T a TBox, and ϕ0 an assertion. We are
interested in deciding whether ϕ0 is a consequence of applying α1, . . . , αn in A0

w.r.t. T . Since nominals are needed for the reduction anyway, we may assume
w.l.o.g. that ϕ0 is of the form A0(a0) with A0 a concept name: (i) as in the
previous sections, every role assertion can be replaced by a concept assertion
using nominals; (ii) if ϕ = C(a) with C not a concept name, we add a concept
definition A0

.
= C to the TBox T , and then consider ϕ = A0(a).

In the following, we call A0, T , α1, . . . , αn, and ϕ0 the input. As in the
previous section, the main idea of the reduction is to define Ared and Tred such
that each single model of them encodes a sequence of interpretations I0, . . . , In

obtained by applying α1, . . . , αn in A0 (and all such sequences are encoded
by reduction models). To define Ared and Tred without using the Boolean role
operators, we use a reduction technique similar to the one in [?].

To understand the reduction, it is important to distinguish two kinds of
elements in interpretations: we call an element d ∈ ∆I named if aI = d for
some individual a used in the input, and unnamed otherwise. Intuitively, the
ABox Ared will ensure that role names do not change on named elements unless
allowed by the occlusion pattern while the minimization of changes on unnamed
elements is achieved through a suitable encoding of T in Tred.

In the reduction, we use the following concept names, role names, and indi-
vidual names:

• We use Sub to denote the set of all subconcepts of concepts appearing in
the input. For every C ∈ Sub and every i ≤ n, we introduce a concept
name T

(i)
C . It will be ensured by the TBox Tred that the concept name T

(i)
C

stands for the interpretation of C in the i-th interpretation.

22

• We use a concept name A(i) for every concept name A used in the input and
every i ≤ n. Intuitively, A(i) represents the interpretation of the concept
name A in the i-th interpretation.

• We use a role name r(i) for every role name r used in the input and every
i ≤ n. Intuitively, the extension of r in the i-th interpretation can be
assembled from the extensions of r(0), . . . , r(n) as follows:

– regarding pairs (x, y) with both x, y named, we consider r(i);

– regarding pairs (x, y) with one of x, y not named, we consider r(j),
where j ∈ {1, . . . , i} is maximal such that occj(r) contains the global
occlusion (>,>) (and j = 0 if there is no such j).

Thus, to check the membership in rIi of pairs (x, y) with x or y unnamed,
we “go back” to the last interpretation before which (x, y) was occluded.

• We use a concept name N that will be used to denote the named elements
of interpretations.

• We use Ind to denote the set of individual names in the input. For every
a ∈ Ind, we introduce an auxiliary role name ra.

The reduction TBox Tred consists of several components. The first component
simply states that N denotes exactly the named domain elements:

TN :=
{
N

.
= t

a∈Ind
{a}

}
.

The sequence of components T (i)
fix , 1 ≤ i ≤ n, ensures that concept names do not

change unless this is allowed by the occlusion pattern: for every concept name
A in the input, T (i)

fix contains:

A(i) u ¬A(i+1) v (occi+1(A))(i)

¬A(i) u A(i+1) v (occi+1(¬A))(i)

In order to ensure the same for role names, we will let the ABox Ared (see the

component A(i)
fix below) tackle occlusions on the named part (i.e. N × N). For

the remaining part of the domain, we look back in order to determine when r
was last occluded. We set occ`(r

−) := {(Y,X) | (X, Y) ∈ occ`(r)}. For every
role r from the input, and i ≤ n, we define

loi
r := max{ ` | 1 ≤ ` ≤ i ∧ (>,>) ∈ occ`(r) }

where max(∅) := 0. The next component Tsub contains one concept definition
for every i ≤ n and every concept C ∈ Sub that is not a defined concept name

23

in T . These concept definitions ensure that T
(i)
C stands for the interpretation of

C in the i-th interpretation as desired:

T
(i)
A

.
= A(i) if A is a concept name

T
(i)
¬C

.
= ¬T (i)

C

T
(i)
CuD

.
= T

(i)
C u T (i)

D

T
(i)
CtD

.
= T

(i)
C t T (i)

D

T
(i)
(>m r C)

.
=

(
N u t

0≤j≤m

(
(> j r(i) (N u T (i)

C)) u (> (m− j) r(olir) (¬N u T (i)
C))

))
t(

¬N u (> m r(olir) T
(i)
C)

)
T

(i)
(6m r C)

.
=

(
N u t

0≤j≤m

(
(6 j r(i) (N u T (i)

C)) u (6 (m− j) r(olir) (¬N u T (i)
C))

))
t(

¬N u (6 j r(loi
r) T

(i)
C)

)
where r−

(i)
denotes (r(i))− in the concept definitions for number restrictions.

Now we can assemble the reduction TBox Tred:

Tred := Tsub ∪ TN ∪
⋃

1≤i≤n

T (i)
fix ∪ {T (i)

C v T
(i)
D | C v D ∈ T , i ≤ n}

The last summand of Tred ensures that all GCIs from the input TBox T are
satisfied by all interpretations I0, . . . , In.

The reduction ABox Ared also consists of several components. The first
component ensures that, for each individual name a occurring in the input, the
auxiliary role ra connects each named individual with a, and only with a. This
construction will simplify the definition of the other components of Ared:

Aaux :=
{
a :

(
∃rb.{b} u ∀rb.{b}

)
|a, b ∈ Ind}.

To continue, we first introduce the following abbreviations, for i ≤ n:

pi(C(a)) := ∀ra.T
(i)
C

pi(r(a, b)) := ∀ra.∃r(i).{b}
pi(¬r(a, b)) := ∀ra.∀r(i).¬{b}.

The next component of Ared formalizes satisfaction of the post-conditions. Note
that its formulation relies on Aaux. For 1 ≤ i ≤ n, we define

A(i)
post :=

{
(
(
pi−1(ϕ) → pi(ψ)

)
(a0) | ϕ/ψ ∈ posti

}
.

The following component formalizes occlusions of role names on named elements.
For 1 ≤ i ≤ n, role names r, and a, b ∈ Ind with {({a}, {b}), (>,>)}∩occi(r) = ∅,

24

the ABox A(i)
fix contains the following assertions:(

∃r(i−1).{b} → ∃r(i).{b}
)
(a)(

∀r(i−1).¬{b} → ∀r(i).¬{b}
)
(a).

The ABox Aini ensures that the first interpretation of the encoded sequence is a
model of the input ABox A0:

Aini := {T (0)
C (a) | C(a) ∈ A0} ∪

{r(0)(a, b) | r(a, b) ∈ A0} ∪
{¬r(0)(a, b) | ¬r(a, b) ∈ A0}.

We can now assemble Ared:

Ared := Aini ∪ Aaux ∪
⋃

1≤i≤n

A(i)
post ∪

⋃
1≤i≤n

A(i)
fix

Then we have the following lemma. The proof is similar to the proof of Lemma
15 in [?]. Details are left to the reader.

Lemma 14. A0(a0) is a consequence of applying α1, . . . , αn in A0 w.r.t. T iff

Ared ∪ {A(n)
0 (a0)} is inconsistent w.r.t. Tred.

7 Undecidability of Strong Consistency

We show that strong consistency is undecidable already in ALC. The proof
consists of a reduction of the undecidable semantic consequence problem from
modal logic. Before formulating the DL version of this problem, we need some
preliminaries. We use ALC concepts with only one fixed role name r, which we
call ALCr-concepts. Accordingly, we also assume that interpretations interpret
only concept names and the role name r. A frame is a structure F = (∆F , rF)
where ∆F is a non-empty set and rF ⊆ ∆F×∆F . An interpretation I = (∆I , ·I)
is based on a frame F iff ∆I = ∆F and rI = rF . We say that a concept C is
valid on F (written F |= C) iff CI = ∆I for every interpretation I based on F .

Definition 15 (Semantic consequence problem). Let D and E be ALCr-
concepts. We say that E is a semantic consequence of D iff for every frame
F = (∆F , rF) such that F |= D, it holds that F |= E. 4
In [17], it is proved that for ALCr-concepts D and E, the problem “Is E a
semantic consequence of D?” is undecidable. We now show that the semantic
consequence problem can be reduced to strong consistency. For ALCr-concepts
D and E, we define the action αD = (pre, {occtaut}, post) where pre := {¬E(a)},
post := {>(a)/(∃u.¬D)(a)} (u a role name), and occtaut maps r and ¬r to
{(⊥,⊥)}, all other role literals to {(>,>)}, and all concept literals to >. Then
the following holds.

25

Lemma 16. The action αD is strongly consistent with the empty TBox iff E is
a semantic consequence of D.

Proof. “⇒” We show the contraposition. Assume that E is not a semantic
consequence of D. Then there exists a frame F = (∆F , rF) such that F |= D
and there is an interpretation I based on F such that EI 6= ∆I . We take I
based on F such that aI 6∈ EI , thus I |= pre. But every I ′ such that I ⇒∅

αD
I ′

must be based on F (since rI
′
= rI = rF) and must satisfy DI′ 6= ∆I′ (by the

post-condition of α). Since F |= D, there is no such I ′. Thus, αD is not strongly
consistent with the empty TBox.

“⇐” Assume that E is a semantic consequence of D. Let I |= pre. By
definition of pre, we have that aI 6∈ EI , and thus I is not based on a frame
F = (∆F , rF) validating E. Since E is a semantic consequence of D, F is
not validating D either, and there is an interpretation I ′ based on F such that
DI′ 6= ∆I′ . Take y ∈ ∆I′ such that y 6∈ DI′ . Since D is an ALCr- concept,
we may assume that uI

′
= {(aI′ , y)}. Obviously, we have that I ⇒∅

αD
I ′, and,

consequently, αD is strongly consistent with the empty TBox. ❏

As an immediate consequence, we obtain the following theorem.

Theorem 17. Strong consistency of ALC-actions is undecidable, even with the
empty TBox.

8 Discussion

We have introduced an action formalism based on description logics that admits
general TBoxes and complex post-conditions. To deal with ramifications induced
by general TBoxes, the formalism includes powerful occlusion patterns that can
be used to fine-tune the ramifications. Most important reasoning tasks in our
formalism turn out to be decidable.

Our only negative result concerns the undecidability of strong consistency.
To discuss the impact of this result, let us briefly review the relevance of strong
consistency for the action designer and for the user of the action (the person
who applies the action).

For the action designer, an algorithm for checking strong consistency would
be useful for fine-tuning the ramifications of his action. However, it is worth
noting that deciding strong consistency could not replace manual inspection of
the ramifications. For example, occluding all concept names with > and all role
names with {(>,>)} usually ensures strong consistency but does not lead to an
intuitive behaviour of the action. With weak consistency, we offer at least some
automatic support to the action designer for detecting ramification problems.

For the user of the action, strong consistency is required to ensure that the
execution of an action whose preconditions are satisfied will not fail. If the

26

action is such that failure cannot be tolerated (because executing the action is
expensive, dangerous, etc), strong consistency is thus indispensible and should
already be guaranteed by the action designer. Also when working with compos-
ite actions, strong consistency has to be required: if an action execution fails
after previous actions in the sequence have been successfully executed, then we
have already changed the state of affairs and it may not be possible to revert
these changes to use a different composite action for reaching the desired goal.
However, in the case of atomic actions it is conceivable that an execution failure
does not have any negative effects. If this is the case, the action user only needs
to check that the action is executable, and strong consistency is not strictly
required.

Future work will include developing practical decision procedures. A first
step is carried out in [8], where we show that in the following special (but
natural) case, projection can be reduced to standard reasoning problems in DLs
that are implemented in DL reasoners such as RACER and FaCT++: (i) role
occlusions in actions are given by occtaut; (ii) occtaut(r) = occtaut(¬r); and (iii)
concepts used in occtaut(r) are Boolean combinations of nominals,

Acknowledgements. We would like to thank Giuseppe De Giacomo for ideas
and discussions. The third author is supported by the DFG Graduiertenkol-
leg 334. The fourth author is partially supported by UK EPSRC grant no.
GR/S63182/01.

References

[1] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for
hybrid logics. In J. Flum and M. Rodŕıguez-Artalejo, editors, Computer
Science Logic, number 1683 in Lecture Notes in Computer Science, pages
307–321. Springer-Verlag, 1999.

[2] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating
description logics and action formalisms: First results. In Proceedings of
the Twentieth National Conference on Artificial Intelligence (AAAI-05),
Pittsburgh, PA, USA, 2005.

[3] F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The De-
scription Logic Handbook: Theory, implementation and applications. Cam-
bridge University Press, 2003.

[4] Volker Haarslev and Ralf Möller. RACER system description. In Ra-
jeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings

27

of the First International Joint Conference on Automated Reasoning (IJ-
CAR’01), number 2083 in Lecture Notes in Artifical Intelligence, pages
701–705. Springer-Verlag, 2001.

[5] Ian Horrocks. Using an expressive description logic: Fact or fiction? In Pro-
ceedings of the Sixth International Conference on the Principles of Knowl-
edge Representation and Reasoning (KR98), pages 636–647, 1998.

[6] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl. GOLOG: A logic programming language for dynamic
domains. J. Log. Program., 31(1-3):59–83, 1997.

[7] Fangzhen Lin. Embracing causality in specifying the indirect effects of
actions. In C. S. Mellish, editor, Proc. of IJCAI-95, pages 1985–1991,
Montreal, Canada, August 1995. Morgan Kaufmann.

[8] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Description logic actions with
general tboxes: a pragmatic approach. LTCS-Report 06-03, TU Dresden,
Germany, 2006. See http://lat.inf.tu-dresden.de/research/reports.html.

[9] L. Pacholski, W. Szwast, and L. Tendera. Complexity results for first-order
two-variable logic with counting. SIAM J. Comput., 29(4):1083–1117, 2000.

[10] V. R. Pratt. Models of program logics. In Proceedings of the Twentieth
Annual Symposium on Foundations of Computer Science, San Juan, Puerto
Rico, 1979.

[11] Ian Pratt-Hartmann. Complexity of the two-variable fragment with count-
ing quantifiers. Journal of Logic, Language and Information, 14(3):369–395,
2005.

[12] R. Reiter. Knowledge in Action. MIT Press, 2001.

[13] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical owl-dl reasoner. Submitted for publication
to Journal of Web Semantics.

[14] Michael Thielscher. Ramification and causality. Artificial Intelligence Jour-
nal, 89(1–2):317–364, 1997.

[15] Michael Thielscher. Introduction to the Fluent Calculus. Electronic Trans-
actions on Artificial Intelligence, 2(3–4):179–192, 1998.

[16] Michael Thielscher. FLUX: A logic programming method for reasoning
agents. TPLP, 5(4-5):533–565, 2005.

28

[17] S. K. Thomason. The logical consequence relation of propositional tense
logic. Z. Math. Logik Grundl. Math., 21:29–40, 1975.

[18] Stephan Tobies. The complexity of reasoning with cardinality restrictions
and nominals in expressive description logics. Journal of Artificial Intelli-
gence Research, 12:199–217, 2000.

[19] Marianne Winslett. Reasoning about action using a possible models ap-
proach. In AAAI, pages 89–93, Saint Paul, MN, 1988.

29

A Relating DL Action Formalisms

We show that the action formalism introduced in this paper is a generalization
of the one from [2]. To begin with, we recall a couple of relevant definitions.
First, the semantics of actions in [2] is defined only w.r.t. acyclic TBoxes.

Definition 18 (Acyclic TBox). A concept definition is an identity of the form
A

.
= C, where A is a concept name and C a concept. An acyclic TBox T is a

finite set of concept definitions with unique left-hand sides such that there are
no cyclic dependencies between the definitions. Concept names occurring on the
left-hand side of a definition of T are called defined in T whereas the others are
called primitive in T . 4

Obviously, general TBoxes generalize acyclic TBoxes. Actions in [2] are more
restricted than the actions introduced in this paper. For example, the former do
not allow post-conditions ϕ/C(a) with C a complex concept or defined concept
name. Thus, in post-conditions of this form, C must be a primitive concept
name. For this reason, we call the actions from [2] (where p stands for prim-
itive). The actions from Definition 1 are called u-actions (where u stands for
unrestricted).

Definition 19 (Syntax and semantics of p-actions). Let T be an acyclic
TBox. An (atomic) p-action α = (pre, occ, post) for T consists of

• a finite set pre of ABox assertions, the pre-conditions ;

• a finite set occ of occlusions of the form A(a) or r(a, b), with A a primitive
concept in T , r a role name, and a, b ∈ NI;

• a finite set of post of conditional post-conditions of the form ϕ/ψ, where
ϕ is an ABox assertion and ψ is a primitive literal for T , i.e., an ABox
assertion A(a), ¬A(a), r(a, b), ¬r(a, b) with A a concept name primitive
in T and r a role name.

For an interpretation I, a concept name A, and a role name r, we introduce the
following abbreviations:

A+ := {bI | ϕ/A(b) ∈ post ∧ I |= ϕ}
A− := {bI | ϕ/¬A(b) ∈ post ∧ I |= ϕ}
IA := (∆I \ {bI | A(b) ∈ occ} ∪ (A+ ∪ A−))
r+ := {(aI , bI) | ϕ/r(a, b) ∈ post ∧ I |= ϕ}
r− := {(aI , bI) | ϕ/¬r(a, b) ∈ post ∧ I |= ϕ}
Ir := (∆I \ {(aI , bI) | r(b) ∈ occ} ∪ (r+ ∪ r−))

30

Let I, I ′ be models of T sharing the same domain and interpretation of all
individual names. We say that α may transform I to I ′ w.r.t. T (I ⇒T

α I ′) iff,
for each primitive concept A and role name r, we have

A+ ∩ A− = ∅ and r+ ∩ r− = ∅
AI′ ∩ IA = ((AI ∪ A+) \ A−) ∩ IA
rI

′ ∩ Ir = ((rI ∪ r+) \ r−) ∩ Ir

4

Let T be an acyclic TBox and α = (pre, occ, post) a p-action. We use P to
denote the set {ϕ | ∃ψ : ϕ/ψ ∈ post}. We now construct a u-action α′ that is
equivalent to α in the sense that for all models I, I ′ of T , I ⇒T

α I ′ iff I ⇒T
α′ I ′.

Set α′ := (pre, occ′, post), where the occlusion pattern is defined as

occ′ := {occtaut} ∪ {occϕ | ϕ/ψ ∈ post},

with the components occtaut and occϕ, ϕ/ψ ∈ post are as follows:

• for every primitive concept name A and ϕ ∈ P ,

– occtaut(A) := occtaut(¬A) := t
A(a)∈occ

{a};

– occϕ(A) := t
ϕ/¬A(a)∈post

{a};

– occϕ(¬A) := t
ϕ/A(a)∈post

{a};

• for every role name r and ϕ ∈ P ,

– occtaut(r) := occtaut(¬r) :=
⋃

r(a,b)∈occ

{({a}, {b})};

– occϕ(r) :=
⋃

ϕ/¬r(a,b)∈post

{({a}, {b})};

– occϕ(¬r) :=
⋃

ϕ/r(a,b)∈post

{({a}, {b})};

• for every defined concept name C and ϕ ∈ P ,

occtaut(C) = occtaut(¬C) = occϕ(C) = occϕ(¬C) := >.

The following lemma shows that α and α′ are indeed equivalent.

Lemma 20. For all models I and I ′ of T , I ⇒T
α I ′ iff I ⇒T

α′ I ′.

31

Proof. “⇒”. Let I ⇒T
α I ′. We show that this implies I ⇒T

α′ I ′. This amounts
to verifying the conditions from Definition 2.

• Let ϕ/ψ ∈ post and I |= ϕ. Then

– if ψ is of the form A(a), then aI ∈ A+. Thus, aI 6∈ A− and aI ∈ IA.
Then, aI ∈ AI′ since AI′∩IA = ((AI∪A+)\A−)∩IA. Hence, I ′ |= ψ
since aI = aI

′
.

– for the cases that ψ is of the form ¬A(a), r(a, b), or ¬r(a, b), we can
prove I ′ |= ψ similarly.

• Let A be a concept name. Then

– if A is a primitive concept name,

∗ for every x ∈ AI \ AI′ , we have either x ∈ A− or x 6∈ IA since
AI′ ∩ IA = ((AI ∪ A+) \ A−) ∩ IA. From either of them, we can
get x ∈ (occ(A))I .

∗ for every x ∈ (¬A)I \ (¬A)I
′
, i.e., x 6∈ AI and x ∈ AI′ , we have

either x ∈ A+ or x 6∈ IA since AI′ ∩ IA = ((AI ∪A+) \A−) ∩ IA.
From either of them, we can get x ∈ (occ(A))I .

– if A is a defined concept name, we have (occ(A))I = (occ(¬A))I =
∆I . Thus, AI \ AI′ ⊆ (occ(A))I and AI′ \ AI ⊆ (occ(¬A))I

• Let r be a role name. Then

– for every (x, y) ∈ rI \ rI′ , we have either (x, y) ∈ r− or x 6∈ Ir since
rI

′ ∩ Ir = ((rI ∪ r+) \ r−) ∩ Ir. From either of them, we can get
(x, y) ∈ (occ(r))I .

– for every (x, y) ∈ (¬r)I \ (¬r)I′ , i.e., (x, y) 6∈ rI and (x, y) ∈ rI
′
, we

have either (x, y) ∈ r+ or (x, y) 6∈ Ir since rI
′∩Ir = ((rI∪r+)\r−)∩Ir.

From either of them, we can get (x, y) ∈ (occ(r))I .

“⇐”. Assume I ⇒T
α′ I ′. We show that then, I ⇒T

α I ′. This amounts to
checking the conditions from Definition 19.

• A+ ∩A− = ∅: Assume the opposite. Then there are ϕ1/A(a), ϕ2/¬A(a) ∈
post such that I |= ϕ1 and I |= ϕ2. But then I ′ |= A(a), I ′ |= ¬A(a),
which is impossible. Analogously, we have r+ ∩ r− = ∅.

• for every primitive concept name A, AI′ ∩ IA = ((AI ∪ A+) \ A−) ∩ IA:

– ⊇: Consider an arbitrary x with x ∈ ((AI ∪ A+) \ A−) ∩ IA. If
x ∈ (AI ∪ A+) \ A−, then either x ∈ AI \ A− or x ∈ A+ \ A−.

32

∗ Let x be in AI \ A−. Assume that x is not in AI′ . Thus, x ∈
AI \ AI′ implies x ∈ (occ(A))I since I ⇒T

α′ I ′. Hence, we have
either there is a ϕ/¬A(a) ∈ post with aI = x and I |= ϕ and thus
this implies x ∈ AI′ since I ⇒T

α′ I ′, or there exists A(a) ∈ occ
with aI = x which contradicts x ∈ IA.

∗ Let x be in A+ \ A−. x ∈ A+ implies there is a ϕ/A(a) ∈ post
with aI = x and I |= ϕ. Since I ⇒T

α′ I ′, I ′ |= A(a) and this
yields x ∈ AI′ .

– ⊆: Consider an arbitrary x with x ∈ AI′∩IA. x ∈ AI′ implies x 6∈ A−

since I ⇒T
α′ I ′. It is enough to show x ∈ AI ∪ A+. Equivalently, we

show that x 6∈ AI implies x ∈ A+. From x 6∈ AI and x ∈ AI′ we get
x ∈ (¬A)I \ (¬A)I

′
. Thus, x ∈ (occ(¬A))I since I ⇒T

α′ I ′. x ∈ IA
implies there exists ϕ/A(a) ∈ post with aI = x and I |= ϕ. Hence,
x ∈ A+.

• rI
′ ∩ Ir = ((rI ∪ r+) \ r−) ∩ Ir for every role name r can be obtained

analogously.
❏

33

