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Abstract

In a previous ICFCA paper we have shown that, in the Description

Logics EL and ELgfp, the set of general concept inclusions holding in a

finite model always has a finite basis. In this paper, we address the problem

of how to compute this basis efficiently, by adapting methods from formal

concept analysis.

1 Introduction

Description Logics (DLs) [4] are a well-investigated family of logic-based knowl-
edge representation formalisms, which are employed in various application do-
mains, such as natural language processing, configuration, databases, and bio-
medical ontologies, but their most notable success so far is the adoption of the
DL-based language OWL [13] as standard ontology language for the semantic
web. From the Description Logic point of view, an ontology is a finite set of
general concept inclusion axioms (GCIs) of the form C ⊑ D, where C,D are con-
cepts defined using an appropriate concept description language. Such a concept
description language allows one to construct complex concepts out of concept
names (unary predicates, interpreted as sets) and roles (binary predicates, inter-
preted as binary relations) using certain concept constructors. Complex concepts
are again interpreted as sets. To be more precise, given an interpretation of the
concept and role names, the semantics of the concept constructors determines,
for every complex concept, a unique set as the extension of this concept. The
GCI C ⊑ D states that, in a model of the ontology, the extension of the concept
C must be a subset of the extension of the concept D.
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When defining a DL-based ontology, one must first decide on which vocabulary
(i.e., concept and role names) to use, and then define appropriate constraints
on the interpretation of this vocabulary using GCIs. The work described in this
paper is motivated by the fact that coming up with the right GCIs by hand is
usually not an easy task. Instead, we propose an approach where the knowledge
engineer is required to provide us with a finite model, which should be seen as
an abstraction or approximation of the application domain to be modeled. We
then automatically generate a finite basis of the GCIs holding in the model, i.e.,
a finite set of GCIs that hold in this model and from which all GCIs holding in
the model and expressible in the employed concept description language follow.
The knowledge engineer can use the computed basis as a starting point for the
definition of the ontology. She may want to weaken or even remove some of the
GCIs if the chosen model was too restricted, and thus satisfies GCIs that actually
do not hold in all intended models. As an example, assume that we want to
define a family ontology, using the concept names Male, Father, Female, Mother,
and the role name child. Consider a finite model with two families. The first
family consists of John, Michelle, and Mackenzie, where John is male and a
father (i.e., John belongs to the interpretation of the concept names Male and
Father), Michelle is female and a mother, and Mackenzie is female and a child of
both John and Michelle. The second family consists of Paul, Linda, and James,
where Paul is male and a father, Linda is female and a mother, and James is
male and a child of both Paul and Linda. In this model, the GCIs

Father ⊑ Male ⊓ ∃child.⊤ and Mother ⊑ Female ⊓ ∃child.⊤

hold. The first one says that every father is male and has a child, and the second
one says that every mother is female and has a child. If we had used a model
consisting of only the first family, then we would have obtained the too specific
GCIs Father ⊑ Male ⊓ ∃child.Female and Mother ⊑ Female ⊓ ∃child.Female, where
mothers and fathers always have female children.

For the approach sketched above to work, the set of GCIs holding in a finite model
and expressible in the employed concept description language must have a finite
basis. Using methods from formal concept analysis (FCA), we have shown in [7]
that this is the case for the language EL, which allows for the concept constructors
⊤ (top concept), C ⊓D (conjunction), and ∃r.C (existential restriction). Though
being quite inexpressive, EL has turned out to be very useful for representing
biomedical ontologies such as SNOMED [17] and the Gene Ontology [20]. A
major advantage of using an inexpressive DL like EL is that it allows for efficient
reasoning procedures [3, 9]. Because of the nice algorithmic properties of EL, the
new OWL standard will contain a profile, called OWL 2 EL, that is based on EL.

In [7], the existence of a finite basis is actually first shown for ELgfp, which extends
EL with cyclic concept definitions interpreted with greatest fixpoint semantics.
The advantage of using ELgfp rather than EL is that, in ELgfp, every set of
objects (i.e., elements of the domain of a given finite model) always has a most
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specific concept describing these objects. Going from a set of objects to its most
specific concept corresponds to the ·′ operator in FCA, which goes from a set of
objects in a formal context to the set of all attributes that these objects have
in common. The existence of most specific concepts in ELgfp thus allowed us to
employ methods from FCA. In a second step, we have shown in [7] that the ELgfp-
basis can be turned into an EL-basis by unraveling cyclic concept definitions up
to a level determined by the cardinality of the given finite model.

In [7], we concentrated on showing the existence of a finite basis for ELgfp and
EL. Of course, if the approach for automatically generating GCIs sketched above
is to be used in practice, we also need to find efficient algorithms for computing
such bases. This is the topic of the present paper. First, we show that the
algorithm for computing an implication basis of a given formal context known
from classical FCA can be adapted to our purposes. In contrast to the classical
case, we cannot assume that all attributes of the context are known from the
beginning. Instead, the set of attribute can be extended during the runtime of
the algorithm. This is vital for obtaining an efficient algorithm. In a second step,
we then extend this algorithm to an exploration algorithm. The advantage of this
second algorithm is that it no longer requires the finite model to be completely
represented in the computer from the beginning. As in the case of classical
attribute exploration [11], the model is assumed to be “known” by an expert,
who during the exploration process extends the represented part of the model in
order to provide counterexamples to implication questions.

We concentrate on computing a finite ELgfp-basis since this basis can be turned
into an EL-basis as described in [7]. Due to the space limitation, we cannot give
complete proofs of our results. They can be found in [6]. We also assume that
the reader is familiar with the basic notion and results of formal concept analysis
(FCA).

2 The logics EL and ELgfp

On the syntactic side Description Logic (DL) languages typically consist of a set
of concept names NC a set of role names Nr and certain constructors that can
be used to create concept descriptions. Description logics use a model theoretic
semantics. An interpretation i = (∆i, ·

i) consists of a set ∆i, the domain of the
interpretation, and a function ·i mapping concept names to subsets of ∆i and
role names to binary relations on ∆i. Each constructor has its own well defined
semantics. Using these semantics ·i can be extended to the set of all concept
descriptions.

In this work we focus on the logics EL and ELgfp. EL only allows for conjunction
and existential restrictions in order to construct new concepts. This means that
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• All concept names A ∈ NC are concept descriptions.

• If C and D are concept descriptions then C⊓D is also a concept description.

• If C is a concept description and r ∈ Nr is a role name then ∃r.C is also a
concept description.

The semantics of conjunction and existential restrictions are defined according to
the following rules

(C ⊓ D)i = Ci ⊓ Di (1)

(∃r.C)i = {x ∈ ∆i | ∃y ∈ Ci : (x, y) ∈ ri} (2)

DL knowledge bases can contain statements about concepts, i. e. terminological
knowledge, as well as statements about individuals, i. e. assertional knowledge.
The part of the knowledge base that contains the terminological knowledge is
called the TBox, whereas the part that contains the assertional knowledge is
called the ABox.

In this work we do not make use of ABoxes and thus only introduce TBoxes.
A TBox in our setting is a finite collection of statements of the form Ak ≡ Dk

where the Ak are concept names and the Dk are concept descriptions. No Ak

may occur more than once on the left hand side of one of these statements. This
means we do not allow for general TBoxes, which may contain statements other
than equivalence statements. We do, however, allow cyclic TBoxes, i. e. a concept
name can be used explicitly or implicitly in its own definition. We use Greatest
fixpoint semantics, which are a common type of semantics for cyclic TBoxes in
DL. A primitive interpretation i is a mapping that assigns a binary relation over
∆i to every role name and a subset of ∆i to every primitive concept name. An
interpretation j is based on the primitive interpretation i if it coincides with i on
all role names and primitive concept names. Note that j is uniquely defined by
the set of interpretations of the defined concept names (Aj

1, . . . , A
j
n). We denote

the set of all interpretations that are based on i by Int(i). The interpretations
from Int(i) can be compared by the following ordering

j1 4i j2 iff Aj1
k ⊆ Aj2

k for all k, 1 ≤ k ≤ n.

For all every subset of Int i both least upper bounds and greatest lower bounds
exist and coincide with pointwise union and pointwise intersection, respectively.
Hence 4i is a complete lattice on Int i. One can define a function f mapping
every interpretation j ∈ Int i to the interpretation f(j) defined by the tuple

(A
f(j)
1 , . . . , A

f(j)
n ) := (Dj

1, . . . , D
j
n). By the Knaster-Tarski-Fixpoint Theorem f

must have a greatest fixpoint. We call this fixpoint the gfp-model of T cor-
responding to i. For matters of simplicity we will denote both the primitive
interpretation and the corresponding gfp-model by the letter i (or iT if it is not
clear which TBox we are referring to).
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2.1 The logic ELgfp

To compute the extension of a defined concept EL with terminological cycles
and gfp-semantics one has to look at the whole TBox – not just a single concept
definition within the TBox. We therefore always need to state which TBox we
are referring to. Also, in EL with terminological cycles and gfp-semantics there is
no practical way to compare two concepts that have been defined in two different
TBoxes. In such a situation one would always have to find a third TBox, which
extends the first two TBoxes. This may become very tedious and can make
notation complicated. So for purely pratical reasons we define an ELgfp-concept
description to be a pair consisting of TBox and a defined concept name occurring
in this TBox.

Definition 1 (ELgfp-concept description) An ELgfp-concept description is a
tuple (T , A) where T is a TBox and A is a defined concept occurring on the
left-hand side of a definition in T .

Let i = (∆i, ·
i) be a primitive interpretation. For every ELgfp-concept description

C = (T , A) we define the extension Ci to be the set AiT . Here iT is the gfp-model
of T that is based on i. For ELgfp-concept descriptions subsumption is defined
as follows.

Definition 2 Let C = (TC , AC), D = (TD, AD) be two ELgfp-concept descrip-
tions. We say that C is subsumed by D (C ⊑ D) iff CiTC ⊆ DiTD for all primitive
interpretations i.

Standard reasoning problems for EL with terminological cycles have been ad-
dressed by Baader [2]. Baader shows how instance and subsumption relations in
ELgfp can be characterised using so called EL-description graphs and simulations
of such graphs.

Definition 3 (EL-description graphs) An EL-description graph is a graph
G = (V,E, L) where

• V is a set of nodes

• E ⊆ V ×Nr × V is a set of directed edges labeled by role names

• L : V → P(Np) is a labeling function

Let C = (T , A) be an ELgfp-description. The corresponding EL-description graph
GC is the graph G = (VC , EC , LC) where
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• the vertices of GC are the defined concepts of T

• if B is a defined concept and

B ≡ P1 ⊓ . . . ⊓ Pm ⊓ ∃r1.B1 ⊓ ∃rl.Bl

its definition in T , then

– LC(B) = {P1, . . . , Pm}, and

– B is the source of the edges (B, r1, B1), . . . , (B, r2, Bl) ∈ EC.

Conversely, every EL-description graph can be transformed into an ELgfp-TBox.

An model i can also be transformed into an EL-description graph Gi = (Vi, Ei, Li).

• The vertices of Gi are the elements of ∆i.

• Ei = {(x, r, y) | (x, y) ∈ ri}

• Li(x) = {P ∈ Nprim | x ∈ P i} for all x ∈ ∆i.

Baaders characterisations of instance and subsumption make use of simulations
between EL-description graphs. These are defined as follows.

Definition 4 (Simulation) Let G1 and G2 be two EL-description graphs. The
binary relation Z ⊆ V1 × V2 is a simulation from G1 to G2 iff

1. (v1, v2) ∈ Z implies L1(v1) ⊆ L2(v2), and

2. if (v1, v2) ∈ Z and (v1, r, v
′
1) ∈ E1, then there exists a node v′

2 ∈ V2 such
that (v′

1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E2.

We write Z : G1
−→∼G2 to express that Z is a simulation from G1 to G2.

Then instance relations in a given model can be characterised as follows.

Proposition 1 Let i be a model. Then the following statements are equivalent
for any ELgfp-description C = (T , A) and every x ∈ ∆i.

• x ∈ T i

• There is a simulation Z : GC
−→∼Gi such that (A, x) ∈ Z.

This result eventually leads to the following theorem which characterises sub-
sumption.
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Theorem 1 Let C = (TC , AC) and D = (TD, AD) be two ELgfp-descriptions.
Then the following two statements are equivalent.

• C ⊑ D

• There is a simulation Z : GD
−→∼GC such that (AD, AC) ∈ Z.

It is easy to see that acyclic ELgfp-concept descriptions (i.e., ones where the TBox
component is acyclic) correspond exactly to EL-concept descriptions. This shows
that EL can indeed be seen as a sublanguage of ELgfp. In the following, we will not
distinguish an acyclic ELgfp-concept description from its equivalent EL-concept
description.

2.2 GCIs and Model-based Most Specific Concepts

We formally define what we mean when we speak of a basis for the GCIs of a
model i. This means, we first need to define what we mean by a GCI.

Definition 5 (GCIs) A GCI is a pair (C,D) of concept descriptions C and D.
If (C,D) is a GCI we also write C → D. We say that a GCI C → D holds in
the model i = (∆i, i) iff Ci ⊆ Di holds.

Let B be a set of L-GCIs and C → D a GCI. If C → D holds in all models
i = (∆i, i), in which all GCIs from B hold, then we say that C → D follows from
B (in (L, I)).

In DL GCIs are commonly written using ⊑ instead of →. We prefer the →-
notation whenever we are dealing with GCIs that have not yet been confirmed
by an expert or that are not part of the TBox of some knowledge base. This is
on the one hand to emphasize the connection with the implications from classical
FCA and on the other hand to avoid confusion with subsumption which is also
denoted by ⊑.

Definition 6 (Basis) For a given model i we say that a set of GCIs B is a basis
for the GCIs holding in i if B is

• sound for i, i.e., it contains only GCIs holding in i, and

• complete for i, i.e., any GCI that holds in i follows from B.

In classical FCA there exists the so-called Duquenne-Guigues basis. The Duquenne-
Guigues basis has yet another desirable property beyond being sound and com-
plete: it has minimal cardinality. Certain ideas that are used in the construction
of the Duquenne-Guigues basis are useful in our setting as well. The major ideas
are:
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1. In classical FCA it suffices to consider implications of the form A → A′′

(Given an implication A → B that holds in a Formal Context K. Then
A → B follows from A → A′′.)

2. It suffices to consider implications whose left-hand-sides are pseudo-closed.

Neither the notion of the ·′-operators nor the notion of pseudo-closedness exist in
Description logics. Therefore we need to come up with something that exhibits
similar properties in a DL setting. For the ·′ operator these are model-based most
specific concept that we first introduced in [7]. In classical FCA A′ is the set of
attributes common to the objects in A. This is equivalent to defining A′ = Bmax,
where Bmax is the greatest subset of M such that A ⊆ B′

max. This motivates the
following definition.

Definition 7 (Model-based most specific concepts) Let i ∈ I be an inter-
pretation and X a set X ⊆ ∆i. Let C ∈ L be the least concept description such
that

X ⊆ Ci. (3)

By least concept description we mean that every other concept description C̄
which satisfies (3) also satisfies C ⊑ C̄. Then C is called a model-based most
specific concept of X in i. Observe that model-based most specific concept are
unique, up to equivalence. Therefore it makes sense to denote the model-based
most specific concept by X i (existence provided).

The notation X i may seem confusing at first glance, because it can be confused
with the extension of a concept description Ci. Again, this is a reference to
classical FCA, where there are two different operators, both denoted by ·′. In
reference to classical FCA we call a concept description C an intent if is equivalent
to a most specific concept X i ≡ C.

Unfortunately model-based most specific concept need not exist for most descrip-
tion logics, in particular where there are cycles in the model. However, in the case
of ELgfp, FLgfp and FLEgfp they do exist. This has been shown in [7]. We will
therefore concentrate mainly on these logics. The following Lemma presents some
simple rules for model-based most specific concepts, none of which are difficult
to prove. Proves can be found in [5].

Lemma 1 Let L be a language for which X i exists for every X ⊆ ∆i and every
i ∈ I. Let i ∈ I be an interpretation, X,Y ∈ ∆i sets of objects and C,D be
concept descriptions. Then the following statements hold
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1. X ⊆ Y ⇒ X i ⊑ Y i

2. C ⊑ D ⇒ Ci ⊆ Di

3. X ⊆ X ii

4. Cii ⊑ C

5. X i ≡ X iii

6. Ci = Ciii

7. X ⊆ Ci ⇔ X i ⊑ C.

Our main objective when defining model-based most specific concepts was to
find some operator that exhibits a property similar to 1. More precisely, given a
concept description C we are looking for a concept description D such that all
GCIs of the form C → E that hold in i follow from C → D. It turns out that
D = Cii does the job.

Lemma 2 Let L be a language and i ∈ I be an interpretation such that X i exists
for every X ⊆ ∆i. Let C and D be two concept descriptions. Then

• C → Cii holds in i, and

• if C → D holds in i, then C → D follows from {C → Cii}.

2.3 Two finite GCI bases for ELgfp

Recall that in our framework, a basis is defined to be a set of GCIs that is
sound and complete for a model. We do not make any requirements concerning
irredundancy of the set of GCIs. But still it is desirable to find bases that are
irredundant, or at least finite (A finite basis will always contain an irredundant
subset). Just like the Duquenne-Guigues basis is a compact and elegant way
to sum up the implicational knowledge for a given Formal Context, such an
irredundant basis is a smart way to sum up the implicational knowledge for a
given model.

The problem of proving the existence of finite bases for arbitrary models in ELgfp

and EL has been treated in [7]. An important step in the proof for ELgfp has
been to show that the set

Bacyclic = {A → Aii | A acyclic ELgfp-concept description}

is sound and complete. An acyclic ELgfp-concept description is an ELgfp-concept
description whose description graph is a tree. In other words an ELgfp-concept
description is acyclic iff it uses only the expressivity of standard EL. Bacyclic itself
is not finite, because there are infinitely many acyclic concept descriptions. But
it can nevertheless be used to construct finite bases. The idea is, that one can do
structural induction over the left hand sides in Bacyclic – something that cannot
be done over cyclic structures. The finite basis presented in [7] looks like this.
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B[7] := {P → P ii |P ∈ Np ∪ {⊤}}

∪ {∃r.C → (∃r.C)ii | r ∈ Nr, C ∈ C}

∪ {C1 ⊓ C2 → (C1 ⊓ C2)
ii |C1, C2 ∈ C},

where C is a set of ELgfp-concept descriptions such that for every ELgfp-concept
description D there is exactly one C ∈ C such that Ci = Di. In B[7] primitive
concept names, conjunction and existential restrictions are dealt with indepen-
dently (We have three classes of premises: Those of the form P , P ∈ Np, those
of the form ∃r.C, r ∈ Nr, C ∈ C, and those of the form C1 ⊓ C2, C1, C2 ∈ C). A
similar basis Bi is obtained by merging these three classes of concept descriptions
into one.

Definition 8 Let i be a finite ELgfp-model. The sets Mi, Λi are defined as

Mi := Nc ∪ {∃r.X i | r ∈ Nr and X ⊆ ∆i} and Λi := {
l

U | U ⊆ Mi}.

Furthermore define Bi := {C → Cii | C ∈ Λi}.

Since Nc, Nr, and ∆i are finite, Mi and Λi are finite as well. Thus, the basis Bi

is finite as well.

Concept Descriptions from Λi are Concept Descriptions where every subdescrip-
tion that is “behind” an existential quantification is an intent. They can be
written as the conjunction of primitive concept names and descriptions of the
form ∃r.X i where r is a role name and X i, X ⊆ ∆i, is a concept intent for i. Like
in the proof for B[7] completeness of Bi can be shown via structural induction.
Given an acyclic concept description A the description graph for A is a tree. The
leaves of this tree correspond to a conjunction of primitive concept names, i. e. to
some concept description C ∈ Λi. Thus C → Cii ∈ Bi. Thus the subdescriptions
of A that correspond to leaves in the description graph can be replaced by their
concept intents. In a next step the same thing can be done to all vertices that
have only leaves as successors, and so on . . .

Lemma 3 Bi is a finite basis for i.

Proof: Bi is finite because in any finite model i there can be only finitely many
(up to equivalence) descriptions X i where X ⊆ ∆i. It is sound, because for every
model i all GCIs of the form C → Cii hold in i.

Completeness: It suffices to prove that every GCI A → Aii where A is acyclic
follows from Bi. This can be done via induction over the structure of A. Since the
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proof is very straightforward we only present the inductive case where A ≡ ∃r.B
where r ∈ Nr and where we already know that B → Bii follows from Bi. This
implies that A → ∃r.Bii follows from Bi since obviously ∃r.B → ∃r.Bii follows
from B → Bii. But ∃r.Bii ∈ Λi and thus ∃r.Bii → (∃r.Bii)ii ∈ Bi. One can
prove that Aii ≡ (∃r.Bii)ii and therefore A → Aii follows from Bi. The case
where A ≡ B1 ⊓ B2, where B1 → Bii

1 and B2 → Bii
2 follow from Bi can be done

accordingly. This proves completeness of Bi. Since Bi is sound and complete it
is a basis for i. �

It is not hard to see that the set Λi of premises is closed with respect to conjunction
⊓. Furthermore, it is possible to prove that all concept intents X i are elements
of Λi.

Lemma 4 All concept intents X i, where X ⊆ ∆i, are contained in Λi.

Proof: Every ELgfp-concept description, and thus also X i can be unraveled as
follows:

X i ≡
l

P∈P

P ⊓
l

1≤k≤n

∃rk.Dk,

for some set P ⊆ Np, some natural number n, some role names rk ∈ Nr and
ELgfp-concept descriptions Dk, k ∈ {1, . . . , n}. For every k ∈ {1, . . . , n}, we
know that Dii

k ⊑ Dk and thus also ∃rk.D
ii
k ⊑ ∃rk.Dk. This yields

X i ≡
l

P∈P

P ⊓
l

1≤k≤n

∃rk.Dk ⊒
l

P∈P

P ⊓
l

1≤k≤n

∃rk.D
ii
k .

Let x be an element of X ii. Then by the definition of the semantics of ⊓ we get

x ∈ X ii ⇔∀P ∈ P : x ∈ P i and ∀k ∈ {1, . . . , n} : x ∈ (∃rk.Dk)
i

⇔∀P ∈ P : x ∈ P i and ∀k ∈ {1, . . . , n} : ∃y ∈ Di
k : (x, y) ∈ rj

⇔∀P ∈ P : x ∈ P i and ∀k ∈ {1, . . . , n} : ∃y ∈ Diii
k : (x, y) ∈ rj

⇔∀P ∈ P : x ∈ P i and ∀k ∈ {1, . . . , n} : x ∈ (∃rk.D
ii
k )i

⇔x ∈

(

l

P∈P

P ⊓
l

1≤r≤n

∃rk.D
ii
k

)i

So we have shown that

X ⊆ X ii =

(

l

P∈P

P ⊓
l

1≤r≤n

∃rk.D
ii
k

)i

.

Since X i is the most specific concept for X it follows that

X i ⊑

(

l

P∈P

P ⊓
l

1≤r≤n

∃rk.D
ii
k

)

.
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Together with the above this yields

X i ≡

(

l

P∈P

P ⊓
l

1≤r≤n

∃rk.D
ii
k

)

.

and thus X i ∈ Λi. �

Both bases B[7] and Bi have the disadvantage that they are not easy to compute.

In order to compute B[7] one needs to know all concept extents Di of the under-

lying model i. On the other hand it is necessary to know all concept intents X i

in order to compute Bi. Both the set of intents and extents may be exponentially
large – in the worst case one would have to compute the closures or model-mscs
for all subsets of ∆i. This is particularly undesirable if we want to extend the
algorithms to a knowledge exploration process where the underlying model may
change in every step.

3 Formal Concept Analysis

In this section we briefly recall the most important definitions from Formal Con-
cept Analysis.

Definition 9 (Formal Context) A formal context K = (G,M, I) is a data
structure consisting of a set of objects G, a set of attributes M and a binary
relation I ⊆ G×M . If (g,m) ∈ I then we say that the object g has the attribute
m.

Definition 10 (The ·′ operators) Let A ⊆ G be a set of objects. Then define

A′ = {m ∈ M | ∀g ∈ A : (g,m) ∈ I}.

We call A′ the intent of A. Let B ⊆ M be a set of attributes. Define

B′ = {g ∈ G | ∀m ∈ B : (g,m) ∈ I}.

B′ is called the extent of B.

A set of attributes A for which A = A′′ is called a (concept) intent. Likewise a
set of objects B for which B = B′′ is called a (concept) extent.

Definition 11 (implications) An implication is a pair (A,B) of sets of at-
tributes A,B ⊆ M . For better readability we write A → B.
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We say that an implication A → B holds in a context K iff A′ ⊆ B′.

We say that a set of attributes A ⊆ M respects an implication B → C iff B 6⊆ A
or C ⊆ A. If L is a set of implications and A ⊆ M respects all implications from
L then we say the A is closed with respect to L.

Definition 12 An implication A → B follows from a set of implications B iff
A → B holds in every context K in which B holds.

This definition is equivalent to the following: An implication A → B follows from
a set of implications B iff every set of attributes C ⊆ M which is closed with
respect to B also respects A → B.

We say that a set of implications B is an implication basis for the context K if B
is a sound and complete set of implications for K.

Definition 13 (pseudo-intent) Let K = (G,M, I) be a formal context. A set
of attributes P ⊆ M is called a pseudo-intent iff P is not an intent and for every
pseudo-intent Q ⊆ P it holds that Q′′ ⊆ P .

This recursive definition may appear a bit awkward at first glance. But it is not
hard to see that pseudo-intents are well-defined. Obviously for the empty set it
can be decided whether it is a pseudo-intent or not, since it does not have any
strict subsets. If it can be decided for all subsets of a set P whether they are
pseudo-intents or not, then it can also be decided for P . So well-definedness of
pseudo-intents follows by induction.

Definition 14 (Duquenne-Guigues basis) The set of implications

B = {P → P ′′ | P pseudo-intent of K}

is called the Duquenne-Guigues basis of K. It is

• sound for K, i. e. all implications from B hold in K, and

• complete, i. e. all implications that hold in K follow from B, and

• it has minimal cardinality among all sets of implications that are complete
for K.

The recursive definition of pseudo-intents may be more common, but there is
an equivalent, alternative definition that does not make use of recursion. It is
based on the notion of quasi-closedness. Let K = (G,M, I) be a formal context.
A set of attributes Q ⊆ M is called a quasi-closed iff for subset R ⊆ Q either
R′′ ⊆ Q or R′′ = Q′′. The following alternative definition of pseudo-intents has
been introduced by Bernhard Ganter in [10].
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Theorem 2 (alternative definition of pseudo-intents) Let K = (G,M, I)
be a formal context. A set of attributes P ⊆ M is a pseudo-intent iff

• P is not an intent, and

• P is quasi-closed, and

• P is minimal among all quasi-closed sets Q with Q′′ = P ′′, i. e. there is no
quasi-closed set Q such that Q ( P and Q′′ = P ′′.

In [12] Ganter et al. present an algorithm for computing all intents and pseudo-
intents of a given formal context. The advantage of this algorithm is that it works
with polynomial delay. This means that after finding some intent or pseudo-intent
the time that it takes to compute the next intent or pseudo-intent is bounded
polynomially in the size of the input. The Next-Closure Algorithm uses a so-
called lectic order over the power set of M . Provided an order ≤ over M itself it
is defined as follows

A < B :⇔ ∃m ∈ B \ A : ∀n < m : (n ∈ A ⇔ n ∈ B),

i. e. the least element in which A and B differ is contained in B. The Next-Closure
Algorithm will first come up with the lectically smallest pseudo-intent and then
produce all intents and pseudo-intents in the lectic order. At the core of the
Next-Closure Algorithm is a method that given a set of implications L and a set
of attributes A computes the lectically next set B that is closed with respect to
L. This means that B has the following properties.

• If C → D ∈ L then C ⊆ B implies D ⊆ B.

• B is lectically greater than A

• Among all sets with these properties B is the lectically smallest.

The attribute exploration technique of FCA is based upon the Next-Closure Al-
gorithm. The exploration starts with an incomplete context and computes the
lectically first pseudo-intent P0. Then it asks the expert whether P0 → P ′′

0 holds
in the “real world”. If the expert accepts the implication then it is added to the
set of implications B. If she rejects it then she is asked to provide a counter-
example which is then added to the context. And here a nice property of the
Duquenne-Guigues basis comes into play: If P0, . . . , Pn are the lectically first
n intents and pseudo-intents in K then P0, . . . , Pn are also the lectically first n
intents and pseudo-intents in K̄, where K̄ is obtained from K by adding a counter-
example. Therefore, one does not need to start from scratch but can keep the
previously obtained implications. When the expert interaction is finished the
Next-Closure Algorithm is used to compute the lectically next pseudo-intent P .
Then the implication P → P ′′ is presented to the expert, and so on . . . . The
algorithm terminates when all implications either follow from B or are refuted by
K.
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3.1 Dealing with growing sets of attributes

In classical attribute exploration, the exploration algorithm generates implica-
tions that are presented to an expert (usually human). If the expert refutes the
implication then she is asked to provide a counter-example. This counter-example
is then added to the set of objects. Thus classical attribute exploration is a set-
ting, in which the set of objects can grow, while the set of attributes remains
unchanged.

In FCA there is a dual method for attribute exploration, namely object explo-
ration, i. e. the set of attributes extended, while the set of objects remains un-
changed. Instead of creating implications between sets of attributes as questions
to the expert, implications between sets of objects are computed.

An exploration algorithm where not only the set of objects but also the set of
attributes are allowed to grow is Concept Exploration [19]. Here the questions
that are being asked are not of the form “Does attribute set A imply attribute
set B?” but of the form “Is s a subconcept of t?”. Concept Exploration can be
used to complete both the set of objects and the set of attributes in the sense
that the final context contains all relevant concepts. Concept Exploration has
several known problems, for example it need not terminate.

Both object exploration and concept exploration are not what we want. We are
interested in implications between attribute sets, which neither object exploration
nor concept exploration can create. Also, we are not aiming at some sort of
completeness with respect to the attributes (At a later stage we shall be aiming at
completeness with respect to the objects, though). What we want is an extension
to the NextClosure algorithm for computing intents and pseudointents which
allows a little more flexibility with respect to adding attributes manually.

Ideally, during an exploration process or during the computation of the Duquenne-
Guigues-Basis the expert obtains new knowledge about the field. This new knowl-
edge might point her towards new attributes that she wishes to include. In a clas-
sical setting she would then have to start the exploration process from scratch.
So as a first step we restrict ourselves to a setting where the set of objects is fixed
while the set of attributes can grow. We start with a context K0 = (G,M0, I0).
In each step, new attributes are added and a new context Kk = (G,Mk, Ik) is
obtained. We require that Mk−1 ⊆ Mk for all k ≥ 1 and that Ik agrees with
Ik−1 on the old attribute set, i. e. for all g ∈ G and for all m ∈ Mk−1 we have
(g,m) ∈ Ik iff (g,m) ∈ Ik−1. We will sometimes use the ·′-operators. To make
clear which context we are referring to we place a index after the operators, i. e.
A′′k for A′′ computed in the context Kk. We furthermore need an order on the
set of attributes. At one point we will compute the next closure for a given set
of attributes. To determine what the next closure is, we need an order on the
set of attributes. The only restriction we make here is that attributes that are
obtained in a later step have higher order. For example if a ∈ Mk \ Mk−1 and
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b ∈ Mk−1 then we require that b ≤ a. This order on the set of attributes gives
rise to a lectic order on the power set of the attribute set, which is defined as
follows. Given two sets A ⊆ Mk and B ⊆ Mk we say that A ≤ B iff the largest
attribute which distinguishes A and B belongs to B. Given a set of attributes
A and a set of implications C the next closure can be computed just like in the
classical Next-Closure Algorithm. An outline of the algorithm is presented as
Algorithm 1.

Algorithm 1 Algorithm for computing an implication basis that allows adding
attributes
1: Input: K0 = (G,M0, I0)
2: Π0 = ∅, P0 = ∅, k = 0
3: while Pk 6= null do
4: Πk+1 = Πk ∪ {Pk}
5: k = k + 1
6: Input: Kk = (G,Mk, Ik)
7: if Mk = Mk−1 = Pk then
8: Pk = null

9: else
10: Pk = lectically smallest subset of Mk that is

• closed with respect to {Pj → P ′′k
j | Pj ∈ Πk}, and

• lectically larger than Pk−1.

11: end if
12: end while

Whether the algorithm terminates depends on whether there is some n ∈ N such
that for all steps k > n no new attributes are added and whether only finitely
many attributes are added in each step. Then there is a final set of attributes
Mn which is finite. Termination results from the fact that Mn has only a finite
number of subsets. Since every Pk ⊆ Mn is lectically greater that Pk−1 the full
set P = Mn must be reached at some point.

Note that the algorithm does not compute implications in the first place. What
it does is compute the premises for the implication. The final set of implications
will be

Bn = {Pk → P ′′n
k | 0 ≤ k ≤ n},

where n is such that the algorithm terminates for k = n. Note that the sets Pk

need not be pseudo-intents of the final context Kn. The notation P stands for
premise, not for pseudo-intent. But B is still sound since all implications of the
form C → C ′′ hold in Kn. Completeness of Bn is shown in the next lemma.
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Lemma 5 Assume that Algorithm 1 terminates after the n-th step. Let Q be a
set of attributes that is quasi-closed in Kn. Then there is some Pk ∈ Πn such that
Pk ⊆ Q, P ′′n

k = Q′′n.

We know that {Q → Q′′n | Q is a quasi-closed in Kn} is complete (every pseudo-
intent is quasi-closed). Thus Bn = {Pk → P ′′n

k | Pk ∈ Πn} must also be complete
for Kn.

Proof: Let m be the natural number for which Pm is the lectically largest set
from Πn that is lectically smaller than Q. We know that Pm+1 is a subset of Mm+1.
Pm+1 is lectically larger or equal to Q. Thus in particular the largest element of
Pm+1 is greater or equal to the largest element of Q (from the definition of the
lectic order). We have defined the order on the attributes in such a way that
Mm+1 must contain all attributes of Mn that are smaller than the largest element
of Pm+1 and therefore Q ⊆ Mm+1.

Assume that Q is closed with respect to {Pk → P ′′m
k | k ≤ m}. Then in the m-th

iteration of the while-loop of Algorithm 1 we obtain Pm+1 = Q and thus Q ∈ Πn

and Q → Q′′n ∈ Bn.

If Q is not closed with respect to {Pk → P ′′m
k | k ≤ m}, then there must be some

natural number j ≤ m such that Q does not respect Pj → P ′′m
j , i. e. Pj ⊆ Q but

P ′′m
j 6⊆ Q. It holds that

P ′m
j = {o ∈ G | ∀a ∈ Pj : (o, a) ∈ Im} = {o ∈ G | ∀a ∈ Pj : (o, a) ∈ In} = P ′n

j ,

because the requirements that we have imposed on Im. Then

P ′′m
j = {a ∈ Mm | ∀o ∈ P ′m

j : (o, a) ∈ Im} = {a ∈ Mm | ∀o ∈ P ′n
j : (o, a) ∈ In}

⊆ {a ∈ Mn | ∀o ∈ P n

j : (o, a) ∈ In} = P ′′n
j .

Since P ′′m
j ⊆ P ′′n

j it follows that Q does not respect Pj → P ′′n
j either. Quasi-

closedness of Q implies that P ′′n
j = Q′′n . �

Note that in every step k we must keep Pk in the set of premises, even if Pk is
an intent in Kk. This is because it might happen that Pk = P ′′k

k but Pk 6≡ P ′′n
k

because the attributes in P ′′n
k \ P ′′k

k have only been added at a later point. Thus
Pk need not be an intent in Kn anymore.

So now we have an algorithm that computes a sound and complete set of implica-
tions for a formal context, where the full set of attributes is not known from the
beginning. More attributes can be added, after a premise has been computed.
No requirements have been made as to the nature of the attributes. They can
be whatever the expert deems interesting. Alternatively, they can be computed
automatically in some way, as will be the case in our method.
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Our method will be working with contexts, where the attributes are concept
description. There may be dependencies between concept descriptions that hold
in every model i. For example the concept description ∃r.P is subsumed by the
descriptions ∃r.⊤. Thus the GCI ∃r.P → ∃r.⊤ holds in every model and does not
provide any information about the specific model i. Thus one would not want to
include it in a potential basis. For that reason one might want to include such
GCIs as background knowledge.

The NextClosure Algorithm in its standard form cannot handle background
knowledge in the form of implications. Fortunately, there is Gerd Stumme’s
approach for handling background knowledge [18]. It turns out that background
knowledge can be included in a straightforward manner. Stumme defines S-
pseudo-intents as follows.

Definition 15 Let (G,M, I) be a context and S a set of implications holding in
(G,M, I). A set P ⊆ M is called S-pseudo-intent, if P respects all implications
from S and if for every S-pseudo-intent Q with Q ( P it holds that Q′′ ⊆ P .

In this definition and the rest of the work we require that all implications from
S hold in the underlying context (G,M, I).

In Stumme’s work it is shown that then the set BS = {P → P ′′ | P is S-pseudo-intent in K}
satisfies the following properties.

• BS ∪ S is a sound and complete set of implications for K, and

• BS has minimal cardinality among all sets B for which B∪S is a sound and
complete set of implications for K.

Furthermore Stumme presents a slightly modified version of the Next-Closure
Algorithm which can be used to find all S-pseudo-intents of a context.

As with standard pseudo-intents there is an alternative, non-recursive characteri-
zation for S-pseudo-intents that makes use of the notion of quasi-closedness. This
can be shown along the lines of the proof for standard pseudo-intents. Since it
has not been included in [18] we present it here.

Lemma 6 Let (G,M, I) be a finite context and S a set of implications holding
in (G,M, I). A set P ⊆ M is an S-pseudo-intent iff

• P respects all implications from S, and

• P is quasi-closed, and

• P is minimal among all quasi-closed sets with the same intent that respect
S.
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Proof: We first prove the only if direction We show that every S-pseudo-intent
P satisfies all three properties.

P respects all implications from S: This is trivial since S-pseudo-intents by def-
inition have this property.

Quasi-Closedness: Assume that P is not quasi-closed. Then there exists some
set Q ( P , Q′′ 6⊆ P and Q′′ ( P ′′. Without loss of generality assume that Q is
maximal among all sets with these properties. Since P is an S-pseudo-intent, Q
cannot be a pseudo-intent. Hence there must be some S-pseudo-intent R ( Q,
R′′ 6⊆ Q. R ( Q ( P and the fact that P is an S-pseudo-intent imply R′′ ⊆ P .

Consider T = R′′ ∪ Q. We prove that T satisfies T ⊆ P , T ′′ 6⊆ P and T ′′ (

P ′′, as well as Q ( T . This creates a contradiction to maximality of Q. (1)
Q ( R′′ ∪ Q = T follows trivially from R′′ 6⊆ Q. (2) Since Q ( T we obtain
Q′′ ⊆ T ′′. Thus T ′′ 6⊆ P follows from Q′′ 6⊆ P . (3) R ( Q implies R′′ ⊆ Q′′ and
thus T = R′′ ∪ Q ⊆ Q′′. Hence T ′′ ⊆ (Q′′)′′ = Q′′ ( P ′′. (4) P ⊆ T would imply
P ′′ ⊆ T ′′, a contradiction to (3). Thus P 6⊆ T . From R′′ ⊆ P and Q ( P we get
T = R′′ ∪ Q ⊆ P . Therefore T ( P . The existence of T contradicts maximality
of Q. Hence, such a set Q cannot exist and therefore P must be quasi-closed.

Minimality: Assume there is another quasi-closed set Q ( P , Q′′ = P ′′, such that
Q respects all implications from S. Then Q cannot be an S-pseudo-intent. Thus
there must be some S-pseudo-intent R ( Q such that R′′ 6⊆ Q. Quasi-closedness
of Q implies R′′ = Q′′ = P ′′ a contradiction. This proves that P is minimal with
the desired properties.

We continue by proving the if -direction, i. e. show that every quasi-closed set P
that respects all implications from S and is minimal among all sets with these
properties must be an S-pseudo-intent. Since we already know that P respects all
implications from S we only need to show that for every S-pseudo-intent Q ( P
it holds that Q′′ ⊆ P . If Q′′ 6= P ′′ then Q′′ ⊆ P since P is quasi-closed. However,
if Q′′ = P ′′ then minimality of P implies P = Q. Therefore P is an S-pseudo-
intent. �

Stumme’s work provides the necessary tools to extend Algorithm 1 to handle
background knowledge presented in the form of implications. Recall that Algo-
rithm 1 works in a setting where the set of objects G is fixed, but the set of
attributes is allowed to grow: M0 ⊆ M1 ⊆ . . .. Furthermore for every natural
number k the relation Ik is required to agree with Ik+1 on all pairs from G×Mk.
We introduce background knowledge to this setting. We can allow the back-
ground knowledge to change during the course of the computation. We define
S0 ⊆ S1 ⊆ . . . to be a sequence of implication sets. This means that whenever
a new premise Pk is computed, one can add both new attributes and new back-
ground implications to obtain a new attribute set Mk+1 and a new background

19



implication set Sk+1. Like in Algorithm 1 we write A′′k for A′′ computed in Kk. We
also keep the requirement that attributes that have been added at a later stage
have higher order than their “older” counterparts. An outline of the algorithm is
presented as Algorithm 2.

Algorithm 2 Algorithm for “on the fly”-construction an implication basis with
background knowledge

1: Input: K0 = (G,M0, I0), S0

2: Π0 = ∅, P0 = ∅, k = 0
3: while Pk 6= null do
4: Πk+1 = Πk ∪ {Pk}
5: k = k + 1
6: Input: Kk = (G,Mk, Ik), Sk

7: if Mk = Mk−1 = Pk then
8: Pk = null

9: else
10: Pk = lectically smallest set of attributes that is

• closed with respect to {Pj → P ′′k
j | Pj ∈ Πk} and Sn, and

• lectically larger than Pk−1.

11: end if
12: end while

Again termination is guaranteed if and only if there is some n ∈ N such that
Mn = Mk holds for all k ≥ n. The set of implications BS,n = {Pj → P ′′n

j | Pj ∈
Πn}. In perfect analogy to the proof of Lemma 5 one can prove the following
lemma.

Lemma 7 Assume that Algorithm 1 terminates after the n-th step. Let Q be a
set of attributes that is quasi-closed in Kn and closed with respect to S. Then
there is some Pk ∈ Πn such that Pk ⊆ Q, P ′′n

k = Q′′n.

Because S ∪ {Q → Q′′n | Q is a quasi-closed in Kn and S-closed} is complete,
{P → P ′′n | P ∈ Πn} ∪ S must thus also be complete for Kn.

4 Computing an ELgfp-GCI basis using FCA

Even though the general ideas for the framework in Section 2.2 have been taken
from Formal Concept Analysis, there remain some differences between the two
areas. For example in FCA is working with Formal Contexts, which do not allow
for relational dependencies among objects, while we use DL-style models as the
underlying data structure. When we try to translate a model into a formal context
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it is not immediately clear how this should be done. Simply taking all possible
concept descriptions as attributes would result in an infinite context. In such a
context it is not even clear whether the Duquenne-Guigues basis exists.

We will therefore have to restrict ourselves to a finite set of concept descriptions
M as the set of attributes of a context. The set of objects would be the domain
∆i of an underlying model i. We also need to define relations Ik. With the
objects being elements of ∆i and the attributes being concept descriptions there
is a natural way to define Ik: For an attribute C ∈ Mk and an object x ∈ ∆i

define (x,C) ∈ Ik iff x ∈ Ci. Contexts with DL-attributes have been defined
in a similar way in previous work [15, 16]. In this work we call such a context
where the attribute set is a set of concept descriptions and the instance relation is
obtained from a model i a context induced by M and i. In such a context, a subset
of the attribute set can be turned into an ELgfp-concept description by forming
the conjunction over all elements of this set (denoted by

d
U). Conversely, an

ELgfp-concept-description C corresponds to the set of all attributes that subsume
C (denoted by prKn

(C), the projection of C to Kn). Appendix A presents some
technical results about the connection between concept descriptions and attribute
sets in an induced context. It also looks at the connection between the ·i operators
and the ·′ operators for an induced context.

It is not clear, which concept descriptions should be elements of M . But one hint
how to do it comes from the structure of Λi, the set of premises of the GCIs in Bi.
Every concept description C ∈ Λi can be written as the conjunction of primitive
concept names and concept descriptions of the form ∃r.X i, r ∈ Nr, X ∈ ∆i.
Thus every concept description C ∈ Λi corresponds to a subset of Mi. Hence it
might be worthwhile to consider a context whose set of attributes is Mi.

Now, if we look at Bi again, it becomes clear, that there is still some room for
improvement. The left-hand sides of Bi simply corresponds to all subsets of
Mi. We would produce less redundancy if we take only those premises that are
pseudointents in the induced context.

There is, however, still the problem that, before we can build this context, we
need to know all i-intents. What’s worse is that most of the i-intents would be
obtained twice: The first time when computing Mi and the second time as right-
hand sides for the GCIs. So it would be nice to have a method where the set of
attributes M is computed on the fly. As new GCIs are found, their right hand
sides would be added to M .

During the rest of this section, we present an method that combines these two
ideas: Using FCA methods to reduce the size of the GCI basis and computing
i-intents on the fly.

For a given model i we have presented the sound and complete set of GCIs Bi

in Section 2.3. There is, however, one thing that is problematic about this basis.
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Before starting to compute GCIs, one has to find the concept intents X i where
X ⊆ ∆i. There are two reasons why this is bad. The first reason is that there may
be exponentially many such intents [14]. So in the worst case, one would have
to wait for an unreasonably long time before the actual computation even starts.
The second reason is that computing the constituents (and thus the intents of
the model i) requires full access to the model i. In the setting that we consider
in this section and the previous ones full access to the model is granted. Later
we would like to generalize our approach to an exploration algorithm. In such an
algorithm one has only partial knowledge about the model and more information
is gathered during the course of the exploration. Since the set of intents in the
partial model need not be the same as the set of intents in the full model it is
not possible to compute the intents beforehand.

4.1 Not using background knowledge

Let us look at the basis Bi in a little more detail. Bi is the set of all GCIs of the
form C → Cii where the left-hand sides C of these GCIs are contained in the set
Λi. Λi is the set of all conjunctions over the elements of

Mi = Np ∪ {∃r.X i | r ∈ Nr, X ⊆ ∆i}.

Therefore it is natural to look at contexts, that are induced by some subset of
Mi.

The number of i-intents X i can be exponential in the size of the model. Hence
also Mi can become exponentially large. Therefore we want to avoid having to
compute the whole set before starting the process. Instead more attributes should
be computed on the fly. An idea is to instantiate Algorithm 1 in the following
way. We are given a finite model i. We initiate Algorithm 1 with the context
K0 = (∆i,Np, I0). The context K0 is obtained as the induced context by i and the
set of primitive concept names Np. In every step k of the algorithm the following
things happen.

• A new premise Pk is found.

• Pk is a subset of Mk.

• Algorithm 1 asks for a new context with an extended attribute set Mk+1.
Mk+1 is obtained by adding to Mk all attributes of the form ∃r.(

d
Pk)

ii

where r is some role name. (This is done only, if no equivalent concept
description is already present in the attribute set.)

• Kk+1 is computed as the induced context by the new attribute set Mk+1 and
i.
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Algorithm 3 Exploration for computing a basis for a given model i

1: Input: model i = (∆i, ·
i)

2: // Initialisation
3: M0 = Np, K0 = the context induced by M0 and i
4: Π0 = ∅, P0 = ∅, k = 0
5: while Pk 6= null do
6: Πk+1 = Πk ∪ {Pk}
7: Mk+1 = Mk ∪ {∃r.(

d
Pk)

ii | r ∈ Nr}
8: k = k + 1
9: if Mk = Mk−1 = Pk then

10: Pk = null

11: else
12: Pk = lectically next set of attributes that is closed with respect to {Pj →

P ′′k
j | 1 ≤ j < k}

13: end if
14: end while

For Algorithm 1 we know that it terminates if there is some n ∈ N such that
starting from the n-th step of the algorithm no more new attributes are being
added. This is guaranteed by the fact that there are only finitely many i-intents.
Therefore only finitely many attributes of the form ∃r.(

d
Pk)

ii can be added.

Assume that Algorithm 3 terminates after the n-th iteration of the while-loop.
Lemma 5 proves that then the set {Pk → P ′′n

k | Pk ∈ Πn} is sound and complete
for Kn. We are, however, not interested in a basis for this context, but in a basis
for the underlying model i. The rest of this section will be dealing with the proof
that the corresponding set of ELgfp-GCIs

{
l

Pk → (
l

Pk)
ii | Pk ∈ Πn}

is a basis for i. As a subset of Bi it is obviously finite and sound. The harder
part shall be proving completeness.

The first thing to prove is that our algorithm is capable of finding all elements of

M = Np ∪ {∃r.X i | r ∈ Nr, X ⊆ ∆i}.

We show that for every role name r ∈ Nr the set Mn is closed with respect to
the following mapping: U ⊆ Mn is mapped to the concept description ∃r.(

d
U)ii.

In a later step we prove that every concept description from Mi can be obtained
from Np by repeatedly applying one of these mappings. This means, that once
the algorithm has terminated, every concept description from Λi can be expressed
in terms of Mn.

Lemma 8 Assume that Algorithm 3 terminates after the n-th iteration. Let Mn

be the final set of attributes. Then for every role name r ∈ Nr and every subset
U ⊆ Mn there is a concept description C ∈ Mn such that C ≡ ∃r.(

d
U)ii.

23



Proof: V = prKn
((

d
U)ii) is an intent in Kn by Lemma 20. As an intent it

is also quasi-closed. Therefore Lemma 5 shows that there is some Pk ∈ Πn such
that Pk ⊆ V and P ′′n

k = V ′′n = V . In the k-th iteration of the algorithm the
attributes ∃r.(

d
Pk)

ii are added to the set of attributes. ∃r.(
d

Pk)
ii ≡ ∃r.(

d
U)ii

is a consequence of Lemma 21. We have thus proved that for every set U ⊆ Mn

and for every r ∈ Nr there is a description C ∈ Mn such that C ≡ ∃r.(
d

U)ii. �

Lemma 9 Let O be a set of concept descriptions with the following properties

• For every role name r ∈ Nr and every subset U ⊆ O there is some C ∈ O
such that C ≡ ∃r.U ii.

• O contains Np.

Then for every role name r ∈ Nr and every set X ⊆ ∆i there is some concept
description C ∈ O such that C ≡ ∃r.X i.

Proof: Let X ⊆ ∆i be some set of objects. We prove that there is some concept
description C ∈ Mn such that C ≡ ∃r.X i by induction over the depth of X i. We
say that an intent X i has depth d if there is an acyclic concept description D of
role depth d such that X i ≡ Dii. By a result from [7] such an acyclic concept
description D exists for every concept description C, i. e. every i-intent has finite
depth.

Base case: Let X i be an i-intent of depth 0. This means that X i can be expressed
as

X i ≡
l

P∈P

P

for some set of primitive concept names P ⊆ Np. Since Np ⊆ O it follows from
the hypothesis that for every r ∈ Nr there is some concept description C ∈ O
such that

C ≡ ∃r.(
l

P)ii ≡ ∃r.X i.

Step case: Now assume that for every intent X i of depth less than k and for every
r ∈ Nr there is some CX ∈ O with CX ≡ ∃r.X i. Let Y i, Y ⊆ ∆i be some intent
of role depth k. Then there must be some acyclic concept description D of role
depth k such that Y i ≡ Dii. D can be written as

D ≡
l

P∈PD

P ⊓
l

1≤l≤s

∃rl.El.

where PD ⊆ Np is a set of primitive concept names, rl ∈ Nr is a role name and
El is an acyclic concept description of role depth less than k for all l ∈ {1, . . . , s}.
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Then

Y i ≡ Dii ≡

(

l

P∈PD

P ⊓
l

l∈L

∃rl.El

)ii

≡

(

⋂

P∈PD

P i ∩
⋂

l∈L

(∃rl.El)
i

)i

≡

(

⋂

P∈PD

P i ∩
⋂

l∈L

{x ∈ ∆i | ∃y ∈ Ei
l : (x, y) ∈ ri

l}

)i

≡

(

⋂

P∈PD

P i ∩
⋂

l∈L

{x ∈ ∆i | ∃y ∈ Eiii
l : (x, y) ∈ ri

l}

)i

≡

(

⋂

P∈PD

P i ∩
⋂

l∈L

(∃rl.E
ii
l )i

)i

≡

(

l

P∈PD

P ⊓
l

l∈L

∃rl.E
ii
l

)ii

(4)

From the induction hypothesis we know that there are concept descriptions Cl ∈
O, for all l ∈ {1, . . . , s} such that Cl ≡ ∃r.Eii

l for all l ∈ {1, . . . , s}. Define
U = PD ∪ {Cl | 1 ≤ l ≤ s}. Then U ⊆ O. We obtain

Y i ≡

(

l

P∈PD

P ⊓
l

l∈L

Cl

)ii

≡ (
l

U)ii.

From the hypothesis we obtain that there is some CY ∈ O such that CY ≡ ∃r.Y i.
�

Lemma 9 and Lemma 8 prove that once Algorithm 3 terminates the final attribute
set Mn contains all attributes of the form ∃r.X i for r ∈ Nr, X ⊆ ∆i. This means
that all concept descriptions from Λi can be expressed in terms of Mn (Recall
that Λi is the set of premises of the sound an complete set of GCIs Bi presented
in Section 2.3).

We are still trying to prove that

{
l

Pk → (
l

Pk)
ii | Pk ∈ Πn}

with the sets Pk obtained in Algorithm 3 is complete for i. Since we have already
proved completeness of Bi we try to deduce completeness of {

d
Pk → (

d
Pk)

ii |
Pk ∈ Πn} from completeness of Bi. The following result helps us to do this.

Lemma 10 Let n be the number of the iteration for which Algorithm 3 termi-
nates. Let L ∈ Λi be a premise of the GCI set Bi. Then either L is an i-intent
or there is some Pk ∈ Πn such that L ⊑

d
Pk, L 6⊑ (

d
Pk)

ii.
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Proof: Assume that L is not an i-intent, i. e. L 6= Lii. Then prKn
(L) 6= prKn

(Lii)
(This follows from Lemma 18 since both L and Lii are expressible in terms of
Mn). From Lemma 18 we know that prKn

(L)′′n = prKn
(Lii). Thus prKn

(L) is not
an intent of Kn. Since {Pk → P ′′n

k | 1 ≤ k ≤ n} is complete for Kn by Lemma 5
there must be some k ∈ {1, . . . , n} such that Pk ⊆ prKn

(L), P ′′n
k 6⊆ prKn

(L). Thus
L ⊑

d
Pk, L 6⊑

d
P ′′n

k by Lemmas 16 and 18. Also from Lemma 18 we obtaind
P ′′n

k ≡ (
d

Pk)
ii and thus L 6⊑

d
P ii

k . �

The next result finally ties the previous ones together. It finally enables us to
prove completeness of {

d
Pk → (

d
Pk)

ii | Pk ∈ Πn}.

Lemma 11 Let C be a set of ELgfp-concept descriptions such that for every L ∈
Λi it holds that either

• there is some C ∈ C such that L ⊑ C, L 6⊑ Cii, or

• L ≡ Lii.

Then {C → Cii | C ∈ C} is complete for i.

Proof: Assume that there is a concept descriptions L ∈ Λi such that L → Lii

does not follow from {C → Cii | C ∈ C}. Since Λi is finite we can assume without
loss of generality that L is minimal with this property. L cannot be an i-intent
for then L → Lii ≡ L would follow trivially from any set of GCIs. Hence, the
preconditions imply that there is some C ∈ C such that L ⊑ C, L 6⊑ Cii. Then
L → L⊓Cii follows from C → Cii. Furthermore L⊓Cii ⊏ L is strictly subsumed,
because of L 6⊑ Cii. Also L ⊓ Cii ∈ Λi because of Lemma 4. We have assumed
that L is minimal among all ELgfp-concept descriptions for which L → Lii does
not follow from {C → Cii | C ∈ C}. Therefore L ⊓ Cii → (L ⊓ Cii)ii ≡ Lii

follows from {C → Cii | C ∈ C}. Thus both L → L ⊓ Cii and L ⊓ Cii → Lii

follow from {C → Cii | C ∈ C}. This contradicts the assumption that L → Lii

does not follow from {C → Cii | C ∈ C}. Therefore the assumption is false,
i. e. for every L ∈ Λi the GCI L → Lii follows from {C → Cii | C ∈ C}. Since
{L → Lii | L ∈ Λi} is complete, {C → Cii | C ∈ C} must also be complete. �

Now let us look at the final context Kn once more. From Lemma 8 we know
that for every role name r ∈ Nr and every subset U ⊆ Mn there is a concept
description C ∈ Mn such that C ≡ ∃r.(

d
U)ii. Hence we can apply Lemma 9

which yields that all concept descriptions from Λi can be expressed in terms of
Mn. This is exploited in the proof of Lemma 10 which shows that every L ∈ Λi

is either an i-intent or there is some Pk ∈ Πn such that L ⊑
d

Pk, L 6⊑ (
d

Pk)
ii.

Finally, Lemma 11 yields completeness of {
d

Pk → (
d

Pk)
ii | Pk ∈ Πn}.
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Theorem 3 Assume that Algorithm 3 terminates after the nth iteration of the
while-loop. Then the set of GCIs

{
l

Pk → (
l

Pk)
ii | Pk ∈ Πn}

is complete for i.

4.2 Using background knowledge

The method for computing a basis used in Algorithm 3 does not take into account
the subsumption hierarchy of the attributes in Kn. Since the attributes from
Mn are all ELgfp-concept descriptions, it can happen that one attribute C is
subsumed by another attribute D. In this case C → D holds in any model j.
Thus adding C → D to the GCI basis would be redundant. In order for the
FCA-based method to take into account and reduce this sort of redundancies, we
can add background knowledge. This background knowledge can be represented
in the form of implications {C} → {D}, where C ⊑ D. With the background
knowledge in this form Stumme’s approach can be applied (and its extension to
a changing set of attributes, as in Algorithm 2).

Algorithm 4 Exploration for computing a basis for a given model i using back-
ground knowledge

1: Input: model i = (∆i, ·
i)

2: // Initialisation
3: M0 = Np, S0 = ∅, K0 = the context induced by M0 and i
4: Π0 = ∅, P0 = ∅, k = 0
5: while Pk 6= null do
6: Πk+1 = Πk ∪ {Pk}
7: Mk+1 = Mk ∪ {∃r.(

d
Pk)

ii | r ∈ Nr}
8: Sk+1 = {{C} → {D} | C,D ∈ Mk+1, C ⊑ D}
9: k = k + 1

10: if Mk = Mk−1 = Pk then
11: Pk = null

12: else
13: Pk = lectically next set of attributes that respects all implications from

{Pj → P ′′k
j | 1 ≤ j < k} and Sk

14: end if
15: end while

We initiate Algorithm 2 with the context K0 = (∆i,Np, I0) where K0 is the context
induced by Np and i. When Algorithm 2 finds a premise Pk it asks for a new
context with an extended attribute set Mk+1. Just like in the version without
background knowledge that has been presented in the previous Section 4.1 Mk+1
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is obtained by adding to Mk all attributes of the form ∃r.(
d

Pk)
ii where r is some

role name. In addition to asking for a new set of attributes Algorithm 2 will
also ask for a set of background implications. As background knowledge, define
Sk = {{C} → {D} | C,D ∈ Mk, C ⊑ D} (in DL terms one would say that we
classify Mk in each step). The resulting algorithm is presented as Algorithm 4.

Again, the algorithm will terminate, because there are only finitely many at-
tributes that can be added. Assume that Algorithm 2 with contexts Kk and
background knowledge Sk defined as above terminates after step n. We obtain a
set Πn ⊆ Mn. This set Πn gives rise to a set of implications

B = {
l

Pk → (
l

Pk)
ii | Pk ∈ Πn}.

Since B is a subset of Bi, we know that B is sound and finite. The proof for
completeness is almost identical to the proof of completeness from Section 4.1.

Lemma 12 Assume that Algorithm 2 with contexts Kk and background knowledge
Sk defined as above terminates after the n-th iteration of the while loop. Then
for every set U ⊆ Mn and for every r ∈ Nr there is a description C ∈ Mn such
that C ≡ ∃r.(

d
U)ii.

Proof: The proof is analogous to the proof of Lemma 8. Let U ⊆ Mn be
some set of attributes of the final context Kn. Then V = prKn

((
d

U)ii) is an
intent in Kn by Lemma 20. As an intent it is also quasi-closed and closed with
respect to Sn. Therefore Lemma 7 shows that there is some Pk ∈ Πn such that
Pk ⊆ V and P ′′n

k = V ′′n = V . In the k-th iteration of the algorithm the attributes
∃r.(

d
Pk)

ii are added to the set of attributes. ∃r.(
d

Pk)
ii ≡ ∃r.(

d
U)ii is follows

from Lemma 21. We have thus proved that for every set U ⊆ Mn and for every
r ∈ Nr there is a description C ∈ Mn such that C ≡ ∃r.(

d
U)ii. �

Since we know that Np ∈ Mn this means that we can apply Lemma 9. Lemma 9
yields that every concept description from Λi can be expressed in terms of Mn.

Lemma 13 Let n be the number of the iteration for which Algorithm 2 terminates
with the contexts Kk and the implication sets Sk defined as above. Let L ∈ Λi be a
premise of the GCI set Bi. Then either L is an i-intent or there is some Pk ∈ Πn

such that L ⊑
d

Pk, L 6⊑ (
d

Pk)
ii.

Proof: Assume that L is not an i-intent, i. e. L 6≡ Lii. Then prKn
(L) 6= prKn

(Lii)
(This follows from Lemma 18 since both L and Lii are expressible in terms of
Mn). From Lemma 18 we know that prKn

(L)′′n = prKn
(Lii). Thus prKn

(L) is not
an intent of Kn. Since S∪{Pk → P ′′n

k | 1 ≤ k ≤ n} is complete for Kn by Lemma 7
there must be some k ∈ {1, . . . , n} such that Pk ⊆ prKn

(L), P ′′n
n 6⊆ prKn

(L) or
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some implication {C} → {D} ∈ Sk such that {C} ⊆ prKn
(L), {D} 6⊆ prKn

(L).
For such an implication {C} → {D} it holds that C ⊑ D by definition of Sk.
C ∈ prKn

(L) means that L ⊑ C. But then also L ⊑ D and thus D ∈ prK(L).
This contradiction proves that an implication {C} → {D} ∈ Sk such that {C} ⊆
prKn

(L), {D} 6⊆ prKn
(L) cannot exist. So there must be some k ∈ {1, . . . , n} such

that Pk ⊆ prKn
(L), P ′′n

n 6⊆ prKn
(L). Thus L ⊑

d
Pk, L 6⊑

d
P ′′n

k by Lemmas 16
and 18. Also from Lemma 18 we obtain

d
P ′′n

k ≡ (
d

Pk)
ii and thus L 6⊑ (

d
Pk)

ii.
�

We have thus shown that every L ∈ Λi is either an i-intent or there is some
Pk ∈ Πn such that L ⊑

d
Pk, L 6⊑ (

d
Pk)

ii. This allows us to apply Lemma 11
which states that {

d
Pk → (

d
Pk)

ii | Pk ∈ Πn} is complete for i. Note that
we do not need to add the background knowledge here, because this is already
implicitly contained in the logic.

Theorem 4 Assume that Algorithm 2 terminates after the nth iteration of the
while-loop. Then the set of GCIs

{
l

Pk → (
l

Pk)
ii | Pk ∈ Πn}

is complete for i.

5 The exploration algorithm

5.1 General Setting

In classical FCA, attribute exploration is a knowledge acquisition formalism based
on expert interaction. The expert is assumed to have complete knowledge about
the domain. In the standard FCA setting, one would typically start with a
formal context. That formal context uses a fixed set of attributes and a set of
objects that is extended during the course of the exploration. These objects serve
as counterexamples for potential implications between sets of attributes. The
system successively detects implications of the form A → B for which there is no
counterexample. It then asks the expert whether the implication A → B holds in
the domain of the exploration. If the expert accepts it the implication is added
to the basis. Otherwise the expert is asked to provide a counterexample that is
then added to the context. That way both the set of implications and the set of
objects grow until every implication is either refuted by some counterexample or
follows from the set of previously computed implications.

When transfering the idea of an exploration process to a Description Logics set-
ting there are two choices for the underlying data structure. One can either use
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ABoxes which allow for incomplete knowledge or models (or Kripke structures)
which are required to contain knowledge, which is complete in a certain sense
(In what sense shall become clearer soon). In our setting, we choose to represent
data as a DL model and thus call the process model exploration. We would like
to acquire knowledge in the form of GCIs in the sense of Definition 5. Just like in
FCA, we assume that there is an expert who has complete knowledge about the
domain of the exploration, the so-called real world, which in our case is a finite
interpretation. The primary goal of the exploration formalism is to find a basis
for the set of all GCIs that hold in this domain. The reason why we only deal
with finite models is that for an infinite model there need not be a finite basis of
the GCIs. In such a setting an exploration algorithm could not terminate. We
call i the background model.

We assume, however, that at the beginning of the exploration process only some
part of the model i is given to the exploration system, i. e. there is some model i0
such that ∆i0 ⊆ ∆i. We call i0 the working model as opposed to the background
model i. At this point, we allow i0 to be incomplete, but only in the sense that
some of the potential counterexamples are not contained in ∆i0 . We do, however,
require to have complete knowledge about the objects that are contained in ∆i0 .
Now, what do we mean when we say complete knowledge? In this setting complete
knowledge means that for every x ∈ ∆i0 and for every ELgfp-concept description
C it holds that x ∈ Ci0 iff x ∈ Ci. Informally, this means that we know everything
about x that can be expressed using ELgfp.

In order to fulfill this requirement we demand that i0 has the following properties.

• ∆i0 ⊆ ∆i

• P i0 = P i ∩ ∆i0 for all P ∈ Np

• ri0 = ri ∩ (∆i0 × ∆i0) for all r ∈ Nr

• x ∈ ∆i0 , (x, y) ∈ ri for some r ∈ Nr implies y ∈ ∆i0

This means that i0 is a submodel of i which is closed with respect to role succes-
sors, i. e. for every object x ∈ ∆i0 it also contains all objects that can be reached
from x by following some edge in the model EL-description graph 3. We call such
models connected submodels of i. Using the characterizations Proposition 1 and
Theorem 1 it is straightforward to prove that for every connected submodel i0 of
i and for every ELgfp-concept description C it holds that x ∈ Ci0 iff x ∈ Ci.

Our model exploration algorithm is based on Algorithm 3. Remember that, when
Algorithm 3 computes a new premise, the set of attributes will change. In the
model exploration algorithm (presented as Algorithm 5) the set of attributes will
change, and in addition, the expert may also be asked to extend the working
model. Let in represent the working model after the n-th step. The GCIs that
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the formalism finds will be of the form C → D, where C and D are concept
descriptions for a fixed signature Σ = (Nr, Np). Just like in standard FCA the
expert can answer by either confirming or refuting the GCI. In the first case
the GCI is added to the basis and the working model remains unchanged. In
the latter case the expert is asked to provide a new background model in+1 that
contains a counterexample for the GCI. By counterexample we mean some x ∈ ∆i

such that x ∈ Ci but x /∈ Di. In order for x to be accepted as a counterexample,
the expert has to provide a connected submodel in+1 of i such that ∆in ⊆ ∆in+1

.

In every step the set of undecided GCIs, i. e. GCIs that neither follow from the
GCI basis nor are refuted by some counterexample becomes smaller. Eventually
every GCI will be decided. How and why this works in detail is explained in the
following section.

5.2 General model-exploration algorithm

The algorithms presented in Section 4 have been designed to be robust with re-
spect to changes in the underlying model. And indeed, the exploration algorithm
requires only minor changes to Algorithm 3. The exploration process is initiated
with the working model i0. The algorithm starts with the context K0 (obtained
as the context induced by i0 and Np), and an empty set of premises Π0. Like in
Algorithm 3 a new context Kn, is computed in every step of the algorithm. The
following things may happen.

1. A new premise Pk is found.

2. Pk is a subset of Mk. Compute the corresponding ELgfp-concept descriptiond
Pk.

3. The expert is asked whether
d

Pk → (
d

Pk)
ijij holds in the background

model

4. If the expert refutes the GCI she is asked for a new working model ij+1.

5. Repeat from Step 3 until the expert accepts
d

Pk → (
d

Pk)
ijij .

6. The algorithm asks for a new context with an extended attribute set Mk+1.
Mk+1 is obtained by adding to Mk all attributes of the form ∃r.(

d
Pk)

ii

where r is some role name. (This is done only, if no equivalent concept
description is already present in the attribute set.)

7. Kk+1 is computed as the induced context by the new attribute set Mk+1 and
i.

The modification with respect to Algorithm 3 merely consists of adding a second
while-loop to the algorithm. This inner loop is used to determine the proper
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conclusion (
d

Pk)
ii for a given premise

d
Pk. Since i is not known (

d
Pk)

ii cannot
be computed directly, but only by interacting with the expert. This is done in
the following way. The GCI

d
Pk → (

d
Pk)

ijij is presented to the expert. If
the expert refutes the GCI then she is required to provide a counter-example,
i. e. to provide a connected submodel ij+1 of i that extends ij, and in whichd

Pk → (
d

Pk)
ijij does not hold. This is repeated until the expert states thatd

Pk → (
d

Pk)
ijij holds in i. One can proof that if

d
Pk → (

d
Pk)

ijij holds
in i then (

d
Pk)

ijij ≡ (
d

Pk)
ii. This way we can obtain (

d
Pk)

ii by repeatedly
questioning the expert.

Lemma 14 (Termination) Algorithm 5 terminates after a finite number of
steps.

Proof: There are only finitely many attributes that can be added. Hence the
outer while loop can be entered only finitely often. The inner while-loop can only
be passed a finite number of times, since with each pass the model ij is extended.
Since ij is a submodel of i and i is finite this can only happen finitely often. �

Just like for Algorithm 1 the set of GCIs

{
l

Pk → (
l

Pk)
ijij | Pk ∈ Πn}

must be finite and sound, as it is a subset of Bi, which is a finite basis for i.

Theorem 5 (Completeness:) Assume that Algorithm 5 terminates after the
n-th iteration of the outer while loop. Then the set of GCIs of the form

d
Pk →

(
d

Pk)
ii, 0 ≤ k ≤ n, is complete for i.

Proof: We prove completeness by proving that Algorithm 5 with the working
model i0 as input finds exactly the same GCI set as Algorithm 3 with the complete
background model i as input. This is done by induction over n.

Denote by P̄k, M̄k, the respective premises, and attributes found by Algorithm 5
in the k-th step.

Obviously P0 = P̄0 = ∅, and M0 = M̄0 = Np.

Assume that for all k ≤ k0 it holds that Pk ≡ P̄k, and Mk ≡ M̄k. Algorithm 5
does not return from the inner while-loop until the working model ij is such thatd

Pk → (
d

Pk)
ijij holds in i.

As submodels ij we only allow models for which x ∈ ∆ij and x ∈ (
d

Pk)
ij implies

x ∈ (
d

Pk)
i. Therefore (

d
Pk)

ij ⊆ (
d

Pk)
i and thus ((

d
Pk)

ij)i ⊑ (
d

Pk)
ii. One
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Algorithm 5 Model-Exploration Algorithm without background knowledge

1: Input: working model i0 (connected submodel of background model i)
2: M0 := Nprim, K0 := the context induced by M0 and i0,
3: Π0 := ∅, P0 := ∅, k := 0, j := 0
4: while Pk 6= null do
5: while expert refutes

d
Pk → (

d
Pk)

ijij do
6: j := j + 1
7: Ask the expert for a new working model ij that extends ij−1, is a

connected submodel of i, and contains a counterexample for
d

Pk →
(
d

Pk)
ijij

8: end while
9: Πk+1 := Πk ∪ {Pk}

10: Mk+1 := Mk ∪ {∃r.P
ijij
k | r ∈ Nr}

11: k := k + 1
12: if Mk = Mk−1 = Pk then
13: Pk := null

14: else
15: Pk := lectically next set of attributes that respects all implications in

{Pl → P ′′k
l | 1 ≤ l < k}

16: end if
17: end while

can show 1 that ((
d

Pk)
ij)i ≡ (

d
Pk)

ijij and therefore (
d

Pk)
ijij ⊑ (

d
Pk)

ii. The
expert has stated that

d
Pk → (

d
Pk)

ijij holds in i. This means that (
d

Pk)
i ⊆

((
d

Pk)
ijij)i. But (

d
Pk)

ii is defined to be the most specific concept for (
d

Pk)
i

in i. The definition of most specific concept implies (
d

Pk)
ii ⊑ (

d
Pk)

ijij . Thus
(
d

Pk)
ijij ≡ (

d
Pk)

ii ≡
d

P̄ ii
k .

(1) We prove Mk+1 = M̄k+1. Mk+1 is obtained from Mk by adding all ELgfp-
concept descriptions of the form ∃r.(

d
Pk)

ijij . Likewise M̄k+1 is obtained by
adding all ELgfp-concept descriptions of the form ∃r.(

d
P̄k)

ii to M̄k. Since Pk = P̄k

by the induction hypothesis and P ii
k = P

ijij
k it follows that Mk+1 ≡ Mk+1.

(2) We show Pk+1 = P̄k+1. Pk+1 is the lectically smallest subset of Mk+1 that

• closed with respect to {Pl → P
′′k+1

l | l ≤ k}, and

• lectically greater than Pk.

An analogous definition holds for P̄k+1. We already know that Pl = P̄l for all l ≤ k
and Mk+1 = M̄k+1. So what remains to be shown is P

′′k+1

l = P̄ ′′k+1
l for all l ≤ k.

1By definition for every x ∈ ∆ij
and every concept description C it holds that x ∈ Cik if

and only if x ∈ Ci. In other words, for every U ⊆ ∆ik
it holds that U ⊆ Cik if and only if

U ⊆ Ci. Thus U ik ≡ U i for all U ⊆ ∆ik
by definition of most specific concepts.
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Algorithm 6 The Model-Exploration Algorithm using background knowledge

1: Input: working model i0 (connected submodel of background model i)
2: M0 := Nprim, K0 := the context induced by M0 and i0, S0 := ∅
3: Π0 := ∅, P0 := ∅, k := 0, j := 0
4: while Pk 6= null do
5: while expert refutes

d
Pk → (

d
Pk)

ijij do
6: j := j + 1
7: Ask the expert for a new working model ij that extends ij−1, is a

connected submodel of i, and contains a counterexample for
d

Pk →
(
d

Pk)
ijij

8: end while
9: Πk+1 := Πk ∪ {Pk}

10: Mk+1 := Mk ∪ {∃r.P
ijij
k | r ∈ Nr}

11: Sk+1 := {C → D | C,D ∈ Mk, C ⊑ D}
12: k := k + 1
13: if Mk = Mk−1 = Pk then
14: Pk := null

15: else
16: Pk := lectically next set of attributes that respects all implications in

{Pl → P ′′k
l | 1 ≤ l < k} and Sk

17: end if
18: end while

From Lemma 20 we obtain P
′′k+1

l = prKk+1
((

d
Pl)

ijij). Since we have shown that

(
d

Pl)
ijij = (

d
Pl)

ii it follows that P
′′k+1

l = prKk+1
((

d
Pl)

ii) = prK̄k+1

(

(
d

P̄l)
ii
)

=

P̄
′′k+1

l .

Now we have shown that the model-exploration algorithm 5 finds exactly the
same premises as Algorithm 3. Therefore the set {Pk → P

ijij
k | Pk ∈ Πn} is

complete. �

Algorithm 5 can be extended to allow for background knowledge to be included.
This yields algorithm 6. Correctness and completeness can be proved in analogy
to Algorithm 5.

We have developed an expert based method that will find a finite basis for ELgfp-
GCIs that hold in the background model. Since the use of standard EL is far more
common than the use of ELgfp, it would be desirable to have a method that works
with standard EL only. And indeed it can be shown that one can always obtain
a finite basis of EL-GCIs from a finite basis of ELgfp-GCIs [7]. Unfortunately,
one has to know the size of the underlying model for this construction. But this
means that we cannot use standard EL-GCIs during the exploration process (at
least not by applying this construction to the GCIs found by our algorithm).
This is because the size of the working model can grow during the process. After
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termination the GCIs holding in the final working model in are just the GCIs
holding in the background model i So the basis {

d
Pk → (

d
Pk)

ii | Pk ∈ Πn}
can be transformed into a basis of EL-GCIs (after the exploration process has
terminated). This is important, because this allows us to encode the GCIs as GCIs
in the popular DL-language EL++, which provides for GCIs but not greatest
fixpoint semantics.

An example

We illustrate Algorithm 3 using the example from the introduction. The domain
of the background model thus consists of six persons: John, Michelle and their
daughter Mackenzie, as well as Paul, Linda and their son James.2 As primitive
concepts we use Male, Female, Father and Mother, and as role child. Let us assume
that the initial working model i0 contains only the first family, i.e., ∆i0 consists
of John, Michelle, and Mackenzie, and we have

Male
i0 = Father

i0 = {John}, Mother
i0 = {Michelle},

Female
i0 = {Michelle, Mackenzie}, child

i0 = {(Michelle, Mackenzie), (John, Mackenzie)}.

1st Iteration: The algorithm starts with P0 = ∅. We have
d

P0 = ⊤. The
first step of the algorithm would be to compute ⊤i0i0 . We do this in a little more
detail. Obviously all objects are in the extension of ⊤ and thus

⊤i0 = {John, Michelle, Mackenzie}.

A next step is to compute the model based most specific concept for each of the
three sets {John}, {Michelle} and {Mackenzie}. This is a very simple procedure
which is explained in [1]. The results are {John}i0 = Father⊓Male⊓∃child.Female,
{Michelle}i0 = Mother⊓Female⊓∃child.Female and {Mackenzie}i0 = Female. ⊤i0i0

is the least common subsumer of {John}i0 , {Michelle}i0 and {Mackenzie}i0 . Since
the only common subsumer of these three descriptions is ⊤ we obtain ⊤i0i0 = ⊤.
Thus the expert is asked whether the GCI ⊤ → ⊤ holds in i. Obviously, the
answer must be “yes,” and we continue by computing the new set of attributes
Male1 by adding ∃r.⊤ to Male0 = Nprim. The induced context K1 obtained this
way is

Father Male Mother Female ∃child.⊤
John X X X
Michelle X X X
Mackenzie X

where we assume that the elements of Male1 are ordered as listed in the table.

2Since this is a very simple model, it satisfies GCIs not holding in the “real world.”
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2nd Iteration: The lectically next set that is closed with respect to {∅ →
∅′′1} = {∅ → ∅} is {Father}. We have Father

i0i0 = {John}i0 = Father ⊓ Male ⊓
∃child.Female, which gives rise to the GCI Father → Father⊓Male⊓∃child.Female.
Thus, the expert is presented with the question: “Is it true that every father is
male and has a child that is female?”. This is not true in the background model
i since Paul is a father without daughter. The expert refutes the GCI by adding
Paul as a counterexample. Note that she must also add James, because the new
working model i1 must be a connected submodel of i. Based on this model,
the algorithm computes a new right-hand-side for the GCI: Father

i1i1 = Father ⊓
Male ⊓ ∃child.⊤. The new GCI Father → Father ⊓ Male ⊓ ∃child.⊤ is presented
to the expert, who accepts it. Consequently, the new attribute ∃child.(Father ⊓
Male ⊓ ∃child.⊤) is added.

We do not look at the next iterations in as much detail as for the first two. The
following GCIs are found:

1. Mother → Mother ⊓ Female⊓ ∃child.Female (Refuted, Linda added as coun-
terexample)

2. Mother → Mother ⊓ Female ⊓ ∃child.⊤ (Accepted)

3. Female ⊓ Male → AllAttributes (Accepted)

4. ∃child.⊤ ⊓ Male → Father ⊓ Male ⊓ ∃child.⊤ (Accepted)

5. ∃child.⊤ ⊓ Female → Mother ⊓ Female ⊓ ∃child.⊤ (Accepted)

6. ∃child.Male ⊓ ∃child.Female → AllAttributes (Accepted)

7. ∃child.∃child.⊤ → AllAttributes (Accepted)

Here AllAttributes (“all attributes”) stands for the cyclic ELgfp-concept description
(T , A) where T = {A ≡ Male ⊓ Female ⊓ Mother ⊓ Father ⊓ ∃child.A}. Note that
AllAttributes is subsumed by any ELgfp-concept description that can be formulated
using the primitive concepts Male, Female, Father, Mother and the role child. As
such, it is the best approximation of the bottom concept that ELgfp can come up
with.

Interestingly, all the GCIs accepted during the exploration process, except for the
last two (6. and 7.), hold in the “real world.” The GCIs 6. and 7. are artefacts
of the simple model i used for the exploration. They are due to the fact that, in
i, there are no grandparents, and no one has both a son and a daughter.

Upon termination, the exploration algorithm will have added a total of 13 at-
tributes, which are:
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• ∃child.⊤

• ∃child.(Father ⊓ Male ⊓ ∃child.⊤)

• ∃child.Male

• ∃child.(Mother⊓Female⊓∃child.⊤)

• ∃child.Female

• ∃child.AllAttributes

• ∃child.∃child.⊤

• ∃child.∃child.Male

• ∃child.(Father⊓Male⊓∃child.Male)

• ∃child.(Mother ⊓ Female ⊓
∃child.Male)

• ∃child.∃child.Female

• ∃child.(Father⊓Male⊓∃child.Female)

• ∃child.(Mother ⊓ Female ⊓
∃child.Female)

13 attributes may look like a lot for such a small example, but it is not. Just take
into account that with 4 primitive concept names and 1 role name one can form
up to 256 EL-concept descriptions of at role depth less than or equal to 2 (and
that is counting only those that cannot be written as a conjunction).

6 Related and future work

As mentioned before, the context induced by a finite model and a finite set
of concept descriptions as attributes has been considered before (e.g., in [15,
16]). However, since this previous work did not make use of the most specific
concept, the authors could not show and utilize the connections between the ·i

operators in the model and the ·′ operators in the induced context. The work
whose objectives is closest to ours is [16], where Rudolph considers attributes
defined in the DL FLE , which is more expressive than EL. Given a finite FLE-
model, he considers an infinite family of induced contexts Kn, where the finite
attribute sets are obtained by considering all FLE-concept descriptions (modulo
equivalence) up to role depth n. He then applies classical attribute exploration
to these induced contexts, in each step increasing the role depths until a certain
termination condition applies. Rudolph shows that the implication bases of the
contexts considered up to the last step contain enough information to decide, for
any GCI between FLE-concept descriptions, whether this GCI holds in the given
model or not. However, these implication bases do not appear to yield a basis
for all the GCIs holding in the given finite model, though it might be possible to
modify Rudolph’s approach such that it produces a basis in our sense. The main
problem with this approach is, however, that the number of attributes grows very
fast when the role depth grows (this number increases at least by one exponential
in each step). In contrast to considering all concept descriptions up to a certain
role depth, our approach only adds an attribute of the form ∃r.(

d
P )ii if P has

been generated as the left-hand side of a GCI in our basis.
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The main topic for future research is to show that the approach for using attribute
exploration to complete DL knowledge bases introduced in [8] can be extended
to the model exploration algorithm introduced in this paper.

A Induced Contexts

What we call induced contexts in this work are basically Formal Contexts whose
attributes are DL-concept descriptions and whose set of objects is the domain of
a DL-model. We say that an object x has an attribute C if x is in the extension
of C for a given model i.

Similar contexts have been introduced in [16, 15]. This section serves to ex-
amine the connection between the ·′-Operators in the induced context and the
·i-functions in the corresponding DL-model. Induced contexts will be useful since
they establish the connection between the DL world and the FCA world which
we need for our algorithms. But let us first give a formal definition.

Definition 16 (induced context) Let i be a model for some DL-language L.
Let K = (G,M, I) be a formal context such that G = ∆i, M is a finite set of
L-concept descriptions and

I = {(x,C) | x ∈ Ci}.

Then K is called the context induced by M and i.

In FCA an object is in the extension of a set of attributes U iff it has all the
attributes from C. In DL terms this means that x is in the extension of the
conjunction over all elements of U . Therefore we can say that U corresponds tod

C∈U C.

On the other hand, we can approximate a concept description C by taking the
set of all attributes D ∈ M that subsume C. Since M in general contains only a
small number of attributes this is really just an approximation.

Definition 17 Let K be the induced context by M and i. Let C be some L
concept description and U ⊆ M a subset of M . Define

prK(C) = {D ∈ M | C ⊑ D},

the projection of C to K. Define
l

U =
l

D∈U

D,

the concept defined by U .
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We have already mentioned that for a given set of attributes U ⊆ M the extent
U ′ corresponds to the extension of

d
U . More formally this is captured in the

following Lemma.

Lemma 15 Let K be the context induced by some set M and some model i. Let
U some subset of M , and O some subset of ∆i. Then

1. U ′ = (
d

U)i, and

2. O′ = prK(O
i).

Proof: (1) Consider U ⊆ M . Then

(
l

U)i =

(

l

D∈U

D

)i

=
{

x ∈ ∆i | ∀D ∈ U : x ∈ Di
}

=U ′

(2) Let O ⊆ ∆i be some set of objects in K. Then it follows from the definition
of Oi that

Oi ⊑ D ⇔ O ⊆ Di.

Thus

prK
(

Oi
)

={D ∈ M | Oi ⊑ D}

={D ∈ M | O ⊆ Di}

=O′.

�

We continue with some calculation rules for induced contexts, projections and
concepts defined by attribute sets.

Lemma 16 Let C and D be some concept descriptions such that C ⊑ D. Then
prK(D) ⊆ prK(C). Let U, V ⊆ M be such that U ⊆ V . Then

d
V ⊑

d
U .

Proof: The first part of the lemma is trivial: Let E ∈ prK(D) be some concept
description. By definition D ⊑ E and thus also C ⊑ E which implies E ∈ prK(C).
The second part is not much harder than the first part: By definition

l
V =

l

D∈V

D =
l

U ⊓
l

D∈V \U

D.

Therefore obviously
d

V ⊑
d

U .
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Lemma 17 Let K be the context induced by M and i. Let C be an L-concept
description, U ⊆ M a set of attributes. Then the following statements hold:

1. C ⊑
d

prK(C)

2. prK(C)′′ ⊆ prK(C
ii)

3. U ⊆ prK(
d

U)

4. (
d

U)ii ⊑
d

U ′′

Proof: (1): It holds that C ⊑ D for all D ∈ prK(C) and thus

C ⊑
l

D∈prK(C)

D ≡
l

prK(C) .

(2): From Lemma 15 it follows that prK(C
ii) = (Ci)′. C ⊑ D for all D ∈ prK(C)

hold by definition. Thus

Ci ⊆
⋂

D∈prK(C)

Di = {x ∈ ∆i | ∀D ∈ prK(C) : x ∈ Di} = prK(C)′ .

Therefore prK(C)′′ ⊆ (Ci)′ = prK(C
ii).

(3): It holds that
d

U ⊑ F for all F ∈ U . Thus F ∈ prK(
d

U) for all F ∈ U .
Hence prK(

d
U) ⊇ U .

(4): From Lemma 15 obtain
l

U ′′ ≡
l(

(
l

U)i
)′

≡
l

prK

(

(
l

U)ii
)

.

Then
(
l

U)ii ⊑
l

prK

(

(
l

U)ii
)

≡
l

U ′′

follows from (1). �

The reason why we have only subsumption or subset relations in Lemma 17 is
that not everything that can be expressed in the form of an L-concept description
can also be expressed as a subset of M . Since there are usually infinitely many
L-concept descriptions, but only finitely many subsets of M something is lost in
the conversion. We now consider the case where M is large enough to express at
least some of the relevant concepts.

Definition 18 Let M be a set of L concept descriptions and C an L concept
description. We say that C can be expressed in terms of M iff there is some
subset N ⊆ M such that

C ≡
l

D∈N

D ≡
l

N.
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Lemma 18 Let M be a set of L concept descriptions. Let C be an L-concept
description that can be expressed in terms of M . Let U ⊆ M be a set of attributes
such that (

d
U)ii can be expressed in terms of M . Then the following statements

hold

1. C ≡
d

prK(C)

2. prK(C
ii) = prK(C)′′

3.
d

U ′′ ≡ (
d

U)ii

Proof: (1) C can be written as the conjunction of elements of M , say

C ≡
l

D∈N

D,

for some set N ⊆ M . Obviously for every D ∈ N it holds that C ⊑ D and thus
N ⊆ prK(C). Hence

l
prK(C) ≡

l

D∈prK(C)

D

⊑
l

D∈N

D ≡ C

With Lemma 17 it follows that C ≡
d

prK(C).

(2) From Lemma 15 it follows that prK(C
ii) = (Ci)′. Since C can be expressed in

terms of M there must be some set N ⊆ M such that

C ≡
l

D∈N

D.

Then N ⊆ prK(C) and thus

Ci = {x ∈ ∆i | ∀D ∈ N : x ∈ Di} ⊇ {x ∈ ∆i | ∀D ∈ prK(C) : x ∈ Di} = prK(C)′ .

Thus prK(C
ii) = (Ci)′ ⊆ prK(C)′′.

(3) From Lemma 15 obtain

l
U ′′ ≡

l(

(
l

U)i
)′

≡
l

prK

(

(
l

U)ii
)

.

Since (
d

U)ii can be expressed in terms of M
d

U ′′ ≡ (
d

U)ii follows from (1).
�

So we have now found a criterion for which the subset and subsumption relations
of Lemma 17 (1), (2) and (4) became equality or equivalence. The only one that
is missing is Lemma 17 (3). We prove that equivalence holds for concept intents.
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Lemma 19 Let U ′′ be a concept intent in the context K induced by M and i.
Then

U ′′ = prK

(l
U ′′
)

Proof: By definition of the ·′ operator and the relation I we obtain

U ′′ = {D ∈ M | ∀x ∈ U ′ : x ∈ Di}

= {D ∈ M | U ′ ⊆ Di}

Let E ∈ M be a concept description such that
d

U ′′ ⊑ E. This means that
U ′ ⊆

d
U ′⊆Di Di = (

d
U ′⊆Di D)i =

d
U ′′i ⊆ Ei. Therefore E ∈ U ′′. On the other

hand
d

U ′′ ⊑ D holds for all D ∈ U ′′ by definition of
d

U ′′. Thus

prK

(l
U ′′
)

= {E ∈ M |
l

U ′′ ⊑ E}

= {E ∈ M | E ∈ U ′′}

= U ′′.

�

Lemma 20 Let U ⊆ M be any set of attributes in a context K induced by i.
Then

U ′′ = prK

(

(
l

U)ii
)

.

Proof: Let C ∈ M be a concept description. Then it holds that

C ∈ prK

(

(
l

U)ii
)

⇔(
l

U)ii ⊑ C

⇔(
l

U)i ⊆ Ci

From Lemma 15:

C ∈ prK

(

(
l

U)ii
)

⇔U ′ ⊆ Ci

⇔C ∈ U ′′.

Therefore prK((
d

U)ii) = U ′′.

Lemma 21 Let K be a context induced by M and i. Let U ⊆ M and P ⊆ M be
sets of attributes such that P ⊆ U ′′, P ′′ = U ′′. Then (

d
U)ii ≡ (

d
P )ii.

42



Proof: (1) It holds that (
d

U)ii ⊑
d

prK((
d

U)ii) ≡
d

U ′′ by Lemma 17 and
Lemma 20. And thus (

d
U)ii ⊑ (

d
U ′′)ii follows from Lemma 1. On the

other hand U ⊆ U ′′ and therefore
d

U ′′ ⊑
d

U by Lemma 17. But then
(
d

U ′′)ii ⊑ (
d

U)ii by Lemma 1. Thus (
d

U ′′)ii = (
d

U)ii. (2) Since P ⊆ U ′′

we obtain (
d

U ′′)ii ⊑ (
d

P )ii from Lemma 16 and Lemma 1. On the other
hand (

d
P )ii ⊑

d
P ′′ follows from Lemma 17 and thus (

d
P )ii ⊑

d
U ′′ because

U ′′ = P ′′. Lemma 1 shows that (
d

P )ii ⊑ (
d

U ′′)ii. Hence (
d

P )ii ≡ (
d

U ′′)ii.
(3) Results (1) and (2) together imply that (

d
P )ii ≡ (

d
U)ii.
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