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Abstract

Tableau-based decision procedures have been successfully used for
solving a wide variety of problems. For some applications, nonethe-
less, it is desirable not only to obtain a Boolean answer, but also to
detect the causes for such a result. In this report, a method for find-
ing explanations on tableau-based procedures is explored, generalizing
previous results on the field. The importance and use of the method
is shown by means of examples.

1 Introduction

A very important class of problems in Computer Science is that con-
sisting of decision problems. In order to solve these problems, dis-
tinct decision procedures have been developed. One kind of decision
procedure, called tableau, has become widely used in areas such as
Description Logics (DLs), where one wants to reason with sets of ax-
ioms, or ontologies. Several examples of the use of tableaus in DLs
are presented in [BS01].

In complex applications, the binary answer given by decision pro-
cedures is usually not enough, as one might want to get an explanation
of such an answer, or some additional details. A good example is again
given by Description Logics, where one could check for the satisfiabil-
ity of some concept terms in order to find errors or inconsistencies
in the Knowledge Base. If a concept term is supposed to be satis-
fiable, but turns out to be unsatisfiable, then there must have been
a modelling error when constructing the ontology, and it should be
checked to remove every such mistake. Unfortunately, the decision
procedure states only if the term is satisfiable or not, but never gives
an explanation for this, which would be helpful when trying to remove
inconsistencies.
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Starting from the World Wide Web Consortium’s decision on us-
ing a DL as a standard for ontology representation, more and larger
ontologies are being constructed withing this language. As a conse-
quence, not only these ontologies are more difficult to read, due to
their size, but also they are being created more by experts in the area
to be modelled, and less by DL experts. This carries the inconvenience
of raising the possibilities of errors in the model, motivating the search
of methods that help detect mistakes, and correct them.

Some research has been done already in this area, leading to meth-
ods that work in specific instances of tableaus. Some examples of these
can be found in [BH95], for finding maximal consistent ABoxes for the
DL ALCF ; or [MLBP06], and [LMPB06] for finding maximal TBoxes
for which a concept is satisfiable in ALC. In all of these cases, the
approach followed is simple: for every assertion inserted, keep track
of the axioms that are responsible of its existence. In the end, when
an inconsistency is found, one can track its cause back to the axioms
that produced it. This information can be used afterwards to correct
the error by, for example, removing just enough axioms to ensure that
the causes of inconsistency cannot be produced anymore.

While this approach, which will be called pinpointing, had been
shown to be useful, it had only be applied in very particular cases. In
this report, the main ideas used in all these examples are generalized
and shown to work in a wide class of tableaus. In order to do this, one
needs to first formalize the notion of tableau. Once such a notion is
stated, one can continue to state the way the pinpointing method will
be applied to these tableaus. After all this process, one can finally
show that the method indeed signals the relevant axioms, and how
this information can be used to remove the inconsistencies.

The intuitive notion of tableau is very wide, and any formalization
of it must be able to express notions such as the distinct blocking
conditions that may be used. A previous formalization of this notion
can be found in [BHLW03]. In that case, the aim was to show a
relationship between tableaus and automata working over trees, and
hence the definitions given were skewed towards the construction of
tree-like models. In the present case, nonetheless, the tree-like shape
is not necessary, and its use would only add more difficulties to the
constructions for the pinpointing method.

For this reason the notion of tableau will be formalized once again
in this report, making as little assumptions on the structure of its
elements as possible. A definition general enough to include all the
elements involved in the use of tableaus would be very difficult to
state directly in a way that is readable, and also usable for develop-
ing the pinpointing technique on it. Hence, the formalization will be
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given step by step, starting with the simplest, most specific case, and
gradually generalizing it, to capture as many of the aspects of these
decision procedures as possible.

The starting point is given in Section 2, where the notion of de-
terministic tableaus is defined. In this notion are included only those
tableaus for which there is one given path to reach the answer of the
problem, given the input. Every rule in this framework has only posi-
tive applicability conditions, that is, the rules state when they can be
applied, but not when they cannot be applied. Furthermore, the set
of clashes is global in the sense that, regardless of the input given, the
same clashes are always used. As it will be seen, some problems of
interest can already be solved in this extremely restricted framework.

Section 3 generalizes the previous notion, adding non-determinism
in the rules of the tableau. This way, problems including some decision
for which the correct answer is not known forehand, can be solved. In
these two frameworks, all the assertions are global, in the sense that
there is no way to state that some elements in a domain satisfy some
of them, while others satisfy some different ones. This restriction is
removed in the next section, adding what are called assertions with
variables.

The following generalizing step consists in allowing some negative
applicability conditions. This way, a rule application may be blocked
by the presence of some elements in the assertion set. In this frame-
work, it will be possible to express the distinct blocking conditions.
Finally, this is again further generalized in Section 6 to allow the use
of different sets of clashes depending on the input given, defining this
way the dynamic tableaus.

Dynamic tableaus are then used to reduce another widely used
decision procedure, automata theory, to a tableau-based procedure.
Given that the tableau that decides the emptiness problem for au-
tomata is in the class for which the pinpointing method works, one
can then apply the pinpointing method to automata, and also to all
those problems that can be reduced to the emptiness problem in order
to be decided.

Along with the proofs of correctness of the pinpointing method in
the different frameworks presented, some results of termination are
also given. These state that, if a tableau can find an answer in finite
time, then the pinpointing procedure will also get the answer in finite
time. However, no further complexity results are stated in this work.

The last section states the conclusions of this work, along with
some ideas regarding the limitations of the pinpointing method.
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2 Deterministic framework

Intuitively, a tableau is a decision procedure that operates over a set of
so called assertions, using rules that add, in each step, more assertions
to the set until no rule is applicable anymore, at which point uses the
resulting assertion set to decide the answer.

In this section, the simplest type of tableau, the deterministic
tableau, will be dealt with. Deterministic tableaus have a very re-
stricted definition, and for this reason work only for a small class of
decision problems. It is still worth studying them, since they will form
the base over which more complex kinds of tableaus will be defined.
Additionally, the development given in this section should help to give
an intuition on how tableaus work and why the different results hold.

After giving the formal notion of deterministic tableau, it will be
shown how the pinpointing procedure can be applied to them, in order
to obtain more information regarding the axioms used to reach the
given answer.

2.1 Deterministic tableaus

As the name sugests, deterministic tableaus follow in certain sense a
fixed path searching for the solution of the decision problem. As it
will be shown later, even this simple setting includes some kind of
non-determinism; this, nonetheless, will be a neglectable sort of non-
determinism and will not affect the deterministic framework. The
formal definition of a deterministic tableau is given now, where P

denotes the power set constructor.

Definition 2.1 (Deterministic tableau,S-state) Let I be a set of
inputs, and T a set of axioms; an axiomatized input is an element of
I×P(T). A deterministic tableau for I,T is a tuple S = (A, ·SI ,R, C)
where A is a set of assertions; the function ·SI maps each I ∈ I to a
set A ⊆ A.

A S-state is an element of P(A) × P(T). R = {R1, . . . ,Rn} is a

set of rules of the form (A, T )
Ri−→ A′, where (A, T ) is a S-state and

A′ ⊆ A. C is a subset of P(A) whose elements are called clashes.
The function ·S extends ·SI by mapping an axiomatized input (I, T )

to the S-state (I, T )S = (ISI , T ).

As it was said before, the tableau is intended to apply the rules to
the assertion set until no rule is applicable anymore. For this matter,
a formal definition of applicability and the meaning of applying such
a rule needs to be given.
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Definition 2.2 (Applicability) Let S = (A, T ) be a S-state and

R : (B, T ′)
R
−→ B′ a rule. R is applicable to S if B ⊆ A, T ′ ⊆ T ,

and B′ 6⊆ A. The result of applying R to S is the S-state R(S) =
(A ∪B′, T ).

For a given axiomatized input Γ, the tableau needs not know all
the possible S-states in order to decide if this input satisfies certain
property or not, and needs only know the S-states that are generated
by applying rules to the state obtained by originally translating Γ.
These will be called S-states for Γ.

Definition 2.3 (S-state for Γ,saturated,clash-free) Given an a-
xiomatized input Γ ∈ I×P(T), the set of S-states for Γ is inductively
defined as follows:

• ΓS is a S-state for Γ,

• if S is a S-state for Γ and R is applicable to S, then R(S) is a
S-state for Γ.

Let S = (A, T ) be a S-state for Γ. S contains a clash if there is a
C ∈ C such that C ⊆ A. In this case, it is said that C is in S. S is
saturated if no rule is applicable to it; it is clash-free if no clash is in
it.

It is now possible to distinguish the tableaus according to their
capability for deciding a certain property. The following definition is
a direct translation of the definition of soundness and completeness of
general decision procedures.

Definition 2.4 (Soundness,completeness) Let P ⊆ I × P(T) be
a property. The tableau S is called sound for P if for any Γ ∈ I ×
P(T), the existence of a saturated clash-free S-state for Γ implies
that Γ ∈ P. It is called complete for P if for any Γ ∈ P there exist a
saturated and clash-free S-state for Γ.

The following example should help the reader to grasp the intu-
itions behind the definitions given up to now, as well as show how they
can be applied to create particular instances of the decision procedure.

Example 2.5 Let V be a set of propositional variables, and ⊥ /∈ V.
A complex Horn clause over V is of the form q � p1, . . . , pn with
n > 0, where pi ∈ V for all i and q ∈ V ∪ {⊥}. The set of all complex
Horn clauses will be denoted as cHorn. A fact is of the form q� where
q ∈ V. A Horn clause is either a complex Horn clause or a fact. A set
of Horn clauses over V is satisfiable if there is a valuation that maps
every clause in the set to true.
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A deterministic tableau for verifying whether a set of Horn clauses
over V is satisfiable is given by SH = (A, ·SHI ,R, C), where A =
cHorn ∪ V ∪ {⊥}; for a set of Horn clauses over V, Γ = (I, T ), where
I ⊆ cHorn and T is a set of facts, ΓSH = Γ; C = {{⊥}}; and R
contains the following two rules:

R� : ({p1, . . . , pn, (q � p1, . . . , pn)}, ∅)
R�

−−→ {q}

Rf : (∅, {p�})
Rf
−→ {p}

Intuitively, given a SH-state (A, T ), the set A contains, addition-
ally from the complex Horn clauses given in the input, all the elements
that must be mapped to true by any valuation that maps every clause in
the set given as input to true. If a fact p� is in T , then any valuation
that will satisfy this condition must map p to true; and rule Rf states
exactly that. On the other hand, if there is a complex Horn clause
q � p1, . . . , pn and each of the elements p1 to pn must be mapped by
the valuation to true, then also the valuation of q must be set to true,
as stated by rule R�.

If, after applying all the rules, the element ⊥ appears in the set A,
it means that, in order to satisfy all the Horn clauses in the input, then
also ⊥ must be satisfied, which is impossible, and thus, the input must
be unsatisfiable. Conversely, if the input given is unsatisfiable, then
every valuation that maps every Horn clause in it to true, must also
satisfy ⊥. Thus, SH is sound and complete for the specified property.

The soundness and completeness of the tableau does not depend on
the division of the Horn clauses in complex Horn clauses, stored in the
assertion set, and facts, stated as axioms. The only difference given
by this partition is what is considered an axiom within the tableau; in
this case, the axioms are the facts. Notice that application of rules in
a tableau can never modify the set of axioms given at the beginning,
while the set of assertions can be extended by such applications. The
reason for using in this case the facts as the only possible axioms is
because Example 2.5 will be later extended to find information regard-
ing the facts that were needed to make the whole set of Horn clauses
unsatisfiable. This information can later be used to produce maximal
subsets of facts with which set of complex Horn clauses satisfiable.
The method for doing so is the goal of the last part of this section.

The reason for the name ‘deterministic tableau’, is that all the rules
in each of them are deterministic; that is, given one set of assertions
to which the rule is applicable, there is a unique set of assertions that
can be obtained from such an application. Nonetheless, the order of
application of the rules adds a kind of non-determinism to the proce-
dure, since at one particular S-state, there might be several applicable
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rules and the definition states no order in which the applications must
be made. On the other hand, the way the tableau decides whether an
input belongs to a given property is by finding out if there is a satu-
rated and clash-free S-state for that input. For that reason, the main
interest centers only in saturated S-states. It will now be shown that
the non-determinism added by the rule application order is a kind of
don’t care non-determinism, since all saturated S-states for each input
are equal.

Definition 2.6 (Substate,equal) Let S be a deterministic tableau
and S = (A, T ), S′ = (A′, T ′) two S-states. Then S is a substate of
S′, denoted as S ⊆ S′, iff A ⊆ A′ and T ⊆ T ′. S and S′ are equal,
denoted S = S′, iff S ⊆ S′ and S′ ⊆ S.

The following lemma shows that all the elements that would be
added to any S-state S by application of a rule to it have to be
present in any saturated S-state of which S is a substate.

Lemma 2.7 Let S be a deterministic tableau, S0 = (A0, T0) be a

saturated S-state, S = (A, T ) a S-state and R : (B, T ′)
R
−→ B′ such

that S ⊆ S0 and R is applicable to S. Then B ′ ⊆ A0.

Proof. As S0 is saturated, R is not applicable to it. But since
B ⊆ A ⊆ A0 and T ′ ⊆ T ⊆ T0, the only way R is not applicable to
S0 is that B′ ⊆ A0, by definition of applicability.

With this lemma, it is now easy to show that, given an axiomatized
input Γ, there is only one saturated S-state for Γ, and hence, the rule
application order is irrelevant.

Theorem 2.8 Let S be a deterministic tableau and Γ an input. If S

and S′ are two saturated S-states for Γ, then S = S′.

Proof. As S′ is a saturated S-state for Γ, there must be a sequence
of rules R1, . . . ,Rn that were applied to reach S′ from ΓS . As S is
a S-state for Γ, and an application of a rule can only add elements
to the assertion set, it must be the case that ΓS ⊆ S. Then, by
Lemma 2.7, R1(Γ

S) ⊆ S. Multiple applications of the same lemma
yield S′ = Rn(Rn−1(· · · (R1(Γ

S) · · · )) ⊆ S. The same argument can
be used symmetrically to show that S ⊆ S′. Thus, S = S′.

This theorem impliest that, in order to check if a property P holds
for an axiomatized input Γ using a deterministic tableau S that is
sound and complete for P, it is sufficient to find one saturated S-state
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for Γ and check if it contains a clash or not. Since all saturated S-
states are equal, the presence of a clash in the found S-state is enough
to ensure that there is not saturated and clash-free S-state for Γ.

Let now be S a sound and complete tableau for a property P. In
the case in which an axiomatized input (I, T ) is not in the property,
it is sometimes desirable to find those maximum subsets of axioms
for which the property is satisfied. In other words, to find a Θ ⊂ T
such that (I,Θ) ∈ P and for every Θ ⊂ T ′ ⊆ T it is the case that
(I, T ′) /∈ P. For example, if a set of Horn clauses is not satisfiable, one
might want to compute the largest subsets of facts, for which adding
the original complex Horn clauses leads to a satisfiable set.

When a tableau S answers that an axiomatized input Γ does not
satisfy the property decided by S, it must be the case that every
saturated S-state for Γ contains a clash. In order to find a maximum
subset of axioms for which the property is satisfied, one must remove
just enough of the axioms in the original input to obtain one saturated
state without any clash, but not more. One possible way to proceed
toward this goal is to pinpoint the axioms that are used to obtain
each element appearing in the assertion set of any given S-state; this
way, when a clash is found, one can easily identify the axiomatic cause
of it and, afterwards, decide the remotion of which would lead to a
clash-free state.

In this paper, the pinpointing method consists in labelind every
axiom with a unique propositional variable that will help to identify
it. While the decision procedure works, whenever any set of labeled
elements are used to include a new element to a state, the newly
generated element receives as label the conjunction of the labels found
in the elements that were necessary to create it. It might also be the
case, though, that a single element could be created in many different
ways; since all these ways must be taken into account when a clash is
found, the label of the element must specify this, hence the disjunction
of the labels of all paths leading to this element will be used to label
it.

The pinpointing procedure is done by means of jalals, which are de-
cision procedures based on tableaus that work in a fashion very similar
to them, but also take into account the use of labels in the assertion
and axioms sets. These decision procedures are formally defined, and
explained in more detail, within the deterministic framework, in the
following subsection.
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2.2 Deterministic jalals

Before defining formally the notion of deterministic jalals, it is neces-
sary to state some notation for the labeled elements, and their respec-
tive labels, which will be given by monotonic propositional formulas.

Notation 2.9 Let Φ be a set of propositional formulas, and A an ar-
bitrary set. B

+(Φ) denotes the set of all formulas formed by conjunc-
tion and disjuntion of elements in Φ. AΦ = {aφ | a ∈ A,φ ∈ B+(Φ)}
is the set obtained by labeling elements in A with formulas in B

+(Φ).
For a set of labeled elements B, the set of elements of B without its
labels is denoted as unl(B) = {b | bφ ∈ B}.

If φ is a propositional formula, then Aφ denotes the set A{φ}. The
symbol > expresses any tautology.

Definition 2.10 (Deterministic jalal) Let S = (A, ·SI ,R, C) be a
deterministic tableau for I,T. Label every element of T with a unique
propositional variable and let lab be the set of all those variables. For
a set T ⊆ T, let T̂ denote the set containing all the elements of T
with their respective variables. The deterministic jalal judging S is a
tuple Sj = (Alab, ·(Sj)I ,Rj, Cj), where

• for every Γ ∈ I × P(T), if ΓS = (A, T ), then ΓSj = (A>, T̂ );

• for every rule R ∈ R of the form

({a1, . . . , an}, {t1, . . . , tm})
R
−→ B

the rule R′ is given by

({aφ1

1 , . . . , aφn

n }, {tϕ1

1 , . . . , tϕm

m })
R
−→ Bψ

where ψ =
∧n
i=1 φi ∧

∧m
i=1 ϕi;

• Rj = {R′ | R ∈ R};

• for every C = {a1, . . . , an} ∈ C define

C̄ = {{aφ1

1 , . . . , aφn

n } | φi ∈ B
+(lab)}

• Cj =
⋃
C∈C C̄.

A Sj-state is an element of P(Alab) × P(T̂).

Notice that a jalal is very similar to a tableau, only that assertions,
rules and clashes have additional labels in them. In the case of the
rules R′, the propositional formulas φi in the labels are considered as
parameters additional to the original ones in R, and are instantiated
when deciding the applicability of a rule.
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As it was said before, the idea behind a jalal is to mark the axioms
that were necessary to obtain each assertion, and thus, also each of the
clashes that could be found. The applicability conditions for tableau
rules ensure that, whenever all the elements that would be added
by the rule appear already in the assertion set, such a rule would
not be applied. This is sufficient for the purpose of the tableau, in
which it is only important to know whether there is a clash. For
jalals, nonetheless, other applicability conditions must be used, since
many different sets of axioms may produce the same clash, and it is
necessary to distinguish them all. The following example shows why
using the same applicability conditions is not enough for recognizing
all the causes for certain assertions to be produced.

Example 2.11 Let SHj be the deterministic jalal judging the tableau
SH of Example 2.5, and let Γ = ({⊥ � p,⊥ � q}, {p �, q �, r �})
be the axiomatized input with u, v, w their respective axiom variables.
If the rules in SHj had the same applicability conditions and results
as the ones in tableaus, a possible sequence obtained from applying
such rules to ΓSHj is the following, where T̂ = {p �

u, q �
v, r �

w} and
I = {⊥ � p>,⊥ � q>}:

(I, T )
Rf′
−−→ ({pu} ∪ I, T )

R�
′

−−→ ({pu,⊥u} ∪ I, T )

Rf′
−−→ ({pu,⊥u, qv} ∪ I, T )

Rf′
−−→ ({pu,⊥u, qv, rw} ∪ I, T )

At this point, no rule is further applicable. For the Rf ′ rule, there
are no more facts in the axiom set for which the rule could be applied,
and for the R�

′ rule, the element ⊥ is already in the assertion set
and hence it cannot be applied for any of the complex Horn clauses
available. The labeling of the clash found states that it was produced
by the axiom labeled with u, that is, p �. Nonetheless, the same clash
could also be produced by axiom q �. This is not represented because
the rule R� could not be applied to ⊥ � q and q �.

The applicability conditions for jalal rules must allow for appli-
cation even if the elements that will be added are already present in
the assertion set, under some conditions that ensure that the same
rule will not be applied once and again, producing no progress in the
execution of the jalal. These conditions basically ensure that new in-
formation is added to the assertion set every time a rule is applied;
either new elements are added, or the labels in previouly present ele-
ments are changed to a more relaxed formula. The following definition
states this in a more formal way.
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Definition 2.12 (Insertable,applicability) Let A be a labeled set
and B an unlabeled set. The set of ψ-insertable elements of B to A,
denoted as insψ(B,A), is the set of all b ∈ B such that either there is
no φ such that bφ ∈ A, or if there exists such a φ, then ψ 6|= φ.

The set A dBψ is defined recursively as follows:

• Ad{bψ} = (A\{bφ})∪{bφ∨ψ} if there exists a φ such that bφ ∈ A
and A ∪ {bψ} otherwise;

• A d {bψ1 , . . . , b
ψ
n} = (A d {bψ1 }) d {bψ2 , . . . , b

ψ
n}, for n > 1.

Let S = (A, T ) be a Sj-state and R : (B, T ′)
R
−→ (B′)ψ a rule of

Sj. R is applicable to S if B ⊆ A, T ′ ⊆ T , and insψ(B′, A) 6= ∅. The
result of applying R to S is the Sj-state R(S) = (A d (B ′)ψ, T ).

The following example continues the application of rules where
Example 2.11 stoped, using the previous definition of applicability.

Example 2.13 At the last Sj-state in Example 2.11, the rule R�
′ is

further applicable, leading to the following Sj-state:

({pu,⊥u, qv, rw} ∪ I, T )
R�

′

−−→ ({pu,⊥u∨v, qv, rw} ∪ I, T )

The label on the clash states now that it can be produced either by
the axiom labeled with u, or with the one labeled with v, which is the
expected result.

Before going on to show that jalals really do what has been claimed
up to now, pinpointing the relevants axioms that produce clashes, it
is necessary to define other notions inherited from tableaus.

Definition 2.14 (Sound,complete) Let Sj be a deterministic jalal.
For an axiomatized input Γ, the set of Sj-states for Γ is inductively
defined as follows:

• ΓSj is a Sj-state for Γ,

• if S is a Sj-state for Γ and R is applicable to S, then R(S) is a
Sj-state for Γ.

Let S = (A, T ) be a Sj-state. S contains a clash if there is a
C ∈ Cj such that C ⊆ A; in this case, it is also said that C is in S.
S is saturated if no rule is applicable to it and is clash-free if it does
not contain a clash.

Let P ⊆ I×P(T) be a property. Sj is sound for P if for any input
Γ, the existence of a saturated and clash-free Sj-state for Γ implies
that Γ ∈ P; it is complete for P if for any Γ ∈ P there is a saturated
and clash-free Sj-state for Γ.
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A notion of equivalence between the states of a jalal is also neces-
sary. This definition needs to take care of the labels in the assertions,
which need not to be equal for the equivalence to hold, but only rep-
resent equivalent propositional formulas.

Definition 2.15 (Substate,equal) Let Sj be a deterministic jalal,
S = (A, T ) and S′ = (A′, T ′) be two Sj-states. S is a substate of S′,
denoted as S ⊆ S′ iff T ⊆ T ′ and for every aφ ∈ A, there exists ϕ
such that aϕ ∈ A′ and φ |= ϕ. S and S′ are equal, denoted S ⊆ S′,
iff S ⊆ S′ and S′ ⊆ S.

Notice that this definition entails that, whenever two states S and
S′ are equal, then every assertion appearing in S will also appear
in S′, but they might have different labels. The only requirement
over these labels for the equality to hold is that they are equivalent
propositional formulas. The reason for this, as should become clear
later in this section, is that what is used to detect the axioms necessary
to generate an assertion is in fact the meaning of the formula, not its
actual shape.

For deterministic jalals it is also the case that the non-determinism
obtained from the order of rule application is a kind of don’t care non-
determinism. This means that the Sj states that are saturated contain
all the same elements, and their labels are equivalent propositional
formulas. The proof of this fact will rely on the following lemma.

Lemma 2.16 Let Sj be a deterministic jalal, S0 = (A0, T0) a satu-

rated Sj-state, S = (A, T ) a Sj-state and R : (B, T ′)
R
−→ (B′)ψ a rule

such that S ⊆ S0 and R is applicable to S. Then R(S) ⊆ S0.

Proof. Since S ⊆ S0 and R is applicable to S, there is a valuation
of the parameters in R such that S0 satisfies the first condition of
applicability of R on it, with a ψ′ such that ψ |= ψ′. It is then sufficient
to show that, for every b ∈ B ′, there is a ϕ such that bϕ ∈ A0 and
ψ |= φ. As R is not applicable to S0, for every b ∈ B ′ ther must be a
ϕ such that bϕ ∈ A0 and ψ′ |= ϕ. But then, ψ |= ϕ. Hence, it holds
that R(S) ⊆ S0.

This lemma states that any saturated Sj-state for which a Sj-state
S is a substate must contain all the elements that would be added by
any of the rules that are applicable to S. Thus, if there are two satu-
rated Sj-states obtained by rule application from a common substate,
they must be equivalent.

Theorem 2.17 Let Sj be a deterministic jalal and Γ an input. If S

and S′ are two saturated Sj-states for Γ, then S = S′.

12



Proof. As S′ is a Sj-state for Γ, there must be a sequence of
rules R1, . . . ,Rn that lead, by means of its application, from ΓSj to S′.
Since S is a Sj-state for Γ, it is the case that ΓSj ⊆ S. By Lemma
2.16, R1(Γ

Sj) ⊆ S. Repeating the same argument leads to S′ ⊆ S.
Analogously, S ⊆ S′. Hence, S = S′.

This theorem, as in the tableau case, implies that in order to verify
whether a property is satisfied by an input Γ, it is sufficient to find one
saturated Sj-state for Γ, since any other will have the same elements,
labeled with equivalent propositional formulas and so, if one contains
a clash, all of them will.

After executing the jalal on an axiomatized input, one obtains a
set of assertions labeled with monotonic propositional formulas. These
formulas are meant to explain why each assertion is there and, given
the case, why were the clashes produced. The next step is to use
these explanations to find the maximal subsets of axioms that avoid
the appearances of clashes in the assertion set, when used with the
same input element. This will be done with the help of the clash
formula.

Definition 2.18 (Clash formula) Let S be a saturated Sj-state for
Γ, where S is a sound and complete tableau for a property P. A
particular clash C = {aφ1

1 , . . . , aφn

n } ∈ C is expressed by the formula∧n
i=1 φi. Let ϕ1, . . . , ϕm be the formulas expressing all the clashes in

S. The clash formula for Γ is

m∨

j=1

ϕj

The following proposition shows how the clash formula can be used
to find subsets of axioms for which the jalal – or, in that case, the
tableau – would produce no clashes, when applied with the same input.

Proposition 2.19 Let S be a sound and complete tableau for a prop-
erty P ⊆ I × P(T),Γ = (I, T ) be an axiomatized input and ψ the
clash formula for Γ. Let Θ ⊆ T , and ω be the valuation that maps the
propositional variables corresponding to elements of Θ to true, and the
rest to false. Then (I,Θ) /∈ P if and only if ψ evaluates to true under
ω.

In order to make the proof of this proposition more clear, two
lemmas will be shown first. These lemmas rely on the concept of
ω-projection, which has not yet been introduced.
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Definition 2.20 (ω-projection) Let S be a Sj-state and ω a valu-
ation. The ω-projection of S , denoted as ω(S), is an unlabeled set
obtained from S by removing all elements whose labels evaluate to false
under ω, and then removing the labels of the remaining elements.

A simple example of a ω-projection is the remotion of all the la-
bels from the states. This is done using the valuation that maps every
propositional variable to true, thus no label will ever evaluate to false–
since they are monotonic propositional formulas – and only the remo-
tion of labels will be done.

Lemma 2.21 Let Sj be a deterministic jalal, S0 a Sj-state, S1 =
R′(S0) for some jalal rule R′ constructed from the tableau rule R, and
ω a valuation. Then either ω(S1) = ω(S0), or ω(S1) = R(ω(S0)).

Proof. Let R′ be the rule ({aφ1

1 , . . . , aφn

n }, {tϕ1

1 , . . . , tϕm

m })
R′

−→ Bψ.
If ψ =

∧n
i=1 φi ∧

∧m
i=1 ϕi evaluates to false under ω, then for every

assertion b ∈ B, either b is not present in S0 and hence the rule will
add it, with the label ψ which evaluates to false, or it was already
present, and hence its previous label will be modified to add a dis-
junction with ψ; and thus, the new label evaluates to the same truth
value as the previous one did, under ω. This implies that no new ele-
ments are added to the ω-projection of the state after the application
of the rule, and so ω(S1) = ω(S0).

If, on the contrary, ψ evaluates to true under ω, then every element
added to the assertion set will also be labeled with a formula that
evaluates to true under ω, and hence will be also added to the ω-
projection. The elements that were already present in the assertion
set, will have their labels modified to be disjuncted with ψ, and for
that reason, regardless of their previous label, they will be included
in the ω-projection. Thus, every element obtained by the application
of the rule will be now in ω(S1).

This lemma entails that it makes no difference for the result if one
first applies a rule to a Sj-state and then calculates its ω-projection
or if one uses the opposite order, obtaining first the ω-projection, and
then applying the same rule, regardless of the valuation that is used
for that. One of the consequences of this is that if one executes a jalal
over an axiomatized input (I, T ) and then computes its ω-projection,
for a valuation ω, the result would be the same as applying the same
rules on the input (I,Θ), where Θ is the set of all the axioms whose
labels are mapped to true by ω.

Lemma 2.22 Let S be a deterministic tableau, S be a saturated Sj-
state and ω a valuation; then ω(S) is a saturated S-state.
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Proof. Let S = (A, T ) and R : (B, T ′)
R
−→ B′ be a rule of S such

that B ⊆ ω(A) and T ′ ⊆ ω(T ), with jalal version R′ having laft-hand-
side labels φi, for i ∈ {1, . . . , n} and ϕi, for i ∈ {1, . . . ,m}. Since
B ⊆ ω(A) and T ′ ⊆ ω(T ), every formula φi and ϕi must evaluate
to true under ω, and hence, the formula ψ =

∧n
i=1 φi ∧

∧m
i=1 ϕi must

evaluate to true too.
To show that ω(S) is saturated, it is sufficient to show that B ′ ⊆

ω(A). Since S is saturated, R′ is not applicable to it. This means
that, for every b ∈ B ′, there is a φ such that bφ ∈ A and ψ |= φ. As ψ
evaluates to true under ω, so does φ; hence, b ∈ ω(A).

With the help of these lemmas, it is now easy to prove Proposi-
tion 2.19.

Proof of Proposition 2.19 Let S be a saturated Sj-state for
Γ; then, by Lemma 2.22, ω(S) is a saturated S-state. Since ω(ΓSj) =
(I,Θ)S , then by Lemma 2.21 ω(S) is a S-state for (I,Θ). As S is
sound and complete for P, (I,Θ) 6 P iff ω(S) contains a clash. A
particular clash C is present in ω(S) iff for every element cϑ ∈ C, it
holds that cϑ ∈ S and ϑ evaluates to true under ω. Let now ψ1, . . . , ψm
be the formulas expressing all the clashes in S, as in Definition 2.18.

Obviously, ω(S) contains a clash iff ω evaluates any of these ψi’s
to true. In other words, (I,Θ) /∈ P iff ω evaluates

∨m
j=1 ψj to true.

A simple consequence of this proposition is the soundness and com-
pleteness of a deterministic jalal, under the assumption that the deter-
ministic tableau from which it was constructed is sound and complete
for the property being decided.

Corollary 2.23 Let S be a sound and complete deterministic tableau
for a property P, then Sj is sound and complete for P.

Proof. By Proposition 2.19, (I, T ) /∈ P iff the clash formula
evaluates to true under the valuation that maps all the propositional
variables in T to true. Hence, all the formulas appearing as labels in
the elements are mapped to true under this valuation. Hence, every
formula representing a particular clash is mapped to true, and so is the
clash-formula if at least one clash exists. Thus, (I, T ) ∈ P iff there is
a saturated and clash-free Sj-state for (I, T ).

The previous proposition and corollary show that deterministic
jalals may be used instead of the deterministic tableaus from which
they were constructed to not only decide the property, but if it is the
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case that the property is not held, to find out explanations for this,
and with the help of these explanations, obtain sub-sets of axioms for
which the property holds, keeping the rest of the input unchanged.
To do this, one only needs to find valuations that map the clash for-
mula obtained at the end of the application of the jalal to false. In
fact, the interesting valuations would be those that map the maxi-
mum amount possible of propositional variables to true, since, as the
labels are all monotonic propositional formulas, any subset of them
would also set the valuation of the clash formula to false. The prob-
lem of finding such maximal valuations is NP-complete [BH95]; it
can, nonetheless be sometimes optimized, for example by the method
described in [Rym92].

Before one can replace the use of tableaus by jalals to solve the
mentioned problem, it is still necessary to show that the execution of
a deterministic jalal will give a result after a finite number of steps,
if the tableau from which it was constructed also does so; otherwise,
it would have no sense to apply a jalal without knowing if an answer
will be ever given.

Definition 2.24 (Termination) Let S (Sj) be a deterministic tab-
leau (jalal), and Γ an axiomatized input. S (Sj) terminates for Γ if,
independently of the order of application of rules, a saturated S-state
(Sj-state) for Γ is reached after finitely many rule applications.

Theorem 2.25 Let S be a deterministic tableau such that, for every

rule of the form R
R
−→ B, B is finite, and Γ = (I, T ) an axiomatized

input where ISI and T are both finite. If S terminates for Γ, then
also Sj terminates for Γ.

Proof. Since S terminates, ΓS is finite, and every rule application
adds only finitely many new elements to a S-state, any saturated S-
state for Γ must be finite. Let S be a saturated Sj-state for Γ and
unl the valuation that maps every propositional variable in T to true.
Then unl(S) is a saturated S-state for Γ, and hence finite.

Let S0 be a Sj-state for Γ,R a rule applicable to it, and S1 =
R(S0). By Lemma 2.21, either unl(S0) = unl(S1) or unl(S0) ⊂
unl(S1). In the latter case, the application of rule R adds at least one
new element to unl(S0). The finiteness of unl(S) entails that rules
that satisfy this condition can be applied only finitely many times.

Now for the other case, when unl(S0) = unl(S1). As T is finite,
there are only finitely many different valuations with respect to T̂ .
For each of these valuations ω, let |S0|ω be the number of elements in
S0 whose label is mapped to true by ω. For each possible ω, as all the
labels are monotonic propositional formulas, |S0|ω ≤ |S0|unl; hence, it

16



is finite. Let val be the number of all different valuations. The sum of
|S0|ω over all possible valuations ω is then bounded by val·|S0|unl; call
this sum Σ(S0). Since unl(S0) = unl(S1), and the rule R is applicable
to S0, there must exist a bφ in S0 appearing in the right-hand-side of
R such that ψ 6|= φ, where ψ is the label added to the new elements.
Hence, there must be a valuation ω that maps ψ to true, but φ to false.
Since bφ∨ψ will appear in S1, Σ(S0) < Σ(S1). Thus, rules that do not
add new elements to a Sj-state and only modify the labels can only
be applied finitely many times before applying one that adds a new
element. Since the rules that add new elements can also be applied
only finitely many times, Sj must terminate for Γ.

The finiteness assumptions given in the previous theorem are nec-
essary for the termination. The next example shows a case when they
are violated and termination of the jalal does not hold, even when the
original tableau does terminate.

Example 2.26 Let I = {a} and T = {t1, t2, . . .} be an infinite set.
Let S = ({a,⊥}, id,R, {{⊥}}) be a deterministic tableau for I,T where
id is the identity function and R contains only the rule:

R : ({a}, {p})
R
−→ {⊥}

S terminates for the axiomatized input Γ = ({a},T) since once the rule
R has been applied, the element ⊥ is in the assertion set, and hence R
is not applicable anymore. Nonetheless, Sj does not terminate for Γ
as the rule R′ can always be applied using an axiom that has not been
used before, since the input contains infinitely many of them. Thus,
the jalal cannot reach a saturated Sj-state after any finite amount of
applications of the rule R.

The conditions of requiring finiteness in the distinct elements of
a tableau to ensure termination of the jalal judging it are not too
restrictive, since in most practical cases these conditions are naturally
held.

This section has dealt in detail with deterministic tableaus. As it
has been mentioned several times before, these tableaus define only a
very basic kind of decision procedure. In the next section, it will be
extended to add non-deterministic rules in order to be able to solve a
wider class of decision problems. It will be shown that the pinpointing
method can be used also when non-deterministic rules are used.
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3 Adding non-determinism

For the tableaus defined in the previous section, given one input there
is only one state with which the decision procedure begins, and the
application of a rule leads always to one unique state; that is the reason
of the name deterministic given to them. As it was said before, even
in this simple framework a kind of non-determinism arises, produced
by the different application orders that can be used when more than
one rule is applicable on the same state. For this case, Theorem 2.8
shows that this non-determinism can be neglected as the result will
never depend on the order chosen; in other words, is a don’t care
non-determinism.

There exist another kind of non-determinism, don’t know non-
determinism, which is sometimes desirable to state within a decision
procedure. The intuitive meaning of it is that, if there are several
possible search routes, one of them should lead to the positive solu-
tion, but it is not know in advance exactly which one does. When
this happens, it must be the case that all the routes lead to a negative
solution in order to state a negative result, but the moment one route
is found yielding a positive one, the positive answer can be stated.

In this section, the concept of tableau will be generalized to include
this kind of non-determinism. It will be shown that the pinpointing
method using jalals can also be extended for this kind of tableaus.

Definition 3.1 (Non-deterministic tableau) Let I be a set of in-
puts and T a set of axioms. A non-deterministic tableau for I,T is
a tuple S = (A, ·SI ,R,R), where A and C are as in Definition 2.1;
the function ·SI maps each I ∈ I to a finite set of sets of asser-
tions {A1, . . . , An}; the function ·S extends ·SI by mapping an input
(I, T ) ∈ I×P(T) to the set of S-states {(A1, T ), . . . , (An, T )}, where
Ai ∈ ISI.

R is a set of rules {R1, . . . ,Rn} of the form

(A, T )
Ri−→ {B1, . . . , Bmi

}.

For a S-state S = (A, T ) and a rule (B, T ′)
R
−→ {B1, . . . , Bm},

R is applicable to S if B ⊆ A and for every 1 ≤ i ≤ m it holds
that Bi 6⊆ A. The result of applying R to S is the set of S-states
R(S) = {(A ∪Bi, T ) | 1 ≤ i ≤ m}.

Notice that this is indeed a generalization of deterministic tableaus,
since if when applying the function ·S to any input, the result consists
of just one set of assertions, and the rules have on the right-hand-side
only one set of assertions too, this definition is exactly the same as the
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one given in the previous section. The notions of saturated, clash-free,
sound, and complete are defined exactly as in Section 2.

Example 3.2 Let V be a set of propositional variables. A proposi-
tional definition is of the form p

.
= φ where p ∈ V and φ is a propo-

sitional formula over V; in this case, p is called defined, and φ is its
definition. Without loss of generality, suppose that every propositional
formula is given in negation normal form. A set of propositional def-
initions is acyclic if there are no multiple definitions; that is, no two
propositional definitions p

.
= φ1 and p

.
= φ2; and no cyclic definitions;

that is, a sequence of concept definitions p1
.
= φ1, . . . pk

.
= φk such that

pi+1 appears in φi, and p1 appears in φk.
A propositional formula is satisfiable with respect to an acyclic

set of propositional definitions if the propositional formula obtained
by replacing every defined propositional variable by its definition leads
to a satisfiable propositional formula.

A tableau for verifying whether a propositional formula is satisfi-
able with respect to an acyclic set of propositional definitions is given
by SSat = (A, ·SSatI ,R, C), where A = B(V); for an axiomatized input
Γ = (φ, T ) ∈ I×P(T) where φ is a propositional formula and T is a
set of propositional definitions, ΓS = {(φ, T )}; C = {{p,¬p} | p ∈ V},
and R consists of the following rules:

R∨ : ({φ ∨ ϕ}, ∅)
R∨
−−→ {{φ}, {ϕ}}

R∧ : ({φ ∧ ϕ}, ∅)
R∧
−−→ {{φ, ϕ}}

R
.
=+ : ({p}, {p

.
= φ})

R
.
=

+

−−−→ {{φ}}

R
.
=− : ({¬p}, {p

.
= φ})

R
.
=

−

−−−→ {{nnf(¬φ)}}

The tableau SSat is sound and complete for the property P =
{(I, T ) | I is satisfiable with respect to T }. Intuitively, the tableau
breaks the formula appart in its conjuncts, and is capable of selecting
the disjuncts that will be satisfied. If there is no possible selection of
this disjuncts which is satisfiable, that is, if for every breaking out of
the formula it turns out that both p and ¬p must be satisfied, then the
answer is that the formula is not satisfiable with respect to the set of
propositional definitions.

Figure 1 shows the assertion sets belonging to some SSat-states for
the axiomatized input ({p ∧ q}, {q

.
= ¬p ∨ r}) obtained by applying

the rule R∧, followed by R
.
=+ and then by R∨, where the branching is

caused by the non-determinism of this rule, having two successors from
its application. From the assertion set, the SSat-state is completely
defined, since the axiom part remains always unchanged.
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{p ∧ q}

{p ∧ q, p, q}

{p ∧ q, p, q,¬p ∨ r}

{p ∧ q, p, q,¬p ∨ r, r}{p ∧ q, p, q,¬p ∨ r,¬p}

Figure 1: Assertional sets of SSat-states for the input ({p∧ q}, {q
.
= ¬p∨ r})

The SSat-state on the right-hand side of the branching, defined by
the assertion set {p ∧ q, p, q,¬p ∨ r, r}, is saturated and clash-free.
Hence, the propositional formula p∧ q is satisfiable with respect to the
propositional definitions q

.
= ¬p ∨ q.

Notice that the reason why the state used in the previous example
is saturated is that the applicability of a rule requires that, for each
of the assertion sets in the right-hand-side of the rule, there is at least
one element in it that is not in the assertion set of the S-state to
which it is being applied. In this particular case, the state contains
the assertion r, which is the only element of one of the sets and hence
the rule R∨ is not applicable even when ¬p is not in it.

The non-deterministic jalal judging a non-deterministic tableau
can be defined using a straight-forward adaptation of Definition 2.10
for deterministic jalals. The only important step is that, when defining
the labeled versions of the rules, every set in the right-hand-side of the
rule must be labeled with the same formula, which is the conjunction
of the formulas in the left-hand-side. The applicability condition for
non-deterministic jalal rules is also a simple adaptation of the applica-
bility conditions of deterministic jalal and non-deterministic tableau
rules.

Since the initial function and the application of rules for non-
deterministic tableaus lead to sets of states instead of single states,
some notions defined in the previous section need to be reformulated
to handle this generalization.

Definition 3.3 (S-state (Sj-state) for Γ) Let S (Sj) be a non-det-
erministic tableau (jalal) and Γ an axiomatized input. The set of S-
states (Sj-states) for Γ is defined inductively as follows:

• every S-state (Sj-state) S ∈ ΓS (S ∈ ΓSj) is a S-state (Sj-state)
for Γ;
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• if S is a S-state (Sj-state) for Γ and R is applicable to S, then
every S-state (Sj-state) in R(S) is a S-state (Sj-state) for Γ.

As it was seen in Example 3.2, in non-deterministic tableaus it
is possible to obtain several different saturated S-states for a single
axiomatized input Γ, some of which may contain clashes while others
are clash-free, and hence Theorem 2.8 does not hold anymore in the
non-deterministic framework. It will be shown, nonetheless, that even
for non-deterministic tableaus, the order of rule application is again
a don’t care non-determinism since, if a saturated S-state is reached
after applying a sequence of rules then, independently on the order in
which such rules are applied, the same S-state can always be reached.
In particular, if there exists a saturated and clash-free S-state for Γ,
the order in which the rules are applied will be irrelevant for producing
it.

Lemma 3.4 Let S be a non-deterministic tableau, S0 = (A0, T0),
and S = (A, T ) two S-states such that S ⊆ S0 and S0 is saturated,

and R the rule (B, T ′)
R
−→ {B1, . . . , Bn} applicable to S. Then, there

is a S-state S′ ∈ R(S) such that S′ ⊆ S0.

Proof. Since S0 is saturated, R is not applicable to it. But it is
the case that B ⊆ A ⊆ A0 and T ′ ⊆ T ⊆ T0; hence, the only way
that R is not applicable to S0 is that there is a 1 ≤ i ≤ n such that
Bi ⊆ A0. But then, the S-state S′ = (A ∪Bi, T ) ∈ R(S) is such that
S′ ⊆ S0.

An analogous proof can be used to show this same result for non-
deterministic jalals.

Now, if for a given axiomatized input a tableau answers that the
property it decides does not hold, it must be the case that every sat-
urated S-state for it contains a clash. As it has been already said,
in the non-deterministic framework there might be several different
saturated S-states for that input. If one wants then to find the maxi-
mal subset of axioms for which the property holds, it is not sufficient
to look into only one of those saturated states, as was done in the
previous section, but it is necessary to look into all of them at the
same time and remove axioms such that at least one of those states
becomes clash-free. Is for this reason that the clash formula has to be
redefined to fit this framework.

Recall that the clash formula for the deterministic case had a dis-
junction of all the formulas expressing clashes in the saturated state.
To falsify it, it was necessary that none of the clashes in it was held
anymore. In the non-deterministic case, it is necessary to ensure that
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there is at least one saturated state for which none of the clashes holds
anymore. For that reason, the new clash formula will be formed by
the conjunction over all the saturated states, of the formula formed
by the disjunction of all the formulas representing clashes in them,
similar to the deterministic clash formula.

Definition 3.5 (Clash formula) Let S be a sound and complete
non-deterministic tableau for a property P. Let S1, . . . ,Sn be all the
saturated Sj-states for an axiomatized input Γ. For each 1 ≤ i ≤ n,
let ψi,1, . . . , ψi,ki

be the formulas expressing all the clashes in Si. The
clash formula associated with Γ and P is:

n∧

i=1

ki∨

j=1

ψi,j

This clash formula will be used in the exact same way the deter-
ministic one was used in the previous section. A valuation that makes
the formula false can be used to find a set of axioms for which the
property holds.

Proposition 3.6 Let S be a sound and complete non-deterministic
tableau for a property P; Γ = (I, T ) an axiomatized input and ψ the
clash formula associated with Γ and P. Let Θ ⊆ T and ω be the
valuation that maps the propositional variables corresponding to the
elements of Θ to true and the rest to false. Then (I,Θ) /∈ P iff ψ
evaluates to true under ω.

To prove this proposition an adaptation of Lemma 2.21 will be
used, the proof of which will be ommited since is almost identical to
the proof given in the previous section. Lemma 2.22 can be used in
this framework without any modification.

Lemma 3.7 Let S0 be a Sj-state, {S1, . . . ,Sn} = R′(S0) and ω
a valuation. Then either ω(Si) = ω(S0) for all 1 ≤ i ≤ n or
{ω(S1), . . . , ω(Sn)} = R(ω(S0)), where R is the tableau rule from
which R′ was constructed.

This adaptation of Lemma 2.21 changes only the fact that there
is only one possible state after applying the rule, to the set of states
induced by non-deterministic rules. Nonetheless, the proof of that
lemma, given in Section 2 does not assume anything on the result of
applying the rule, and hence, a direct translation of that proof can
also be used in the non-deterministic framework.
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Proof of Proposition 3.6 Let S1, . . . ,Sn be all the saturated
Sj-states for Γ. Then, for every 1 ≤ i ≤ n, ω(Si) is a saturated S-
state. Since {ω(S) | S ∈ ΓSj} = (I,Θ)S , every ω(Si) is a saturated
S-state for (I,Θ) – see Lemma 3.7.

Let now S be a saturated S-state for (I,Θ). Then there is a se-
quence of S-states Q0, . . . ,Qm such that Q0 ∈ (I,Θ)S , Qm = S, and
for every 0 ≤ i < m there is a rule Ri of S such that Qi+1 ∈ Ri(Qi).
It is easy to see, by Lemma 3.7, that the Sj-state S′ obtained by ap-
plying the corresponding jalal rule R′

i and selecting the corresponding
element in the resulting set is such that ω(S′) = S. Further applica-
tion of the same lemma shows that there is a saturated Sj-state S′′

with the same property, that is ω(S′′) = S. Hence, ω(S1), . . . , ω(Sn)
are all the saturated S-states for (I,Θ).

Then, (I,Θ) /∈ P iff every ω(Si) contains a clash. A particular
clash C is present in ω(Si) iff for every element cφ in C, cφ ∈ Si

and ω evaluates φ to true. Let now ψi,1, . . . , ψi,ki
be the formulas ex-

pressing clashes in Si. Obviously, ω(Si) contains a clash iff
∨ki

j=1 ψi,j
evaluates to true under ω. Thus, all the saturated S-states for Γ
ω(S1), . . . , ω(Sn) contain a clash iff the clash formula evaluates to
true under ω.

The transference of termination for non-deterministic tableaus can
easily be shown adapting Theorem 2.25; if a non-deterministic tableau
terminates, then the non-deterministic jalal judging it terminates too.

Although non-determinitic tableaus generalize the concept of de-
terministic tableaus to include some uncertainty in the selection of a
path to find a saturated and clash-free state, it turns out that they are
still too restricted for some decision problems. To keep general asser-
tions in the set is sometimes insufficient to represent the information
that is necessary to solve the problem. For example, one may need to
express that certain assertions hold only for some specific elements,
while other assertions are satisfied by completely different elements in
the same domain. The next section introduces a further generalization
to the concept of tableau, aimed to deal with this lack of expresivity,
by adding the use of variables within the assertions.

4 Use of variables

One way to generalize the notion of tableau introduced in the previous
sections is to allow the use of variables in the sets that form the states.
Assertions will then be able to express that some information holds
for all the elements in a certain domain, or just for one of them, or
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that a pair of elements keep certain relationship between them. For
the framework presented in this section, the variables will be divided
into two sets: the assertion variables and the tableau variables, which
range over the set of assertion variables. The tableau variables are used
when defining the rules or clashes to state the presence of a particular
element; assertion variables represent those particular elements, held
inside the assertion set.

4.1 Variables in assertions

One first generalization consists in including the use of variables only
in the assertion set, and leaving the rest of the elements forming a
tableau unchanged. Later in this section, this will be further general-
ized to allow also the use of variables in the axiom set.

Definition 4.1 (Variable tableau) Let V,W be two disjoint sets of
assertion variables and tableau variables, respectively, I a set of in-
puts and T a set of axioms. A variable tableau for I,T is a tuple of
the form S = (A, ·SI ,R, C), where A =

⋃
i≥0 A

(i), with each A(i) a
set of assertions of arity i; if U is a set of variables, then A(U) =
{(u1, . . . , ui) : A | A ∈ A(i), uj ∈ U} denotes the set of assertions with
variables over U ; a S-state is an element of P(A(V)) × P(T).

The function ·SI maps each I ∈ I to a set {A1, . . . , An}, where
each Ai ⊆ A(V); ·S extends ·SI by mapping an axiomatized input
(I, T ) ∈ I × P(T) to the set of S-states {(Ai, T ) | Ai ∈ ISI, 1 ≤ i ≤
n}.

R is a set of rules of the form (A, T )
R
−→ {B1, . . . , Bn}, where

A,Bi ⊆ A(W) and T ⊆ T. C is a subset of P(A(W)).

For this tableau, the previous definitions of applicability become
useless, since it is unclear what must be done with the variables in the
assertions. Furthermore, the way the two different sets of variables
interact has not been stated. Their use should become clear with the
following definition.

Definition 4.2 (V-valuation,applicability) Given a set W ∈ W,
a V-valuation of W is a function % : W → V. Given two V-valuations
% : W → V and %′ : W ′ → W, it is said that %′ extends % if it holds that
W ⊆W ′ and for every w ∈W , %(w) = %′(w). For a set of assertions
with variables A, the set of variables appearing in A is denoted as
var(A).

Given a set A ⊆ A(W) and a V-valuation % for var(A), A% is the
set obtained by replacing every variable x ∈ var(A) by %(x); that is,
A% = {(%(x1), . . . , %(xi)) : B | (x1, . . . , xi) : B ∈ A} ⊆ A(V).
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Ru : ({y0 : D1 u D2}, ∅)
Ru
−→ {{y0 : D1, y0 : D2}}

Rt : ({y0 : D1 t D2}, ∅)
Rt
−→ {{y0 : D1}, {y0 : D2}}

R∃ : ({y0 : ∃r.D}, ∅)
R∃
−→ {{y1 : D, (y0, y1) : r}}

R∀ : ({y0 : ∀r.D, (y0, y1) : r}, ∅)
R∀
−→ {{y1 : D}}

R
.
=+ : ({y0 : A}, {A

.
= D})

R
.
=

+

−−→ {{y0 : D}}

R
.
=

−
: ({y0 : ¬A}, {A

.
= D})

R
.
=

−

−−→ {{y0 : nnf(¬D)}}

Figure 2: Rules for a tableau checking satisfiability of ALC-concept terms

Given a S-state S = (A, T ) and a rule (B, T ′)
R
−→ {B1, . . . , Bn},

R is applicable to S if there is a V-valuation % for var(B) such that
B% ⊆ A, T ′ ⊆ T , and for every 1 ≤ i ≤ n and every V-valuation σ for
var(B) ∪ var(Bi) extending %, it holds that Bσ

i 6⊆ A.
The result of applying R to S is the set of S-states R(S) = {(A ∪

Bσ
i , T ) | 1 ≤ i ≤ n}, where σ is a V-valuation for var(B)∪

⋃n
i=1 var(Bi)

extending % such that for every x, y ∈ (
⋃n
i=1 var(Bi)) \ var(B), σ(x) ∈

V \ var(A), and if x 6= y, then σ(x) 6= σ(y).

All the notions of S-state for Γ, saturated, clash-free, soundness
and completeness are defined exactly as in the previous section.

Example 4.3 Let V = {xi | i ∈ N} and W = {yi | i ∈ N}. A tableau
for checking satisfiability of an ALC-concept term with respect to an
acyclic TBox is given by SALC = (A, ·SALCI ,R, C), where A(1) is the
set of all ALC-concept terms, assuming without loss of generality that
these are always given in negation normal form, and A(2) is the set of
all role names; given an input Γ = (C, T ) with C a concept term and
T an acyclic TBox, ΓS = {({x0 : C}, T )}; R is given by the rules in
Figure 2; and C = {{A,¬A} | A is a concept name}.

This tableau is a straightforward translation of the method given in
[Lut99] for deciding ALC satisfiability with respect to acyclic TBoxes,
and hence is sound and complete for this property.

The rule R∃ is applicable to the SALC-state S = ({x0 : ∃r.D}, ∅),
and the resulting state obtained after of such a rule application is
R∃(S) = {(x0 : ∃r.D, x1 : D, (x0, x1) : r}, ∅).

As in the case of deterministic and non-deterministic tableaus, the
order in which the rules are applied is irrelevant, in the sense that it
has no influence to whether a saturated and clash-free state is found
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or not. In this tableau there is also the possibility to chose many
distinct V-valuations by which the rules are applied. As will be shown
next, the choice of V-valuation includes also a kind of don’t care non-
determinism, since choosing a different one will only give different
names to the assertion variables, but will not modify the underlying
structure they form.

Definition 4.4 (Substate,equal) Let S be a variable tableau and
S = (A, T ),S′ = (A′, T ′) two S-states. S is a substate of S′, denoted
as S ⊆ S′, if T ⊆ T ′ and there exists a function f : var(A) → var(A′)
such that if (x1, . . . , xi) : a ∈ A, then (f(x1), . . . , f(xi)) : a ∈ A′.

S and S′ are equal, denoted as S = S′, if S ⊆ S′ and S′ ⊆ S.

The definition of a substate, or equal S-states is analogous to the
previous ones, with the difference that having two equal S-states does
not imply that their elements are exactly the same; they may have
different variable names in the assertion sets, but there is a bijection
between those variable names.

Lemma 4.5 Let S be a variable tableau, S0 = (A0, T0) a saturated
S-state and S = (A, T ) a S-state such that S ⊆ S0; and let R be the

rule (B, T ′)
R
−→ {B1, . . . , Bn} applicable to S. Then, there is a S-state

S′ ∈ R(S) such that S′ ⊆ S0.

Proof. Since R is applicable to S, there is a V-valuation % of
var(B) such that B% ⊆ A and T ′ ⊆ T . As S ⊆ S0, there is a function
f : var(A) → var(A′) having the property of Definition 4.4; thus,
the V-valuation %′ for var(B) given by %′(x) = f(%(x)) is such that
B%′ ⊆ A0, and it also holds that T ′ ⊆ T0. Let σ be the V-valuation
chosen when R was applied to S.

Since S0 is saturated, R is not applicable to it, and hence there
must exist a 1 ≤ i ≤ n and a V-valuation σ ′ for var(B) ∪ var(Bi) ex-
tending % such that Bσ′

i ⊆ A0. With the help of this V-valuation,
extend the function f by setting f(σ(x)) = σ ′(x) for every x ∈
var(Bi) \ var(B). Then, if (x1, . . . , xm) : a ∈ Bσ

i , it must be the
case that (f(x1, . . . , f(xm)) : a ∈ A0 because Bσ′

i ⊆ A0. But then, the
S-state S′ = (A ∪Bσ

i , T ) ∈ R(S) is such that S′ ⊆ S0.

The pinpointing method can also be applied to variable tableaus.
The notion of jalal as given in the previous section needs to be modified
to allow the use of variables in the assertions, as has been done for
variable tableaus. The following definition states such a generalization
in a straightforward manner.
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Definition 4.6 (Variable jalal) Let S = (A, ·SI ,R, C) be a variable
tableau for I,T. Label each element of T with a unique propositional
variable and let lab be the set of all those variables. Given a set of
axioms T ⊆ T, let T̂ denote the set containing all the elements of T
with their respective variable. The variable jalal judging S is given by
Sj = (Alab, ·(Sj)I ,Rj, Cj), where

• for every Γ ∈ I × P(T), if ΓS = {(A1, T ), . . . , (An, T )}, then
ΓSj = {(A>

1 , T̂ ), . . . , (A>
n , T̂ )},

• for every rule R ∈ R of the form

({a1, . . . , ak}, {t1, . . . , tl})
R
−→ {B1, . . . , Bm}

construct the rule

({aφ1

1 , . . . , aφk

k }, {tϕ1

1 , . . . , tϕl

l })
R′

−→ {Bψ
1 , . . . , B

ψ
m}

where ψ =
∧k
i=1 φi ∧

∧l
i=1 ϕi,

• Rj = {R′ | R ∈ R}, and Cj is constructed as in Definition 2.10.

A Sj-state is an element of P(Alab) × P(T̂).

For this kind of jalal it is again necessary to define under which
conditions will a rule be applicable to a Sj-state. This definition is once
again a simple adaptation of the ones that have been given before, to
fit into the variable framework, which brings no additional problems
to the pinpointing method.

Definition 4.7 (Applicability) A rule (B, T ′)
R
−→ {Bψ

1 , . . . , B
ψ
n } of

a variable jalal Sj is applicable to a Sj-state S = (A, T ) if there is
a V-valuation % for var(B) such that B% ⊆ A, T ′ ⊆ T , and for every
1 ≤ i ≤ n and every V-valuation σ for var(B) ∪ var(Bi) extending %,
it holds that insψ(Bi, A) 6= ∅.

The result of applying R to S is the set of Sj-states R(S) given by

R(S) = {(A d (Bψ
j )σ, T ) | 1 ≤ j ≤ n}, where σ is a V-valuation for

var(B)∪
⋃n
j=1 var(Bj) extending % such that for every pair of elements

x, y ∈
⋃n
j=1 var(Bj) \ var(B) it holds that σ(x) ∈ V \ var(A), and

whenever x 6= y, then also σ(x) 6= σ(y).

The next part of this section will follow the same path as in the
previous sections, showing how the jalals can be used to find the ax-
iomatic causes of the presence of clashes, from which maximal subsets
of axioms for which a property holds can be derived. Although the
proofs follow basically the same pattern as the ones for deterministic
jalals, the use of variables adds some difficulties in their development;
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for this reason, the results will be proven in detail. In the following,
some concepts may be mentioned which have not been formally defined
for the variable framework; these are straightforward adaptations of
the same concepts given in the non-deterministic case.

Lemma 4.8 Let S be a variable tableau, S0 a Sj-state, R′ a jalal rule
with R′(S0) = {S1, . . . ,Sn}, and ω a valuation of the propositional
variables in lab. Then, either ω(Si) = ω(S0) for all 1 ≤ i ≤ n,
or R(ω(S0)) = {ω(S1), . . . , ω(Sn)}, where R is the tableau rule from
which R′ is constructed, if the same V-valuation for the variables ap-
pearing in the rule is used.

Proof. Let ψ be the conjunction of all the labels appearing in
the left-hand-side of R′. After the rule is applied, some new elements
are added to the assertion set, labeled with the formula ψ, and some,
that were already present in the assertion set of S0, will have their
labels changed to be disjointed with ψ, to create each of the Sj-states
in R′(S0).

If ψ evaluates to false under ω, then none of the new elements will
be added to any of the ω(S0) to produce any ω(Si), since their label
evaluates to false under ω; and the labels of all those elements that
were already present will evaluate to the same truth value as did before
being conjuncted with ψ under ω. Hence, the application of the rule
does not add or remove any element from ω(S0). So, ω(Si) = ω(S0).

If, on the contrary, ψ evaluates to true under ω, then all the new
elements will be added to ω(S0) when producing each ω(Si) as their
label evaluates to true under ω. Furthermore, all the elements which
were already present in the assertion set, will now have their label
disjointed with ψ and hence, this label will evaluate to true under ω;
thus, all the elements in the sets on the righ-hand-side of R will be
added to ω(S0) to form the ω(Si)’s. Nonetheless, since the application
of the rule allows for the selection on any V-valuation for the new
elements to be added, if a different valuation is used, the elements will
not be the same, since they would contain distinct assertion variables.
If the same V-valuation is used, then the exact same sets are obtained,
which is what was to be proven.

Notice that the restriction of using the same valuations when ap-
plying the rules is only necessary to obtain the exact same set of
S-states. Nonetheless, this lemma could be relaxed to not need the
use of the same valuations, if one wants only to obtain S-states that
are equal. The proof given for Lemma 4.8 proofs also this claim.
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Lemma 4.9 Let S be a variable tableau, S a saturated Sj-state, and
ω a valuation of propositional variables. Then ω(S) is a saturated
S-state.

Proof. Let S = (A, T ), R : (B, T ′)
R
−→ {B1, . . . , Bn} be a tableau

rule of S with jalal version R′, ψ the conjunction of the labels appearing
in the left-hand-side of R′, and % a valuation of var(B) such that
B% ⊆ ω(A) and T ′ ⊆ ω(T ). Since all the elements appearing in the
left-hand-side of the rule are present in ω(S), all their labels evaluate
to true under ω, and hence also does ψ.

Since S is saturated, then R′ must not be applicable to it. This
means that there must be a 1 ≤ j ≤ n and a V-valuation σ for
var(B)∪ var(Bj) extending % with the property that for every b ∈ Bσ

j ,

there is be a φ such that bφ ∈ A and ψ |= φ. As ψ evaluates to true
under ω, so does φ, and thus b ∈ ω(S). Hence, R is not applicable to
ω(S).

These two lemmas will help in the proof of the following proposi-
tion. The proposition, along with its proof, follows the lines of Propo-
sition 3.6, without big modifications; it is nonetheless stated in full
detail to show clearly the role of the assertion variables in the result.

Proposition 4.10 Let S be a sound and complete variable tableau
for a property P, and ψ the clash formula associated to an input Γ =
(I, T ). Let Θ ⊆ T and ω be the valuation mapping the propositional
variables corresponding to elements of Θ to true and the rest to false.
Then (I,Θ) /∈ P iff ψ evaluates to true under ω.

Proof. Let S1, . . . ,Sn be all the saturated Sj-states for Γ. Since
{ω(S) | S ∈ ΓSj} = (I,Θ)S , by means of Lemmas 4.8 and 4.9, every
ω(Si) is a saturated S-state for (I,Θ). It will now be shown that
these are all the saturated S-states for that input, up to assertional
variable renaming.

Let S be a saturated S-state for (I,Θ); then, there must be a se-
quence Q0, . . . ,Qm of S-states such that Q0 ∈ (I,Θ)S , Qm = S, and
for every 0 ≤ i < m there exists a rule Ri of S such that Qi+1 ∈ Ri(Qi).
Using Lemma 4.8, one can deduce that the Sj-state S′ obtained by
applying the corresponding jalal rules R′

i with the same V-valuation
on the tableau variables, and selecting the corresponding element in
the set obtained after that application is such that ω(S′) = S. Fur-
ther application of the same lemma yields the existence of a saturated
Sj-state S′′ such that ω(S′′) = S. If instead other V-valuations were
chosen, one would obtain the same Sj-states, but using different as-
sertion variables. Hence, the S-states ω(S1), . . . , ω(Sn) are all the
saturated S-states for (I,Θ), up to assertional variable renaming.
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All the previous implies that (I,Θ) /∈ P iff every ω(Si) contains a
clash. A particular clash C is present in ω(Si) iff for every element cφ

in C, it holds that cφ ∈ Si and φ evaluates to true under ω. Let now
ψi,1, . . . , ψi,ki

be the formulas expressing all the clashes in Si. It then

holds that ω(Si) contains a clash iff
∨ki

j=1 ψi,j evaluates to true under
ω. Thus, every S-state ω(S1), . . . , ω(Sn) contains a clash iff the clash
formula evaluates to true under ω.

As it was the case in the two previous sections, termination of the
decision procedure transfers to its jalal under some finiteness assump-
tions. In other words, if a variable tableau is terminating, every rule is
finite and the initial function is finite, then the variable jalal judging
it is also terminating.

In the rest of this section, the use of variables will be generalized to
allow the fact that axioms are, in a sense, not global facts, but rather
facts over specific elements in the domain. To do that, these axioms
will be allowed to include the use of assertional variables in them.

4.2 Axioms with variables

Up to now, the variables can appear only in the assertion sets of a
state. As it was said before, this approach can be further generalized
to allow axioms which include variables themselves. With this gener-
alization it becomes then possible to translate directly an axiom into
the assertion set. Axioms will only be able to use assertion variables
since, if tableau variables were used in them, the V-valuation approach
would lead to a behaviour equivalent to that of unlabeled axioms, and
in that case they will be of no use, and would only make the notation
more elaborate.

The inclusion of assertion variables does not change the definition
of any of the elements in the variable tableau, except for the rule set,
in which rules become of the form

(A, T )
R
−→ {B1, . . . , Bn}

where A ⊆ A(W) and for every 1 ≤ i ≤ n, Bi ⊆ A(V)∪A(W) is such
that Bi \ A(W) ⊆ T .

Notice that the whole treatment given up to now on variable
tableaus, and by extension their jalals, relies exclusively on V-valuat-
ions, which are made over the tableau variables. Since, as was said be-
fore, axioms include only assertion variables, this generalization does
not affect any of the definitions or results shown so far. Hence, the
same approach can be used to pinpoint the causes for a property not
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Ru : ({y0 : D1 u D2}, ∅)
Ru
−→ {{y0 : D1, y0 : D2}}

Rt : ({y0 : D1 t D2}, ∅)
Rt
−→ {{y0 : D1}, {y0 : D2}}

R∃ : ({y0 : ∃r.D}, ∅)
R∃
−→ {{y1 : D, (y0, y1) : r}}

R∀ : ({y0 : ∀r.D, (y0, y1) : r}, ∅)
R∀
−→ {{y1 : D}}

Ra : (∅, {x : D})
Ra
−→ {{x : D}}

Figure 3: Rules for a tableau checking instance problem w.r.t ABoxes

to hold in a given axiomatized input, and then find maximal subsets
of axioms for which the property holds.

The following example shows how this kind of variable tableaus
can be used. The axioms in it are assertions containing variables,
which are directly translated into the assertion set to verify that the
conditions they force in the assertional variables they hold are enough
to make certain variable name be an instance of an ALC-concept term.

Example 4.11 Let V = {xi | i > 0} and W = {yi | i > 0}. A vari-
able tableau for checking if an individual is an instance of an ALC-
concept term with respect to an ABox is given by S 6ins = (A, ·S 6insI ,R, C)
where A(1) is the set of all ALC-concept terms; for an axiomatized in-
put Γ = (a : C, T ) with a an assertion variable, C an ALC-concept
term and T an ABox, ΓS = ({a : nnf(¬C)}, T ); R contains the
rules appearing in Figure 3; and C contains all the sets consisting
of a concept name and its negation for any fixed assertion variable
C = {{x : A, x : ¬A} | A is a concept name}.

Intuitively, the tableau simply expands all the concepts that any
individual has to satisfy given the axiomatized input, and in particu-
lar that a must satisfy C. If that expansion leads to a contradiction,
stating that some element must satisfy a concept name and its nega-
tion, then it cannot be that all the rules stated can be satisfied, and so
S 6ins rejects the axiomatized input. This method is a restriction of the
tableau for checking satisfiability of a concept term, see Example 4.3,
but where the assertion variable given by the function ·S 6ins is fixed.

In all the tableaus presented up to now, it is only possible to express
which elements must be present in a state in order to have a rule
applicable to it; according to the applicability conditions defined so
far, if all those elements appear in the state, and the rule would add
new information to it when constructing each of the successor states,
then the rule is applicable. In other words, once that all the elements
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in the left-hand-side of a rule are present in a state, the only possible
way this rule is not applicable to the state is that all the elements
in at least one of the sets in the right-hand-side are also present in
its assertion set; thus, only if new information will be added when
creating each of the new S-states, it will be possible to apply a rule.

For some applications, this approach is not adequate, since it may
be necessary to state that, if certain element is already present in a
state, then the rule should not be applicable, but if it is not present,
even when the rule is applicable, such element should not be added,
this is called a negative applicability condition. The next section will
further generalize the notion of tableau in order to handle with such
applicability conditions.

5 Negative Applicability Conditions

In this section, the tableaus presented previously in this report will be
generalized in such a way that it is possible to express conditions for
which a rule is not applicable, even when it satisfies the applicability
conditions stated so far. It will turn out that the pinpoint method as
presented in this report cannot be applied to every tableau for which
these negative applicability conditions are allowed, as will be shown
by means of examples. A subclass of tableaus for which the method
is still applicable will be described, though.

5.1 Blocking tableaus

A blocking tableau will be one in which rules are allowed to contain
negative applicability conditions, stating that, even if all the elements
of the right hand side of the rule are present, and some of the assertion
that would be added by its application are not there, the rule could
still be not applicable by other means. These tableaus are now defined
formally.

Definition 5.1 (Blocking tableau) Let V and W be two sets of as-
sertion and tableau rules, respectively, I a set of inputs and T a set of
axioms. A blocking tableau for I,T is a tuple S = (A, ·Sj ,R, C), where
A, ·SI and C are as in Definition 4.1, but R may contain, additionally
to rules of the form given in Definition 4.1, also blocking rules of the
form

(A, T )OB
R
−→ {B1, . . . , Bn}

where A,B,Bi ∈ A(W) and T ⊆ T.
In this case, B is called the blocking set of R.
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This kind of tableau is almost identical to variable tableau, and
all the concepts like S-state, saturated, or soundness, are defined in
a similar fashion as the previous section. Nonetheless, for the newly
defined blocking rules, new applicability conditions must be stated, in
order to make clear how the blocking sets influence the applicability
of those rules.

Definition 5.2 (Applicability) Given a blocking tableau S, a S-

state S = (A0, T0), and a blocking rule R : (A, T )OB
R
−→ {B1, . . . , Bn},

R is applicable to S if all the following conditions hold:

1. there is a V-valuation % for var(A) such that A% ⊆ A0,

2. T ⊆ T0,

3. for every V-valuation σ for var(A)∪var(B) extending %, Bσ 6⊆ A0

4. for every 1 ≤ i ≤ n and every V-valuation σ for var(A)∪ var(Bi)
extending %, Bσ

i 6⊆ A0

R is blocked by S if Conditions 1, 2 and 4 above hold, but Condi-
tion 3 does not hold.

The result of applying R to S is the set of S-states R(S) given by
R(S) = {(A0∪B

σ
1 , T ), . . . , (A0∪B

σ
n , T )}, where σ is a V-valuation for

var(A)∪
⋃n
i=1 var(Bi) extending % such that for every pair of variables

x, y ∈
⋃n
i=1 var(Bi) \ var(A) it is the case that σ(x) ∈ V \ var(A0), and

if x 6= y then σ(x) 6= σ(y).

The following example shows the use of blocking rules, and their
applicability conditions.

Example 5.3 Suppose that one wants to impose a condition over the
rule R∃ of Example 4.3 in such a way that, if there is already a node in
the assertion set that satisfies all the formulas that the newly generated
element would have after the application, the rule is not applicable.
Such a condition can be stated replacing the rule R∃ by the new blocking
rule

(A, ∅) O {y1 : D, y1 : E1, . . . , y1 : En}
R∃
−→ {{y2 : D, (y0, y2) : r}}

where A = {y0 : ∃r.D, y0 : ∀r.E1, . . . , y0 : ∀r.En}.
It is important to notice that, by the way the result of the applica-

tion of rules was defined, using y1 as tableau variable instead of y2 on
the right-hand-side of the rule would make no difference when applying
this rule to any SSat-state.
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{A, D}

{A, C, D}

(a) Choosing rule R1 first leads to a
saturated and clash-free S-state

{A, D}

{A, B, D}

{A, B, C, D}

(b) Choosing rule R2 first, followed by
R1 leads to a saturated S-state with a
clash

Figure 4: The choice of different rule application order leads to different
results in a blocking tableau

Unfortunately, within the framework of blocking tableaus, the non-
determinism obtained by the rule application order is, contrary to all
the previous cases, not a don’t care non-determinism, but rather a
don’t know non-determinism. In other words, it might be the case
that applying the rules in one order leads to a saturated and clash-
free state, while the selection of a distinct application order leads to
only saturated states containing clashes. The following example shows
an instance of this.

Example 5.4 Let S = ({A,B,C,D}, ·SI ,R, C) be a blocking tableau
where ·S maps an axiomatized input Γ = (I, ∅) with I ⊆ {A,B,C,D}
to ΓS = {(I, ∅)}, C = {{B,D}}, and R contains the rules:

R1 : ({D}, ∅)
R1−→ {{C}}

R2 : ({A}, ∅)O{C}
R2−→ {{B}}

Given the axiomatized input Γ = ({A,D}, ∅), the initial function
yields ΓS = {({A,D}, ∅)}. For the only S-state in ΓS, both rules R1

and R2 are applicable. If the rule R1 is applied first, one obtains a
saturated and clash-free S-state, as shown in Figure 4(a).

If, on the other hand, the rule R2 is selected to be applied first,
one obtains again only one S-state which is not saturated since R1 is
still applicable to it. After applying R1 to this new state, one unique
saturated S-state is obtained, but this one contains a clash. This is
shown in Figure 4(b).

The reason why in this example the different ordering selections
lead to distinct results relies on the fact that, when the rule R1 is
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applied, it blocks the applicability of R2. This happens because R1

adds the elements that restrict the applicability of R2 by means of the
negative applicability condition. Once that the applicability of R2 has
been blocked, it is impossible to add the element B, which is added
by this rule, to the assertion set. This element is necessary to obtain a
clash. Thus, the blocking condition disallows the possibility of getting
a clash by following that path.

The irrelevance of the application order of rules is usually a desir-
able property, especially when one looks for orderings by which the
solution can be found applying the minimal amount of rules. If finding
the solution depends on the ordering chosen, then this kind of opti-
mization cannot be done. Nonetheless, for the pinpointing technique
presented in this report, this irrelevance of the order chosen is not
fundamental; and hence, it is feasible to construct jalals that judge
blocking tableaus. These jalals will be defined next. As it was said
before, the pinpointing method does not work for every instance of
blocking tableaus. Although blocking jalals will be defined in general,
the correctness of their use depends on the original blocking tableau
belonging to a class for which the pinpointing method works in an
adequate manner.

5.2 Blocking jalals

The definition of blocking jalals is a simple adaptation of that for
variable jalals to allow the use of blocking rules.

Definition 5.5 (Blocking jalal) Let S = (A, ·SI ,R, C) be a block-
ing tableau for I,T. Label each element of T with a unique propo-
sitional variable; let lab be the set of all those variables and let T̂
denote the set having all the elements of T with their respective la-
bels, for any T ⊆ T. The blocking jalal judging S is given by Sj =
(Alab, ·(Sj)I ,Rj, Cj) where all the elements are given as in Definition
4.6, and for every blocking rule R of the form

({a1, . . . , ak}, {t1, . . . , tl})OB
R
−→ {B1, . . . , Bm}

construct the rule R′

({aφ1

1 , . . . , aφk

k }, {tϕ1

1 , . . . , tϕl

l })OB̂
R′

−→ {Bψ
1 , . . . , B

ψ
m}

where ψ =
∧k
j=1 φj ∧

∧l
j=1 ϕj, and B̂ contains the elements of B with

parametrized labels.

For this kind of jalals, the applicability conditions need to take into
consideration also the labels in the blocking set of the rules. The fact
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that all the elements of the blocking set are present in the assertion
set is not enough for the rule not to be applicable when the main task
is to find the axioms that produce clashes. The reason for this is that,
if some axioms are removed, it might happen that the elements in the
right-hand-side of the rule can be produced by application of other
rules, but there is one element in the blocking set for which one of
the removed axioms was necessary. In that case the rule would be
applicable, and its application would add new elements that were not
considered in the clash-formula before; from these new elements, a
new clash could be formed.

Example 5.6 Let I = ∅,T = {A1, A2} and Sc = (A, ·ScI ,R, C) be
a blocking tableau where A = {B,C}, ·ScI is the identity function,
C = {{B}, {C}}, and R contains only the following two rules:

R1 : (∅, {A1})O{B}
R1−→ {{C}}

R2 : (∅, {A2})O{C}
R2−→ {{B}}

Let the axiomatized input be Γ = (∅, {A1, A2}). Then, if an analo-
gous of the applicability conditions defined previouly were used for the
blocking jalal Scj judging Sc, both rules R′

1 and R′
2 would be applicable

to ΓScj = (∅, {Ap1, A
q
2}).

Application of R′
1 would lead to the Scj-state ({Cp}, {Ap1, A

q
2}),

while R′
2 would produce ({Bq}, {Ap1, A

q
2}). Both of these Scj-states for

Γ are saturated, both contain a clash, and they are all the possible sat-
urated Scj-states for this input. Then, the clash formula for this input
would be p ∧ q. This would mean that, according to the methods de-
scribed in the previous sections, any subset of axioms containing just
one of them, that is {A1} and {A2}, is such that the tableau would
accept the input with it.

A brief analysis of that input will show that none of those sets of
axioms is correct, since the only input that will be accepted is (∅, ∅).

In order to avoid this problem, a rule will also be applicable to a
state if, although all the elements of the blocking set can be found
in the assertion set of the state, their labels are not modelled by the
conjunction of the labels of the elements that triggered the rule. This
is stated formally in the following definition.

Definition 5.7 (Applicability) A rule (A, T )OB
R
−→ {B1, . . . , Bn}

of a blocking jalal Sj is applicable to the Sj-state S = (A0, T0) if there
is a V-valuation % for var(A) such that A% ⊆ A0, T ⊆ T0 and the
following conditions hold:
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R1 : (∅, {A})
R1−→ {{A}}

R2 : (∅, {B})
R2−→ {{B}}

R3 : ({B}, ∅)
R3−→ {{A}}

R4 : ({A}, ∅)O{B}
R4−→ {{C}}

Figure 5: Rules of the blocking tableau Sb in Example 5.8

• for every V valuation σ for var(A)∪ var(B) extending %, there is
a labeled element bφ ∈ Bσ such that either b /∈ unl(A0) or ψ 6|= φ;

• for every 1 ≤ i ≤ n and every V-valuation σ for var(A)∪ var(Bi)
extending %, it holds that Bσ

i 6⊆ A0.

The result of applying R to S is the set of Sj-states R(S) given by
R(S) = {(A0 dBσ

1 , T ), . . . , (A0 dBσ
n , T )}, where σ is a V-valuation for

var(A)∪
⋃n
i=1 var(Bi) extending % such thatr for every pair of variables

x, y ∈
⋃n
i=1 var(Bi) \ var(A) it is the case that σ(x) ∈ V \ var(A) and

if x 6= y then σ(x) 6= σ(y).

Unfortunately, this definition of applicability brings forth another
problem to blocking jalals. Even when a blocking tableau is sound and
complete for some property, the jalal judging it may no be, as shown
in the following example. For this reason, the pinpointing method is
not applicable to every blocking tableau, but just to a restricted class
of them.

Example 5.8 Let T = {A,B,C}, I = P(T) and Sb = (A, ·SbI ,R, C)
be the blocking tableau for I,T given by A = T, ·SbI being the function
that maps every input to the set containing only the same input; the
set of clashes C = {{C}} and R contains the rules shown in Figure 5.

Let now the axiomatized input be Γ = (∅, {A,B}). It then holds
that ΓSb = (∅, {A,B}). At this point, it is possible to apply rule R2

followed by R3 to obtain the Sb-state ({A,B}, {A,B}). This state is
saturated since, for the first three rules, the elements that would be
added are already in the assertion set, and the fourth rule is blocked
by the existence of B. As there is a saturated and clash-free Sb-state
for Γ, the tableau will accept this input.

If one tries now to apply the blocking jalal Sbj judging Sb to this
same axiomatized input, the result will be the opposite. Figure 6 shows
all the possible Sbj-states for this input, along with the rules required to
reach them. Looking at that figure, it is easy to see that there is only
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∅

R1 R
2

{Ap} {Bq}

R4 R
2 R1 R

3

{Ap, Cp} {Ap, Bq} {Aq, Bq}

R2 R4 R
3 R1

{Ap, Bq, Cp} {Ap∨q, Bq}

R3 R4

R4{Ap∨q, Bq, Cp} {Ap∨q, Bq, Cp∨q}

Figure 6: All Sbj-states for the input (∅, {A, B}) with the rule applications
needed to reach them.

one saturated Sbj-state for the given input, and it contains a clash.
Hence Sbj would reject this input.

Furthermore, the clash formula for this input would be p∨ q. This
means that, according to this blocking jalal, the only way to get rid of
the clash is to remove all the axioms that were used and have an empty
input. Clearly, this cannot be true, not only because the original input
is accepted by the tableau, but also because removing only the axiom
A, labeled with p, would lead to clash-free states, even in this jalal.

As the previous example shows, blocking jalals are not useful for
every instance of a blocking tableau. It is, nonetheless, possible to
define a class of these tableaus for which the pinpointing procedure,
as described in this report, still works. The rest of this section will
deal with stating that class, and proving that a method analogous to
the ones presented in the previous sections, work for every tableau
belonging to that class.

In order to find such a class of blocking tableaus, one need to
examine the causes of the problems that do not allow the pinpointing
method to be used in a correct manner. The problem presented in
Example 5.8 is that application of the jalal rules adds a clash where
the tableau rule application was blocked. If one can ensure that this
will not happen, then the pinpointing method will work adequately.
In this report two different conditions that are sufficient to avoid this
problem are given, giving rise to two classes of blocking tableaus,
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which are not disjoint. They will be called safe blocking tableaus,
and input-deniable tableaus. In the rest of this section both classes
will be defined, and it will be shown that one can track the causes of
inconsistency in every tableau belonging to them.

Before defining formally these subclasses and going into the details
of why the pinpointing methods works on them, it will be shown that
the analogous of Lemmas 4.8 and 4.9 hold in every blocking tableau.
This might be surprising at first sight, since those lemmas form the
base over which the proof of correctness of the pinpointing method
relies, for the framework presented in the previous section. Analyzing
the reason why the same proof does not work in this framework will
give an insight on the restrictions that need to be enforced for the
method to work, and hence help motivate the classes that will be
presented afterwards.

In the following lemma, a blocking rule can be applied to a state,
even if this rule is blocked by that state. The definition of rule appli-
cation to a state blocking it is the same as the normal rule application.

Lemma 5.9 Let S be a blocking tableau, S0 a Sj-state, R′ a jalal rule
with R′(S0) = {S1, . . . ,Sn}, and ω a vlauation of the propositional
variables in lab. Then, either ω(Si) = ω(S0) for all 1 ≤ i ≤ n,
or R(ω(S0)) = {ω(S1), . . . , ω(Sn)}, where R is the tableau rule from
which R′ is constructed, if the same V-valuation for the new variables
is used.

Proof. Let R = (A, T )OB
R
−→ {B1, . . . , Bn}, and ψ be the con-

junction of all the labels appearing in A for R′. The application of
the rule creates n Sj-states that contain all the assertions in S0 where
possibly some have their labels changed to be disjointed with ψ, and
also possible some new assertions labeled with the same formula ψ.

If ψ evaluates to false under ω, then the elements that had their
labels modified by a disjunction with ψ will not modify its truth value
when evaluated under ω, and all the new elements added will have
their labels evaluated to false under the same valuation. Hence, the
inclusion of elements in S0 to form the states Si does not modify its
projection; i.e. ω(S0) = ω(Si) for all i.

In other case, that is if ψ evaluates to true under ω, then all the
elements whose labels were disjuncted with ψ will be such that will
be present now in the ω-projection of the state to which they belong,
since the new label will evaluate to true under that valuation. The
same happens to all new elements, whose label is exactly ψ. Hence,
R(ω(S0)) = {ω(S1), . . . , ω(Sn)}.

Notice that, in the last part of this proof, it may well be the case
that R is blocked by ω(S0), if all the elements of the blocking set
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appear in S0 and their labels are mapped to true under ω, even if R′

is not blocked by S0. As it was said before, even when the rule is
blocked, R(ω(S0)) is defined in the same way as when R is applicable
to that S-state. Nonetheless, the resulting S-states obtained after such
a rule application are not necessarily S-states for the input given, since
there might be no way to obtain them by normal application of rules
as defined for blocking tableaus. As it will be said further in this
section, this is the main reason why the main proposition cannot be
proved only by the application of these lemmas.

Lemma 5.10 Let S be a blocking tableau, S a saturated Sj-state and
ω a valuation of propositional variables in lab. Then ω(S) is a satu-
rated S-state.

Proof. Let R : (A, T )OB
R
−→ {B1, . . . , Bn} be a rule applicable to

ω(S). Then, for every element a ∈ A, there is an assertion aφa ∈ S,
and φa evaluates to true under ω. Since the rule is applicable, there
is an element b ∈ B such that b /∈ ω(S), and for every i ∈ {1, . . . , n},
there is a bi ∈ Bi with bi /∈ ω(S). This entails that either there is no
ϕ such that b(bi) is in S, or that there is one, but evaluates to false
under ω. In any of both cases, the jalal rule R′ obtained from R would
be applicable to S, contradicting the fact that S is saturated. Hence
ω(S) is saturated.

In the previous sections, the correctness of the pinpointing method
was shown with the help of analogous versions of Lemmas 5.9 and
5.10 by showing that, given all the saturated Sj-states for an input
(I, T ), the ω-projections of them were all the saturated S-states for
(I,Θ), where ω is the valuation mapping every propositional variable
corresponding to elements in Θ to true, and the rest to false. In this
framework, as it was previously said, the ω-projection of a Sj-state for
(I, T ) needs not be a S-state for (I,Θ). That is the reason why the
same proof cannot be used to show that blocking jalals work correctly.
Of course, after Example 5.8, it was already known that such a general
proof cannot be obtained.

As such a proof shows, in order to be able to use the pinpoint-
ing method in a blocking tableau, it is enough to ensure that the
ω-projections of the saturated states obtained by the application of
the jalal yield all the information required; that is, a way of knowing
whether there is a saturated and clash-free S-state for the input with
restricted set of axioms. The two classes that are defined in this report
follow two different approaches for ensuring that condition.

40



5.2.1 Safe Tableaus

As it was said before, the problem of a jalal may not be sound and
complete for a property, even when the tableau from which it was
constructed was, arises from the fact that a rule which was blocked
during the execution of the tableau may become applicable in the
jalal. Such an unblocked may be the cause of finding only saturated
states which contain clashes. In Exapmle 5.8, the only possible way
to produce a clash is by an application of the blocking rule R4. When
the tableau is executed, once that the assertion B has been produced,
there is no way to apply the rule R4, and hence, no way to obtain a
clash. In the jalal, nonetheless, even when the assertion B is present,
the same rule may be applicable, adding the clash to the assertion set.

If one wants to avoid the problem of clashes being generated from
rules that were originally blocked, the easiest idea is to ensure that
when a rule is blocked on a state for which further application of
rules leads to a saturated and clash-free state, then at least one of
the states reached by the application of the blocked rule will also be
such that a saturated and clash-free state is reachable from it. It is in
fact sufficient to ensure that this condition holds for all the saturated
and clash-free states, and not necessarily for every state from which a
saturated and clash-free one can be reached. The tableaus that satisfy
this condition will be called safe.

For the formal definition of safe tableaus, the notions of reachable
and accepting states will be used. Informally, a reachable state is that
which can be obtained from by application of rules (which can be
blocked) given some input. An accepting state is a reachable one for
which there is a way of applying rules that leads to a saturated and
clash-free state.

Definition 5.11 (Reachable,accepting) Let S = (A, ·SI ,R, C) be
a blocking tableau. A rule R ∈ R is active for a state S if R is either
applicable to S, or blocked by S. The set Reach(S) of reachable states
of S is the smallest set such that:

• for every input Γ, ΓS ⊆ Reach(S);

• if S ∈ Reach(S) and R is active for S, then R(S) ⊆ Reach(S).

The set of accepting states for S, Acc(S) ⊆ Reach(S) is defined
inductively by:

• if S ∈ Reach(S) is saturated and clash-free, then S ∈ Acc(S);

• if S ∈ Reach(S) and there is a rule R applicable to S and a
Q ∈ R(S) such that Q ∈ Acc(S), then S ∈ Acc(S).
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It can be easily seen that the reachable states are those that can
be obtained by application of jalals over any possible input, if the
labels are discarded. Thus, for every valuation ω, the ω-projection of
a Sj-state that was found by application of rules from an input is itself
reachable.

It is now turn to define formally the concept of safe tableaus.

Definition 5.12 (Safe) Let S be a blocking tableau. A blocking rule
R of S is safe if for every S ∈ Reach(S), such that R is blocked by S, it
holds that S ∈ Acc(S) iff there is a Q ∈ R(S) such that Q ∈ Acc(S).
S is safe if every rule of S is safe.

The intuition behind this definition, as has been said before, is
that a blocking tableau is safe if, whenever it is possible to reach a
saturated and clash-free state, from a S-state where a rule is blocked,
then even if the blocked rule was to be applied, another saturated
and clash-free state can be found from there. In other words, in safe
tableaus the blocking conditions can be used to ensure, for example,
termination, but not to avoid getting a clash.

As discused before, since a rule that is blocked in the tableau may
not be also blocked in the jalal, it might be the case that, given a
valuation ω, ω(S) is not a S-state for an input Γ, even if S is a Sj-state
for that same input. Thus, a proposition analogous to Proposition
4.10 must be proven using an approach different to that used in the
previous section. The approach presented here will in fact make use of
Lemmas 5.9 and 5.10, but the requirement of safeness will be necessary
to ensure that the ω-projections of the saturated Sj-states for a given
input contain enough information to know about the acceptance or
rejection of the input obtained by restricting the set of axioms to be
used.

Before stating the proposition that ensures that the pinpointing
method works for safe tableaus, a definition of clash formula is needed.
Since not only the rules, but also its application order include non-
determinism in the search for a clash-free saturated state, the clash
formula given in Definition 3.5 will be used for this framework, but
allowing every saturated S-state that can be reached under every rule-
application-order.

Proposition 5.13 Let S be a safe blocking tableau which is sound
and complete for a property P, and ψ be the clash formula associated
with an input Γ = (I, T ). Let Θ ⊆ T and ω be the valuation mapping
the propositional variables corresponding to elements of Θ to true and
the rest to false. Then (I,Θ) /∈ P iff ψ evaluates to true under ω.
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Proof. Let S1, . . . ,Sn be all the saturated Sj-states for Γ. It
will be shown first that there is a saturated and clash-free S-state for
(I,Θ) if and only if ω(Si) is clash-free for some 1 ≤ i ≤ n.

If there is a saturated and clash-free S-state Q for (I,Θ), then one
can apply the exact same rules in the jalal over (I, T ) to obtain a Sj-
state Q′ such that ω(Q′) = Q. If Q′ is saturated, then the result holds.
Otherwise, there are rules applicable to Q′. By Lemma 5.9, these rules
are either not blocked by Q, in which case their application makes no
changes in the ω-projection, or they are blocked by Q. In this second
case, since the tableau is safe, and Q is accepting, application of the
blocked rule leads to another accepting state; hence, it is possible to
further apply rules finding always another accepting state, until the
ω-projection of these state is a saturated and clash-free S-state. This
argument can be repeated until there are no further rules applicable
to Q′, and then it is saturated and its projection is clash-free.

Conversely, if ω(Si) is clash-free for some i, then there is a sequence
of (possibly blocked) rules which can be applied from (I,Θ)S leading
to ω(Si), which is saturated (by Lemma 5.10) and clash-free. Thus,
ω(Si) is an acceptin S-state, and since S is safe, every S-state in the
path from (I,Θ)S to ω(Si) is also accepting. In particular this implies
that there is an accepting S-state Q ∈ (I,Θ)S. But then, there is a
sequence of applicable rules, starting from Q that leads to a saturated
and clash-free S-state S, and since the initial state is in (I,Θ)S, S is
a S-state for (I,Θ).

Hence, there is a saturated and clash-free S-state for (I,Θ) if and
only if ω(Si) is clash-free ofr some saturated Sj-state for Γ S. This
implies that (I,Θ) /∈ P iff every ω(Si) contains a clash. A particular
clash C is present in ω(Si) iff for every element cφ in C it holds that
cφ ∈ Si and φ evaluates to true under ω. Let now ψi,1, . . . , ψi,ki

be
the formlas expressing all the clashes in Si. It holds then that ω(Si)
contains a clash iff

∨ki

j=1 ψi,j evaluates to true under ω. Thus, every
S-state ω(Si) contains a clash iff the clash formula evaluates to true
under ω.

5.2.2 Input-Deniable Tableaus

The second class of blocking tableaus treated in this report for which
the pinpointing method works receives the name of input-deniable.
This class consists of all the tableaus for which the set of elements
in the right-hand-side of the rules is disjoint with the elements in the
blocking sets. The name is motivated by the fact that the blocking
conditions cannot be created by a application of rules; this ensures
that, if a rule is blocked, all the elements of the blocking set were
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obtained from the initial function ·SI . Thus, when the jalal is applied
to the same input, the elements of the blocking set would also be
present, and they will be labeled with a tautology, so the same rule
would also be blocked in the jalal. Although these conditions may
seem too simple and restrictive, it turns out that there exist interesting
applications for input-deniable tableaus, one of which will be presented
in the next section.

Before giving the formal definition of input-deniable tableaus, some
concepts will be presented which will be useful for a more clear expo-
sition of this class of tableaus.

Definition 5.14 (Postcondition-,blocking-assertions) Let S be
a blocking tableau, S = (A, ·S ,R, C), with A =

⋃
i≥0 A

(i); assume

w.l.o.g. that all the A(i) are pairwise disjoint. Given a set of asser-
tions with variables A ∈ A(V), the flattened version of A is given by
[(A) = {a | (x1, . . . , xn) : a ∈ A}. The sets PostS and BlockS of
postcondition- and blocking-assertions of S, respectively are defined
as follows:

PostS =
⋃

S
R−→{B1,...,Bk}∈R

k⋃

i=1

[(Bi) ∪
⋃

SOB
R−→{B1 ,...,Bk}∈R

k⋃

i=1

[(Bi)

BlockS =
⋃

SOB
R−→B∈R

[(B)

Informally, the set of postcondition-assertions consists of all those
assertions that appear in the right-hand-side of rules, without taking
into account the tableau variables that are associated with them in
the definition of the rule. Analogously, the blocking-assertions are all
those which appear in the blocking conditions of any blocking rule
in the tableau, regardless of the variables that could be associated to
them in the definition of the rule. With this, the definition of input-
deniable tableaus becomes very simple.

Definition 5.15 (Input-deniable) A blocking tableau S is called
input-deniable if PostS ∩ BlockS = ∅.

As it was previously stated, the idea behind these tableaus is that,
whenever a rule application is blocked in a S-state, then the same
rule is also blocked by its corresponding Sj-state, avoiding this way the
problems of obtaining new clashes, or otherwise a saturated and clash-
free Sj-state where there was no S-state with those characteristics.
This idea is reflected in the following lemma.
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Lemma 5.16 Let S be an input-deniable tableau, R a tableau rule, S

a Sj-state and ω a valuation. If the R is blocked by ω(S), then R′ is
blocked by S

Proof. Suppose that R′ : (A, T )OB
R′

−→ {B1, . . . , Bn} is not
blocked by S = (A0, T0); then there must be a V-valuation σ and
an element bφ ∈ Bσ such that either b /∈ unl(A0) ir ψ 6|= φ, where ψ is
the conjunction of the labels of the elements that trigger the rule.

Since R is blocked by ω(S), then for every b ∈ unl(B), it holds that
b ∈ ω(A0) and hence b ∈ unl(A0). Thus, the only remaining possibility
is that ψ 6|= φ. However, as S is input-deniable, no element in B could
have been produced by an application of rules, and hence, they are all
labeled with a tautology >; thus, ψ |= φ.

Using this lemma it is now easy to show that the pinpointing
method works also for input-deniable tableaus, following the same
process that was used for tableaus with variables. The proposition is
stated here for completeness, although the proof is ommited since it
is exactly the same as the one given in Section 4.

Proposition 5.17 Let S be an input-deniable tableau which is sound
and complete for a property P, and ψ be the clash formula associated
to an input Γ = (I, T ). Let Θ ⊆ T and ω be the valuation mapping
the propositional variables corresponding to elements of Θ to true and
the rest to false. Then (I,Θ) /∈ P iff ψ evaluates to true under ω.

It has been shown that for any blocking tableau satisfying the
properties of being safe, or being input-deniable, the main method of
this report, consisting of labeling the assertions to track the causes
of inconsisteny found, works adequately. There might be, of course,
other blocking tableaus which do not satisfy these properties, and
for which the method still works, since no result showing that these
properties are necessary has been shown.

The next section will give an even more general notion of tableau,
allowing a little more expressivity by means of dynamic clashes. This
general notion will be used to show that the automata-based deci-
sion procedure can be reduced to a tableau-based one for which the
pinpointing method is applicable; obtaining this way a pinpointing
method for automata.

6 Dynamism

In all the tableaus presented up to now, the clash set is static; that is,
the same clashes are used independently of the input given. For some
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applications, this case is too restrictive, and it would be desirable to
have distinct sets of clashes, depending on the input given.

In this section, the notions of tableau presented in the previous
frameworks will be generalized to allow this kind of dynamism in the
clashes. These generalized versions of the tableaus will be called, for
that reason, dynamic.

6.1 Dynamic tableaus

The notion of dynamic tableau is almost identical to the static notion
defined so far, with the only difference being that the set of clashes
depends on the input given. It is very important not to confuse the
input with the axiomatized input, that consists of an input along with
a set of axioms. The set of clashes needs to depend only in the input,
and never on the set of clashes, since if it did so, there will be no
certainty that after removing some axioms the same set of clashes will
be still used, and by the same reason, if there would be a saturated
and clash-free state that could be found or not.

Definition 6.1 (Dynamic tableau) Let I be a set of inputs, and
T a set of axioms. A dynamic (deterministic, non-deterministic, vari-
able, blocking) tableau for I,T is a tuple S = (A, ·SI ,R, ·C) where
A, ·SI and R are as in the definition of (detereministic, non-deter-
ministic, variable, blocking) tableau, and ·C : I → P(A) is a function
mapping every element in I to a set of clashes.

Notice that in the static (as opposed to dynamic) frameworks, the
only use given to the clash sets was to find out if the saturated S-
states for a given input were clash-free or not. In other words, none
of the proofs presented up to now assumed that the clash set was
one and the same for each different input, but only used the clash
set given the input over which the tableau ran. The only assumption
regarding clashes used for those proofs is that these clashes do not
depend on the axioms used, since if this was the case, then it would
be imposible to predict whether there would be or not a clash found
after removing some axioms. But notice that under the definition
of dynamic tableaus, the clash set does not depend on the axioms
used in the axiomatized input, but only on the element of I that was
used, which remains unchanged when using subsets of axioms after
the pinpointing method was applied. All the results presented in the
previous sections, then, apply also in their corresponding dynamic
case.

This is, in fact, just a minor generalization to all the previous
notions of tableaus presented in this report. The reason to have it
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separated was for improving readability of the results, by not saturat-
ing the notation and the definitions more than they were already.

To show how the dynamism in clashes can be used, the rest of
this section deals with a method to pinpoint the transitions of looping
(tree) automata that, whenever they are not allowed to be performed,
make the language accepted by the automaton to be empty. For the
straightforward way of solving this problem, a static tableau cannot
be used; in fact, a dynamic blocking tableau is necessary to decide the
emptiness problem of looping automata.

6.2 Automata pinpointing

Before one can start constructing a tableau to solve the problem de-
scribed before, it is necessary to state it formally. Since the only
concern is about the emptiness of the language, and not with the ac-
tual trees that are accepted, the notion of automaton that will be
presented will differ from the usual one in that it does not have an
alphabet for the symbols over which the input trees can be labeled;
in other word, the input is only the unlabeled k-ary infinite tree. It
is easy to see that this modification makes no difference for the solu-
tion of the emptiness problem, but it simplifies the notation and their
presentation.

Definition 6.2 (Looping automaton,run) A looping automaton
over k-ary trees is a tuple A = (Q,∆, I), where Q is a finite set of
states, ∆ ⊆ Qk+1 is the transition relation, and I ⊆ Q is the set of
initial states.

A run of A is a labeled k-ary tree r such that r(ε) ∈ I, and for
every w ∈ {1, . . . , k}∗ it holds that (r(w), r(w · 1), . . . , r(w · k)) ∈ ∆.

In order to make a pinpointing procedure over automata, it is
necessary to state first which elements will be considered as axioms
in it. In this case, there will be a set of blocking transitions. These,
along with their relation to the decision problem that will be solved,
are defined next.

Definition 6.3 (Blocked run,language accepted save) Let A be
a looping automaton over k-ary trees given by A = (Q,∆, I) and let
∆′ ⊆ ∆. A run r of A is blocked by ∆′ if there is a node w such that
(r(w), r(w · 1), . . . , r(w · k)) ∈ ∆′.

The language accepted by A save ∆′ is the set of all trees for which
there is a run of A that is not blocked by ∆′.
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This definition basically states that a run is blocked by a set of
transitions ∆′ if the same would not be a run of the automaton ob-
tained by removing all the transitions in ∆′. Analogously for the case
of languages, a tree is in the language accepted by A save ∆′, if the
same tree would be in the language accepted by the automaton ob-
tained by removing every transition in ∆′ from the transition set. The
next step is to define the decision problem that will be solved.

Definition 6.4 (Emptiness problem) The emptiness problem for
looping automata consists in deciding whether the language accepted
by a looping automaton A save a set of transitions ∆′ is empty or not.

One method to solve this problem consists simply in following a
“buttom-up” approach to mark all the states from which it is impos-
sible to build an infinite run where none of the transitions are in ∆′.
These marked states will be called inactive. If in the end all the ini-
tial states are inactive, then one knows that it is impossible to build a
run that would accept a tree in the language save ∆′, and hence this
language is empty. Otherwise, it must be not-empty.

If this test can be performed by means of a tableau, using the set of
blocked transitions ∆′ as axioms, then the pinpointing method could
be used to distinguish the blocked transitions that make the language
accepted to be empty, and in that way, find a maximal subset of
blocked transitions Λ ⊆ ∆′ such that the language accepted by the
same automaton save Λ is not empty.

A tableau that solves this task will be defined next. For simplicity,
it will be assumed that the states of every automaton are represented
by natural numbers from 1 to n, where n is the total number of states
of the automaton.

Definition 6.5 (k-automata tableau) Let I be the set of all au-
tomata over k-ary trees and T = P(Nk+1). The k-automata tableau
is the dynamic deterministic blocking tableau for I,T given by Sk =
(A, ·SkI ,R, ·C) where:

• A = P(N) ∪ P(Nk+1);

• for a k-ary automaton A = (Q,Σ,∆, I) ∈ I, ASkI = ∆ and
AC = {I}; and

• R only contains the rule

(B, T )O{(p, q1, . . . , qk)}
R
−→ {p}

where B = {(p, q1
1 , . . . , q

1
k), . . . , (p, q

n
1 , . . . , q

n
k )} ∪ {q1

j1
, . . . , qnjn} ∪

T and T = {(p, qn+1
1 , . . . , qn+1

k ), . . . , (p, qn+m
1 , . . . , qn+m

k )}, with
n,m ≥ 0 and 1 ≤ ji ≤ k for all i.
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It is important to give the intuition behind the k-automata tableau.
The states of this tableau specify, in the assertion part, the set of states
of the input automaton that are already known to be inactive and
the whole set of transitions, that is translated directly by the initial
function; in the axiom element of the state, all the blocked transitions
are stored, as needed. The only clash is the whole set of initial states;
hence, the only possible way to get a clash is if all the initial states are
inactive, which was the condition stated previously for the language
to be empty.

The rule needs to be looked upon carefully. It states that if there
are n + m transitions from state p, out of which m are in the set
of blocked transitions ∆′, for the remaining n there is a successor qj
that is already in the set of inactive states, and there are no other
transitions starting from p (blocking condition in the rule), then p
must be added to the set of inactive states.

Notice that this tableau is sound and complete for the desired
property since, at the beginning, it will only label as inactive those
states for which there are no possible transitions that are not blocked.
Afterwards, a state can only be marked as inactive if for any choice
of non-blocked transition, at least one of its successors is already in-
active, and hence incapable of building an infinite run from it. So,
if all the initial states are marked as inactive, no infinite run can be
constructed from them, and hence the language is empty. Conversely,
if the language is not empty, then the run found can be used to show
that the initial state used is not inactive, since it has a transition
where none of its descendants is inactive.

The k-automata tableau has also the property of being an input-
deniable tableau, since the blocking condition has transitions, while
the right-hand-side of the rule has a single state, and hence the pin-
pointing method can be applied to it to expose the transitions that
force the language to be empty, and in the same way find subsets of
the set of blocking transitions for which the language is not empty.

The use of automata pinpointing by means of k-automata tableaus
will be shown with an example, in which satisfiability of ALC-concept
terms with respet to general TBoxes is decided. For this, it will be
assumed that every concept term appearing is in negation normal
form, and vC will denote nnf(¬C).

Definition 6.6 (Sub-concept, Hintikka set, compatible) Let C
be an ALC-concept term. The set of sub-concepts of C is the minimal
set sub(C) which contains C and has the following properties:

• if sub(C) contains ¬A, for a concept name A, then A ∈ sub(C);

• if sub(C) contains D tE or D uE, then {D,E} ⊆ sub(C);
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• if sub(C) contains ∃r.D or ∀r.D, then D ∈ sub(C).

A TBox is a finite set of GCIs of the form D v E. For a TBox
T , sub(C, T ) is defined as follows:

sub(C, T ) = sub(C) ∪
⋃

DvE∈T

sub(vD ∪E)

A set H ⊆ sub(C, T ) is called a Hintikka set if the following three
conditions are satisfied:

• if D uE ∈ H, then {D,E} ⊆ H;

• if D tE ∈ H, then {D,E} ∩H 6= ∅;

• there is no concept name A, such that {¬A,A} ⊆ H.

Given a TBox T , a Hintikka set S is called T -expanded if for every
GCI D v E ∈ T it holds that vC tD ∈ S.

Given a concept term C and a TBox T , fix an ordering of the exis-
tential concepts appearing in sub(C, T ) and let φ be the corresponding
ordering function φ : {∃r.D ∈ sub(C, T )} → {1, . . . , k} . The tuple
of Hintikka sets (S, S1, . . . , Sk) is called C, T -compatible if, for every
existential formula ∃r.D ∈ sub(C, T ), it holds that if ∃r.D ∈ S, then
Sφ(∃r.D) contains D and every concept Ei for which there is a universal
concept ∀r.Ei ∈ S.

With the help of all these notions, it is possible to define an au-
tomaton that helps in the task of solving the satisfiability problem
of concept terms with respect to TBoxes. This automaton does not
require an alphabet over which the input trees are labeled. For that
reason, the element that represents such an alphabet is removed from
the tuple.

Definition 6.7 (AC,T ) Given a concept term C and a TBox T , let
k be the number of existential formulas in sub(C, T ). The looping
automaton AC,T = (Q,∆, I) is defined as follows:

• Q = {S ⊆ sub(C, T ) | S is a T -expanded Hintikka set};

• ∆ = {(S, S1, . . . , Sk) | (S, S1, . . . , Sk) is C, T -compatible};

• I = {S ∈ Q | C ∈ S}.

The satisfiability problem is now reduced to the emptiness problem
for the automaton AC,T , for which it is possible to use the tableau
approach, by means of Sk, to solve it. The proof of this theorem can
be found in [HP06].
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Theorem 6.8 Given a concept term C and a TBox T , the language
accepted by the automaton AC,T is empty iff C is unsatisfiable w.r.t.
T

The problem with this automaton is that it does not define a block-
ing set, and thus is not usable in this framework. In fact, the axioms
(in this case the GCIs in the TBox), are implicitely used within the
states, and it is then impossible to detect, in the case that the concept
is unsatisfiable, which are the axioms that produce such unsatisfiabil-
ity, or in the case of the tableau, that produce the clash. It is worth to
notice, nonetheless, that these axioms forming the TBox are only used
to restrict the set of all Hintikka sets as to which of them can be used
as states of the automaton. Thus, one could delay such restriction
to the transition relation, allowing every Hintikka set to be a state,
but blocking all the transitions that have at least one element which
is not T -restricted. This way, one could successfully determine which
blocked transitions produce the clash in the tableau, and from them,
the GCIs in T that forced them to be blocked.

Definition 6.9 (Ab
C,T ) Given a concept C and a TBox T , let k be the

number of existential formulas in sub(C, T ). The looping automaton
Ab
C,T = (Q,∆, I) is given by:

• Q = {S ⊆ sub(C, T ) | S is a Hintikka set};

• ∆ = {(S, S1, . . . , Sk) | (S, S1, . . . , Sk) is C, T -compatible};

• I = {S ∈ Q | C ∈ S}.

The set of blocking transitions is given by

∆′
C,T = {(S0, S1, . . . , Sk) ∈ ∆ | ∃(0 ≤ i ≤ k).Si is not T -restricted}.

Notice that the automaton Ab
C,T is almost identical to AC,T , except

that it allows every Hintikka set to be a state, but this difference is
removed afterwards by means of the set of blocking transitions. Hence,
a theorem analogous to Theorem 6.8 must also hold for Ab

C,T save
∆′
C,T .

Theorem 6.10 The language accepted by Ab
C,T save ∆′

C,T is empty
iff C is unsatisfiable w.r.t T .

This theorem entails that it is possible to use the tableau Sk with
input Γ = (Ab

C,T ,∆
′
C,T ) to solve the satisfiability problem of ALC-

concept terms with respect to TBoxes.
If, instead of the tableau Sk, the jalal judging it is used, then

whenever a concept is unsatisfiable w.r.t. a TBox, then the jalal will
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show the blocked transitions that are responsible for such a result.
Of course, one is interested in pinpointing the axioms in the TBox
that produce the unsatisfiability result, rather than merely the specific
transitions they block. To do this, it is only necessary to signal which
TBox axioms block which transitions. From this, the GCIs responsible
for the concept to be unsatisfiable with respect to the TBox can be
reconstructed, and hence the maximal subsets of them can be found.

Example 6.11 Suppose one wants to check satisfiability of the con-
cept A with respect to the TBox T = {A v B,B v ¬A}. Then
sub(A, T ) = {A,¬A,B,¬B,¬A t B,¬B t ¬A}. The automaton will
work over 0-ary trees, that is, the input will be only a node. Then,
∆ = Q.

In this case, let R = {{¬A t B,¬B t ¬A,¬A}, {¬A t B,¬B t
¬A,¬A,B}, {¬A t B,¬B t ¬A,¬A,¬B}} be the set of T -restricted
Hintikka sets; thus ∆′

C,T = ∆ \ R.
The clashes in the only saturated (Sk)j-state for Γ are obtained

because {A}, {A,B}, and {A,¬B} are not T -restricted. The axioms
that block these elements are both A v B and B v ¬A; thus, both
axioms combined make the concept unsatisfiable w.r.t. the TBox. The
TBoxes obtained using only one of the axioms are maximally satisfy-
ing. Which was the expected result.

In the same way it was applied to satisfiability of ALC-concept
terms, the k-automata tableau can be used to track the inconsisten-
cies that lead to rejection of an input in any automata-based decision
procedure, provided that the axioms can be translated in some way
to a set of blocking transitions. This translation can be sometimes
difficult to find, though.

A similar approach to that used in this report for ALC, using
Hintikka sets, can be applied for other problems, more specifically
in DLs, as it was done, for example, in [LS00] for ALC¬. For all
these cases, it is known that the axioms can be translated to a set of
blocking transitions, and hence the automata pinpointing technique is
also applicable to them.

7 Conclusions

This reported presented a series of decision procedures, growing in ex-
pressivity, from the simple deterministic tableaus to blocking tableaus
which allow non-deterministic rules, variables, and negative applica-
bility conditions. For all the cases, a method was defined by means
of which is possible not only to decide the property, as done in the
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original decision procedure, but also, in case the given input does
not satisfy the property, signal which axioms used in the input are
responsible for this. This information is useful for finding then sub-
sets of axioms for which the same input would satisfy the property.
Such a task is helpful, for example, in resolving inconsistencies in a
Knowledge Base.

For all the definitions of tableau given, except for the more general
blocking tableaus, it was shown that the pinpointing procedure can
be applied, regardless of the structure of the tableau, given only that
it is sound and complete for the property it is trying to decide. For
blocking tableaus, it was shown, by means of examples, that this is
not always the case, but two sub-classes of blocking tableaus, namely
safe blocking and input-deniable tableaus, were found from which the
pinpointing method could be applied to each of its elements.

A clue of what causes the problem for general blocking tableaus
can be given by a closer inspection of the consequences of Propositions
5.13 and 5.17, and their restricted versions for the more specific types
of tableaus. All those propositions state that, given a subset of axioms
Θ, the input (I,Θ) will satisfy the property decided by the tableau,
P, if and only if the valuation mapping the variables corresponding to
elements in Θ to true and the rest to false evaluates the clash formula
to false. But at this point is important to recall that all the labels
used by the jalal are always monotonic propositional formulas, and
hence the clash formula is itself a monotonic propositional formula.
This means that, if a valuation ν maps the clash formula to true, then
any other valuation ω that maps all the elements that are mapped by
ν to true, also to true will also evaluate the clash formula to true. But
then, the proposition entails that, if Θ ⊆ Θ′ and (I,Θ) /∈ P then also
(I,Θ′) /∈ P. In other words, the properties that can be expressed by
any tableau for which this pinpointing method would work have to be
axiom monotonic; that is, if a property is not satisfied by an input,
the addition of axioms would make no difference with respect to that
fact.

It is clear that any tableau that does not have any negative ap-
plicability condition will decide an axiom monotonic property, since
the addition of more axioms will only trigger the applicability of more
rules, and thus adding more elements, but not removing any of the
ones produced without these additional axioms. When negative appli-
cability conditions it is not the case, since the addition of new elements
may produce the blocking of rules, avoiding this way that some ele-
ments that were added when the new axioms were not there, will not
appear anymore once the axioms are added.

In fact, the tableau given in Example 5.8 decides a property which
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is not axiom monotonic, since the input (∅, {A}) would be rejected
by this tableau, but (∅, {A,B}) would be accepted. Furthermore,
this entails that it is not possible to apply the pinpointing method,
as defined in this report, to that tableau. Even if the definition of
blocking jalal and applicability conditions were modified, no theorem
akin to Proposition 5.13 could be shown for a scenario where the
tableau Sb is included.

It was then shown how these decision procedures can be used to
decide the emptiness problem of looping automata over k-ary trees.
For these automata, an axiom monotonic property was defined, and
a sound and complete input-deniable tableau was given for it, so that
the pinpointing method could be applied to find the causes of empti-
ness of the language accepted within a set of blocked transitions. The
interest of this approach was to be able to use reductions of other
decision problems into the automata framework in order to pinpoint
also axioms in the original decision problem. As an example, a pin-
pointing method for satisfiability of ALC-concept terms with respect
to general TBoxes was given, using the automata approach.

Some termination results were presented, showing that if a tableau
could decide a given property in finite time, then the jalal constructed
from it could also do that in finite time. Nonetheless, no bounds were
given as to how much time the jalal would require, with respect to
the time taken by the original tableau. Although a lower bound for
the time required by a jalal is obviously given by the time required
by its tableau, it is not clear as to which would the upper bound
be. Given the generality of the method presented, it is not easy to
deal with such bounds, since the concept of tableau covers such a
broad scenario, that any of its instances could decide, for example, a
Nonelementary problem.

It would be interesting, nonetheless, to try to find some complex-
ity bounds for restricted cases, which could be helpful in finding the
complexity of decision problems.
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