
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Pinpointing in Terminating Forest Tableaux

Franz Baader Rafael Peñaloza

LTCS-Report 08-03

Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
http://lat.inf.tu-dresden.de

Nöthnitzer Str. 46
01187 Dresden

Germany



Pinpointing in Terminating Forest Tableaux

Franz Baader

Theoretical Computer Science, TU Dresden, Germany
baader@tcs.inf.tu-dresden.de

Rafael Peñaloza∗

Intelligent Systems, University of Leipzig, Germany
penaloza@informatik.uni-leipzig.de

Abstract

Axiom pinpointing has been introduced in description logics (DLs)
to help the user to understand the reasons why consequences hold and
to remove unwanted consequences by computing minimal (maximal)
subsets of the knowledge base that have (do not have) the conse-
quence in question. The pinpointing algorithms described in the DL
literature are obtained as extensions of the standard tableau-based
reasoning algorithms for computing consequences from DL knowledge
bases. Although these extensions are based on similar ideas, they are
all introduced for a particular tableau-based algorithm for a particular
DL.

The purpose of this paper is to develop a general approach for
extending a tableau-based algorithm to a pinpointing algorithm. This
approach is based on a general definition of “tableau algorithms,”
which captures many of the known tableau-based algorithms employed
in DLs, but also other kinds of reasoning procedures.

1 Introduction

Description logics (DLs) [2] are a successful family of logic-based knowl-
edge representation formalisms, which can be used to represent the concep-
tual knowledge of an application domain in a structured and formally well-
understood way. They are employed in various application domains, such as

∗Funded by the German Research Foundation (DFG) under grant GRK 446.

1



natural language processing, configuration, databases, and bio-medical on-
tologies, but their most notable success so far is the adoption of the DL-based
language OWL [14] as standard ontology language for the semantic web. As
a consequence of this standardization, several ontology editors support OWL
[16, 19, 15], and ontologies written in OWL are employed in more and more
applications. As the size of such ontologies grows, tools that support improv-
ing the quality of large DL-based ontologies become more important. Stan-
dard DL reasoners [13, 10, 25] employ tableau-based algorithms [7], which
can be used to detect inconsistencies and to infer other implicit consequences,
such as subsumption relationships between concepts or instance relationships
between individuals and concepts.

For a developer or user of a DL-based ontology, it is often quite hard
to understand why a certain consequence holds,1 and even harder to decide
how to change the ontology in case the consequence is unwanted. For ex-
ample, in the current version of the medical ontology SNOMED [26], the
concept Amputation-of-Finger is classified as a subconcept of Amputation-
of-Arm. Finding the six axioms that are responsible for this among the
more than 350,000 terminological axioms of SNOMED without support by
an automated reasoning tool is not easy.

As a first step towards providing such support, Schlobach and Cornet [23]
describe an algorithm for computing all the minimal subsets of a given knowl-
edge base that have a given consequence. To be more precise, the knowledge
bases considered in [23] are so-called unfoldable ALC-terminologies, and the
unwanted consequences are the unsatisfiability of concepts. The algorithm
is an extension of the known tableau-based satisfiability algorithm for ALC
[24], where labels keep track of which axioms are responsible for an assertion
to be generated during the run of the algorithm. The authors also coin the
name “axiom pinpointing” for the task of computing these minimal subsets.
Following Reiter’s approach for model-based diagnosis [21], Schlobach [22]
uses the minimal subsets that have a given consequence together with the
computation of Hitting Sets to compute maximal subsets of a given knowl-
edge base that do not have a given (unwanted) consequence.2 Whereas the
minimal subsets that have the consequence help the user to comprehend why
a certain consequence holds, the maximal subsets that do not have the con-
sequence suggest how to change the knowledge base in a minimal way to get
rid of a certain unwanted consequence.

The problem of computing minimal (maximal) subsets of a DL knowledge

1Note that this consequence may also be the inconsistency of the knowledge base or
the unsatisfiability of a concept w.r.t. the knowledge base.

2Actually, he considers the complements of these sets, which he calls minimal diagnoses.

2



base that have (do not have) a given consequence was actually considered
earlier in the context of extending DLs by default rules. In [4], Baader
and Hollunder solve this problem by introducing a labeled extension of the
tableau-based consistency algorithm for ALC-ABoxes [11], which is very sim-
ilar to the one described later in [23]. The main difference is that the algo-
rithm described in [4] does not directly compute minimal subsets that have
a consequence, but rather a monotone Boolean formula, called clash formula
in [4], whose variables correspond to the axioms of the knowledge bases and
whose minimal satisfying (maximal unsatisfying) valuations correspond to
the minimal (maximal) subsets that have (do not have) a given consequence.3

The approach of Schlobach and Cornet [23] was extended by Parsia et al.
[20] to more expressive DLs, and the one of Baader and Hollunder [4] was
extended by Meyer et al. [18] to the case of ALC-terminologies with general
concept inclusions (GCIs), which are no longer unfoldable. The choice of
the DL ALC in [4] and [23] was meant to be prototypical, i.e., in both cases
the authors assumed that their approach could be easily extended to other
DLs and tableau-based algorithms for them. However, the algorithms and
proofs are given for ALC only, and it is not clear to which of the known
tableau-based algorithms the approaches really generalize. For example, the
pinpointing extension described in [18] follows the approach introduced in
[4], but since GCIs require the introduction of so-called blocking conditions
into the tableau-based algorithm to ensure termination, there are some new
problems to be solved.

Thus, one can ask to which DLs and tableau-based algorithms the ap-
proaches described in [4, 23] apply basically without significant changes, and
with no need for a new proof of correctness. This paper is a first step to-
wards answering this question. We develop a general approach for extending
a tableau-based algorithm to a pinpointing algorithm, which is based on the
ideas underlying the pinpointing algorithm described in [4]. To this purpose,
we define a general notion of “tableau algorithm,” which captures many of
the known tableau-based algorithms for DLs and Modal Logics,4 but also
other kinds of decision procedures, like the polynomial-time subsumption al-
gorithm for the DL EL [1]. This notion is simpler than the tableau systems
introduced in [3] in the context of translating tableaux into tree automata,
and it is not restricted to tableau-based algorithms that generate tree-like
structures.

3In this paper, we call a formula with these properties a pinpointing formula; the term
clash formula is used for the formula computed by our pinpointing algorithm.

4Note that these algorithms are decision procedures, i.e., always terminate. Currently,
our approach does not cover semi-decision procedures like tableau procedures for first-order
logic.

3



Axiom pinpointing has also been considered in other research areas, though
usually not under this name. For example, in the SAT community, people
have considered the problem of computing maximally satisfiable and mini-
mally unsatisfiable subsets of a set of propositional formulae. The approaches
for computing these sets developed there include special purpose algorithms
that call a SAT solver as a black box [17, 8], but also algorithms that extend
a resolution-based SAT solver directly [9, 27]. To the best of our knowledge,
extensions of tableau-based algorithms have not been considered in this con-
text, and there are no general schemes for extending resolution-based solvers.

In the next section, we define the notions of minimal (maximal) sets hav-
ing (not having) a given consequence in a general setting, and show some
interesting connections between these two notions. In Section 3 we introduce
our general notion of a tableau, and in Section 4 we show how to obtain a
pinpointing extension of such a tableau. The main result shown in Section 4
is that this pinpointing extension is correct in the sense that the clash for-
mula computed by a terminating run of it is indeed a pinpointing formula.
Unfortunately, however, termination need not transfer from a given tableau
to its pinpointing extension. To overcome this problem, Section 5 intro-
duces so-called ordered forest tableaux, which are guaranteed to terminate.
The main result of Section 5 is that the pinpointing extension of an ordered
forest tableau also terminates on all inputs, and thus always computes a
pinpointing formula.

2 Basic Definitions

We will begin by defining a general notion of inputs in which our decision
algorithms are applied and the decision problems that they are supposed to
solve.

Definition 2.1 (Axiomatized input, c-property) Let I and T be the sets
of inputs and axioms, respectively. An axiomatized input over these sets is
of the form (I, T ) where I ∈ I and T ∈ Pfin(T) is a finite subset of T.
A consequence property (or c-property for short) is a set P ⊆ I×Pfin(T)
such that (I, T ) ∈ P implies (I, T ′) ∈ P for every T ′ ⊇ T .

Intuitively, a c-property P holds if an input I “follows” from the axioms
in T . Due to the monotonicity requirement, there can be some superfluous
axioms; that is, axioms that are not necessary for the property to hold. We
are interested in distinguishing these from the axioms that are responsible
for the property.

4



Definition 2.2 Given an axiomatized input Γ = (I, T ) and a c-property P,
a set of axioms S ⊆ T is called a minimal axiom set (MinA) for Γ w.r.t. P
if (I,S) ∈ P and (I,S ′) /∈ P for every S ′ ⊂ S. The set of all MinA for Γ
w.r.t. P will be denoted as MINP(Γ).

Note that the notions of MinA and MaNA are only interesting if Γ ∈ P.
Otherwise, the monotonicity requirement in P would entail that MINP(Γ) = ∅.

Instead of directly trying to compute MINP(Γ), one can also try to compute
a pinpointing formula. In order to define this formula, we assume that every
axiom t ∈ T is labeled with a unique propositional variable lab(t). Let lab(T )
be the set of all propositional variables labeling axioms in T . A monotone
Boolean formula over lab(T ) is a Boolean formula using variables in lab(T )
and only the connectives conjunction and disjunction. As usual, we identify a
propositional valuation with the set of propositional variables it makes true.
For a valuation V ⊆ lab(T ), let TV = {t ∈ T | lab(t) ∈ V}.

Definition 2.3 (pinpointing formula) Given a c-property P and an ax-
iomatized input Γ = (I, T ), a monotone Boolean formula φ over lab(T ) is
called a pinpointing formula for P and Γ if for every valuation V ⊆ lab(T )
it holds that (I, TV) ∈ P iff V satisfies φ.

The next lemma follows directly from the definition of a pinpointing for-
mula.

Lemma 2.4 Let P be a c-property, Γ = (I, T ) an axiomatized input, and φ
a pinpointing formula for P and Γ. Then

MINP(Γ) = {TV | V is a minimal valuation satisfying φ}

This lemma shows that if we want to obtain all MinA, it is enough to
design an algorithm that computes a pinpointing formula. Conversely, the
set MINP(Γ) can be translated into the pinpointing formula

∨

S∈MINP(Γ)

∧

s∈S

lab(s)

3 General Tableaux

General tableaux and their pinpointing extension were first introduced in [5].
For the rest of this paper we use V and D to denote countably infinite sets
of variables and constants, respectively. A signature Σ is a set of predicate

5



symbols, where each predicate P ∈ Σ is equipped with an arity. A Σ-
assertion is of the form P (a1, . . . , an) where P ∈ Σ is an n-ary predicate
and a1, . . . , an ∈ D. Analogously, a Σ-pattern is of the form P (x1, . . . , xn)
where P ∈ Σ is an n-ary predicate and x1, . . . , xn ∈ V. If the signature is
clear from the context, we will often just say pattern (assertion). For a set
of assertions A (patterns B), cons(A) (var(B)) denotes the set of constants
(variables) occurring in A (B).

A substitution is a mapping σ : V → D, where V is a finite set of variables.
In this case, we say that σ is a substitution on V. If B is a set of patterns
such that var(B) ⊆ V , then Bσ denotes the set of assertions obtained from B
by replacing each variable by its σ-image. The substitution θ on V ′ extends
σ on V if V ⊆ V ′ and θ(x) = σ(x) for all x ∈ V .

Definition 3.1 (Tableau) Let I and T be sets of inputs and axioms, re-
spectively. A tableau for I and T is a tuple S = (Σ, ·S,R, C) where:

• Σ is a signature;

• ·S is function that maps every I ∈ I to a finite set of finite sets of
Σ-assertions and every t ∈ T to a finite set of Σ-assertions;

• R is a set of rules of the form (B0,S)→ {B1, . . . , Bm}, where for every
i, 0 ≤ i ≤ m,Bi is a finite set of Σ-patterns and S is a finite set of
axioms;

• C is a set of finite sets of Σ-patterns, called clashes.

Given a rule R : (B0,S)→ {B1, . . . , Bm}, the variable y is a fresh variable
in R if it occurs in one of the sets B1, . . . , Bm, but not in B0.

A S-state is a pair S = (A, T ) where A is a finite set of assertions and
T a finite set of axioms. We extend the function ·S to axiomatized inputs by
setting

(I, T )S = {(A ∪
⋃

t∈T

tS, T ) | A ∈ IS}.

A tableau works in the following way. Given an input (I, T ), we begin
with the initial set of states M = (I, T )S, and then use the rules in R to
modify this set. Each rule application picks a S-state S fromM and replaces
it by finitely many new S-states S1, . . . ,Sm, each of them extending the first
component of S. When no more rules are applicable toM we check whether
all the elements of M contain a clash. If it is the case, then the input is
accepted; otherwise, it is rejected.

6



Definition 3.2 (rule application, saturated, clash) Given a S-state S =
(A, T ), a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0),
R is applicable to S with ρ if (i) S ⊆ T , (ii) B0ρ ⊆ A, and (iii) for every
i, 1 ≤ i ≤ m and every substitution ρ′ on var(B0 ∪ Bi) extending ρ we have
that Biρ

′ 6⊆ A.
Given a set of S-states M and a S-state S = (A, T ) ∈ M to which

the rule R is applicable with substitution ρ, the application of R to S with ρ
yields the new set M′ = (M\ {S}) ∪ {(A ∪ Biσ, T ) | 1 ≤ i ≤ m}, where σ
is a substitution on the variables occurring in R that extends ρ and maps the
fresh variables of R to distinct new constants; i.e., constants not occurring
in A.

If M′ is obtained from M by the application of R, then we write M→R

M′, or simplyM→SM
′ if it is not relevant which of the rules of the tableau

S was applied. The reflexive-transitive closure of →S is denoted by
∗
−→S. A

set of S-statesM is called saturated if there is noM′ such thatM→SM
′.

The S-state S = (A, T ) contains a clash if there is a C ∈ C and a
substitution ρ on var(C) such that Cρ ⊆ A, and the set of S-statesM is full
of clashes if all its elements contain a clash.

We will proceed now to relate tableaux and c-properties, by describing
the conditions under which a tableau is considered correct for a c-property.

Definition 3.3 (correctness) Let P be a c-property on axiomatized inputs
over I and T, and S a tableau for I and T. We say that S is correct for P
if the following holds for every axiomatized input Γ = (I, T ) over I and T:

1. S terminates on Γ; i.e., there is no infinite chain of rule applications
M0 →SM1 →SM2 →S . . . starting with M0 = ΓS.

2. For every chain of rule applications M0 →S . . . →S Mn such that
M0 = ΓS and Mn is saturated, we have Γ ∈ P iff Mn is full of
clashes.

The second condition in this definition requires that the algorithm gives
the same answer independent of the chain of rule applications considered.
Thus, if several rules are applicable simultaneously, the choice of which of
them to apply next has no influence on the final result. However, this re-
quirement is in fact built into our definition of rules and clashes. For every
tableau S, if there are two terminating chains of rule applicationsM0

∗
−→S M

andM0
∗
−→S M

′, then M is full of clashes iffM′ is also full of clashes.
As shown in [6], the first condition need not hold for every tableau, and

it is even undecidable in general whether a given tableau satisfies it or not.
In Section 5, we show a class of tableau for which termination is guaranteed.

7



4 Pinpointing extensions of general tableaux

Given a correct tableau, we show how it can be extended to an algorithm that
computes a pinpointing formula. As shown in Section 2, all minimal axiom
sets (maximal non-axiom sets) can be derived from the pinpointing formula
φ by computing all minimal (maximal) valuations satisfying (falsifying) φ.
Recall that, in the definition of the pinpointing formula, we assume that every
axiom t ∈ T is labeled with a unique propositional variable, lab(t). The set of
all propositional variables labeling an axiom in T is denoted by lab(T ). In the
following, we assume that the symbol >, which always evaluates to true, also
belongs to lab(T ). The pinpointing formula is a monotone Boolean formula
over lab(T ), i.e., a Boolean formula built from lab(T ) using conjunction and
disjunction only.

Given a tableau S = (Σ, ·S,R, C) that is correct for the c-property P, we
show how the algorithm for deciding P induced by S can be modified to an
algorithm that computes a pinpointing formula for P. Given an axiomatized
input Γ = (I, T ), the modified algorithm also works on sets of S-states,
but now every assertion a occurring in the assertion component of an S-
state is equipped with a label lab(a), which is a monotone Boolean formula
over lab(T ). We call such S-states labeled S-states. In an initial S-state
(A, T ) ∈ (I, T )S, an assertion a ∈ A is labeled with > if a ∈ IS and with∨

{t∈T |a∈tS} lab(t) otherwise.
The definition of rule application must also take the labels of assertions

and axioms into account. Let A be a set of labeled assertions and ψ a
monotone Boolean formula. We say that the assertion a is ψ-insertable into
A if (i) either a /∈ A, or (ii) a ∈ A, but ψ 6|= lab(a). Given a set B of assertions
and a set A of labeled assertions, the set of ψ-insertable elements of B into A
is defined as insψ(B,A) := {b ∈ B | b is ψ-insertable into A}. By ψ-inserting
these insertable elements into A, we obtain the following new set of labeled
assertions: AdψB := A∪ insψ(B,A), where each assertion a ∈ A\ insψ(B,A)
keeps its old label lab(a), each assertion in insψ(B,A) \ A gets label ψ, and
each assertion b ∈ A ∩ insψ(B,A) gets the new label ψ ∨ lab(b).

Definition 4.1 (pinpointing rule application) Given a labeled S-state
S = (A, T ), a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ
on var(B0), this rule is pinpointing applicable to S with ρ if (i) S ⊆ T ,
(ii) B0ρ ⊆ A, and (iii) for every i, 1 ≤ i ≤ m, and every substitution
ρ′ on var(B0 ∪ Bi) extending ρ we have insψ(Biρ

′, A) 6= ∅, where ψ :=∧
b∈B0

lab(bρ) ∧
∧
s∈S lab(s).

Given a set of labeled S-statesM and a labeled S-state S = (A, T ) ∈ M
to which the rule R is pinpointing applicable with substitution ρ, the pin-

8



pointing application of R to S with ρ in M yields the new set M′ =
(M \ {S}) ∪ {(A dψ Biσ, T ) | i = 1, . . . , m}, where the formula ψ is de-
fined as above and σ is a substitution on the variables occurring in R that
extends ρ and maps the fresh variables of R to distinct new constants.

If M′ is obtained from M by the pinpointing application of R, then we
write M →Rpin M′, or simply M →Spin M′ if it is not relevant which of
the rules of the tableau S was applied. As before, the reflexive-transitive
closure of →Spin is denoted by

∗
−→Spin . A set of labeled S-states M is called

pinpointing saturated if there is no M′ such that M→Spin M′.

Consider a chain of pinpointing rule applicationsM0 →Spin . . .→Spin Mn

such that M0 = ΓS for an axiomatized input Γ and Mn is pinpointing
saturated. The label of an assertion in Mn expresses which axioms are
needed to obtain this assertion. A clash in an S-state ofMn depends on the
joint presence of certain assertions. Thus, we define the label of the clash
as the conjunction of the labels of these assertions. Since it is enough to
have just one clash per S-state S, the labels of different clashes in S are
combined disjunctively. Finally, since we need a clash in every S-state of
Mn, the formulae obtained from the single S-states are again conjoined.

Definition 4.2 (clash set, clash formula) Let S = (A, T ) be a labeled
S-state and A′ ⊆ A. Then A′ is a clash set in S if there is a clash C ∈ C
and a substitution ρ on var(C) such that A′ = Cρ. The label of this clash
set is ψA′ :=

∧
a∈A′ lab(a).

Let M = {S1, . . . ,Sn} be a set of labeled S-states. The clash formula
induced by M is defined as

ψM :=

n∧

i=1

∨

A′ clash set inSi

ψA′.

Recall that, given a set T of labeled axioms, a propositional valuation
V induces the subset TV := {t ∈ T | lab(t) ∈ V} of T . Similarly, for a
set A of labeled assertions, the valuation V induces the subset AV := {a ∈
A | V satisfies lab(a)}. Given a labeled S-state S = (A, T ) we define its
V-projection as V(S) := (AV , TV). The notion of a projection is extended to
sets of S-statesM in the obvious way: V(M) := {V(S) | S ∈ M}.

Given a tableau that is correct for a property P, its pinpointing extension
is correct in the sense that the clash formula induced by the pinpointing sat-
urated set computed by a terminating chain of pinpointing rule applications
is indeed a pinpointing formula for P and the input.

9



Theorem 4.3 (correctness of pinpointing) Let P be a c-property on ax-
iomatized inputs over I and T, and S a correct tableau for P. Then the
following holds for every axiomatized input Γ = (I, T ) over I and T:

For every chain of rule applications M0 →Spin . . . →Spin Mn

such that M0 = ΓS and Mn is pinpointing saturated, the clash
formula ψMn

induced by Mn is a pinpointing formula for P and
Γ.

To prove this theorem, we consider projections of chains of pinpointing
rule applications to chains of “normal” rule applications. Unfortunately,
things are not as simple as one might hope for since in generalM→Spin M′

does not imply V(M) →S V(M′). To overcome this problem, we define a
modified version of rule application, where the applicability condition (iii)
from Definition 3.2 is removed. This concept will also be useful in the fol-
lowing section for showing termination of forest tableaux.

Definition 4.4 (modified rule application) Given an S-state S = (A, T ),
a rule R : (B0,S)→ {B1, . . . , Bm}, and a substitution ρ on var(B0), this rule
is m-applicable to S with ρ if (i) S ⊆ T and (ii) B0ρ ⊆ A. In this case,
we write M →Sm M′ if S ∈ M and M′ = (M \ {S}) ∪ {(A ∪ Biσ, T ) |
i = 1, . . . , m}, where σ is a substitution on the variables occurring in R that
extends ρ and maps the fresh variables of R to distinct new constants.

Theorem 4.3 considers a terminating chain of pinpointing rule applica-
tions. Unfortunately, termination of a tableau S in general does not imply
termination of its pinpointing extension. See [5] for an example. One way
to overcome this problem could be to find sufficient conditions under which
termination transfers from a tableau to its pinpointing extension. However,
it is undecidable even for terminating tableaux whether their pinpointing
extensions also terminate (see [6]). For this reason, the next section follows
a different approach: we introduce a class of terminating tableaux whose
pinpointing extensions terminate as well.

5 A class of terminating tableaux

One of the reasons why tableau algorithms for certain DLs terminate is that
they create a tree structure for which the out-degree and the depth of the tree
are bounded by a function of the size of the input formula. The nodes of these
trees are labeled, but the input determines a finite number of possible labels.
A typical example is the tableau-based decision procedure for satisfiability of

10



ALC-concepts [24, 7]. This algorithm generates sets of assertions of the form
r(a, b) where r is a so-called role and C(a) where C is an ALC-concept. The
tree structure is induced by role assertions, and the nodes are labeled by sets
of concepts, i.e., node a is labeled with {C1, . . . , Cn} if C1(a), . . . , Cn(a) are
all the concept assertions involving a. The main reasons why the algorithm
terminates are:

• the depth of the tree structure is bounded by the size n of the input, i.e.,
the maximal length m of chains r1(a0, a1), r2(a1, a2), . . . , rm(am−1, am)
in a set of assertions generated by the algorithm is bounded by n;

• the out-degree of the tree structure is bounded by n , i.e., the maximal
number m of assertions r1(a0, a1), r2(a0, a2), . . . , rm(a0, am) in a set of
assertions generated by the algorithm is bounded by n;

• for every assertion C(a) occurring in a set of assertions generated by
the algorithm, C is a subconcept of the input concept.

If we look at the extension of this algorithm to one that decides consistency
of ALC-ABoxes (see, e.g., [12, 7]), then things are a bit more complicated:
rather than a single tree one obtains a forest, more precisely, several trees
growing out of the input ABox. But these trees satisfy the restrictions men-
tioned above, which is enough to show termination.

Basically, we want to formalize this reason for termination within the
general framework of tableaux introduced in this paper. However, to be as
general as possible, we do not want to restrict assertions to be built from
unary predicates (concepts) and binary predicates (roles) only. For this rea-
son, we allow for predicates of arbitrary arity, but restrict our assertions such
that states (i.e., sets of assertions) induce graph-like structures.

In order to have a graph-like structure, we must be able to distinguish
between nodes and edges. For this reason, we now assume that the signature
Σ is partitioned into the sets Λ and ∆, where each predicate name P ∈ Λ
is equipped with an arity n, while every predicate name r ∈ ∆ is equipped
with a double arity 0 < m < n. Strictly speaking, the arity of r ∈ ∆ is n;
however, the first m argument positions are grouped together, as are the last
n −m. Intuitively, the elements of Λ correspond to DL concepts and form
the nodes of the graph-like structure, whereas the elements of ∆ correspond
to DL roles and induce the edges.

If a pattern/assertion p starts with a predicate from ∆ (Λ), we say that p

is a ∆-pattern/assertion (Λ-pattern/assertion), and write p ∈ ∆̂ (p ∈ Λ̂). In
our ALC example, the set Λ consists of all ALC-concepts, which have arity 1,
and ∆ consists of all role names, which have double arity 1, 2. For the rest of

11



this paper, assertions and patterns in Λ̂ will be denoted using capital letters
(P,Q,R, . . .), and those in ∆̂ using lower-case letters (r, s, t, . . .). Given a
predicate p ∈ ∆ with double arity m,n, the sets of parents and descendants
of the pattern r = p(x1, . . . , xm, xm+1, . . . , xn) are given by←−r = {x1, . . . , xm}
and −→r = {xm+1, . . . , xn}, respectively.

In our ALC example, the nodes of the tree are the constants occurring
in the set of assertions, and the concept assertions give rise to the labels of
these nodes. In the general case, nodes are not single constants, but rather
sets of assertions built over a connected set of constants.

Definition 5.1 (connected) Let B be a set of Σ-patterns (Σ-assertions),
and x, y ∈ var(B) (a, b ∈ cons(B)). We say that x and y (a and b) are B-
connected, denoted as x ∼B y (a ∼B b), if there are variables x0, x1, . . . , xn ∈

var(B) (constants a0, a1, . . . , an ∈ cons(B)) and patterns P1, . . . , Pn ∈ B ∩ Λ̂

(assertions P1, . . . , Pn ∈ B∩Λ̂) such that x = x0, y = xn (a = a0, b = an) and
for every 1 ≤ i ≤ n it holds that {xi−1, xi} ⊆ var(Pi) ({ai−1, ai} ⊆ cons(Pi)).

We say that B is connected if, for every x, y ∈ var(B) (a, b ∈ cons(B)),
we have x ∼B y (a ∼B b). If B is clear from the context, we will simply write
x ∼ y to represent x ∼B y.

Connected sets of assertions can be viewed as bundles that join the con-
stants contained in them. Nodes will be formed by maximal sets of assertions
from ∆̂. An assertion from Λ̂ will be treated as a (directed) edge that connects
a node containing its parent constants with a node containing its descendant
constants.

Definition 5.2 (B-graph) Let B be a set of assertions. A maximal con-

nected subset N ⊆ B ∩ Λ̂ is called a node in B. An assertion r ∈ B ∩ ∆̂
is called an edge in B if there are two nodes N1 and N2 in B such that
←−r ⊆ cons(N1) and cons(N2) ⊆

−→r . In this case, we say that r connects N1

to N2. The set B is a graph structure if every r ∈ B ∩ ∆̂ is an edge. If B
is a graph structure, the corresponding B-graph GB contains one vertex vN
for every node N , and an edge (vN , vM) if there is an edge connecting N to
M . The notion of a graph structure and of the corresponding graph can be
extended to states S = (B, T ) in the obvious way: S is a graph structure if
B is one, and in this case GS := GB.

If a set of assertions B is a graph structure, then the set of nodes forms
a partition of B ∩ Λ̂, and each of its elements either belongs to a node or
is a (directed) edge. Observe, however, that an edge r ∈ ∆̂ may connect
a node with more than one successor node. For example, consider the set

12



of assertions B = {P (a), Q(b), R(c), r(a, b, c)} where P,Q,R ∈ Λ are unary,
and r ∈ ∆ has double arity arity 1, 2. This set forms a graph structure
consisting of the nodes N1 := P (a), N2 := Q(b), N3 := R(c) and the edge
r(a, b, c). This single edge connects N1 to both N2 and N3. GB is then
the graph ({v1, v2, v3}, {(v1, v2), (v1, v3)}). This will create no problem for
termination, but must be kept in mind when dealing with graph-structures
and their corresponding graphs.

Recall that the tableau-based decision procedures for consistency ofALC-
ABoxes [12, 7] starts with an ABox, which can be viewed as a graph, but then
extends this ABox by trees that grow out of the nodes of this graph. The fol-
lowing definition introduces forest tableaux, which show a similar behaviour,
but is based on the more general notion of a graph structure introduced
above.

Definition 5.3 (forest tableau) The tableau S = (Σ, ·S,R, C) is called a
forest tableau if for every axiomatized input Γ and every S ∈ ΓS, the state
S is a graph structure, every clash C ∈ C is connected, and the following
conditions hold for every rule (B0,S)→ {B1, . . . , Bm} and every 1 ≤ i ≤ m:

1. for every Σ-pattern r ∈ B0 ∩ ∆̂, there exists a Σ-pattern P ∈ B0 ∩ Λ̂
such that ←−r ⊆ var(P ) or −→r ⊆ var(P ).

2. for every Σ-pattern r ∈ Bi ∩ ∆̂, there exists a Σ-pattern P ∈ B0 ∩ Λ̂
such that ←−r ⊆ var(P ).

3. for every Σ-pattern r ∈ Bi ∩ ∆̂, we have −→r ∩ var(B0) = ∅.

4. if r, s ∈ Bi ∩ ∆̂ are distinct patterns, then −→r ∩ −→s = ∅.

5. for every Σ-pattern P ∈ Bi ∩ Λ̂, either
(i) there is a Σ-pattern r ∈ (B0 ∪ Bi) ∩ ∆̂ such that var(P ) ⊆ −→r or
var(P ) ⊆ ←−r , or

(ii) there is a Q ∈ B0 ∩ Λ̂ with var(P ) ⊆ var(Q).

6. if B0 ∩ ∆̂ 6= ∅, then Bi ∩ ∆̂ = ∅.

7. B0 ∩ Λ̂ is connected.

A few intuitive explanations for these conditions are in order. Condi-
tion 1 ensures that every edge triggering a rule application is connected to
a node, which may be either a parent or a descendant node of this edge.
Condition 2 makes sure that for every newly introduced edge, a parent node
was present before the rule is applied. This implies that rule application

13



cannot add a new parent for a node, and that newly introduced nodes are
not disconnected from the rest of the graph structure. Both of these prop-
erties are vital for obtaining forest structures. Condition 3 states that every
newly generated edge has only new constants in its descendant set. In other
words, new edges cannot connect old nodes, but only generate new nodes as
descendant. Condition 4 ensures that, even if several edges are added by a
single rule application, these edges connect different nodes with the parent
node, avoiding this way that a node is connected by multiple edges to a par-
ent node. Condition 5 makes sure that we alway have a connected graph.
It states that, whenever a non-edge assertion is added, it must either belong
to an old node, or belong to a descendant node added by a new edge within
the same rule application. Condition 6 states that the addition of new edges
must only depend on the assertions belonging to the parent nodes, but never
on the presence of other edges. In particular, this ensures that each descen-
dant is created independently from its siblings, as long this is done in distinct
rule applications. Finally, Condition 7 ensures that the non-edge assertions
triggering a rule application all belong to the same node.

The different (disjunctive) options stated in Conditions 1 and 3 require
an additional explanation. They allow the tableau rules to propagate in-
formation not just to successor nodes, but also to predecessor nodes in the
trees. The main reason for including this possibility in our framework is that
it makes it general enough to deal with constructors such as inverse roles in
DLs. The price to pay for this is that more cases must be analyzed in the
proofs.

Clearly, just ensuring that all states generated by a tableau have forest
structure is not sufficient to yield termination. We must also ensure that
the trees in the forest cannot grow indefinitely (i.e., that the overall number
of nodes that can be generated is bounded), and that the same is true for
the nodes (i.e., that the number of assertions making up a single node is
bounded). The next definition deals with the second condition.

Definition 5.4 (cover) Let S = (Σ, ·S,R, C) be a tableau and T a set of
axioms. A set Ω ⊆ Σ is called a T -cover if, for every rule R : (B0,S) →
{B1, . . . , Bn} such that S ⊆ T and B0 contains only predicates from Ω, the
sets Bi for i = 1, ..., n also contain only predicates from Ω. The tableau S is
covered if, for every axiomatized input Γ = (I, T ), there is a finite T -cover
ΩΓ such that every S-state in ΓS contains only predicates from ΩΓ.

Given such a covered tableau, every state that can be reached from an initial
state in ΓS by applying rules from S contains only predicates from ΩΓ. We
will see that this ensures that nodes cannot grow indefinitely. To prevent

14



the trees from growing indefinitely (i.e., to bound the number of nodes), it
is enough to enforce finite branching and finite paths in the trees. Finite
branching actually already follows from the conditions we have stated so far.
To bound the length of paths, we additionally require the predicates occurring
in rules to be decreasing. Given a strict partial order < on predicates, we
extend it to patterns (assertions) by defining P < Q if the predicate of the
pattern (assertion) P is smaller than the predicate of the pattern (assertion)
Q.

Definition 5.5 (ordered tableaux) A covered tableau S is called an or-
dered tableau if, for every axiomatized input Γ, there is a strict partial
ordering <Γ on the predicate names in ΩΓ ∩ Λ such that, for every rule
(B0,S) → {B1, . . . , Bn}, every 1 ≤ i ≤ n, and every P ∈ B0 ∩ Λ̂ and

Q ∈ Bi ∩ Λ̂, we have Q <Γ P .

For example, the tableau-based decision procedure for consistency of
ALC-ABoxes is an ordered tableau. It is covered since rule application only
adds concept assertions C(a) where C is a sub-description of a concept de-
scription occurring in the input ABox A0, and thus one can take the set of
these sub-descriptions together with the roles occurring in A0 as a cover. In
addition, rule application only adds concept assertions of a smaller role-depth
(i.e., nesting of existential and value-restrictions) than the one that triggered
it. Thus, ordering concept descriptions by their role-depth yields the desired
partial ordering.

Ordered tableaux have the property that, if applied to an axiomatized
input Γ, none of the trees in the generated forest can have a depth greater
than the cardinality of the cover ΩΓ. This easily follows from the next lemma.
We will actually look at modified rule application rather than normal one
since we want to show not only termination of the tableau itself, but also of
its pinpointing extension.

Lemma 5.6 Let S be an ordered forest tableau, Γ an axiomatized input, and
S0 →Sm S1 →Sm · · · a sequence of modified rule applications. Then, for
every Si = (Ai, T ) and P ∈ Ai ∩ Λ̂, either cons(P ) ⊆ cons(A0) or there are

r ∈ Ai ∩ ∆̂ and Q ∈ Ai ∩ Λ̂ such that ←−r ⊆ cons(Q), cons(P ) ⊆ −→r , and
P <Γ Q.

Proof. The proof is by induction on i. For S0 the result is trivial. Suppose
now that it holds for Si, and that the rule R : (B0,S) → {B1, . . . , Bn} is
applied to Si to obtain Si+1 = (Ai+1, T ), where Ai+1 = Ai ∪ Bjσ for some

substitution σ and some j, 1 ≤ j ≤ n. Let P ∈ Ai+1 ∩ Λ̂. If P ∈ Ai,

15



then by the induction hypothesis and the fact that Ai ⊆ Ai+1, the result
holds. Otherwise, P was added by the application of R. By Condition 5 of
Definition 5.3, we have either (i) an r ∈ (B0 ∪ Bj)σ ∩ ∆̂ with cons(P ) ⊆ −→r

or cons(P ) ⊆ ←−r , or (ii) there is a Q ∈ B0σ ∩ Λ̂ with cons(P ) ⊆ cons(Q).
We will analyze Case (ii) first. Since the rule was applied with substitu-

tion σ, we have B0σ ⊆ Ai, and thus Q ∈ Ai ∩ Λ̂. Since S is ordered, we also
know that P <Γ Q. By the induction hypothesis, either cons(Q) ⊆ cons(A0),
or ←−r ⊆ cons(Q′), cons(Q) ⊆ −→r , and Q <Γ Q

′ for assertions r, Q′ ∈ Ai. In
both case, transitivity of <Γ and of ⊆ yield the desired result.

We focus now on Case (i). Suppose first that cons(P ) ⊆ −→r . If r ∈ Bjσ,
then Condition 2 of Definition 5.3 ensures that there is a Q ∈ B0σ ⊆ Ai
such that ←−r ⊆ cons(Q). Since S is ordered, we also have P <Γ Q, which
completes the proof for the case where cons(P ) ⊆ −→r and r ∈ Bjσ.

Next, we consider the case where cons(P ) ⊆ −→r and r ∈ B0σ. Then,
by Condition 1 of Definition 5.3, there must exist a Q ∈ B0σ such that
←−r ⊆ cons(Q) or −→r ⊆ cons(Q). In the former case, the proof is analogous to
the one for the first part of this case. In the latter case, we have cons(P ) ⊆
−→r ⊆ cons(Q), which is an instance of Case (ii).

Finally, suppose that cons(P ) ⊆ ←−r . We can assume without loss of

generality that there is no Q ∈ B0 ∩ Λ̂ such that cons(P ) ⊆ cons(Q). In
fact, if it existed, we would be in Case (ii) analyzed above. Consequently, r
cannot belong to Biσ since this would violate Condition 2 of Definition 5.3.
Hence, r ∈ B0σ and there must exist a Q ∈ B0σ ∩ Λ̂ such that ←−r ⊆ cons(Q)
or −→r ⊆ cons(Q).

In the first case, we have cons(P ) ⊆ ←−r ⊆ cons(Q), which brings us back
to Case (ii) analyzed above. In the other case, we know that P <Γ Q and
Q ∈ Ai. Thus, by the induction hypothesis, the statement of the lemma
holds for Q.

If cons(Q) ⊆ cons(A0), then—since we have assumed for this case that
−→r ⊆ cons(Q)—we also have −→r ⊆ cons(A0). This means that r was not added
by any previous rule application as otherwise this would violate Condition 3
of Definition 5.3. Thus, r must have been already present in A0, which implies
←−r ⊆ cons(A0). Since cons(P ) ⊆ ←−r , it also holds that cons(P ) ⊆ cons(A0).

Now, assume that cons(Q) 6⊆ cons(A0). By the induction hypothesis,

there exist s ∈ Ai∩ ∆̂ and R ∈ Ai∩ Λ̂ such that←−s ⊆ cons(R), cons(Q) ⊆ −→s ,
and Q <Γ R. Since cons(Q) 6⊆ cons(A0), we know that Q and s were added
by a (previous) rule application. We claim that r = s. In fact, we have
∅ 6= −→r ⊆ cons(Q) ⊆ −→s . If we had r 6= s, then this would violate Condition 3
or 4 of Definition 5.3, where Condition 3 covers the case where r and s are
introduced by different rule applications, and Condition 4 covers the case

16



where these two assertions are added by the same rule application.
Overall, we thus know that cons(P ) ⊆ ←−r ⊆ cons(R) and P <Γ R.

Since R ∈ Ai, by the induction hypothesis, we have once again that ei-
ther cons(R) ⊆ cons(A0) or there exist r′ ∈ Ai ∩ ∆̂ and Q′ ∈ Ai ∩ Λ̂ such

that
←−
r′ ⊆ cons(Q′), cons(R) ⊆

−→
r′ , and R <Γ Q

′. In both cases, the fact that
cons(P ) ⊆ cons(R) and P <Γ R, together with the transitivity of ⊆ and <Γ,
yields the desired result.

An easy consequence of this lemma is that a path consisting of m new
edges in a state generated by rule applications from a state in ΓS implies a
decreasing sequence w.r.t. <Γ of the same same length. Consequently, the
length of such paths is bounded by the number of predicate symbols occurring
in the finite cover ΩΓ.

Proposition 5.7 Let S0
∗
−→Sm S where S0 = (A0, T ) ∈ ΓS and S = (A, T ).

Suppose that A contains edges r1, . . . , rm and nodes N0, . . . , Nm such that for
all i, 1 ≤ i ≤ m, ri /∈ A0 and ri connects Ni−1 with Ni. Then, there exist
assertions Q1, . . . , Qm ∈ A such that Q1 >Γ Q2 >Γ . . . >Γ Qm.

Proof. Since ri connects Ni−1 with Ni for i = 1, . . . , m, we know by Defini-
tion 5.2 that←−ri ⊆ cons(Ni−1) and cons(Ni) ⊆

−→ri . This implies that←−ri ⊆
−−→ri−1

for all i, 1 < i ≤ m.
For each of the edges ri we have assumed that it is new, i.e., ri /∈ A0.

Thus, ri must have been added by some rule application. Condition 3 of
Definition 5.3 entails then that, for every 1 ≤ i ≤ m, −→ri ∩ cons(A0) = ∅, and
thus, for every 1 < i ≤ m it also holds that ←−ri ∩ cons(A0) = ∅, as ←−ri ⊆

−−→ri−1.
Since rm was added by a rule application, by Condition 2 of Definition 5.3,

there must be an assertion Qm ∈ A ∩ Λ̂ such that ←−rm ⊆ cons(Qm). Hence,

cons(Qm) 6⊆ cons(A0). By Lemma 5.6, there exist r ∈ A∩∆̂ andQm−1 ∈ A∩Λ̂
such that ←−r ⊆ cons(Qm−1), cons(Qm) ⊆ −→r , and Qm <Γ Qm−1. We have
←−rm ⊆

−−→rm−1 and ←−rm ⊆ cons(Qm) ⊆ −→r , which implies that −−→rm−1 ∩
−→r 6= ∅.

However, Conditions 3 and 4 of Definition 5.3 ensure that distinct assertions
in ∆̂ \ A0 must have disjoint sets of descendants. Thus, we know that r =
rm−1.

We can now apply the same argument as above to rm−1 and Qm−1 to
obtain an assertion Qm−2 such that←−−rm−2 ⊆ cons(Qm−2), cons(Qm−1) ⊆

−−→rm−2,
and Qm−1 <Γ Qm−2. By iterating this argument, we thus obtain the desired
descending chain Q1 >Γ Q2 >Γ . . . >Γ Qm.

The following two remarks will be useful in the proof of the main theorem
of this section. First, note that Condition 7 of Definition 5.3 ensures that the
assertions from Λ̂ triggering a rule application all belong to the same node.

17



Second, given a new node N (i.e., one that was not present in the ini-
tial state) and an assertion P ∈ N , Lemma 5.6 yields an edge r such
that cons(P ) ⊆ −→r . Since distinct edges have disjoint sets of descendants
(Condition 4 of Definition 5.3) any other assertion in Q ∈ N also satisfies
cons(Q) ⊆ −→r . This shows that the constants occurring in a node all belong
to the descendant set of the edge whose introduction created the node.

We are now ready to show termination of the pinpointing extension of
any ordered forest tableaux.

Theorem 5.8 If S is an ordered forest tableau, then its pinpointing exten-
sion terminates on every input.

Proof. Suppose that there is an input Γ = (I, T ) for which there is an
infinite sequence of pinpointing rule applications S0 →Spin S1 →Spin . . .,
with S0 ∈ ΓS. Since S is a covered tableau, there is a finite T -cover ΩΓ such
that, for all i ≥ 0, the assertions in Si use only predicate symbols from ΩΓ.
As noted above, for every node there is a fixed finite set of constants that can
occur in the assertions of this node. This set is either the set of constants
occurring in S0 (for an old node) or it consists of the descendants in the
unique edge whose introduction created the node (for a new node). Together
with the fact that the T -cover ΩΓ is finite, this restricts the assertions that
can occur in the node to a fixed finite set. Each of these assertion may
repeatedly have its label modified by applications of the pinpointing rules.
However, every application of a rule makes the label more general in the sense
that the new monotone Boolean formula has more models than the previous
one. Since these formulae are built over a finite set of propositional variables,
this can happen only finitely often. The same argument shows that the label
of a given edge can be changed only finitely often.

Hence, to get a non-terminating sequence of rule applications, infinitely
many new nodes must be added. By Conditions 5 and 2 of Definition 5.3,
each newly added node N is created as successor of an existing node w.r.t. a
unique edge r ∈ ∆̂ such that the constants in N are new constants contained
in −→r . If infinitely many new nodes are created, then either there is a node
that obtains infinitely many direct successors, or an infinite chain of nodes
is created, where each is a successor of the previous one.

Proposition 5.7 implies that the latter case cannot occur. In fact, given
nodes N0, N1, . . . , Nm and edges r1, . . . , rm such that, for all i, 1 ≤ i ≤
m, ri connects Ni−1 to Ni, Proposition 5.7 yields a sequence of assertions
Q1, . . . , Qm ∈ Λ̂ such that Q1 >Γ Q2 >Γ . . . >Γ Qm. However, the length
of such a descending sequence is bounded by the cardinality of the finite
T -cover ΩΓ. Thus, it is not possible that an infinite path is created by rule
application.

18



Now, consider the first case, i.e., assume that there is a node N for which
infinitely many successors are created. However, the constants in N are from
a fixed finite set of constants C, and the predicate symbols that can occur
in the applied rules must all belong to the finite T -cover ΩΓ. Thus, up to
variable renaming, there are only finitely many rules that can be applied to
N , and there are only finitely many ways of replacing the variables in the left-
hand side of rules by constants from C. The fresh variables in the right-hand
side are always replaced by distinct new constants. Thus, for a fixed rule and
a fixed substitution σ replacing the variables in the left-hand side of this rules
by constants from C, the assertions introduced by two different applications
of this rule using σ only differ by a renaming of these new constants. By
the way pinpointing rule applicability is defined, such renamed variants can
only be added as long as their labels are not equivalent. But there are only
finitely many labels up to equivalence. Thus, N can in fact obtain only
a finite number of successors. This finishes the proof that the pinpointing
extension of an ordered forest tableau always terminates.

Note that termination of the pinpointing extension implies termination of
the original tableau. In fact, a non-terminating sequence of rule applications
for the original tableau can easily be transformed into a non-terminating
sequence of rule applications for its pinpointing extension.

Corollary 5.9 An ordered forest tableau terminates on every input.

The definition of forest tableaux imposes quite a number of restrictions
on such tableaux. Thus, it is natural to ask whether all these restrictions are
indeed necessary. The answer is yes: if any of these restrictions is removed,
then Theorem 5.8 no longer holds. In fact, it is possible to construct termi-
nating tableaux satisfying all other properties whose pinpointing extensions
do not terminate. Here, we illustrate this by one example, where we remove
Condition 6 of Definition 5.3.

Example 5.10 Consider the tableau S that has the following four rules:

R1 : ({P (x)}, {ax1})→ {{R(x), Q1(x)}},

R2 : ({P (x)}, {ax2})→ {{R(x), Q2(x)}},

R3 : ({R(x)}, ∅)→ {{r(x, y)}, {Q1(x)}, {Q2(x)}},

R4 : ({P (x), r(x, y)}, ∅)→ {{T (y), r(x, z)}},

and where the function ·S maps every input I ∈ I to the singleton set
{{P (a)}}, and each axiom in T = {ax1, ax2} to the empty set.

19



It is easy to verify that S with the ordering T < Q2 < Q1 < R < P
satisfies all the conditions of an ordered forest tableau, except for Condition
6 of Definition 5.3.

For any axiomatized input Γ = (I, T ), we have ΓS = {({P (a)}, T )},
and thus neither R3 nor R4 is applicable to ΓS. Depending on which axioms
are contained in T , the rules R1 and/or R2 may be applicable. However,
their application introduces Q1(a) or Q2(a) into the set of assertions, and
thus the non-deterministic rule R3 is not applicable. Obviously, R4 becomes
applicable only after R3 has been applied. Consequently, S terminates on
every axiomatized input Γ.

It is possible, however, to construct an infinite chain of pinpointing rule
applications starting with ΓS = {({P (a)}, {ax1, ax2})} where lab(P (a)) = >.
In fact, we can first apply the rule R1. This adds the assertions R(a) and
Q1(a), both with label ax1. An application of the rule R2 adds the asser-
tion Q2(a) with label ax2, and modifies the label of the assertion R(a) to
lab(R(a)) = ax1 ∨ ax2. At this point, we have reached an S-state S con-
taining the assertions P (a), R(a), Q1(a), Q2(a) with labels lab(P (a)) = >,
lab(R(a)) = ax1 ∨ ax2, lab(Q1(a)) = ax1, and lab(Q2(a)) = ax2. The rule
R3 is pinpointing applicable to this S-state. Indeed, although both Q1(a) and
Q2(a) are contained in the assertion set of S, their labels are not implied
by lab(R(a)). The application of R3 to S replaces S by three new S-states.
One of these new S-states contains the assertion r(a, b) for a new constant b.
At this point, rule R4 becomes applicable. Its application adds the assertions
T (b) and r(a, c) for a new constant c. Since there is no assertion of the form
T (c), R4 becomes again applicable, and its application adds a new constant
d within an assertion r(a, d). It is easy to see that we can now continue
applying rule R4 indefinitely.

If we consider the tableau that has only the rule R4 and where every
input I ∈ I is mapped to {{P (a), r(a, b)}}, then this yields an example of a
non-terminating tableau that satisfies all the conditions of an ordered forest
tableau, except for Condition 6.

6 Conclusions

We have introduced a general notion of tableaux, and have shown that
tableaux that are correct for a consequence property can be extended such
that a terminating run of the extended procedure computes a pinpointing
formula. This formula can then be used to derive minimal axiom sets and
maximal non-axiom sets from it.

20



We have also shown that, in general, termination of a tableau does not
imply termination of its pinpointing extension, even if all tableau rules are de-
terministic. To overcome this problem, we have then introduced the concepts
of ordered forest tableaux, and have shown that the pinpointing extensions
of ordered forest tableaux always terminate.

Our current framework has two restrictions that we will try to overcome
in future work. First, our tableau rules always extend the current set of
assertions. We do not allow for rules that can modify existing assertions.
Thus, tableau-based algorithms that identify constants, like the rule treating
at-most number restrictions in description logics (see, e.g., [7]), cannot be
modelled. A similar problem occurs for the tableau systems introduced in
[3]. There, it was solved by modifying the definition of rule application by al-
lowing rules that introduce new individuals (in our notation: rules with fresh
variables) to reuse existing individuals. However, this makes such rules in-
trinsically non-deterministic. In our setting, we believe that we can solve this
problem more elegantly by introducing equality and inequality predicates.

Second, our approach currently assumes that a correct tableau always
terminates, without considering additional blocking conditions. As shown in
[18], extending a tableau with blocking to a pinpointing algorithm requires
some additional effort. Solving this for the case of general tableaux will be a
second important direction for future research.

References

[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc.
of IJCAI 2005, pages 364–369. Morgan Kaufmann, Los Altos, 2005.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

[3] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to au-
tomata for description logics. Fundamenta Informaticae, 57(2–4):247–
279, 2003.

[4] F. Baader and B. Hollunder. Embedding defaults into terminologi-
cal knowledge representation formalisms. J. of Automated Reasoning,
14:149–180, 1995.

[5] F. Baader and R. Penaloza. Axiom pinpointing in general tableaux. In
Proc. Tableaux 07, LNAI 4548, pages 11–27. Springer-Verlag, 2007.

21



[6] F. Baader and R. Peñaloza. Blocking and pinpointing in forest tableaux.
LTCS-Report LTCS-08-02, Dresden University of Technology, Germany,
2008. See http://lat.inf.tu-dresden.de/research/reports.html.

[7] F. Baader and U. Sattler. An overview of tableau algorithms for de-
scription logics. Studia Logica, 69:5–40, 2001.

[8] J. Bailey and P. J. Stuckey. Discovery of minimal unsatisfiable subsets
of constraints using hitting set dualization. In Proc. of PADL’05, LNCS
3350, pages 174–186. Springer-Verlag, 2005.

[9] G. Davydov, I. Davydova, and H. Kleine Büning. An efficient algorithm
for the minimal unsatisfiability problem for a subclass of CNF. Ann. of
Mathematics and Artificial Intelligence, 23(3–4):229–245, 1998.

[10] V. Haarslev and R. Möller. RACER system description. In Proc. of
IJCAR 2001, 2001.

[11] B. Hollunder. Hybrid inferences in KL-ONE-based knowledge repre-
sentation systems. In Proc. of German Workshop on AI, pages 38–47.
Springer-Verlag, 1990.

[12] Bernhard Hollunder. Consistency checking reduced to satisfiability of
concepts in terminological systems. Ann. of Mathematics and Artificial
Intelligence, 18(2–4):133–157, 1996.

[13] I. Horrocks. Using an expressive description logic: FaCT or fiction? In
Proc. of KR’98, pages 636–647, 1998.

[14] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. J. of Web
Semantics, 1(1):7–26, 2003.

[15] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler.
Swoop: A Web ontology editing browser. J. of Web Semantics, 4(2),
2005.

[16] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The
Protégé OWL plugin: An open development environment for semantic
web applications. In Proceedings of the Third Int. Semantic Web Conf.,
Hiroshima, Japan, 2004.

[17] M. H. Liffiton and K. A. Sakallah. On finding all minimally unsatisfiable
subformulas. In Proc. of SAT’05, LNCS 3569, pages 173–186. Springer-
Verlag, 2005.

22



[18] T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satisfiable
terminologies for the description logic ALC. In Proc. of AAAI 2006.
AAAI Press/The MIT Press, 2006.

[19] D. Oberle, R. Volz, B. Motik, and S. Staab. An extensible ontology soft-
ware environment. In Handbook on Ontologies, International Handbooks
on Information Systems, pages 311–333. Springer-Verlag, 2004.

[20] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In
Proc. of WWW’05, pages 633–640. ACM, 2005.

[21] R. Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32(1):57–95, 1987.

[22] S. Schlobach. Diagnosing terminologies. In Proc. of AAAI 2005, pages
670–675. AAAI Press/The MIT Press, 2005.

[23] S. Schlobach and R. Cornet. Non-standard reasoning services for the
debugging of description logic terminologies. In Proc. of IJCAI 2003,
pages 355–362, Acapulco, Mexico, 2003. Morgan Kaufmann, Los Altos.

[24] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991.

[25] E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In Proc. of
DL 2004, pages 212–213, 2004.

[26] K.A. Spackman, K.E. Campbell, and R.A. Cote. SNOMED RT: A refer-
ence terminology for health care. J. of the American Medical Informatics
Association, pages 640–644, 1997. Fall Symposium Supplement.

[27] L. Zhang and S. Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions. In Proc. of DATE’03, pages 10880–10885. IEEE Computer Society
Press, 2003.

23


