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Abstract

Most of the research on temporalized Description Logics (DLs) has con-
centrated on the case where temporal operators can occur within DL con-
cept descriptions. In this setting, reasoning usually becomes quite hard if
rigid roles, i.e., roles whose interpretation does not change over time, are
available. In this paper, we consider the case where temporal operators
are allowed to occur only in front of DL axioms (i.e., ABox assertions and
general concept inclusion axioms), but not inside of concepts descriptions.
As the temporal component, we use linear temporal logic (LTL) and in the
DL component we consider the basic DL ALC. We show that reasoning in
the presence of rigid roles becomes considerably simpler in this setting.

1 Introduction

Description logics (DLs) [7] are a family of logic-based knowledge representation
formalisms, which are employed in various application domains, such as natu-
ral language processing, configuration, databases, and bio-medical ontologies, but
their most notable success so far is the adoption of the DL-based language OWL
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[13] as standard ontology language for the semantic web. In many applications
of (DLs), such as the use of DLs as ontology languages or conceptual modeling
languages, being able to represent dynamic aspects of the application domain
would be quite useful. This is, for instance, the case if one wants to use DLs
as conceptual modeling languages for temporal databases [6]. Another example
are medical ontologies, where the faithful representation of concepts would often
require the description of temporal patterns. As a simple example, consider the
concept “Concussion with no loss of consciousness,” which is modeled as a primi-
tive (i.e., not further defined) concept in the medical ontology SNOMED CT.1 As
argued in [21], a correct representation of this concept should actually say that,
after the concussion, the patient remained conscious until the examination.

Since the expressiveness of pure DLs is not sufficient to describe such temporal
patterns, a plethora of temporal extensions of DLs have been investigated in the
literature.2 These include approaches as diverse as the combination of DLs with
Halpern and Shoham’s logic of time intervals [20], formalisms inspired by action
logics [3], the treatment of time points and intervals as a concrete domains [14],
and the combination of standard DLs with standard (propositional) temporal
logics into logics with a two-dimensional semantics, where one dimension is for
time and the other for the DL domain [18, 23, 12]. In this paper, we follow the
last approach, where we use the basic DL ALC [19] in the DL component and
linear temporal logic (LTL) [16] (sometimes also called propositional temporal
logic (PTL) [12]) in the temporal component. However, even after the DL and
the temporal logic to be combined have been fixed, there remain several degrees
of freedom when defining the resulting temporalized DL.

On the one hand, one must decide to which pieces of syntax temporal operators
can be applied. Temporal operators may be allowed to occur within concept
descriptions, as required by the above example of a concussion with no loss of
consciousness, which could be defined using the until-operator U of LTL as follows:

∃finding.Concussion u Conscious U∃procedure.Examination. (1)

Alternatively or in addition, temporal operators may be applied to TBox axioms
(i.e., general concept inclusions, GCIs) and/or to ABox assertions. For example,
the temporalized TBox axiom

32(UScitizen v ∃insured by.HealthInsurer)

says that there is a future time point from which on US citizens will always have
health insurance, and the formula Ψ:

3
(
(∃finding.Concussion)(BOB) ∧ (2)

Conscious(BOB)U(∃procedure.Examination)(BOB)
)

1see http://www.ihtsdo.org/our-standards/
2For a more thorough survey of the literature on temporalized DLs, see the survey papers

[4, 5, 15].
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says that, sometime in the future, Bob will have a concussion with no loss of
consciousness between the concussion and the examination.

On the other hand, one must decide whether one wants to have rigid concepts
and/or roles, i.e., concepts/roles whose interpretation does not vary over time.
For example, the concept Human and the role has father should probably be rigid
since a human being will stay a human being and have the same father over
his/her life-time, whereas Conscious should be a flexible concept (i.e., not rigid)
since someone that is conscious at the moment need not always by conscious.
Similarly, insured by should be modeled as a flexible role. Using a logic that
cannot enforce rigidity of concepts/roles may result in unintended models, and
thus prevent certain useful inferences to be drawn. For example, the concept
description ∃has father.Human u 3 (∀has father.¬Human) is only unsatisfiable if
both has father and Human are rigid.

Related work

The combination of ALC with LTL was first considered by Schild [18] and, since
then, has developed into a lively research area recently surveyed in [15]. In the
temporalized DL proposed by Schild, temporal operators can be applied to concept
descriptions, but not to TBox axioms (and ABoxes are not considered at all).
Rigid concepts are definable in this logic, but rigid roles are not. Schild observes
that his logic behaves similarly to the so-called fusion of ALC and LTL,3 which
shows that the interaction between the ALC component and the LTL component
is limited. This observation forms the basis for Schild’s proof that reasoning in
his logic is ExpTime-complete.

The combination of (extensions of) ALC and LTL in which temporal operators
are applied to concept descriptions, TBox axioms, and ABox assertions has been
studied by Wolter, Zakharyaschev, and others (see, e.g., [23, 12]). In this more
general setting, the interaction between the DL component and LTL is much
stronger, and the complexity of reasoning is ExpSpace-complete. As in Schild’s
logic, rigid concepts can be defined, but rigid roles cannot. As also shown in [12],
the addition of rigid roles causes undecidability. This already holds for concept
satisfiability w.r.t. a global TBox (i.e., where the same TBox axioms must hold
at all time points) and with only a single rigid role. Decidability can be regained
by dropping TBoxes altogether, but the decision problem is still hard for non-
elementary time [12].

Decidable combinations of DLs and temporal logics that allow for rigid roles
can be obtained by restricting either the temporal or the DL component. In [2],
temporal operators can be applied to concept descriptions, TBoxes are global, and
there are no ABoxes. The reason for decidability (more precisely, 2-ExpTime-
completeness) also in the presence of rigid role is that the only available temporal

3Note, however, that Schild’s proof of this is incorrect; a correct proof can be found in [15].
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operators are an undirected diamond expressing “at some time point” and an
undirected box expressing “at all time points.” Here, undirected means that these
operators cannot discriminate between the past, the future, and the current time
point. The setup in [1] is different: the temporal component is LTL, but ALC is
replaced with the lightweight DL DL-Litebool. Temporal operators can be applied
to concept descriptions, TBoxes, and ABoxes. Here, it is the weak expressive
power of the DL component that is responsible for decidability (more precisely,
ExpSpace-completeness) of reasoning also in the presence of rigid roles. In the
same paper, it is shown that concept subsumption w.r.t. global TBoxes and with
rigid roles is undecidable already in the lightweight description logic EL, which
provides only for the constructors conjunction and existential restriction.

Our contribution

In this paper, we follow a different approach for regaining decidability in the pres-
ence of rigid roles: temporal operators are allowed to occur only in front of axioms
(i.e., ABox assertions and TBox axioms), but not as concept constructors. We
show that reasoning becomes simpler in this setting: with rigid roles, satisfiabil-
ity is decidable (more precisely: 2-ExpTime-complete); without rigid roles, the
complexity decreases to NExpTime-complete; and without any rigid symbols, it
decreases further to ExpTime-complete (i.e., the same complexity as reasoning
in ALC alone). We also consider two other ways of decreasing the complexity
of satisfiability to ExpTime. On the one hand, satisfiability without rigid roles
(but with rigid concepts) becomes ExpTime-complete if GCIs can occur only as
global axioms that must hold in every temporal world. Note that, in this case,
ABox assertions are not assumed to be global, i.e., the valid ABox assertions may
vary over time. On the other hand, satisfiability with rigid concepts and roles be-
comes ExpTime-complete if the temporal component is restricted appropriately
by replacing the temporal operators until (U) and next (X) of LTL with diamond
(3), which expresses “sometime in the future.”

The situation we concentrate on in this paper (i.e., where temporal opera-
tors are allowed to occur only in front of axioms) has been considered before
only for the case where there are no rigid concepts or roles. The combination
approach introduced in [11] yields a decision procedure for this case, whose worst-
case complexity is, however, non-optimal. Our ExpTime upper bound for this
case actually also follows from more general results in [12] (see the remark follow-
ing Theorem 14.15 on page 605 of [12]). However, also in [12], the setting where
temporal operators are allowed to occur only in front of axioms is considered only
in the absence of rigid symbols.

Obviously, the temporalized DLs we investigate in this paper cannot be used to
define temporal concepts such as (1) for concussion with no loss of consciousness.
However, they are nevertheless useful in ontology-based applications since they can
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be used to reason about a temporal sequence of ABoxes w.r.t. a global TBox.4 For
example, in an emergency ward, the vital parameters of a patient are monitored in
short intervals (sometimes not longer than 10 minutes), and additional information
is available from the patient record and added by doctors and nurses. Using
concepts defined in a medical ontology like SNOMED CT, a high-level view of
the medical status of the patient at a given time point can be given by an ABox.
Obviously, the sequence of ABoxes obtained this way can be described using
temporalized ABox assertions. Critical situations, which require the intervention
of a doctor, can then be described by a formula in our temporalized DL, and
recognized using the reasoning procedures developed in this paper. For example,
given a formula φ encoding a sequence of ABoxes describing the medical status of
Bob, starting at some time point t0, and the formula ψ defined in (2), we can check
whether Bob sometime after t0 had a concussion with no loss of consciousness by
testing φ ∧ ¬ψ for unsatisfiability.

2 Basic definitions

The temporalized DL ALC-LTL introduced in this paper combines the basic DL
ALC [19] with linear temporal logic (LTL) [16]. We start by recalling the relevant
definitions for ALC.

Definition 2.1. Let NC, NR, and NI respectively be disjoint sets of concept
names, role names, and individual names. The set of ALC-concept descriptions
is the smallest set such that

• all concept names are ALC-concept descriptions;

• if C and D are ALC-concept descriptions, then so are ¬C, C t D, and
C uD;

• if C is a ALC-concept description and r ∈ NR, then ∃r.C and ∀r.C are
ALC-concept descriptions.

A general concept inclusion axiom (GCI) is of the form C v D, where C,D are
ALC-concept descriptions, and an assertion is of the form a : C or (a, b) : r
where C is an ALC-concept description, r is a role name, and a, b are individual
names. We call both GCIs and assertions ALC-axioms. A Boolean combination
of ALC-axioms is called a Boolean ALC-knowledge base, i.e.,

• every ALC-axiom is a Boolean ALC-knowledge base;

4Our results also cover the case of temporal TBox axioms, but currently we believe that
temporalizing TBox axioms is of less practical relevance than temporalizing ABox assertions.
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• if B1 and B2 are Boolean ALC-knowledge bases, then so are B1∧B2, B1∨B2,
and ¬B1.

An ALC-TBox is a conjunction of GCIs, and an ALC-ABox is a conjunction of
assertions.

According to this definition, TBoxes and ABoxes are special kinds of Boolean
knowledge bases. However, note that they are often written as sets of axioms
rather than as conjunctions of these axioms.

The semantics of ALC is defined through the notion of an interpretation.

Definition 2.2. An interpretation is a pair I = (∆I , ·I) where the domain ∆I

is a non-empty set, and ·I is a function that assigns to every concept name A a
set AI ⊆ ∆I, to every role name r a binary relation rI ⊆ ∆I ×∆I, and to every
individual name a an element aI ∈ ∆I. This function is extended to ALC-concept
descriptions as follows:

• (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \ CI;

• (∃r.C)I = {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ CI};

• (∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I, (x, y) ∈ rI implies y ∈ CI}.

The interpretation I is a model of the ALC-axioms C v D, a : C, and (a, b) : r
iff it respectively satisfies CI ⊆ DI, aI ∈ CI, and (aI , bI) ∈ rI. The notion of a
model is extended to Boolean ALC-knowledge bases as follows:

• I is a model of B1 ∧ B2 iff it is a model of both B1 and B2;

• I is a model of B1 ∨ B2 iff it is a model of B1 or of B2;

• I is a model of ¬B1 iff it is not a model of B1.

We say that the Boolean ALC-knowledge base B is consistent iff it has a model.
The concept description C is satisfiable w.r.t. the GCI D1 v D2 iff there is a
model I of D1 v D2 with CI 6= ∅.

In Description Logics it is often assumed that the interpretations satisfy the
unique name assumption (UNA), i.e., different individual names are interpreted
by different elements of the domain.

For LTL, we use the variant with a non-strict until (U) and a next (X) operator.
Instead of first introducing the propositional temporal logic LTL, we directly define
our new temporalized DL, called ALC-LTL. The difference to LTL is that ALC-
axioms replace propositional letters.

Definition 2.3. ALC-LTL formulae are defined by induction:
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• if α is an ALC-axiom, then α is an ALC-LTL formula;

• if φ, ψ are ALC-LTL formulae, then so are φ∧ψ, φ∨ψ, ¬φ, φUψ, and Xφ.

As usual, we use true as an abbreviation for A(a) ∨ ¬A(a), 3φ as an abbre-
viation for trueUφ (diamond, which should be read as “sometime in the future”),
and 2φ as an abbreviation for ¬3¬φ (box, which should be read as “always in
the future”).

The semantics of ALC-LTL is based on ALC-LTL structures, which are se-
quences of ALC-interpretations over the same non-empty domain ∆ (constant
domain assumption). We assume that every individual name stands for a unique
element of ∆, i.e., the interpretation of individual names does not change over
time (rigid individual names). As usual in DLs, we also make the unique name
assumption.

Definition 2.4. An ALC-LTL structure is a sequence I = (Ii)i=0,1,... of ALC-
interpretations Ii = (∆, ·Ii) obeying the UNA (called worlds) such that aIi = aIj

for all individual names a and all i, j ∈ {0, 1, 2, . . .}. Given an ALC-LTL formula
φ, an ALC-LTL structure I = (Ii)i=0,1,..., and a time point i ∈ {0, 1, 2, . . .},
validity of φ in I at time i (written I, i |= φ) is defined inductively:

I, i |= C v D iff CIi ⊆ DIi

I, i |= a : C iff aIi ∈ CIi

I, i |= (a, b) : r iff (aIi , bIi) ∈ rIi

I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= φ ∨ ψ iff I, i |= φ or I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= Xφ iff I, i+ 1 |= φ
I, i |= φUψ iff there is k ≥ i such that I, k |= ψ and

I, j |= φ for all j, i ≤ j < k

For some concepts and roles, it is not desirable that their interpretation changes
over time. Thus, we will sometimes assume that a subset of the set of concept
and role names can be designated as being rigid. We will call the elements of this
subset rigid concept names and rigid role names.

Definition 2.5. We say that the ALC-LTL structure I = (Ii)i=0,1,... respects
rigid concept names (role names) iff AIi = AIj (rIi = rIj) holds for all i, j ∈
{0, 1, 2, . . .} and all rigid concept names A (rigid role names r).

3 The satisfiability problem in ALC-LTL

Depending on whether rigid concept and role names are considered or not, we
obtain different variants of the satisfiability problem.

7



Definition 3.1. Let φ be an ALC-LTL formula and assume that a subset of the
set of concept and role names has been designated as being rigid.

• We say that φ is satisfiable w.r.t. rigid names iff there is an ALC-LTL
structure I respecting rigid concept and role names such that I, 0 |= φ.

• We say that φ is satisfiable w.r.t. rigid concepts iff there is an ALC-LTL
structure I respecting rigid concept names such that I, 0 |= φ.

• We say that φ is satisfiable without rigid names (or simply satisfiable) iff
there is an ALC-LTL structure I such that I, 0 |= φ.

In this paper, we show that the complexity of the satisfiability problem for
ALC-LTL strongly depends on which of the above cases one considers. Note that
it does not really make sense to consider satisfiability w.r.t. rigid role names, but
without rigid concept names, as a separate case when investigating the complexity
of the satisfiability problem. In fact, rigid concepts can be simulated by rigid roles:
just introduce a new rigid role name rA for each rigid concept name A, and then
replace A by ∃rA.>.

Another dimension that influences the complexity of the satisfiability problem
is whether GCIs occur globally or locally in the formula. Intuitively, a GCI occurs
globally if it must hold in every world of the ALC-LTL structure.

Definition 3.2. We say that φ is an ALC-LTL formula with global GCIs iff it is
of the form φ = 2B∧ϕ where B is a conjunction of ALC-axioms and ϕ is an ALC-
LTL formula that does not contain GCIs. We denote the fragment of ALC-LTL
that contains only ALC-LTL formulae with global GCIs by ALC-LTL|gGCI.

Note that saying, in the above definition, that B is a conjunction of ALC-
axioms just means that B is a TBox together with an ABox. We could have
restricted B to being a conjunction of GCIs (i.e., a TBox) since assertions α in
B could be moved as conjuncts 2α to ϕ.5 However, it turns out to be more
convenient to allow also ABox assertions to occur in the “global part” 2B of φ.

Instead of restricting to ALC-LTL formulae with global GCIs, we can also re-
strict the temporal component, by considering the fragment ALC-LTL|3 of ALC-
LTL in which 3 is the only temporal operator. In this fragment, neither U nor X
is definable.

Definition 3.3. ALC-LTL|3 formulae are defined by induction:

• if α is an ALC-axiom, then α is an ALC-LTL|3 formula;

• if φ, ψ are ALC-LTL|3 formulae, then so are φ ∧ ψ, φ ∨ ψ, ¬φ, and 3φ.

5This is the reason why we talk about ALC-LTL formulae with global GCIs in this case,
rather than about ALC-LTL formulae with global axioms.
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W.r.t. rigid names W.r.t. rigid concepts Without rigid names

ALC-LTL 2-ExpTime-complete NExpTime-complete ExpTime-complete

ALC-LTL|gGCI 2-ExpTime-complete ExpTime-complete ExpTime-complete

ALC-LTL|3 ExpTime-complete ExpTime-complete ExpTime-complete

Table 1: Complexity of the satisfiability problem in ALC-LTL and its fragments.

The semantics of ALC-LTL|3 formulae is defined as in the case of ALC-LTL.
In particular, the interpretation of the diamond operator is defined as

I, i |= 3φ iff there is k ≥ i such that I, k |= φ.

Table 1 summarizes the results of our investigation of the complexity of the
satisfiability problem in ALC-LTL and its fragments. This table shows that the
complexity of the satisfiability problem in ALC-LTL increases (from ExpTime,
which is the complexity of the satisfiability problem in ALC, to NExpTime) if
rigid concepts names are available. The additional presence of rigid role names
further increases the complexity to 2-ExpTime. The restriction to ALC-LTL|gGCI

(i.e., global GCIs) has no effect on the complexity in the presence of rigid role
names. However, it decreases the complexity to ExpTime if only rigid concept
names are available. In ALC-LTL|3, the satisfiability problem is only ExpTime-
complete even w.r.t. rigid names.

In Section 4, we will show the results for ALC-LTL and ALC-LTL|gGCI for
the case of rigid names. Section 5 considers satisfiability in ALC-LTL and in its
fragment ALC-LTL|gGCI without rigid names, and Section 6 is concerned with
satisfiability in ALC-LTL and ALC-LTL|gGCI w.r.t. rigid concepts. Finally, in
Section 7, we consider the satisfiability problem in ALC-LTL|3.

4 Reasoning with rigid names

In this section, we investigate the complexity of the satisfiability problem in ALC-
LTL and its fragment ALC-LTL|gGCI if rigid concepts and roles are available.

Theorem 4.1. Satisfiability in ALC-LTL w.r.t. rigid names is 2-ExpTime-
complete.

First, we show 2-ExpTime-hardness.

Lemma 4.2. Satisfiability in ALC-LTL w.r.t. rigid names is 2-ExpTime-hard.

Proof. The proof is by reduction of the word problem for exponentially space
bounded alternating Turing machines (ATMs). An ATM is of the form M =
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(Q,Σ,Γ, q0, Θ), where Q = Q∃ ]Q∀ ] {qa, qr} is a finite set of states, partitioned
into existential states from Q∃, universal states from Q∀, an accepting state qa,
and a rejecting state qr; Σ is the input alphabet and Γ ⊇ Σ the work alphabet
containing a blank symbol B /∈ Σ; q0 ∈ Q∃ ∪ Q∀ is the initial state; and the
transition relation Θ is of the form Θ ⊆ Q × Γ × Q × Γ × {L,R}. We write
Θ(q, a) for {(q′, b,M) | (q, a, q′, b,M) ∈ Θ}.

A configuration of an ATM is a word wqw′ with w,w′ ∈ Γ∗ and q ∈ Q. The
intended meaning is that the (one-sided infinite) tape contains the word ww′ with
only blanks behind it, the machine is in state q, and the head is on the left-most
symbol of w′. The successor configurations of a configuration wqw′ are defined in
the usual way in terms of the transition relation Θ. A halting configuration is of
the form wqw′ with q ∈ {qa, qr}. We may assume w.l.o.g. that any configuration
other than a halting configuration has at least one successor configuration. A
computation of an ATM M on a word w is a (finite or infinite) sequence of
successive configurations K1, K2, . . . . For the ATMs considered here, we may
assume without loss of generality that they have only finite computations on any
input. Since this case is simpler than the general one, we define acceptance for
ATMs with finite computations and refer to [10] for the full definition. Let M
be such an ATM. A halting configuration is accepting iff it is of the form wqaw

′.
For other configurations K = wqw′, the acceptance behaviour depends on q: if
q ∈ Q∃, then K is accepting iff at least one successor configuration is accepting; if
q ∈ Q∀, then K is accepting iff all successor configurations are accepting. Finally,
the ATM M with initial state q0 accepts the input w iff the initial configuration
q0w is accepting. We use L(M) to denote the language accepted by M, i.e.,

L(M) = {w ∈ Σ∗ | M accepts w}.

The word problem for M is the following decision problem: given a word w ∈ Σ∗,
does w ∈ L(M) hold or not?

There exists an exponentially space bounded ATM M = (Q,Σ,Γ, q0,Θ) whose
word problem is 2-ExpTime-hard [10]. Our aim is to reduce the word problem
for this ATM M to satisfiability in ALC-LTL w.r.t. rigid names. We may assume
that the length of every computation of M on w ∈ Σk is bounded by 22k

, and
all the configurations wqw′ in such computations satisfy |ww′| ≤ 2k. We may
also assume w.l.o.g. that M never attempts to move to the left when it is on the
left-most tape cell.

Let w = σ0 · · ·σk−1 ∈ Σ∗ be an input to M. We construct an ALC-LTL
formula φM,w such that w ∈ L(M) iff φM,w is satisfiable w.r.t. rigid names. In
an ALC-LTL structure satisfying φM,w, each domain element from ∆ describes a
single tape cell of a configuration of M. We use the following symbols:

• a single individual name a that identifies the first tape cell of the first con-
figuration;

10



• a single rigid role name r to represent “going to the next tape cell in the
same configuration” and “going from the last tape cell in a configuration to
the first cell in a successor configuration”;

• the elements of Q and Γ are viewed as rigid concept names;

• rigid concept names A0, . . . , Ak−1 are the bits of a binary counter that num-
bers the tape cells in each configuration;

• auxiliary rigid concept name I and H; I indicates the initial configuration
and H indicates that, in the current configuration, the head is to the left of
the current tape cell;

• auxiliary rigid concept names Tq,σ,M for all q ∈ Q, σ ∈ Γ, and M ∈ {L,R};
intuitively, Tq,σ,M is true if, in the current configuration, the head is on the
left neighboring cell and the machine executes transition (q, σ,M);

• for each element of Q and Γ, a non-rigid concept name which is distinguished
from its rigid version by a prime;

• (non-rigid) concept names A′
0, . . . , A

′
k−1 to realize an orthogonal counter (in

the sense that it counts along the temporal dimension instead of along r).

Before giving the formal reduction, let us explain the underlying intuition. As said
above, a single configuration is described as a sequence of r-successors of length 2k

of the individual representing its first tape cell. The tape cells of a configuration
are numbered from 0 to 2k − 1, using the counter realized through the concept
names A0, . . . , Ak−1. We denote the concept that expresses that the counter has
value i, 0 ≤ i < 2k, by (CA = i); i.e., (CA = 0) denotes ¬A0 u ¬A1 u . . . u ¬Ak−1,
(CA = 1) denotes A0 u ¬A1 u . . . u ¬Ak−1, ..., (CA = 2k − 1) denotes A0 u A1 u
. . . u Ak−1.

The r-successor of the last tape cell of a given configuration represents the
first tape cell of a successor configuration of this configuration. It obtains the
number 0, i.e., the counter realized by A0, . . . , Ak−1 is reset to 0, which simply
means that we count modulo 2k. Since we have an alternating Turing machine,
it is not enough to consider one sequence of configurations. For a configuration
with a universal state, we must consider all successor configurations. Thus, we do
not consider a single sequence of r-successors, but rather a tree of r-successors.

The main problem to solve when defining the reduction is to ensure that each
configuration following a given configuration in the tree of r-successors is actually
a successor configuration, i.e., tape cells that are not immediately to the left
or right of the head remain unchanged, and the other tape cells are changed
according to the transition relation. For the first type of cells this means that,
given a cell numbered i in the current configuration, the next cell with the same
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number should carry the same symbol. However, we cannot remember the value
i of the A-counter when going down along the sequence of r-successors since this
counter is incremented (modulo 2k) when going to an r-successor. This is where
the temporal dimension comes into play. Here, we realize an A′-counter, using the
(non-rigid) concept names A′

0, . . . , A
′
k−1, whose value does not change along the

r-dimension, but is incremented (modulo 2k) along the temporal dimension. This
additional counter, together with the non-rigid copies of the symbols from Q and
Γ, can be used to transfer a symbol from a tape cell in a given configuration to
the corresponding tape cell in a successor configuration (see below).

In the following, we use φ → ψ as an abbreviation for ¬φ ∨ ψ, C ⇒ D as an
abbreviation for ¬CtD, and C ⇔ D as an abbreviation for (C ⇒ D)u(D ⇒ C).

The reduction formula φM,w is the conjunction of the following formulae:
We start by setting up I, H, r, and the A-counter:

• I behaves as described, i.e., it marks the initial configuration, whose first
tape cell is represented by the individual a:

2 (a : I)

2
(
I u ¬(CA = 2k − 1) v ∀r.I

)
• H behaves as described, i.e., it marks the tape cells that are to the right of

the head, where the head position is indicated by having a state concept at
this cell:

2

(
(H tt

q∈Q
q) u ¬(CA = 2k − 1) v ∀r.H

)
• there is always an r-successor, except when we meet the head in a halting

configuration:

2 (¬(qa t qr) v ∃r.>)

• the counter A-counter realized by A0, . . . , Ak−1 has value 0 at a, and it is
incremented along r (modulo 2k):

2 (a : (CA = 0))

2

(
> vu

i<k

(u
j<i

Aj
)
⇒
(
(Ai ⇒ ∀r.¬Ai) u (¬Ai ⇒ ∀r.Ai)

))
2

(
> vu

i<k

(t
j<i
¬Aj

)
⇒
(
(Ai ⇒ ∀r.Ai) u (¬Ai ⇒ ∀r.¬Ai)

))
Some properties of runs of ATMs can be formalized without using the temporal
dimension:
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• The initial configuration is the one induced by the input w = σ0 . . . σk−1:

2 (a : ∀ri.σi) for i < k

2
(
a : ∀rk.B

)
2
(
I uB u ¬(CA = 2k − 1) v ∀r.B

)
• The computation starts on the left-most tape cell of this initial configuration

in state q0:

2 (a : q0)

• Each tape cell is labelled with exactly one symbol and at most one state:

2

(
> vt

σ∈Γ
(σ u ¬ u

σ′∈Γ\{σ}
¬σ′)

)
2

(
> v u

q,q′∈Q,q 6=q′
¬(q u q′)

)

• There is only one head position per configuration:

2

(
H vu

q∈Q
¬q
)

It remains to implement the transitions and to say that symbols not under the head
do not change in successor configurations. Here we need the temporal dimension.
We start with setting up the A′-counter:

• for every value of the A′-counter realized using the (non-rigid) concept names
A′

0, . . . , A
′
k−1, there is a time point at which a has that value:

2

(∧
i<k

(∧
j<i a : A′

j

)
→
(
(a : A′

i → Xa : ¬A′
i) ∧ (a : ¬A′

i → Xa : A′
i)
))

2

(∧
i<k

(∨
j<i a : ¬A′

j

)
→
(
(a : A′

i → Xa : A′
i) ∧ (a : ¬A′

i → Xa : ¬A′
i)
))

This is basically the same formula as for the A-counter, but the values of
the A′-counter are considered for the fixed initial individual a, and they are
incremented along the temporal dimension.

• The value of the A′-counter is preserved along r, i.e., for all i, 0 ≤ i < k, we
require:

2 (A′
i v ∀r.A′

i)

2 (¬A′
i v ∀r.¬A′

i)

13



In summary, we have associated one “temporal slice” with each counter value of
the second counter. In the following, we use (CA = CA′) to denote the concept
(A0 ⇔ A′

0) u . . . u (Ak−1 ⇔ A′
k−1), which states that the value of the A-counter

coincides with the value of the A′-counter. Accordingly, (CA = CA′ + 1 mod 2k)
expresses that the value of the A-counter is equal to the value of the A′-counter
plus 1 (modulo 2k). This can be expressed by a recasting of the incrementation
concept given already twice above:

(CA = CA′ + 1 mod 2k) := u
i<k

(u
j<i

A′
j

)
⇒
(
(A′

i ⇒ ¬Ai) u (¬A′
i ⇒ Ai)

)
u

u
i<k

(t
j<i
¬A′

j

)
⇒
(
(A′

i ⇒ Ai) u (¬A′
i ⇒ ¬Ai)

)
The concept (CA = CA′ + 2 mod 2k), which expresses that the value of the A-
counter is equal to the value of the A′-counter plus 2 (modulo 2k), can be defined
similarly, using an auxiliary set A′′

0, . . . , A
′′
k−1 of non-rigid concept names.

• We can now say that symbols not under the head do not change:

2

(
σ uu

q∈Q
¬q u (CA = CA′) v ∀r.σ′

)
for all σ ∈ Γ

2 (σ′ u ¬(CA = CA′) v ∀r.σ′) for all σ ∈ Γ

2 (σ′ u (CA = CA′) v σ) for all σ ∈ Γ

• Transitions are implemented in a similar way. The fact that we have an al-
ternating Turing is taken into account by enforcing a branching on universal
transitions:

2

(
q u σ v t

(p,ν,M)∈Θ(q,σ)
∀r.Tp,ν,M

)
for all q ∈ Q∃, σ ∈ Σ

2

(
q u σ v u

(p,ν,M)∈Θ(q,σ)
∃r.Tp,ν,M

)
for all q ∈ Q∀, σ ∈ Σ

2
(
Tq,σ,M u (CA = CA′ + 1 mod 2k) v ∀r.σ′

)
for all σ ∈ Γ, q ∈ Q,
M ∈ {L,R}

2 (Tq,σ,R u (CA = CA′) v ∀r.q′) for all σ ∈ Γ, q ∈ Q

2
(
Tq,σ,L u (CA = CA′ + 2 mod 2k) v ∀r.q′

)
for all σ ∈ Γ, q ∈ Q

2 (q′ u ¬(CA = CA′) v ∀r.q′) for all q ∈ Q

2 (q′ u (CA = CA′) v q) for all q ∈ Q

It remains to encode the fact that the input w = σ0 . . . σk−1 is accepted. Since any
computation of M is terminating, and halting configurations (i.e., configurations
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with state qa or qr) are the only ones without successor configurations, this can
be done as follows:

• We can express the fact that the initial configuration for input w is accepting
by disallowing the state qr to occur:

2 (> v ¬qr)

This finishes the definition of the ALC-LTL formula φM,w, which is the conjunc-
tion of the formulae introduced above. It is easy to see that the size of φM,w is
polynomial in k, and that φM,w is satisfiable w.r.t. rigid names iff w ∈ L(M). ❏

Next, we show that the complexity lower bound provided by the above lemma
is tight.

Lemma 4.3. Satisfiability in ALC-LTL w.r.t. rigid names is in 2-ExpTime.

Proof. Let φ be an ALC-LTL formula. We build its propositional abstraction
φ̂ by replacing each ALC-axiom by a propositional variable such that there is
a 1–1 relationship between the ALC-axioms α1, . . . , αn occurring in φ and the
propositional variables p1, . . . , pn used for the abstraction. We assume in the
following that pi was used to replace αi (i = 1, . . . , n).

Consider a set S ⊆ P({p1, . . . , pn}), i.e., a set of subsets of {p1, . . . , pn}. Such
a set induces the following (propositional) LTL formula:

φ̂S := φ̂ ∧2

(∨
X∈S

(∧
p∈X

p ∧
∧
p6∈X

¬p

))

If φ is satisfiable in an ALC-LTL structure I = (Ii)i=0,1,..., then there is an S ⊆
P({p1, . . . , pn}) such that φ̂S is satisfiable in a propositional LTL structure. In
fact, for each ALC-interpretation Ii of I, we define the set

Xi := {pj | 1 ≤ j ≤ n and Ii satisfies αj},

and then take S = {Xi | i = 0, 1, . . .}. The fact that I satisfies φ implies that

its propositional abstraction satisfies φ̂S , where the propositional abstraction Î =
(wi)i=0,1,... of I is defined such that world wi makes variable pj true iff Ii satisfies αj.
However, guessing such a set S ⊆ P({p1, . . . , pn}) and then testing whether the

induced propositional LTL formula φ̂S is satisfiable is not sufficient for checking
satisfiability w.r.t. rigid names of the ALC-LTL formula φ. We must also check
whether the guessed set S can indeed be induced by some ALC-LTL structure
that respects the rigid concept and role names.

15



To this purpose, assume that a set S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) is
given. For every i, 1 ≤ i ≤ k, and every flexible concept name A (flexible role
name r) occurring in α1, . . . , αn, we introduce a copy A(i) (r(i)). We call A(i) (r(i))

the ith copy of A (r). The ALC-axiom α
(i)
j is obtained from αj by replacing every

occurrence of a flexible name by its ith copy. The sets Xi (1 ≤ i ≤ k) induce the
following Boolean ALC-knowledge bases:

Bi :=
∧
pj∈Xi

α
(i)
j ∧

∧
pj 6∈Xi

¬α(i)
j

Claim. The ALC-LTL formula φ is satisfiable w.r.t. rigid names iff there is a set
S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) such that the propositional LTL formula φ̂S
is satisfiable and the Boolean ALC-knowledge base B :=

∧
1≤i≤k Bi is consistent.

For the “only if” direction, recall that we have already seen how an ALC-LTL
structure I = (Iι)ι=0,1,... satisfying φ can be used to define a set S ⊆ P({p1, . . . , pn})
such that φ̂S is satisfiable. Let S = {X1, . . . , Xk}. For each ι = 0, 1, . . . there is
an index iι ∈ {1, . . . , k} such that Iι induces the set Xiι , i.e.,

Xiι = {pj | 1 ≤ j ≤ n and Iι satisfies αj},

and, conversely, for each i ∈ {1, . . . , k} there is an index ι ∈ {0, 1, 2, . . .} such
that i = iι. Let ι1, . . . , ιk ∈ {0, 1, 2, . . .} be such that iι1 = 1, . . . , iιk = k. The
ALC-interpretation Ji is obtained from Iιi by interpreting the ith copy of each
flexible name like the original flexible name, and by forgetting about the inter-
pretations of the flexible names. By our construction of Ji and our definition of
the Boolean ALC-knowledge base Bi, we have that Ji is a model of Bi. Recall
that the interpretations Iι1 , . . . , Iιk (and thus also J1, . . . ,Jk) all have the same
domain. In addition, the interpretations of the rigid names coincide in Iι1 , . . . , Iιk
(and thus also in J1, . . . ,Jk) and the flexible symbols have been renamed. Thus,
the union J of J1, . . . ,Jk is a well-defined ALC-interpretation, and it is easy to
see that it is a model of B =

∧
1≤i≤k Bi.

To show the “if” direction, assume that there is a set S = {X1, . . . , Xk} ⊆
P({p1, . . . , pn}) such that φ̂S is satisfiable and B :=

∧
1≤i≤k Bi is consistent. Let

Î = (wι)ι=0,1,... be a propositional LTL structure satisfying φ̂S , and let J be an

ALC-interpretation satisfying B. By the definition of φ̂S , for every world wι there
is exactly one index iι ∈ {1, . . . , k} such that wι satisfies∧

p∈Xiι

p ∧
∧
p6∈Xiι

¬p.

For i ∈ {1, . . . , k}, we use the ALC-interpretation J satisfying B to define an
ALC-interpretation Ji as follows: Ji interprets the rigid names like J , and it
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interprets the flexible names just as J interprets the ith copies of them. Note
that the interpretations Ji are over the same domain and respect the rigid symbols,
i.e., they interpret them identically. We can now define an ALC-LTL structure
respecting rigid symbols and satisfying φ as follows: I := (Iι)ι=0,1,... where Iι :=
Jiι .

This completes the proof of the claim. It remains to show that the claim
provides us with a decision procedure for satisfiability in ALC-LTL w.r.t. rigid
names that runs in deterministic double-exponential time.

First, note that there are 22n
many subsets S of P({p1, . . . , pn}) to be tested,

where n is of course linearly bounded by the size of φ. For each of these subsets S =
{X1, . . . , Xk}, whose cardinality k is bounded by 2n, we need to check satisfiability

of φ̂S and consistency of B =
∧

1≤i≤k Bi.
The size of φ̂S is at most exponential in the size of φ, and the complexity of the

satisfiability problem in propositional LTL is in PSpace, and thus in particular in
ExpTime. Consequently, satisfiability of φ̂S can be tested in double-exponential
time in the size of φ.

The Boolean ALC-knowledge base B is a conjunction of k ≤ 2n Boolean ALC-
knowledge bases Bi, where the size of each Bi is polynomial in the size of φ. The
consistency problem for Boolean ALC-knowledge base is ExpTime-complete (see,
e.g., Theorem 2.27 in [12]). Consequently, consistency of B can also be tested in
double-exponential time in the size of the input formula φ.

Overall, we thus have double-exponentially many tests, where each test takes
double-exponential time. This provides us with a double-exponential bound for
testing satisfiability in ALC-LTL w.r.t. rigid names based on the above claim. ❏

This 2-ExpTime upper bound obviously also applies to the restricted case
where only global GCIs are available. Looking back at the proof of 2-ExpTime-
hardness (Lemma 4.2), it is easy to see that all the GCIs used there are actu-
ally global. To be more precise, the formula φM,w constructed in the proof of
Lemma 4.2 is of the form (

∧
i 2αi) ∧ ψ, where (i) the αi are GCIs or assertions,

and (ii) ψ is an ALC-LTL formula that does not contain GCIs. Since (
∧
i 2αi)∧ψ

is equivalent to 2 (
∧
i αi)∧ψ, this shows that satisfiability in ALC-LTL|gGCI w.r.t.

rigid names is also 2-ExpTime-hard.

Corollary 4.4. Satisfiability in ALC-LTL|gGCI w.r.t. rigid names is 2-ExpTime-
complete.

5 Reasoning without rigid names

In this section, we consider the case where we have no rigid names at all. As men-
tioned in the introduction, this case is also treated in [12], where it is shown that
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an ExpTime upper bound for the satisfiability problem follows from more general
results proved in Chapter 11 of [12] (see the remark following Theorem 14.15 on
page 605 of [12]). For the sake of completeness, we give a direct proof of this
upper bound below. To this purpose, we will show that, in this simple case, the
claim shown in the proof of Lemma 4.3 implies that satisfiability can be decided
in deterministic exponential time.

If we are interested in satisfiability without rigid names, then all role and con-
cept names are assumed to be flexible. Consequently, the BooleanALC-knowledge
bases Bi defined in the proof of Lemma 4.3 do not share concept or role names,
and can thus be tested for consistency separately.

Lemma 5.1. Let B1, . . . ,Bk be Boolean ALC-knowledge bases over disjoint sets of
names. Then B1 ∧ . . .∧Bk is consistent iff, for each i = 1, . . . , k, Bi is consistent.

Proof. Obviously, consistency of B1 ∧ . . . ∧ Bk implies consistency of Bi for
all i, 1 ≤ i ≤ k. Conversely, if all the knowledge bases Bi (i = 1, . . . , k) are
consistent, then each of them has a model with a countably infinite domain. This
means that we can assume without loss of generality that these models have the
same domain. In addition, since these models obey the UNA, we can also assume
that they interpret the individual names in the same way. Putting together the
interpretations of all concept and role names from the separate models yields an
interpretation that is a model of all the knowledge bases B1, . . . ,Bk, and thus a
model of B1 ∧ . . . ∧ Bk. ❏

Looking back at the proof of Lemma 4.3, we see that k is exponential in the
size of the input formula φ, and that each Boolean ALC-knowledge bases Bi has
a size that is polynomial in the size of φ. Thus, the consistency test for each Bi
takes time exponential in the size of φ. Consequently, testing all the knowledge
bases B1, . . . ,Bk for consistency can be achieved in exponential time.

However, if we simply apply the decision procedure suggested by the claim
from the proof of Lemma 4.3, we do not obtain an ExpTime-procedure. In fact,
guessing a subset S ⊆ P({p1, . . . , pn}) would require non-deterministic exponen-
tial time (since we have exponentially many sets to choose from), and testing the

propositional LTL formula φ̂S for satisfiability would require exponential space
(since the size of φ̂S can be exponential in the size of φ, and satisfiability in
propositional LTL is PSpace-complete).

The first problem can easily be avoided. Instead of guessing an appropriate
set S, we compute the maximal one: let Ŝ consist of all sets X ⊆ {p1, . . . , pn}
such that the Boolean ALC-knowledge base

BX :=
∧
pj∈X

αj ∧
∧
pj 6∈X

¬αj

is consistent. Note that we need not rename flexible names here since the knowl-
edge bases BX are considered separately.
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Lemma 5.2. The ALC-LTL formula φ is satisfiable iff the propositional LTL
formula φ̂ bS is satisfiable.

Proof. The “if” direction is an immediate consequence of Lemma 5.1, the
claim shown in the proof of Lemma 4.3, and the definition of Ŝ.

For the “only if” direction, assume that φ is satisfiable. By the claim shown
in the proof of Lemma 4.3, this implies that there is a set S = {X1, . . . , Xk} ⊆
P({p1, . . . , pn}) such that φ̂S is satisfiable and

∧
1≤i≤k Bi is consistent. Consistency

of
∧

1≤i≤k Bi implies that the knowledge bases BXi
(i = 1, . . . , k) are consistent,

and thus we have S ⊆ Ŝ. Consequently, satisfiability of φ̂S implies satisfiability
of φ̂ bS . ❏

The set Ŝ can be computed in time exponential in the size of φ. In fact,
there are exponentially many sets X ⊆ {p1, . . . , pn} to be considered, and testing
consistency of BX for each of these sets can be done in exponential time.

This leaves us with the problem of testing satisfiability of the propositional
LTL formula

φ̂ bS = φ̂ ∧2

∨
X∈ bS

(∧
p∈X

p ∧
∧
p6∈X

¬p

)
in time exponential in the size of φ. Since the size of φ̂ is bounded by the size
of φ, it is sufficient to give an exponential upper bound in the size of φ̂. To this
purpose, note that the only effect of the box-formula in φ̂ bS is to restrict the worlds

w in a propositional LTL structure satisfying φ̂ to being induced by one of the
elements of Ŝ. Given a world w in a propositional LTL structure, we say that it
is induced by a set X ⊆ {p1, . . . , pn} (written w = wX) iff we have pi ∈ X iff w
makes pi true (i = 1, . . . , n).

Lemma 5.3. The propositional LTL structure Î = (wι)ι=0,1,... satisfies φ̂ bS iff it

satisfies φ̂ and for every world wι of Î there is a set X ∈ Ŝ such that wι = wX .

One way of deciding satisfiability of a propositional LTL formula φ̂ is to con-
struct a Büchi automaton Abφ that accepts the propositional LTL structures sat-

isfying φ̂. To be more precise, let Σ := P({p1, . . . , pn}). Then the propositional

LTL structure Î = (wι)ι=0,1,... can be represented by an infinite word X0X1 . . . over
Σ, where Xι is such that wι = wXι . The Büchi automaton Abφ is built such that
it accepts exactly those infinite words over Σ that represent propositional LTL
structures satisfying φ̂. Consequently, φ̂ is satisfiable iff the language accepted by
Abφ is non-empty. The size of Abφ is exponential in the size of φ̂, and the emptiness
test for Büchi automata is polynomial in the size of the automaton.

Given such an automaton Abφ for φ̂ we can easily modify it into one accepting

exactly the words representing propositional LTL structures satisfying φ̂ bS . In fact,
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we just need to remove all transitions that use a letter from Σ \ Ŝ. Obviously,
this modification can be done in time polynomial in the size of Abφ, and thus in

time exponential in the size of φ̂. The size of the resulting automaton is obviously
still only exponential in the size of φ̂, and thus its emptiness can be tested in time
exponential in the size of φ̂. This yields the desired procedure that can check
satisfiability of φ̂ bS in time exponential in the size of φ̂. Overall, we have thus
proved the ExpTime upper bound stated in the following theorem.

Theorem 5.4. Satisfiability in ALC-LTL without rigid names is an ExpTime-
complete problem.

Proof. We have already shown that the problem is in ExpTime. The hard-
ness part of the theorem follows from the well-known fact that, in ALC, satisfiabil-
ity of a concept C w.r.t. a single GCI C1 v C2 is ExpTime-complete [17]. Obvi-
ously, C is satisfiable w.r.t. C1 v C2 iff the ALC-LTL formula a : C ∧2(C1 v C2)
is satisfiable. ❏

Clearly, the ExpTime upper bound also holds for the restricted case with
global GCIs. In addition, the formula a : C ∧ 2(C1 v C2) constructed in the
hardness part of the proof of Theorem 5.4 actually uses only global GCIs.

Corollary 5.5. Satisfiability in ALC-LTL|gGCI without rigid names is ExpTime-
complete.

6 Reasoning with rigid concepts

In this section, we consider the case where rigid concept names are allowed. First,
note that, in contrast to temporal DLs where temporal operator may occur inside
of concept descriptions, rigid concept names cannot easily be expressed within the
logic without rigid concept names. In fact, the GCIs A v 2A and ¬A v 2¬A
express that A must be interpreted in a rigid way. However, they are not allowed
by the syntax of ALC-LTL since the box is applied directly to a concept, and not
to an axiom.

We will show below that, for ALC-LTL, the presence of rigid concept names
indeed increases the complexity of the satisfiability problem, unless GCIs are
restricted to being global. First, we treat the case of arbitrary GCIs, and then
the special case of global GCIs.

Theorem 6.1. Satisfiability in ALC-LTL w.r.t. rigid concepts is NExpTime-
complete.

First, we show the lower bound.

Lemma 6.2. Satisfiability in ALC-LTL w.r.t. rigid concepts is NExpTime-hard.
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Proof. The proof is by reduction of a bounded version of the domino problem.
A domino system is a triple D = (D,H, V ), where D is a finite set of domino types
and H, V ⊆ D×D are the horizontal and vertical matching conditions. Let D be
a domino system and I = d0, . . . , dn−1 ∈ D∗ an initial condition, i.e. a sequence of
domino types of length n > 0. A mapping τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 −
1} → D is a 2n+1-bounded solution of D respecting the initial condition I iff, for
all x, y < 2n+1, the following holds:

• if τ(x, y) = d and τ(x⊕2n+1 1, y) = d′, then (d, d′) ∈ H;

• if τ(x, y) = d and τ(x, y ⊕2n+1 1) = d′, then (d, d′) ∈ V ;

• τ(i, 0) = di for i < n;

where ⊕2n+1 denotes addition modulo 2n+1.
It is well-known [9, 22] that there is a domino system D = (D,H, V ) such

that the following problem is NExpTime-hard: given an initial condition I =
d0, . . . , dn−1 ∈ D∗, does D have a 2n+1-bounded solution respecting I or not?

We show that this problem can be reduced in polynomial time to satisfiability
in ALC-LTL w.r.t. rigid concepts. Interestingly, in our reduction we do not use
any role names. All we need are the following concept and individual names:

• a single individual name a;

• the elements of D as rigid concept names, and a primed version of them as
non-rigid concept names;

• rigid concept names X0, . . . , Xn and Y0, . . . , Yn that are used to realize two
binary counters modulo 2n+1, where the X-counter expresses the horizontal
and the Y -counter the vertical position of a domino;

• non-rigid concept names Z0, . . . , Z2n+1 that are used to realize a binary
counter modulo 22n+2, whose rôle will be explained below;

• an auxiliary non-rigid concept name N .

Intuitively, the first n+1 bits of the Z-counter are used to represent 2n+1 hor-
izontal components 0 ≤ x < 2n+1, and the second n+1 bits of the Z-counter
are used to represent 2n+1 vertical components 0 ≤ y < 2n+1. By counting with
the Z-counter up to 22n+2 in the temporal dimension, we ensure that every posi-
tion (x, y) ∈ {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} is represented in some world.
The counting is done using the individual name a, i.e., we enforce that, for every
possible value of the Z-counter, there is a world where a belongs to the con-
cepts from the corresponding subset of {Z0, . . . , Z2n+1}. The rigid concept names
X0, . . . , Xn and Y0, . . . , Yn are then used to ensure that, in every world, there
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are individuals belonging to subsets of these concepts such that every position
(x, y) ∈ {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} is realized in this world. Appropri-
ate GCIs are used to ensure that (i) every position represented this way carries
exactly one domino type; (ii) the horizontal and vertical matching conditions are
respected; and (iii) the initial condition is satisfied.

Recall that we use φ → ψ as an abbreviation for ¬φ ∨ ψ, C ⇒ D as an
abbreviation for ¬CtD, and C ⇔ D as an abbreviation for (C ⇒ D)u(D ⇒ C).

The reduction formula φD,I is the conjunction of the following formulae:

• for every possible value of the Z-counter, there is a world where a belongs
to the concepts from the corresponding subset of {Z0, . . . , Z2n+1}:

2
(∧

i≤2n+1

(∧
j<i a : Zj

)
→
(
(a : Zi → X(a : ¬Zi)) ∧ (a : ¬Zi → X(a : Zi))

)
∧∧

i≤2n+1

(∨
j<i a : ¬Zj

)
→
(
(a : Zi → X(a : Zi)) ∧ (a : ¬Zi → X(a : ¬Zi))

) )
• the value of the Z-counter is shared by all individuals belonging to the

current world: for all i ≤ 2n+ 1

2 ((> v Zi) ∨ (> v ¬Zi))

• in every world, there is at least one individual for which the combined value
of the X- and the Y -counter corresponds to the value of the Z-counter for
a (and thus every individual) in this world:

2
(
¬(> v ¬N) ∧∧

0≤i≤n(N u Zi v Xi) ∧
∧
n+1≤i≤2n+1(N u Zi v Yi−(n+1)) ∧∧

0≤i≤n(N u ¬Zi v ¬Xi) ∧
∧
n+1≤i≤2n+1(N u ¬Zi v ¬Yi−(n+1))

)
Since the concept names Xi, Yi are rigid, this actually ensures that in every world
every possible combination of values of the X- and Y -counters is realized by some
individual. For a given such combination, the corresponding individual obviously
must represent the same value combination in every world. Thus, for every posi-
tion from {0, . . . , 2n+1−1}×{0, . . . , 2n+1−1} we have a world representing it with
the help of the Z-counter, but we also have an individual representing it globally
(i.e., in every world) with the help of the X- and Y -counters.

Having represented all positions from {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} in
this way, we can now start to enforce an admissible tiling of these positions with
domino types (i.e., a solution of the domino problem). As with the positions, we
again have two copies of the tiling. One of them uses the primed concept names
d′ for d ∈ D to tile the positions represented by the worlds with the help of the
Z-counter. The other one uses the unprimed concept names d ∈ D to tile the
positions represented by the individuals with the help of the X- and Y -counters.
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• every world gets exactly one domino type, expressed using the primed (and
thus flexible) variant of the corresponding concept names:

2

(∨
d∈D

(> v d′) ∧
∧

d,e∈D,d 6=e

(> v ¬(d′ u e′))

)

• the domino type of a given world is transfered globally to the individuals
representing the same position as the world:

2

(
u

0≤i≤n
(Zi ⇔ Xi) u u

n+1≤i≤2n+1
(Zi ⇔ Yi−(n+1)) v u

d∈D
(d⇔ d′)

)
Since the concept names d for d ∈ D are rigid, this type is then associated with
the individual in every world. Since every world has exactly one “primed” domino
type (which is shared by all its individuals), every individual also has exactly one
“unprimed” domino type: the one of the world representing the same position.

The two versions of the tiling can now be used to enforce the horizontal and
vertical matching conditions. For example, the fact that the individual represent-
ing position (x, y + 1) is present in the world representing position (x, y) can be
used to formulate the vertical matching condition.

We use the notation CX = Ch
Z (CY = Cv

Z) to express that the value of the
X-counter agrees with the value represented by the first n+1 bits of the Z-counter
(the value of the Y -counter agrees with the value represented by the second n+ 1
bits of the Z-counter). Accordingly, (CX = Ch

Z + 1 mod 2n+1) expresses that the
value of the X-counter is equal to the value represented by the first n + 1 bits
of the Z-counter plus 1 (modulo 2n+1). The intended meaning of the notation
(CY = Cv

Z +1 mod 2n+1) should now be obvious. Details on how this can actually
be expressed using concept descriptions are given in the proof of Lemma 4.2.

• the horizontal and vertical matching conditions are enforced as follows:

2
(
(CX = Ch

Z) u (CY = Cv
Z + 1 mod 2n+1) v t

(d,e)∈V
(d′ u e)

)
2
(
(CY = Cv

Z) u (CX = Ch
Z + 1 mod 2n+1) v t

(d,e)∈H
(d′ u e)

)
For example, the first line looks at an individual that represents position (x, y+1)
in a world that represents position (x, y), and enforces that the domino type e
associated with the individual (expressed by the rigid concept name e) is vertically
compatible with the domino type d associated with the world (expressed by the
flexible concept name d′).

It remains to represent the initial condition I = d0, . . . , dn−1. For this purpose,
we employ the notation Cv

Z = 0 and Ch
Z = i for 0 = 1, . . . , n− 1, with the obvious

meaning and the obvious representation by concept descriptions.
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• for all i = 0, . . . , n− 1:

2
(
(Cv

Z = 0) u (Ch
Z = i) v d′i

)
This finishes the definition of the ALC-LTL formula φD,I , which is the conjunc-
tion of the formulae introduced above. It is easy to see that the size of φD,I is
polynomial in n, and that φD,I is satisfiable w.r.t. rigid concepts iff D has a 2n+1-
bounded solution respecting I. ❏

Next, we show that the complexity lower bound provided by the above lemma
is tight.

Lemma 6.3. Satisfiability in ALC-LTL w.r.t. rigid concepts is in NExpTime.

Proof. We want to reuse the claim shown in the proof of Lemma 4.3:

Fact. The ALC-LTL formula φ is satisfiable w.r.t. rigid names iff there is a set
S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) such that the propositional LTL formula φ̂S
is satisfiable and the Boolean ALC-knowledge base B :=

∧
1≤i≤k Bi is consistent.

If we apply this claim in the case where only concept names can be rigid, then
we know that the Boolean ALC-knowledge bases Bi are built over disjoint sets of
role names. The only shared names are the rigid concept names. Assume we have
guessed a set S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}), which can clearly be done

within NExpTime. The formula φ̂S is itself of size exponential in the size of φ.
However, we can use the same approach as in the proof of Theorem 5.4 to show
that its satisfiability can actually be tested in time exponential in the size of φ.

Instead of testing the consistency of B =
∧

1≤i≤k Bi directly (which would
provide us with a double-exponential time bound), we try to reduce this test to k
separate consistency tests, each requiring time exponential in the size of φ. Before
we can do this, we need another guessing step. Assume that A1, . . . , Ar are all
the rigid concept names occurring in φ, and that a1, . . . , as are all the individual
names occurring in φ. We guess a set T ⊆ P({A1, . . . , Ar}) and a mapping
t : {a1, . . . , as} → T . Again, this guess can clearly be done within NExpTime.

Given T and t, we extend the knowledge bases Bi to knowledge bases B̂i(T , t)
as follows. For Y ⊆ {A1, . . . , Ar}, let CY be the concept description CY :=

u
A∈Y

A u u
A6∈Y

¬A. We define

B̂i(T , t) := Bi ∧
∧

t(a)=Y

a : CY ∧ > v t
Y ∈T

CY ∧
∧
Y ∈T

¬(> v ¬CY )
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Claim. The Boolean ALC-knowledge base B :=
∧

1≤i≤k Bi is consistent iff there
is a set T ⊆ P({A1, . . . , Ar}) and a mapping t : {a1, . . . , as} → T such that the

Boolean knowledge bases B̂i(T , t) for i = 1, . . . , k are separately consistent.

For the “only if” direction, assume that B =
∧

1≤i≤k Bi has a model I = (∆, ·I).
Let T consist of those sets Y ⊆ {A1, . . . , Ar} such that there is a d ∈ ∆ with
d ∈ (CY )I , and let t be the mapping satisfying t(a) = Y iff aI ∈ (CY )I . It is

easy to see that, with this choice of T and t, all the knowledge bases B̂i(T , t) for
i = 1, . . . , k have I as model.

To show the “if” direction, assume that there is a set T ⊆ P({A1, . . . , Ar})
and a mapping t : {a1, . . . , as} → T such that the Boolean knowledge bases

B̂i(T , t) for i = 1, . . . , k have models Ii = (∆i, ·Ii). We can assume without loss
of generality6 that

• the domains ∆i are countably infinite, and

• in each model Ii, the sets Y ∈ T are realized by countably infinitely many
individuals, i.e., there are countably infinitely many elements d ∈ ∆i such
that d ∈ (CY )I .

Consequently, the domains ∆i are partitioned into the countably infinite sets
∆i(Y ) (for Y ∈ T ), which are defined as follows:

∆i(Y ) := {d ∈ ∆i | d ∈ (CY )Ii}

In addition, for each individual name a ∈ {a1, . . . , as} we have

aIi ∈ ∆i(t(a))

We are now ready to define the model I = (∆, ·I) of B. As the domain of I we
take the domain of I1, i.e., ∆ := ∆1. Accordingly, we define ∆(Y ) := ∆1(Y ) for all
Y ∈ T . Because of the properties stated above, there exist bijections πi : ∆i → ∆
such that

• the restriction of πi to ∆i(Y ) is a bijection between ∆i(Y ) and ∆(Y );

• πi respects individual names, i.e., πi(a
Ii) = aI1 holds for all a ∈ {a1, . . . , as}.

(Note that we have the unique name assumption for individual names.)

We us these bijections to define the interpretation function ·I of I as follows:

6This is an easy consequence of the fact that Boolean ALC-knowledge bases always have
a finite model and that the countably infinite disjoint union of a model of a Boolean ALC-
knowledge base is again a model of this knowledge base.
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• If A is a flexible concept name, then B contains its copies A(i) for i = 1, . . . , k.
Their interpretation is defined as follows:

(A(i))I := {π(d) | d ∈ AIi}.

• All role names r are flexible, and B contains their copies r(i) for i = 1, . . . , k.
Their interpretation is defined as follows:

(r(i))I := {(π(d), π(e)) | (d, e) ∈ rIi}.

• If A is a rigid concept names, then we define

AI := AI1

• If a is an individual name, then we define

aI := aI1

To prove the claim, it remains to show that I is a model of all the knowledge
bases Bi (i = 1, . . . , k). This is an immediate consequence of the fact that πi is
an isomorphism between Ii and I w.r.t. the concept and role names occurring in
Bi. The isomorphism condition is satisfied for flexible concepts and roles by our
definition of ·I , and for individual names by our assumptions on πi. Now, let A
be a rigid concept name. We must show that d ∈ AIi iff πi(d) ∈ AI holds for
all d ∈ ∆i. Since ∆i is partitioned into the sets ∆i(Y ) for Y ∈ T , we know that
there is a Y ∈ T such that d ∈ ∆i(Y ), i.e., d ∈ (CY )Ii . In addition, we know that
πi(d) ∈ ∆(Y ), i.e., πi(d) ∈ (CY )I1 = (CY )I . This implies that d ∈ AIi iff A ∈ Y
iff d ∈ AI , which finishes the proof that πi is an isomorphism between Ii and I.
Consequently, I is a model of B =

∧
1≤i≤k Bi, which in turn finishes the proof of

the claim.

To finish the proof of the lemma, we show that consistency of the knowledge
bases

B̂i(T , t) = Bi ∧
∧

t(a)=Y

a : CY ∧ > v t
Y ∈T

CY ∧
∧
Y ∈T

¬(> v ¬CY )

can be decided in time exponential in the size of the input formula φ. Note that
this is not trivial. In fact, while the size of Bi ∧

∧
t(a)=Y a : CY is polynomial in

the size of φ, the cardinality of T , and thus the size of

> v t
Y ∈T

CY ∧
∧
Y ∈T

¬(> v ¬CY )
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can be exponential in the size of φ. Decidability of the consistency of B̂i(T , t) in
time exponential in the size of φ is, however, an immediate consequence of the
next lemma.

Overall, this completes the proof of the current lemma. In fact, after two
NExpTime guesses, all we have to do are k (i.e., exponentially many) ExpTime
consistency tests. ❏

Let B̂ be a Boolean ALC-knowledge base of size n, A1, . . . , Ar concept names
occurring in B̂, and T ⊆ P({A1, . . . , Ar}). Note that this implies that the cardi-
nality of T is at most exponential in n, and the size of each Y ∈ T is linear in n.
We say that an interpretation I = (∆, ·I) is a model of B̂ w.r.t. T if it is a model

of B̂ that additionally satisfies

T = {Y ⊆ {A1, . . . , Ar} | there is d ∈ ∆ such that d ∈ (CY )I}

Accordingly, we say that B̂ is consistent w.r.t. T if B̂ has a model w.r.t. T .
Obviously, B̂ is consistent w.r.t. T iff the knowledge base

B̂ ∧ > v t
Y ∈T

CY ∧
∧
Y ∈T

¬(> v ¬CY )

is consistent.

Lemma 6.4. Let B̂ be a Boolean ALC-knowledge base of size n, A1, . . . , Ar con-
cept names occurring in B̂, and T ⊆ P({A1, . . . , Ar}). Then, consistency of B̂
w.r.t. T can be decided in time exponential in n.

Proof. The proof is an adaptation of the proof of Theorem 2.27 in [12],
which shows that the consistency problem for Boolean ALC-knowledge bases is
in ExpTime. For the sake of completeness, we describe this adaptation in detail.

In [12] it is assumed (without loss of generality) that ALC-concept descriptions
contain only the constructors u, ¬, and ∃, that all GCIs are of the form > v C,
and that Boolean knowledge bases are built from such GCIs and concept and role
assertions using only the connectives ∧ and ¬. In the following, we assume that
B̂ satisfies these restrictions.

Let ind(B̂) be the set of all individual names occurring in B̂, and let con(B̂)

and sub(B̂) respectively denote the closure under negation of the set of all concept

descriptions (including subdescriptions) occurring in B̂ and the set of all subfor-

mulae of B̂. As usual, we identify ¬¬E with E. Thus, the cardinalities of the
three sets introduced above are polynomial in n.

A concept type for B̂ is a set c ⊆ con(B̂) such that

• C uD ∈ c iff C,D ∈ c, for all C uD ∈ con(B̂);

• ¬C ∈ c iff C 6∈ c, for all C ∈ con(B̂).
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A formula type for B̂ is a set f ⊆ sub(B̂) such that

• ψ ∧ χ ∈ f iff ψ, χ ∈ f , for all ψ ∧ χ ∈ con(B̂);

• ¬ψ ∈ f iff ψ 6∈ f , for all ψ ∈ con(B̂).

Obviously, the number of concept and formula types is exponential in n.
A model candidate for B̂ is a triple (S, ι, f) such that S is a set of concept

types for B̂, ι : ind(B̂) → S is a function, and f is a formula type for B̂ such that

(a) B̂ ∈ f ;

(b) a : C ∈ f implies C ∈ ι(a);

(c) (a, b) : r ∈ f implies {¬C | ¬∃r.C ∈ ι(a)} ⊆ ι(b).

The model candidate (S, ι, f) for B̂ is called a quasimodel for B̂ if it additionally
satisfies

(d) for every c ∈ S and every ∃r.C ∈ c, there is d ∈ S such that
{¬D | ¬∃r.D ∈ c} ∪ {C} ⊆ d;

(e) for every c ∈ S and every concept C, if ¬C ∈ c, then > v C 6∈ f ;

(f) for every concept C, if ¬(> v C) ∈ f , then there is a c ∈ S such that C ∈ c;

(g) S is not empty.

In [12] it is shown that B̂ is consistent iff there is a quasimodel for B̂. In order to

characterize consistency of B̂ w.r.t. T , we need to add two additional conditions.
The quasimodel (S, ι, f) for B̂ respects T if it additionally satisfies

(h) for every concept type c ∈ S, there is a set Y ∈ T such that Y = c ∩
{A1, . . . , Ar};

(k) for every set Y ∈ T , there is a concept type c ∈ S such that Y = c ∩
{A1, . . . , Ar}.

A simple adaptation of the proof in [12] can be used to show that B̂ is consistent

w.r.t. T iff there is a quasimodel for B̂ that respects T .
Next, we show that the ExpTime-algorithm for checking the existence of

a quasimodel described in [12] can be adapted to check for the existence of a

quasimodel that respects T . The adapted algorithm works as follows. Given B̂
and T , it enumerates all model candidates (S, ι, f) for B̂ where S is the set of all

concept types for B̂. Let C1, . . . ,CN be these candidates. As shown in [12], there
are at most exponentially many of these candidates and they can be enumerated
in exponential time.

Set i = 1 and consider Ci = (S, ι, f).
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Step 1. Go through all concept types in S. We call a concept type c ∈ S defective
if one of the following three conditions holds:

• (d) is violated for some concept ∃r.C ∈ c;

• (e) is violated for some concept C with ¬C ∈ c;

• (h) is violated.

If we have found a defective concept type c, and this concept type is not
in the range of ι, then we set S := S \ {c} and continue with Step 1 (i.e.,
again go through all concept types in S and check whether one of them is
defective). If we have found a defective concept type c that is in the range
of ι, then we stop considering Ci and go to Step 3. If in some iteration of
Step 1 we find that none of the concept types in S is defective, then we go
to Step 2.

Step 2. Check whether the triple (S ′, ι, f) obtained through the application of
Step 1 satisfies (f), (g), and (k). If it does, then stop with output “quasi-
model respecting T exists.” Otherwise, go to Step 3.

Step 3. Set i := i+ 1. If i ≤ N , then go to Step 1. Otherwise, stop with output
“no quasimodel respecting T .”

It is easy to see that this algorithm yields the output “quasimodel respecting T
exists” iff B̂ indeed has a quasimodel respecting T .

It is also not hard to see that the algorithm runs in time exponential in n. The
index i goes from 1 to N , where N is at most exponential in n. The cardinality
of the set of all concept types is exponential in n, and in each iteration of Step 1
for a fixed index i ∈ {1, . . . , N}, one defective concept type is removed (or Step 1
is terminated for this index i). Thus, for a fixed i, the number of iterations of
Step 1 is at most exponential in n. Finally, every single iteration of Step 1 needs
only exponential time. There are at most exponentially many concept types to
be considered, and checking for a violation of (d), (e), or (h) can be done in
exponential time. Note in particular that this is also true for (h): one just needs
to go through the (exponentially many) elements of T . Similarly, checking for a
violation of (f), (g), or (k) in Step 2 can be done in exponential time. ❏

Restricting GCIs to global ones decreases the complexity of the satisfiability
problem.

Theorem 6.5. Satisfiability in ALC-LTL|gGCI w.r.t. rigid concepts is ExpTime-
complete.

ExpTime-hardness is an immediate consequence of Corollary 5.5, which states
that the problem is already ExpTime-hard without rigid concepts. Before proving
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the ExpTime upper bound, we introduce an additional notation. The conjunction
of ALC-axioms B is said to be φ-exhaustive if, for every individual name a and
every rigid concept name A occurring in φ, either a : A or a : ¬A occurs as a
conjunct in B.

Lemma 6.6. Satisfiability in ALC-LTL|gGCI w.r.t. rigid concepts is in ExpTime.

Proof. Consider an ALC-LTL formula φ = 2B ∧ϕ, where B is a conjunction
ofALC-axioms and ϕ is anALC-LTL formula that does not contain GCIs. We can
assume without loss of generality that B is φ-exhaustive. In fact, given an arbitrary
Boolean ALC-knowledge base B, we can build all the φ-exhaustive knowledge
bases B′ that are obtained from B by conjoining to it, for every individual name a
and every rigid concept name A occurring in φ, either a : A or a : ¬A. Obviously,
φ = 2B ∧ ϕ is satisfiable w.r.t. rigid concepts iff 2B′ ∧ ϕ is satisfiable w.r.t. rigid
concepts for one of the extension B′ of B obtained this way. Since the size of
each such an extension is polynomial and there are only exponentially many such
extensions, it is sufficient to show that testing satisfiability of 2B′ ∧ϕ w.r.t. rigid
concepts for φ-exhaustive knowledge bases B′ is in ExpTime.

Thus, we assume in the following that B is φ-exhaustive. The proof that
satisfiability of φ = 2B∧ϕ can be tested in ExpTime combines ideas used in the
proofs of Lemma 4.3 and Theorem 5.4. Following the approach used in the proof of
Lemma 4.3, we abstract every ABox assertion αi occurring in ϕ by a propositional
variable pi, thus building the propositional LTL-formula ϕ̂. Similar to the proof
of Theorem 5.4, we compute the set Ŝ, which consists of those X ⊆ {p1, . . . , pn}
for which the Boolean ALC-knowledge base

BX := B ∧
∧
pj∈X

αj ∧
∧
pj 6∈X

¬αj

is consistent. This computation can be done in exponential time since it requires
exponentially many ExpTime consistency tests.

Claim. Let φ = 2B ∧ ϕ be such that B is a φ-exhaustive conjunction of ALC-
axioms and ϕ is an ALC-LTL formula not containing GCIs. Then φ is satisfiable
w.r.t. rigid concepts iff the propositional LTL formula

ϕ̂ bS := ϕ̂ ∧2(
∨
X∈ bS

(
∧
pj∈X

pj ∧
∧
pj 6∈X

¬pj))

is satisfiable.

Note that proving this claim actually completes the proof of our lemma. In
fact, as shown in the proof of Theorem 5.4, satisfiability of ϕ̂ bS can be decided in
exponential time.
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The proof of the “only if” direction of the claim is a simple combination of
the arguments used in the proofs of (i) the “only if” direction of Lemma 5.2, and
(ii) the “only if” direction of the claim shown in the proof of Lemma 4.3.

To show the “if” direction, assume that ϕ̂ bS is satisfiable. Let Î = (wι)ι=0,1,...

be a propositional LTL structure satisfying ϕ̂ bS . By construction, for every ι there
is a set Xι ⊆ {p1, . . . , pn} such that

• wι = wXι , i.e., Xι = {pj | j ∈ {1, . . . , n} and wι makes pj true}.

• the Boolean ALC-knowledge base BXι = B ∧
∧
pj∈Xι

αj ∧
∧
pj 6∈Xι

¬αj is con-
sistent.

Let Iι = (∆Iι , ·Iι) be a model of BXι (ι = 0, 1, . . .). To complete the proof of the
claim, we use the models Iι to construct models Jι = (∆, ·Jι) of BXι that (i) have
a common domain ∆, (ii) interpret the individual names in a rigid way, and

(iii) respect rigid concept names. This, together with the fact that Î = (wι)ι=0,1,...

satisfies ϕ̂ bS , then implies that the ALC-LTL structure (Jι)ι=0,1,... satisfies φ and
respects rigid concept names.

To simplify this construction, we assume that the models Iι have a certain
restricted shape. In a DL interpretation I = (∆I , ·I), we call an element x ∈ ∆I

named if there is an individual name a such that x = aI ; all other elements of ∆I

are called anonymous. The following is easy to see:

Fact. Any consistent Boolean ALC-knowledge base has a model I = (∆I , ·I) that
satisfies the following property for every role names r: if (x, y) ∈ rI and x is
anonymous, then y is also anonymous.

For example, a standard tableau-based algorithm that test consistency of Boolean
ALC-knowledge base generates models that satisfy the property stated in the fact.
In the following, we assume that the models Iι satisfy this property. We can also
assume without loss of generality that the domains ∆Iι of these models are almost
disjoint, except for the named individuals. To be more precises, let {a1, . . . , a`}
be the individual names occurring in φ, and and let Θ := {x1, . . . , x`} be a set
of cardinality `. We assume that ∆Iι ∩∆Iι′ = Θ for ι 6= ι′ and that aIι

i = xi for
i = 1, . . . , `.

Let us now build the new models Jι based on the models Iι satisfying these
properties. The constant domain ∆ is the union of the domains Iι, i.e., ∆ is
obtained as the following disjoint union:

∆ := Θ ∪
⋃
ι

(∆Iι \Θ).

The interpretation function ·Jι of Jι is defined as follows:

• We define aJι
i := xi for i = 1, . . . , `.
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• If A is a concept name and x ∈ ∆Jκ , we distinguish two cases, depending
on whether x is named or anonymous:

1. If x is named, then we define x ∈ AJι iff x ∈ AIι .

2. If x is anonymous, then we define x ∈ AJι iff x ∈ AIκ .

• If r is a role name, x ∈ ∆Jκ and y ∈ ∆Jλ , then we distinguish four cases:

1. If x and y are named, then we define (x, y) ∈ rJι iff (x, y) ∈ rIι .

2. If x is named and y is anonymous, then we define (x, y) ∈ rJι iff ι = λ
and (x, y) ∈ rIι .

3. If x and y are anonymous, then we define (x, y) ∈ rJι iff κ = λ and
(x, y) ∈ rIκ .

4. If x is anonymous and y is named, then (x, y) 6∈ rJι .

By construction, the interpretations Jι have a common domain and they in-
terpret the individual names in a rigid way. Next, we show that they respect rigid
concept names, i.e., we have AJι1 = AJι2 for all rigid concept names A and all
ι1, ι2 ≥ 0. Thus, assume that x ∈ ∆Jκ is given. We must show that x ∈ AJι1 iff
x ∈ AJι2 . If x is named, then we have x = aIι1 = aIι2 for some individual name
a ∈ {a1, . . . , a`}. Since B was assumed to be φ-exhaustive, either a : A or a : ¬A
occurs as a conjunct in B. This, together with the fact that Iι1 and Iι2 are models
of B, implies that x ∈ AIι1 iff x ∈ AIι2 , and thus x ∈ AJι1 iff x ∈ AJι2 . If x is
anonymous, then x ∈ AIι1 iff x ∈ AIκ iff x ∈ AIι2 .

It remains to show that, for every ι ≥ 0, the interpretation Jι is a model of
BXι . The proof of this is based on the following two observations, in which C is
assumed to be an arbitrary ALC-concept description:

1. If x is named, then x ∈ CJι iff x ∈ CIι .

2. If x ∈ ∆Iκ is anonymous, then x ∈ CJι iff x ∈ CIκ .

Before proving these observations by induction on the structure of C, we show
that they can indeed be used to prove that Jι is a model of BXι .

First, assume that C v D is a GCI that occurs as a conjunct in B. Consider
an element x ∈ CJι . We must show that x ∈ DJι . If x is named, then x ∈ CJι

implies x ∈ CIι by the above Observation 1. Since Iι is a model of B, x ∈ CIι

implies x ∈ DIι , and thus x ∈ DJι , again by Observation 1. Now, assume that x
is anonymous, and that it belongs to ∆Iκ for some κ ≥ 0. Then x ∈ CJι implies
x ∈ CIκ by the above Observation 2. Since Iκ is a model of B, x ∈ CIκ implies
x ∈ DIκ , and thus x ∈ DJι , again by Observation 2.

Second, assume that a : C is a concept assertion that occurs as a conjunct in
B or in

∧
pj∈Xι

αj ∧
∧
pj 6∈Xι

¬αj. (Note that negated concept assertions are also
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just assertions since ¬(a : D) is equivalent to a : ¬D.) We know that Iι is a
model of BXι , and thus of a : C, i.e., aIι ∈ CIι . In addition, we have aIι = aJι ,
and since aIι is named, aIι ∈ CIι iff aIι ∈ CJι . This shows that Jι is a model of
the assertion a : C.

Third, assume that (a, b) : r is a role assertion that occurs as a conjunct
in B or in

∧
pj∈Xι

αj. We know that Iι is a model of BXι , and thus of (a, b) :

r, i.e., (aIι , bIι) ∈ rIι . In addition, we have aIι = aJι and bIι = bJι . Since
aIι , bIι are named, (aIι , bIι) ∈ rIι implies (aJι , bJι) ∈ rJι , by the definition of rJι .
Consequently, Jι is a model of (a, b) : r.

Finally, assume that ¬((a, b) : r) is a negated role assertion that occurs as a
conjunct in

∧
pj 6∈Xι

¬αj. We know that Iι is a model of BXι , and thus of ¬((a, b) :

r), i.e., (aIι , bIι) 6∈ rIι . In addition, we have aIι = aJι and bIι = bJι . Since
aIι , bIι are named, (aIι , bIι) 6∈ rIι implies (aJι , bJι) 6∈ rJι , by the definition of rJι .
Consequently, Jι is a model of ¬((a, b) : r). This finishes our proof that Jι is a
model of BXι .

It remains to show that the above observations are in fact correct. We prove
this by induction on the structure of C. The base case (C is a concept name)
is trivial by the definition of the interpretations Jι. For the induction step, it
is sufficient to consider conjunction, negation, and existential restrictions. Both
conjunction and negation are trivial. Thus, the only interesting case is where C
is of the form ∃r.D.

First, assume that x is named. If x ∈ (∃r.D)Iι , then we know that there is
an element y ∈ ∆Iι such that (x, y) ∈ rIι and y ∈ DIι . If y is named, then this
implies (x, y) ∈ rJι and y ∈ DJι , where the first statement holds by the definition
of rJι and the second by the induction hypothesis. This shows x ∈ (∃r.D)Jι .
Now, assume that y is anonymous. By our assumption that, except for the named
individuals, the domains of the models Iκ are disjoint, we know that (x, y) ∈ rIι

implies y ∈ ∆Iι . As before, we obtain (x, y) ∈ rJι and y ∈ DJι by the definition
of rJι and the induction hypothesis, respectively. This shows x ∈ (∃r.D)Jι also in
this case.

Conversely, assume that x is named and x ∈ (∃r.D)Jι . Then we know that
there is an element y ∈ ∆ such that (x, y) ∈ rJι and y ∈ DJι . If y is named,
then this implies (x, y) ∈ rIι and y ∈ DIι , by the definition of rJι and the
induction hypothesis, respectively. If y is anonymous, then the definition of rJι

yields y ∈ ∆Iι and (x, y) ∈ rIι . Since y ∈ ∆Iι , y ∈ DJι implies y ∈ DIι , by the
induction hypothesis. Thus, we have x ∈ (∃r.D)Iι in both cases.

Second, assume that x ∈ ∆Iκ is anonymous. If x ∈ (∃r.D)Iκ , then we know
that there is an element y ∈ ∆Iκ such that (x, y) ∈ rIκ and y ∈ DIκ . By our
assumption on the models Iκ, we know that y is also anonymous. The definition
of rJκ thus yields (x, y) ∈ rJι , and the induction hypothesis yields y ∈ ∆Jι . Thus,
we have x ∈ (∃r.D)Jι .

Conversely, assume that x ∈ ∆Iκ is anonymous, and x ∈ (∃r.D)Jι . Then we
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know that there is an element y ∈ ∆ such that (x, y) ∈ rJι and y ∈ DJι . The
definition of rJι implies that y is also anonymous, and that y ∈ ∆Iκ and (x, y) ∈
rIκ . The induction hypothesis thus yields y ∈ DIκ . This shows x ∈ (∃r.D)Iκ . ❏

When defining the notion of an ALC-LTL formula with global GCIs, we have
restricted these formulae to being of the form φ = 2B ∧ ϕ where B is a con-
junction of ALC-axioms and ϕ is an ALC-LTL formula that does not contain
GCIs. Allowing also for negated ALC-axioms as conjuncts in B would only add
syntactic sugar, but would not increase the expressiveness of ALC-LTL|gGCI. In
fact, a negated assertion ¬α occurring as a conjunct in B can be moved as a con-
junct 2¬α to ϕ, and a negated GCI ¬(C v D) can be replaced by an assertion
a : C u ¬D in B, where a is a new individual name.

One might think that it is even possible to relax the condition such that B is
an arbitrary Boolean ALC-knowledge base. This is, however, not the case since
it would increase the complexity of the satisfiability problem to NExpTime.

Definition 6.7. We say that φ is an ALC-LTL formula with global Boolean
knowledge base iff it is of the form φ = 2B ∧ ϕ where B is a Boolean ALC-
knowledge base and ψ is an ALC-LTL formula that does not contain GCIs.

A careful analysis of the proof of Lemma 6.2 shows that the ALC-LTL formula
constructed in the reduction is actually an ALC-LTL formula with global Boolean
knowledge base.

Corollary 6.8. Satisfiability of ALC-LTL w.r.t. rigid concepts and with global
Boolean knowledge bases is NExpTime-complete.

7 Restricting the temporal component

In this section, we consider the fragment ALC-LTL|3 of ALC-LTL, in which 3 is
the only temporal operator. Our aim is to prove that satisfiability in ALC-LTL|3
w.r.t. rigid names is in ExpTime. The main reason for this is that we can restrict
the attention to ALC-LTL structures respecting rigid concept and role names that
consist of only polynomially many distinct ALC-interpretations. Before we can
formulate this fact more formally in the next lemma,7 we need to introduce some
more notations. The weight of the ALC-LTL structure I = (Ii)i=0,1,... is defined to
be the cardinality of the set {Ii | i = 0, 1, . . .}.8 The set of subformulae sub(φ) of

7Note that this lemma is a straightforward generalization to ALC-LTL|3 of a very simi-
lar lemma for LTL|3, the restriction of propositional LTL to its diamond fragment (see, e.g.,
Lemma 6.40 in [8]).

8Recall that all the ALC-interpretations within one ALC-LTL structure have the same do-
main. For this reason, we can use exact equality of interpretations rather than equality up to
isomorphism when defining the weight of an ALC-LTL structure.
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the ALC-LTL|3 formula φ is defined in the obvious way, i.e., sub(φ) = {φ} if φ is
an ALC-axiom, sub(3φ) = {3φ}∪ sub(φ), sub(φ∧ψ) = {φ∧ψ}∪ sub(φ)∪ sub(ψ),
etc. The size of the ALC-LTL|3 formula φ is denoted by |φ|.

Lemma 7.1. If the ALC-LTL|3 formula φ is satisfiable w.r.t. rigid names, then
there is an ALC-LTL structure J respecting rigid concept and role names of weight
at most |φ|+ 2 such that J, 0 |= φ.

Proof. Let I be an ALC-LTL structure respecting rigid concept and role
names such that I, 0 |= φ. For each ψ ∈ sub(φ) we use P (ψ) to denote the set of
time points at which I makes ψ true, i.e.,

P (ψ) := {i | i ≥ 0 and I, i |= ψ}.

We claim that there is an ` > 0 such that, for all i ≥ `, we have that I, i |= ψ
implies that P (ψ) is infinite. In fact, since sub(φ) is finite, the set

Pfin :=
⋃

ψ∈sub(φ)

P (ψ) finite

P (ψ)

is also finite. Thus, we can choose ` to be the least positive integer not belonging
to Pfin.

For every ψ ∈ sub(φ), we choose a time point p(ψ) ≥ 0 as follows:

• If P (ψ) is finite, then p(ψ) is the maximal element of P (ψ), i.e., p(ψ) is the
maximal j with I, j |= ψ. Note that, in this case, we have p(ψ) < ` and
I, p(ψ) |= ψ.

• If P (ψ) is infinite, then p(ψ) is an arbitrary time point j ≥ ` such that
I, j |= ψ. Note that, in this case, we have p(ψ) ≥ ` and I, p(ψ) |= ψ.

Let ran(p) denote the range of the function p : sub(φ) → {0, 1, 2, . . .}, and let
k0, . . . , km−1, km, . . . , kn−1 be an enumeration of ran(p) ∪ {0, `} such that

• k0 < . . . < km−1 < km < . . . < kn−1 and

• m ∈ {1, . . . , n− 1} is chosen such that ki < ` iff i < m.

We define the ALC-LTL structure J as the sequence of ALC-interpretations
Ik0 · · · Ikm−1(Ikm · · · Ikn−1)

ω, i.e., J = (Ji)i=0,1,... with Ji = If(i), where

• f(i) = ki for i < m;

• f(i) = km+((i−m)mod (n−m)) for i ≥ m.
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Clearly, the fact that I respects rigid concept names and role names implies that
J does the same. In addition, since the number of subformulae of φ is bounded
by the size |φ| of φ, we have n ≤ |φ| + 2, and the weight of J is bounded by n.
Thus, it remains to show that J, 0 |= φ. This is an immediate consequence of the
following claim and the fact that f(0) = k0 = 0 and φ ∈ sub(φ).

Claim. For all ψ ∈ sub(φ) and all i ≥ 0, we have J, i |= ψ iff I, f(i) |= ψ.

The proof of the claim is by induction on the structure of ψ. We concentrate
on the only non-trivial case, i.e., the case where ψ is of the form 3χ.

To show the “if” direction, assume that I, f(i) |= 3χ. First assume that P (χ)
is finite. Let s ≥ 0 be maximal such that I, s |= χ. Since I, f(i) |= 3χ, we have
s ≥ f(i). By the definition of the function p, we also have p(χ) = s. In addition,
by the definition of the function f , and since s ≥ f(i), there is a j ≥ i with
f(j) = s. The induction hypothesis yields J, j |= χ, and thus, by the semantics
of the diamond operator, J, i |= 3χ.

Now assume that P (χ) is infinite. By the definition of the function p, we have
p(χ) ≥ `. In addition, by the definition of the function f , there thus is a j > i
with f(j) = p(χ). Since I, p(χ) |= χ, the induction hypothesis yields J , j |= χ,
and thus J , i |= 3χ. This completes the proof of the “if” direction.

To show the “only if” direction, assume that J, i |= 3χ. First, assume that
P (χ) is finite. We know that there is a j ≥ i with J, j |= χ. The induction
hypothesis yields I, f(j) |= χ. Since P (χ) is finite, we have f(j) < `, and the
definition of f together with j ≥ i yields f(j) ≥ f(i). By the semantics of the
diamond operator, this implies I, f(i) |= 3χ.

If P (χ) is infinite, then we have I, s |= 3χ for every s ≥ 0, and thus I, f(i) |=
3χ is trivially satisfied. This completes the proof of the claim, and thus of the
lemma. ❏

Given this lemma, we can now prove that satisfiability of ALC-LTL|3 formulae
w.r.t. rigid names can be decided within deterministic exponential time.

Lemma 7.2. Satisfiability in ALC-LTL|3 w.r.t. rigid names is in ExpTime.

Proof. The proof of this lemma is very similar to the one of Lemma 4.3. We
use the same notation as in that proof. The first step is to establish the following
claim, where the set of propositional LTL|3 formulae is defined in the obvious
way, and where we use n to denote the number of ALC-axioms occurring in φ.

Claim. The ALC-LTL|3 formula φ is satisfiable w.r.t. rigid names iff there is
a set S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) of cardinality k ≤ |φ| + 2 such that

the propositional LTL|3 formula φ̂S is satisfiable and the Boolean ALC-knowledge
base B :=

∧
1≤i≤k Bi is consistent.
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The “if” direction of this claim is an immediate consequence of the corresponding
claim shown in the proof of Lemma 4.3. For the “only if” direction, we can use
the proof of the “only if” direction of the corresponding claim shown in the proof
of Lemma 4.3. The only difference is that we start with an ALC-LTL structure
I respecting rigid concept and role names of weight at most |φ| + 2 such that
J, 0 |= φ. The existence of such a structure is guaranteed by Lemma 7.1. It is
easy to see that then the set S = {X1, . . . , Xk} defined in the proof of Lemma 4.3
indeed is of cardinality k ≤ |φ|+ 2.

This completes the proof of the claim. It remains to show that the claim
provides us with a decision procedure for satisfiability in ALC-LTL|3 w.r.t. rigid
names that runs in deterministic exponential time. Let m := |φ|. There are
≤ 2m(m+2) subsets S ⊆ P({p1, . . . , pn}) of cardinality ≤ m + 2 to be considered,
and the size of each such subset S = {X1, . . . , Xk} is polynomial in m. Thus,

the size of both φ̂S and B =
∧

1≤i≤k Bi is polynomial in m. Since satisfiability in
propositional LTL is in PSpace and the consistency problems for Boolean ALC-
knowledge bases is in ExpTime, this completes the proof of the lemma. ❏

ExpTime-hardness of satisfiability in ALC-LTL|3 can be shown as in the
proof of Theorem 5.4 by a reduction of the well-known ExpTime-hard problem
of satisfiability of an ALC-concept C w.r.t. a single GCI C1 v C2. In fact, C is
satisfiable w.r.t. C1 v C2 iff the ALC-LTL|3 formula a : C ∧ ¬3¬(C1 v C2) is
satisfiable w.r.t. rigid names.

Theorem 7.3. Satisfiability in ALC-LTL|3 w.r.t. rigid names is an ExpTime-
complete problem.

Obviously, the above reduction does not depend on the availability of rigid
names, and the ExpTime decision procedure described in the proof of Lemma 7.2
also works in case there are only rigid concepts or no rigid names at all.

Corollary 7.4. Satisfiability in ALC-LTL|3 w.r.t. rigid concepts (without rigid
names) is an ExpTime-complete problem.

8 Conclusion

The faithful modeling of dynamically changing environments with a temporalized
DL often requires the availability of rigid concepts and roles. We have shown that
decidability and an elementary complexity upper bound can be achieved also in
the presence of rigid roles by restricting the application of temporal operators to
DL axioms. This is a big advance over the case where temporal operators can
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occur inside concept descriptions, in which rigid roles cause undecidability in the
presence of a TBox and hardness for non-elementary time even without a TBox.

The decision procedures we have described in this paper were developed for
the purpose of showing worst-case complexity upper bounds. The major topic for
future work is to optimize them such that they can be used in practice, where we
will first concentrate on the application scenario sketched in the introduction.
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