
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Computing Boundaries for Reasoning in

Sub-Ontologies

Franz Baader Martin Knechtel Rafael Peñaloza

LTCS-Report 09-02

Lehrstuhl fuer Automatentheorie
Institut fuer Theoretische Informatik
TU Dresden
http://lat.inf.tu-dresden.de

Noethnitzer Str. 46
01187 Dresden

Germany

Computing Boundaries for Reasoning in

Sub-Ontologies

Franz Baader

Theoretical Computer Science, TU Dresden, Germany

baader@tcs.inf.tu-dresden.de

Martin Knechtel

SAP AG, SAP Research CEC, Dresden, Germany

martin.knechtel@sap.com

Rafael Peñaloza

Theoretical Computer Science, TU Dresden, Germany

penaloza@tcs.inf.tu-dresden.de

Abstract

Consider an ontology T where every axiom is labeled with an el-
ement of a lattice (L,≤). Then every element ` of L determines a
sub-ontology T`, which consists of the axioms of T whose labels are
greater or equal to `. These labels may be interpreted as required ac-
cess rights, in which case T` is the sub-ontology that a user with access
right ` is allowed to see, or as trust levels, in which case T` consists
of those axioms that we trust with level at least `. Given a conse-
quence α (such as a subsumption relationship between concepts) that
follows from the whole ontology T , we want to know from which of the
sub-ontologies T` determined by lattice elements ` the consequence α

still follows. However, instead of reasoning with T` in the deployment
phase of the ontology, we want to pre-compute this information during
the development phase. More precisely, we want to compute what we
call a boundary for α, i.e., an element µα of L such that α follows from
T` iff ` ≤ µα.

In this paper we show that, under certain restrictions on the el-
ements ` used to define the sub-ontologies, such a boundary always
exists, and we describe black-box approaches for computing it that
are generalizations of approaches for axiom pinpointing in description

1

logics. We also present first experimental results that compare the
efficiency of these approaches on real-world ontologies.

1 Introduction

Assume that you have a large ontology T , but you want to offer different
users different views on this ontology, i.e., each user can see only a subset
of the actual ontology, which is selected by an appropriate criterion. This
criterion could be the access right that this user has, the level of trust (in
the axioms of the ontology) that the user requires, the level of details that is
deemed to be appropriate for this user, etc. In principle, you could explicitly
create a sub-ontology for each (type of) user, but then you might end up
with exponentially many different ontologies, where each is a subset of T .
Instead, we propose to keep just the big ontology T , but label the axioms in T
such that a comparison of the axiom label with the user criterion determines
whether the axiom belongs to the sub-ontology for this user or not. To be
more precise, we use a labeling lattice (L,≤), i.e., a set of labels L together
with a partial order ≤ on these labels such that a finite set of labels always
has a join (supremum, least upper bound) and an meet (infimum, greatest
lower bound) w.r.t. ≤. All axioms t ∈ T are now assumed to have a label
lab(t) ∈ L, and the user also receives a label ` ∈ L (which can be read as
access right, required level of trust, etc.). The sub-ontology that a user with
label ` can see is then defined to be1

T` := {t ∈ T | lab(t) ≥ `}.

Of course, the user of an ontology should not only be able to see its axioms,
but also the consequences of these axioms. Thus, a user with label ` should be
able to see all the consequences of T`. For large ontologies, certain relevant
consequences are often pre-computed. The goal of the pre-computation is
that certain user queries can be answered by a simple look-up in the pre-
computed consequences, and thus do not require expensive reasoning during
the deployment phase of the ontology. For example, in the version of the
large medical ontology SNOMED CT2 that is distributed to hospitals, all
the subsumption relationships between the concept names occurring in the
ontology are pre-computed. For a labeled ontology as introduced above, it
is not enough to pre-compute the relevant consequences of T . In fact, if

1To define this sub-ontology, an arbitrary partial order would be sufficient. However,
the existence of suprema and infima will be important for the computation of a boundary
of a consequence (see below).

2http://www.ihtsdo.org/snomed-ct/

2

the relevant consequence α follows from T , then we also need to know for
which user labels ` it still follows from T`. Otherwise, if a user with label `
asks whether α holds, the system could not simple look this up in the pre-
computed consequences, but would need to compute the answer on-the-fly
by reasoning over the sub-ontology T`. Our solution to this problem is to
compute a so-called boundary for the consequence α, i.e., an element µα of
L such that α follows from T` iff ` ≤ µα.

There are basically two approaches for computing a boundary. The glass-
box approach takes a specific reasoner (or reasoning technique) for an ontol-
ogy language (e.g., a tableau-based reasoner for OWL DL [18]) and modifies
it such that it can compute a boundary. Examples for the application of
the glass-box approach to specific instances of the problem of computing
a boundary are tableau-based approaches for reasoning in possibilistic De-
scription Logics [13, 11] (where the lattice is the interval [0, 1] with the usual
order) and glass-box approaches to axiom pinpointing in Description Log-
ics [17, 12, 10, 2, 3] (where the lattice consists of (equivalence classes of)
monotone Boolean formulae with implication as order [3]). The problem
with glass-box approaches is that they have to be developed for every on-
tology language and reasoning technique anew and that optimizations of the
original reasoning technique do not always apply to the modified reasoners.
In contrast, the black-box approach can re-use existing optimized reasoners
without modifications, and it can be applied to arbitrary ontology languages:
one just needs to plug in a reasoner for this language.

In this paper, we introduce three different black-box approaches for com-
puting a boundary, and compare their performance on real-world ontologies.
The first approach uses an axiom pinpointing algorithm as black-box rea-
soner, whereas the second one modifies the Hitting-Set-Tree-based black-box
approach to axiom pinpointing [9, 19]. The third uses binary search and
can only be applied if the labeling lattice is a linear order. It can be seen
as a generalization of the black-box approach to reasoning in possibilistic
Description Logics described in [14].

2 Basic Definitions and Results

To stay as general as possible, we do not fix a specific ontology language. We
just assume that ontologies are finite sets of axioms such that every subset
of an ontology is again an ontology. If T ′ is a subset of the ontology T , then
T ′ is called a sub-ontology of T . The ontology language determines which
sets of axioms are admissible as ontologies. For a fixed ontology language,
a monotone consequence relation |= is a binary relation between ontologies

3

T of this language and consequences α such that, for every ontology T , we
have that T ′ ⊆ T and T ′ |= α imply T |= α. If T |= α, then we say that
α follows from T and that T entails α. For instance, given a Description
Logic L (e.g., the DL SHIN (D) underlying OWL DL), an ontology is an
L-TBox, i.e., a finite set of general concept inclusion axioms (GCIs) of the
form C v D for L-concept descriptions C, D. As consequences we can, e.g.,
consider subsumption relationships A v B for concept names A, B.

We consider a lattice (L,≤) and respectively denote by
⊕

`∈S ` and
⊗

`∈S `
the join (least upper bound) and meet (greatest lower bound) of the finite
set S ⊆ L. A labeled ontology with labeling lattice (L,≤) is an ontology T
together with a labeling function lab that assigns a label lab(t) ∈ L to every
element t of T . We denote with Llab the set of all labels occurring in the
labeled ontology T , i.e., Llab := {lab(t) | t ∈ T }. Every element of the
labeling lattice ` ∈ L defines a sub-ontology T` that contains the axioms of
T that are labeled with elements greater than or equal to `:

T` := {t ∈ T | lab(t) ≥ `}.

Conversely, every sub-ontology S ⊆ T defines an element λS ∈ L, called
the label of S: λS :=

⊗
t∈S lab(t). The following lemma states some simple

relationships between these two notions.

Lemma 1 For all ` ∈ L, S ⊆ T , it holds that ` ≤ λT`
, S ⊆ TλS

and
T` = TλT`

.

Proof. For the first statement, notice that, by definition, ` ≤ lab(t) for
all t ∈ T`. Hence, ` ≤

⊗
t∈T`

lab(t) = λT`
. Regarding the second claim, if

t ∈ S, then λS =
⊗

s∈S lab(s) ≤ lab(t), which implies that t ∈ TλS
. Now,

consider the last claim. First, as ` ≤ λT`
, it holds trivially that TλT`

⊆ T`.
From the second claim it also follows that T` ⊆ TλT`

.

Notice that, if a consequence α follows from T` for some ` ∈ L, it must also
follow from T`′ for every `′ ≤ `, since then T` ⊆ T`′. A maximal element of L
that still entails the consequence will be called a margin for this consequence.

Definition 2 (Margin) Let α be a consequence that follows from the ontol-
ogy T . The label µ ∈ L is called a (T , α)-margin if Tµ |= α, and for every `
with µ < ` we have T` 6|= α.

If T and α are clear from the context, we usually ignore the prefix (T , α)
and call µ simply a margin. The following lemma shows three basic properties
of the set of margins that will be useful throughout this paper.

4

Lemma 3 Let α be a consequence that follows from the ontology T . We
have:

1. If µ is a margin, then µ = λTµ;

2. if T` |= α, then there is a margin µ such that ` ≤ µ;

3. there are at most 2|T | margins for α.

Proof. To show 1, let µ ∈ L. Lemma 1 yields µ ≤ λTµ and Tµ = TλTµ
,

and thus TλTµ
|= α. If µ < λTµ , then this λTµ contradicts our assumption

that µ is a margin; hence µ = λTµ. Point 3 is a trivial consequence of 1: since
every margin has to be of the form λS for some S ⊆ T , there are at most as
many margins as there are subsets of T .

For the remaining point, let ` ∈ L be such that T` |= α. Let m := λT`
.

From Lemma 1, it follows that ` ≤ m and Tm = T`, and hence Tm |= α.
If m is a margin, then the result holds; suppose to the contrary that m is
not a margin. Then, there must exist an `1, m < `1, such that T`1 |= α.
As m = λTm, there must exist an axiom t ∈ T such that m ≤ lab(t), but
`1 6≤ lab(t). In fact, if m ≤ lab(t) → `1 ≤ lab(t) would hold for all t ∈ T ,
then m = λT`

=
⊗

lab(t)≤m lab(t) ≥ `1, contradicting our choice of `1. The
existence of such an axiom t implies that T`1 ⊂ Tm. Let m1 := λT`1

; then
m < `1 ≤ m1. If m1 is not a margin, then we can repeat the same process
to obtain a new m2 with m < m1 < m2 and Tm ⊃ Tm1

⊃ Tm2
, and so on. As

T is finite, there exists a finite k where this process stops, and hence mk is
a margin.

If we know that µ is a margin for the consequence α, then we know
whether α follows from T` for all ` ∈ L that are comparable with µ: if
` ≤ µ, then α follows from T`, and if ` > µ, then α does not follow from
T`. However, the fact that µ is a margin gives us no information regarding
elements that are incomparable with µ. In order to obtain a full picture
of when the consequence α follows from T` for an arbitrary element of l,
we can try to strengthen the notion of margin to that of an element ν of
L that accurately divides the lattice into those elements whose associated
sub-ontolgy entails α and those for which this is not the case, i.e., ν should
satisfy the following: for every ` ∈ L, T` |= α iff ` ≤ ν. Unfortunately, such
an element need not always exist, as demonstrated by the following example.

Example 4 Consider the distributive lattice (S4,≤4) having the four ele-
ments S4 = {0, a1, a2, 1}, where 0 and 1 are the least and greatest elements,
respectively, and a1, a2 are incomparable w.r.t. ≤4. Let T be the set formed

5

by the axioms ax1 and ax2, which are labeled by a1 and a2, respectively, and
let α be a consequence such that, for every S ⊆ T , we have S |= α iff |S| ≥ 1.
It is easy to see that there is no element ν ∈ S4 that satisfies the condition
described above. Indeed, if we choose ν = 0 or ν = a1, then a2 violates the
condition, as a2 6≤ ν, but Ta2

|= α. Accordingly, if we choose ν = a1, then a2

violates the condition. Finally, if ν = 1 is chosen, then 1 itself violates the
condition: 1 ≤ ν, but T1 6|= α.

It is nonetheless possible to find an element that satisfies a restricted version
of the condition, where we do not impose that the property must hold for
every element of the labeling lattice, but only for those elements that are
join prime relative to the labels of the axioms in the ontology.

Definition 5 (Join prime) Let (L,≤) be a lattice. Given a set K ⊆ L, let
K⊗ := {

⊗
`∈M ` | M ⊆ K} denote the closure of K under the meet operator.

An element ` ∈ L is called join prime relative to K if, for every K ′ ⊆ K⊗,
` ≤

⊕
k∈K ′ r implies that there is an k0 ∈ K ′ such that ` ≤ k0.

In Example 4, all lattice elements with the exception of 1 are join prime
relative to {a1, a2}.

Definition 6 (Boundary) Let T be an ontology and α a consequence. An
element ν ∈ L is called a (T , α)-boundary if for every element ` ∈ L that is
join prime relative to Llab it holds that ` ≤ ν iff T` |= α.

As with margins, if T and α are clear from the context, we will simply
call such a ν a boundary. In Example 4, the element 1 is a boundary. Indeed,
every join prime element ` relative to {a1, a2} (i.e., every element of L except
for 1) is such that ` < 1 and T` |= α. From a practical point of view, our
definition of a boundary has the following implication: we must enforce that
user labels are always join prime relative to the set Llab of all labels occurring
in the ontology.

3 Computing a Boundary

In this section, we describe three black-box approaches for computing a
boundary. The first two approaches are based on Lemma 7 below, and the
third one, a modification of binary search, can be used if the labeling lattice
is a linear order.

Lemma 7 Let µ1, . . . , µn be all (T , α)-margins. Then
⊕n

i=1 µi is a boundary.

6

Proof. Let ` ∈ L be join prime relative to Llab. We need to show that
` ≤

⊕n

i=1 µi iff T` |= α. Assume first that T` |= α. Then, from 2 of Lemma 3,
it follows that there is a margin µj such that ` ≤ µj, and thus ` ≤

⊕n

i=1 µi.
Conversely, let ` ≤

⊕n

i=1 µi. From 1 of Lemma 3, it follows that for every
i, 1 ≤ i ≤ n, µi ∈ (Llab)⊗. As ` is join prime relative to Llab, it then holds
that there is a j such that ` ≤ µj and hence, by the definition of a margin
and the monotonicity of the consequence relation, T` |= α.

By Lemma 3, a consequence always has finitely many margins, and thus
Lemma 7 shows that a boundary always exists. Note, however, that a conse-
quence may have boundaries different from the one of Lemma 7. To identify
the particular boundary of Lemma 7, we will call it the margin-based bound-
ary.

3.1 Using Full Axiom Pinpointing

From Lemma 7 we know that the set of all margins yields sufficient informa-
tion for computing a boundary. The question is now how to compute this
set. In this subsection, we show that all margins (and thus the margin-based
boundary) can be computed through axiom pinpointing. Axiom-pinpointing
refers to the task of computing MinAs [5]: minimal (w.r.t. set inclusion) sub-
ontologies from which a consequence α still follows. More formally, S ⊆ T
is called a MinA for T and α if S |= α, and S ′ 6|= α for every S ′ ⊂ S. The
following lemma shows that every margin can be obtained from some MinA.

Lemma 8 For every margin µ for α there is a MinA S such that µ = λS .

Proof. If µ is a margin, then Tµ |= α by definition. Thus, there exists a
MinA S ⊆ Tµ. Since µ ≤ lab(t) for every t ∈ Tµ, this in particular holds also
for every axiom in S, and hence µ ≤ λS . Additionally, as S ⊆ TλS

, we have
TλS

|= α. This implies µ = λS since otherwise µ < λS , and then µ would not
be a margin.

Notice that this lemma does not imply that the label of any MinA S
corresponds to a margin. However, as the consequence follows from every
MinA, point 2 of Lemma 3 shows that λS ≤ µ for some margin µ. The
following theorem is an immediate consequence of this fact together with
Lemma 7 and Lemma 8.

Theorem 9 If S1, . . . ,Sn are all MinAs for T and α, then
⊕n

i=1 λSi
is the

margin-based boundary for α.

7

Thus, to compute a boundary, it is sufficient to compute all MinAs. Sev-
eral methods exist for computing the set of all MinAs, either directly [17, 9, 6]
or through a so-called pinpointing formula [5, 3, 4], which is a monotone
Boolean formula encoding all the MinAs. The main advantage of using the
pinpointing-based approach for computing a boundary is that one can sim-
ply use existing implementations for computing all MinAs, such as the ones
offered by the ontology editor Protégé 43 and the CEL system.4

3.2 Label-Optimized Axiom Pinpointing

From Lemma 8 we know that every margin is of the form λS for some MinA
S. In the previous subsection we have used this fact to compute a boundary
by first obtaining the MinAs and then computing their labels. This process
can be optimized if we directly compute the labels of the MinAs, without
necessarily computing the actual MinAs. Additionally, not all the labels of
MinAs are necessary, but only the maximal ones. We present here a black-
box algorithm that uses the labels of the axioms to find the boundary in an
optimized way. Our algorithm is a variant of the Hitting-Set-Tree-based [15]
method (HST approach) for axiom pinpointing [9, 19]. First, we briefly
describe the HST approach for computing all MinAs, which will serve as a
starting point for our modified version.

The HST algorithm computes one MinA at a time while building a tree
that expresses the distinct possibilities to be explored in the search of further
MinAs. It first computes an arbitrary MinA S0 for T , which is used to label
the root of the tree. Then, for every axiom t in S0, a successor node is
created. If T \ {t} does not entail the consequence, then this node is a dead
end. Otherwise, T \ {t} still entails the consequence. In this case, a MinA
S1 for T \ {t} is computed and used to label the node. The MinA S1 for
T \ {t} obtained this way is also a MinA of T , and it is guaranteed to be
distinct from S0 since t /∈ S1. Then, for each axiom s in S1, a new successor is
created, and treated in the same way as the successors of the root node, i.e.,
it is checked whether T \ {t, s} still has the consequence, etc. This process
obviously terminates, and the end result is a tree, where each node that is
not a dead end is labeled with a MinA, and every MinA appears as the label
of at least one node of the tree (see [9, 19]).

An important ingredient of the HST algorithm is a procedure that com-
putes a single MinA from an ontology. Such a procedure can, for example,
be obtained by going through the axioms of the ontology in an arbitrary

3http://protege.stanford.edu/
4http://code.google.com/p/cel/

8

order, and removing redundant axioms, i.e., ones such that the ontology ob-
tained by removing this axiom from the current sub-ontology still entails the
consequence (see [5] for a description of this and of a more sophisticated
logarithmic procedure). As said before, in our modified HST algorithm, we
are now not interested in actually computing a MinA, but only its label.
This allows us to remove all axioms having a “redundant” label rather than
a single axiom. Algorithm 1 describes a black-box method for computing λS

for some MinA S that is based on this idea. In fact, the algorithm computes
a minimal label set of a MinA S, a notion that will also be useful when
describing our variant of the HST algorithm.

Definition 10 (Minimal label set) Let S be a MinA for α. A set K ⊆
{lab(t) | t ∈ S} is called a minimal label set of S if distinct elements of K
are incomparable and λS =

⊗
`∈K `.

Algorithm 1 removes all the labels that do not contribute to a minimal label
set. If T is an ontology and ` ∈ L, then the expression T − ` appearing
at Line 7 denotes the sub-ontology T − ` := {t ∈ T | lab(t) 6= `}. If, after
removing all the axioms labeled with k, the consequence still follows, then
there is a MinA none of whose axioms is labeled with k. In particular, this
MinA has a minimal label set not containing k; thus all the axioms labeled
with k can be removed in our search for a minimal label set. If the axioms
labeled with k cannot be removed, then all MinAs of the current sub-ontology
need an axiom labeled with k, and hence k is stored in the set ML. This set
is used to avoid useless consequence tests: if a label is greater than or equal
to

⊗
`∈ML

`, then the presence or absence of axioms with this label will not
influence the final result, which will be given by the infimum of ML; hence,
there is no need to apply the (possibly complex) decision procedure for the
consequence relation.

Theorem 11 Let T and α be such that T |= α. There is a MinA S0 for α
such that Algorithm 1 outputs a minimal label set of S0.

Proof. As T |= α, the algorithm will enter the for loop. This loop keeps
the following two invariants: (i) S |= α and (ii) for every ` ∈ ML,S − ` 6|= α.
The invariant (i) is ensured by the condition in Line 7 that must be satisfied
before S is modified. Otherwise, that is, if S − ` 6|= α, then ` is added to
ML (Line 10) which, together with the fact that S is always modified to a
smaller set (Line 8), ensures (ii). Hence, when the loop finishes, the sets S
and ML satisfy both invariants. As S |= α, there is a MinA S0 ⊆ S for
α. For each ` ∈ ML, there must be an axiom t ∈ S0 such that lab(t) = `,

9

Algorithm 1 Compute a minimal label set of one MinA.

Procedure min-lab(T , α)
Input: T : ontology; α: consequence
Output: ML ⊆ L: minimal label set for a MinA

1: if T 6|= α then
2: return no MinA
3: S := T
4: ML := ∅
5: for every k ∈ Llab do
6: if

⊗
l∈ML

l 6≤ k then
7: if S − k |= α then
8: S := S − k
9: else

10: ML := (ML \ {l | k < l}) ∪ {k}
11: return ML

otherwise, S0 ⊆ S − ` and hence S − ` |= α, which contradicts invariant (ii);
thus, ML ⊆ {lab(t) | t ∈ S0} and in particular λS0

≤
⊗

`∈ML
`.

It remains to show that the inequality in the other direction holds as well.
Consider now k ∈ {lab(t) | t ∈ S} and let Mk

L be the value of ML when the
for loop was entered with value k. We have that

⊗
`∈ML

` ≤
⊗

`∈Mk
L

`. If
⊗

`∈ML
` 6≤ k, then also

⊗
`∈Mk

L
` 6≤ k, and thus it fulfills the test in Line 6,

and continues to Line 7. If that test is satisfied, then all the axioms with
label k are removed from S, contradicting the assumption that k = lab(t) for
some t ∈ S. Otherwise, k is added to ML, which contradicts the assumption
that

⊗
`∈ML

` 6≤ k. Thus, for every axiom t in S,
⊗

`∈ML
` ≤ lab(t); hence⊗

`∈ML
` ≤ λS ≤ λS0

.

Once the label of a MinA has been found, we can compute new MinA
labels by a successive deletion of axioms from the ontology using the HST
approach. Suppose that we have computed a minimal label set M0, and that
` ∈ M0. If we remove all the axioms in the ontology labeled with `, and
compute a new minimal label set M1 of a MinA of this sub-ontology, then
M1 does not contain `, and thus M0 6= M1. By iterating this procedure,
we could compute all minimal label sets, and hence the labels of all MinAs.
However, since our goal is to compute the supremum of these labels, the
algorithm can be optimized by avoiding the computation of MinAs whose
labels will have no impact on the final result. Based on this we can actually
do better than just removing the axioms with label `: instead, all axioms
with labels ≤ ` can be removed. For an element ` ∈ L and an ontology T ,

10

T6≤` denotes the sub-ontology obtained from T by removing all axioms whose
labels are ≤ `. Now, assume that we have computed the minimal label set
M0, and that M1 6= M0 is the minimal label set of the MinA S1. If S1 is not
contained in T6≤` for all ` ∈ M0, then S1 contains an axiom with label ` for
every ` ∈ M0. Consequently,

⊗
m∈M1

m = λS1
≤

⊗
m∈M1

m, and thus M1

need not be computed. Algorithm 2 describes our method for computing the
boundary using a variant of the HST algorithm that is based on this idea.

Algorithm 2 Hitting set tree (HST) algorithm for computing the boundary

Procedure hst-boundary(T , α)
Input: T : ontology; α: consequence
Output: boundary ν for α

1: Global : C,H := ∅; ν
2: M := min-lab(T , α)
3: C := {M}
4: ν :=

⊗
`∈M `

5: for each label ` ∈ M do
6: expand-hst(T6≤`, α, {`})
7: return ν

Procedure expand-hst(T , α, H)
Input: T : ontology; α: consequence; H : list of lattice elements
Side effects: modifications to C, H and ν

1: if there exists some H ′ ∈ H such that {h ∈ H ′ | h 6≤ ν} ⊆ H or
H ′ contains a prefix-path P with {h ∈ P | h 6≤ ν} = H then

2: return (early path termination 3)
3: if there exists some M ∈ C such that for all ` ∈ M, h ∈ H , ` 6≤ h and

` 6≤ ν then
4: M′ := M (MinLab reuse)
5: else
6: M′ := min-lab(T6≤ν , α)
7: if T6≤ν |= α then
8: C := C ∪ {M′}
9: ν := ν ⊕

⊗
`∈M′ `

10: for each label ` ∈ M′ do
11: expand-hst(T6≤`, α, H ∪ {`})
12: else
13: H := H ∪ {H} (normal termination �)

In the procedure hst-boundary, three global variables are declared: C and
H, initialized with ∅, and ν. The variable C stores all the minimal label sets

11

computed so far, while each element of H is a set of labels such that, when
all the axioms using any of these labels are removed from the ontology, the
consequence does not follow anymore; the variable ν stores the supremum
of the labels of all the elements in C and ultimately corresponds to the
boundary that the method computes. The algorithm starts by computing a
first minimal label set M, which is used to label the root of a tree. For each
element of M, a branch is created by calling the procedure expand-hst.

The procedure expand-hst implements the ideas of HST construction for
pinpointing [9, 19] with additional optimizations that help reduce the search
space as well as the number of calls to min-lab. First notice that each M ∈ C

is a minimal label set, and hence the infimum of its elements corresponds to
the label of some MinA for α. Thus, ν is the supremum of the labels of a set
of MinAs for α. If this is not yet the boundary, then there must exist another
MinA S whose label is not smaller or equal to ν. This in particular means
that no element of S may have a label smaller or equal to ν, as the label of S
is the infimum of the labels of the axioms in it. When searching for this new
MinA we can then exclude all axioms having a label ≤ ν, as done in Line 6
of expand-hst. Every time we expand a node, we extend the set H , which
stores the labels that have been removed on the path in the tree to reach the
current node. If we reach normal termination, it means that the consequence
does not follow anymore from the reduced ontology. Thus, any H stored
in H is such that, if all the axioms having a label smaller or equal to an
element in H are removed from T , then α does not follow anymore. Lines 1
to 4 of expand-hst are used to reduce the number of calls to the subroutine
min-lab and the total search space. We describe them now in more detail.
The first optimization, early path termination, prunes the tree once we know
that no new information can be obtained from further expansion. There are
two conditions that trigger this optimization. The first one tries to decide
whether T6≤ν |= α without executing the decision procedure. As said before,
we know that for each H ′ ∈ H, if all labels smaller or equal to any in H ′

are removed, then the consequence does not follow. Hence, if the current
list of removal labels H contains a set H ′ ∈ H we know that enough labels
have been removed to make sure that the consequence does not follow. It is
actually enough to test whether {h ∈ H ′ | h 6≤ ν} ⊆ H since the consequence
test we need to perform is whether T6≤ν |= α. The second condition for early
path termination asks for a prefix-path P of H ′ such that P = H . If we
consider H ′ as a list of elements, then a prefix-path is obtained by removing
a final portion of this list. The idea is that, if at some point we have noticed
that we have removed the same axioms as in a previous portion of the search,
we know that all possibilities that arise from that search have already been
tested before, and hence it is unnecessary to repeat the work. Hence we can

12

`0

`5 `4

`3 `2

`1

Figure 1: A lattice

n0 : {`4, `5}

n1 : {`2, `3} n4 : {`2, `3}

n2 : � n3 : � n6 : 3n5 : 3

`4 `5

`2 `3 `2 `3

Figure 2: An expansion of the HST
method

prune the tree at that point.
The second optimization avoids a call to min-lab by reusing a previously

computed minimal label set. Notice that our only requirement on min-lab
that it produces a minimal label set. Hence, any minimal label set for the
ontology obtained after removing all labels smaller or equal to any h ∈ H
or to ν would work. The MinLab reuse optimization checks whether there is
such a previously computed minimal label set. If this is the case, it uses this
set instead of computing a new one by calling min-lab. Before showing that
the algorithm is correct, we illustrate how it works by a small example.

Example 12 Consider the lattice in Figure 1, and let T be the (Description
Logic) ontology consisting of the following five axioms:

t1 : A v P1 u Q1, t2 : P1 v P2 u Q2, t3 : P2 v B,
t4 : Q1 v P2 u Q2, t5 : Q2 v B,

where each axiom ti is labeled with lab(ti) = `i. There are four MinAs for the
subsumption relation A v B w.r.t. T , namely {t1, t2, t3}, {t1, t2, t5}, {t1, t3, t4},
and {t1, t4, t5}. All the elements of the labeling lattice except `1 and `3 are
join prime relative to Llab. Figure 2 shows a possible run of the hst-boundary

algorithm. The algorithm first calls the routine min-lab(T , A v B). Consider
that the for loop of min-lab is executed using the labels `1, . . . , `5 in that order.
Thus, we try first to remove t1 labeled with `1. We see that T − `1 6|= A v B;
hence t1 is not removed from T , and ML is updated to ML = {`1}. We
then see that T − `2 |= A v B, and thus t2 is removed from T . Again,
T − `3 |= A v B, so t3 is removed from T . At this point, T = {t1, t4, t5}.
We test then whether T − `4 |= A v B and receive a negative answer; thus,
`4 is added to ML; additionally, since `4 < `1, the latter is removed from ML.
Finally, T − `5 6|= A v B, and so we obtain ML = {`4, `5} as an output of
min-lab.

13

The minimal label set {`4, `5}, is used as the root node n0, setting the
value of ν = `4 ⊗ `5 = `0. We then create the first branch on the left by
removing all the axioms with a label ≤ `4, which is only t4, and computing
a new minimal label set. Assume, for the sake of the example, that min-lab

returns the minimal label set {`2, `3}, and ν is accordingly changed to `4.
When we expand the tree from this node, by removing all the axioms below
`2 (left branch) or `3 (right branch), the subsumption relation A v B does
not follow any more, and hence we have a normal termination, adding the
sets {`4, `2} and {`4, `3} to H. We then create the second branch from the
root, by removing the elements below `5. We see that the previously computed
minimal axiom set of node n1 works also as a minimal axiom set in this case,
and hence it can be reused (MinLab reuse), represented as an underlined set.
The algorithm continues now by calling expand-hst(T6≤`2 , A v B, {`5, `2}). At
this point, we detect that there is H ′ = {`4, `2} satisfying the first condition
of early path termination (recall that ν = `4), and hence the expansion of
that branch at that point. Analogously, we obtain an early path termination
on the second expansion branch of the node n4. The algorithm then outputs
ν = `4, which can be easily verified to be a boundary.

Theorem 13 Let T and α be such that T |= α. Then Algorithm 2 computes
the margin-based boundary of α.

Proof. Let η be the margin-based boundary which, by Lemma 7, must
exist. Notice first that the procedure expand-hst keeps as invariant that
ν ≤ η as whenever ν is modified, it is only to join it with the infimum of a
minimal label set (Line 9), which by definition is the label of a MinA and,
by Theorem 9, is ≤ η. Thus, when the algorithm terminates, we have that
ν ≤ η. Assume now that ν 6= η. Then, there must exist a MinA S such
that λS 6≤ ν; in particular, this implies that none of the axioms in S has a
label ≤ ν and thus S ⊆ T6≤ν . Let M0 be the minimal label set obtained in
Line 2 of hst-boundary. There must then be a h0 ∈ M0 such that S ⊆ T6≤h0

;
otherwise, λS ≤

⊗
`∈M0

` ≤ ν. There will then be a call to the process
expand-hst with parameters T6≤h0

, α, and {h0}. Suppose first that early path
termination is not triggered. A minimal label set M1 is then obtained, either
by MinLab reuse (Line 4) or by a call to min-lab (Line 6). As before, there is
a h1 ∈ M1 with S ⊆ (T6≤h0

) 6≤h1
. Additionally, since T6≤h0

does not contain any
axiom labeled with h0, we know h0 /∈ M1. While iterating this algorithm,
we can find a sequence of minimal label sets M0,M1, . . . ,Mn and labels
h0, h1, . . . , hn such that (i) hi ∈ Mi, (ii) S ⊆ T6≤hi

, and (iii) hi /∈ Mj for all
i, j, 1 ≤ i < j ≤ n. In particular, this means that the Mis are all different,
and since there are only finitely many minimal label sets, this process must

14

terminate. Let Mn be the last set found this way. Then, when expand-hst is
called with R := (((T6≤h0

) 6≤h1
)...) 6≤hn, α and H = {h1, . . . , hn}, no new minimal

label set is found. Suppose first that this is due to a normal termination.
Then, R6≤ν 6|= α. But that contradicts the fact that S is a MinA for α since
S ⊆ R6≤ν . Hence, it must have finished by early termination.

There are two possible causes for early termination. Suppose first that
there is a H ′ ∈ H such that {h ∈ H ′ | h 6≤ ν} ⊆ H . Then it is also the case
that, for every h ∈ H ′, S ⊆ T6≤h: if h ∈ H , then R ⊆ T6≤h; otherwise, h ≤ ν
and hence T6≤ν ⊆ T6≤h. Let R′ := {t ∈ T | there is no h ∈ H ′ with lab(t) ≤ h}.
As H ′ ∈ H, it was added after a normal termination; thus, α does not follow
from R′

6≤ν . As S ⊆ R6≤ν , we obtain once again a contradiction.
The second cause for early path termination is the existence of a prefix-

path P with {h ∈ P | h 6≤ ν} = H . This means that in a previously
explored path we had concluded that R6≤ν |= α, and a new minimal label set
Mn+1 was found. As in the beginning of this proof, we can then compute
sets Mn+1, . . . ,Mm and hn+1, . . . , hm (n < m) such that S ⊆ T6≤hi

for all
i, 1 ≤ i ≤ m and the Mis are all different. Hence this process terminates. As
before, the cause of termination cannot be normal termination, nor the first
condition for early path termination. Thus, there must exist a new H ′′ ∈ H

that fulfills the second condition for early termination. As H is a finite set,
and each of its elements is itself a finite list, this process also terminates.
When that final point is reached, there are no further causes of termination
that do not lead to a contradiction, which means that our original assumption
that ν 6= η cannot be true. Hence, ν is the margin-based boundary of α.

3.3 Binary Search for Linear Ordering

In this subsection, we assume that the labeling lattice (L,≤) is a linear order,
i.e., for any two elements `1, `2 of L we have `1 ≤ `2 or `2 ≤ `1.

Lemma 14 Let T and α be such that T |= α. Then the unique boundary of
α is the maximal element µ of Llab with Tµ |= α.

Proof. Let µ be the maximal element of Llab with Tµ |= α. Such a
maximal element exists since Llab is finite. Obviously, ` ≤ µ implies T` ⊇ Tµ,
and thus Tµ |= α yields T` |= α. Conversely, assume that T` |= α. Then the
fact that µ is maximal with this property together with the fact that ≤ is a
linear order implies ` ≤ µ. Thus, µ is a boundary.

A direct way for computing the boundary in this restricted setting thus
consists of testing, for every element in ` ∈ Llab, in order (either increasing or

15

Algorithm 3 Compute a boundary by binary search.

Input: T : ontology; α: consequence
Output: ν: (T , α)-boundary

1: if T 6|= α then
2: return no boundary
3: ` := 0lab; h := 1lab

4: while l < h do
5: set m, ` < m ≤ h such that δ(`, m) − δ(m, h) ≤ 1.
6: if Tm |= α then
7: ` := m
8: else
9: h := pred(m)

10: return ν := `

decreasing) whether T` |= α until the desired maximal element is found. This
process requires in the worst case n := |Llab| iterations. This can be improved
using binary search, which requires a logaritmic number of steps measured
in n. Algorithm 3 describes the binary search algorithm. In the description
of the algorithm, the following abbreviations have been used: 0lab and 1lab

represent the minimal and the maximal elements of Llab, respectively; for
`1 ≤ `2 ∈ Llab, δ(`1, `2) := |{`′ ∈ Llab | `1 < `′ ≤ `2}| is the distance function
in Llab and for a given ` ∈ Llab, pred(`) is the maximal element `′ ∈ Llab such
that `′ < `.

The variables ` and h are used to keep track of the relevant search space.
At every iteration of the while loop, the boundary is between ` and h. At
the beginning these values are set to the minimum and maximum of Llab and
are later modified as follows: we first find the middle element m of the search
space; i.e., an element whose distance to ` differs in at most one with the
distance to h. We then test whether Tm |= α. If that is the case, we know
that the boundary must be larger or equal to m, and hence the lower bound
` is updated to the value of m. Otherwise, we know that the boundary is
strictly smaller than m as m itself cannot be one; hence, the higher bound h
is updated to the maximal element of Llab that is smaller than m : pred(m).
This process terminates when the search space has been reduced to a single
point, which must be the boundary.

16

4 Empirical Evaluation

4.1 Test data and test environment

We test on a PC with 2GB RAM and Intel Core Duo CPU 3.16GHz. We
implemented all approaches in Java and used Java 1.6, CEL 1.0, Pellet 2.0.0-
rc5 and OWL API trunk revision 1150. The boundary computation with full
axiom pinpointing (FP in the following) uses log-extract-mina() (Alg. 2 from
[6], which is identical to Alg. 8 from [19]) and the HST based hst-extract-
all-minas() (Alg. 9 from [19]). The set of extracted MinAs is then used to
calculate the label of the consequence. We break after 10 found MinAs in
order to limit the runtime, so there might be non-final label results. The
boundary computation with label-optimized axiom pinpointing (LP in the
following) with min-lab() and hst-boundary() are implementations of Alg. 1
and Alg. 2 of the present paper. The boundary computation with binary
search for linear ordering (BS in the following) implements Alg. 3 of the
present paper.

Although we focus on comparing the efficiency of the presented algo-
rithms, and not on practical applications of these algorithms, we have tried
to use inputs that are closely related to ones encountered in applications. The
two labeling lattices (Ld,≤d) and (Ll,≤l) are similar to ones encountered in
real-world applications. The labeling lattice (Ld,≤d) was already introduced
in Fig. 1. Lattices of this structure (where the elements correspond to hi-
erarchically organized user roles) can be obtained from a real-world access
matrix with the methodology presented in [7]. The set of elements of Ld that
are allowed to represent user roles if all elements of the lattice can be used as
axiom labels are the elements that are join prime relative to the whole lattice,
i.e., `0, `2, `4, `5. The labeling lattice (Ll,≤l) is a linear order with 6 elements
Ll = Ld = {`0, . . . , `5} with ≤l := {(`n, `n+1) | `n, `n+1 ∈ Ll ∧ 0 ≤ n ≤ 5},
which could represent an order of trust values as in [16] or dates from a
revision history.

We used the two ontologies OSnomed and OFunct with different expres-
sivity and types of consequences for our experiments. The Systematized
Nomenclature of Medicine, Clinical Terms (Snomed ct) is a comprehen-
sive medical and clinical ontology which is built using the Description Logic
(DL) EL+. Our version OSnomed is the January/2005 release of the DL ver-
sion, which contains 379,691 concept names, 62 object property names, and
379,704 axioms. Since more than five million subsumptions are consequences
of OSnomed, testing all of them was not feasible and we used the same sam-
ple subset as described in [6], i.e., we sampled 0.5% of all concepts in each
top-level category of OSnomed. For each sampled concept A, all positive sub-

17

]early
termina-

tion

]reuse]calls to
extract
MinA

(MinLab)

]MinA
(]MinLab)

]axioms
(]labels)

per MinA
(MinLab)

lattice
opera-
tions
time

total
labeling

time

O
S
n
o
m
e
d

F
P

avg 81.05 9.06 26.43 2.07 5.40 0.25 143.55
max 57,188.00 4,850.00 4,567.00 9.00 28.67 45.00 101,616.00

stddev 874.34 82.00 90.48 1.86 3.80 0.86 1,754.03
L
P

avg 0.01 0.00 2.76 1.03 1.73 0.35 4.29
max 2.00 1.00 6.00 3.00 3.00 57.00 70.00

stddev 0.13 0.02 0.59 0.16 0.56 0.98 3.62

O
F
u
n
c
t F
P

avg 43.59 29.52 26.56 4.26 3.05 0.49 3,403.56
max 567.00 433.00 126.00 9.00 6.50 41.00 13,431.00

stddev 92.16 64.04 30.90 2.84 1.01 2.38 3,254.25

L
P

avg 0.09 0.02 2.80 1.33 1.40 0.76 207.32
max 2.00 1.00 7.00 4.00 3.00 22.00 1,295.00

stddev 0.34 0.13 0.90 0.54 0.48 1.56 87.29

Table 1: Emprical results of FP and LP with lattice (Ld,≤d) on a sampled
set of 21,001 subsumptions from OSnomed and on a set of 307 consequences
from OFunct with less than 10 MinAs (time in ms)

sumptions A vOSnomed B with A as subsumee were considered. Overall, this
yielded 27,477 positive subsumptions. Following the ideas of [6], we precom-
puted the reachability-based module for each sampled concept A with CEL
and stored these modules. This module for A was then used as the start
ontology when considering subsumptions with subsumee A.

OFunct is an OWL ontology for functional description of mechanical en-
gineering solutions presented in [8]. It has 115 concept names, 47 object
property names, 16 data property names, 545 individual names, 3,176 ax-
ioms, and the DL expressivity used in the ontology is SHOIN (D). Its
716 consequences are 12 subsumption and 704 instance relationships (class
assertions).

To obtain labeled ontologies, axioms in both labeled ontologies received a
random label assignment of elements from Ll = Ld. As black-box subsump-
tion and instance reasoner we used the reasoner Pellet since it can deal with
the expressivity of both ontologies. For the expressive DL SHOIN (D) it
uses a tableau-based algorithm and for EL+ it uses an optimized classifier
for the OWL2EL profile, which is based on the algorithm described in [1].

4.2 Results

The results for OSnomed and (Ld,≤d) are given in the upper part of Tab. 1.
LP computed all labels, but since we limit FP to <10 MinAs, only 21,001
subsumptions have a final label, which is guaranteed to be equal to the
boundary. The 6,476 remaining subsumptions (31%) have a non-final label
which might be too low in the lattice since there might be further MinAs
providing a higher label. The overall labeling time for all 21,001 subsump-
tions with FP was 50.25 minutes, for LP 1.50 minutes which means that LP

18

]early
termina-

tion

]reuse]calls to
extract
MinA

(MinLab)

]MinA
(]MinLab)

]axioms
(]labels)

per MinA
(MinLab)

lattice
opera-
tions
time

total
(non-
final)

labeling
time

O
S
n
o
m
e
d

F
P

avg 432.11 42.25 126.54 10.20 16.38 0.30 1,378.66
max 42,963.00 5,003.00 4,623.00 16.00 37.80 14.00 148,119.00

stddev 1,125.06 121.15 186.33 0.49 5.00 0.54 3,493.02
L
P

avg 0.04 0.00 3.12 1.06 2.05 0.32 8.88
max 3.00 2.00 6.00 3.00 3.00 46.00 86.00

stddev 0.21 0.04 0.50 0.25 0.44 1.04 4.26

O
F
u
n
c
t F
P

avg 30.01 16.00 26.44 10.04 4.41 0.56 8,214.91
max 760.00 511.00 411.00 11.00 6.50 3.00 25,148.00

stddev 85.33 47.79 40.61 0.20 1.08 0.55 3,428.97

L
P

avg 0.09 0.01 2.76 1.38 1.32 0.77 200.55
max 3.00 2.00 7.00 4.00 2.00 16.00 596.00

stddev 0.33 0.12 0.91 0.64 0.43 1.40 61.11

Table 2: Emprical results of FP and LP with lattice (Ld,≤d) on a sampled
set of 6,476 subsumptions from OSnomed and on a set of 409 class assertions
from OFunct with at least 10 MinAs (time in ms)

is about 34 times faster than FP, but again this is only for the subset of sub-
sumptions which were finished by FP. An estimation for the time needed to
label all of the more than 5 million subsumptions in OSnomed with LP would
be approximately 6 hours.

The final labels of FP and LP (i.e., the computed boundaries) were iden-
tical, the non-final labels of FP were identical to the final labels of LP (i.e.,
the boundaries) in 6,376 of the 6,476 cases (98%), i.e., in most cases the
missing MinAs would not have changed the already computed label. Table 2
provides results for the subsumptions with more than 10 MinAs: FP took
2.5 hours on this set without final results (since it stopped after 10 MinAs),
whereas LP took 0.6% of that time and returned final results after 58 sec-
onds. We started a test series limiting runs of FP to <30MinAs, which did
not terminate after 90 hours, with 1,572 labels successfully computed and
30 subsumptions skipped since they had ≥30MinAs. Interestingly, in both
consequence sets, LP can rarely take advantage of the optimizations early
termination and MinA reuse, which might be due to the simple structure of
the lattice.

For OFunct the comparison between FP and LP is given in the lower part
of Tables 1 and 2. Again, the computation of FP was restricted to <10
MinAs. This time, only 363 out of 409 (88%) non-final labels of FP were
equal to the final labels of LP (i.e., the boundary). Although the ontology is
quite small, LP again behaves much better than FP. The reason could be that
in this ontology consequences frequently have a large set of MinAs. From
Tables 1 and 2 and the histogram in Fig. 3, one can see that LP requires at
most three MinLabs for OSnomed, at most four for OFunct, and usually just
one MinLab whereas FP usually requires more MinAs.

19

LP BS
]early
termi-
nation

]reuse]calls
to

extract
Min-
Lab

]MinLab]labels
per

Min-
Lab

lattice
opera-
tions
time

total
label-

ing
time

iterations total
label-

ing
time

OSnomed

avg 0.03 0.00 2.24 1.03 1.23 0.37 4.75 2.41 2.81
max 1.00 0.00 5.00 3.00 2.00 329.00 330.00 3.00 75.00

stddev 0.18 0.00 0.45 0.19 0.42 4.85 6.37 0.49 2.94

OFunct

avg 0.09 0.00 2.50 1.27 1.24 0.82 186.98 2.55 95.80
max 1.00 0.00 5.00 3.00 2.00 62.00 1147.00 3.00 877.00

stddev 0.28 0.00 0.72 0.49 0.40 2.74 69.55 0.50 45.44

Table 3: Emprical results of LP and BS on a sampled set of 27,477 subsump-
tions in OSnomed/ all 716 consequences of OFunct with lattice (Ll,≤l) (time
in ms)

Figure 3: Percentage of all calculated labels over required]MinAs and
]MinLabs with (Ld,≤d)

Table 3 provides results for LP vs. BS with the total order (Ll,≤l) as
labeling lattice. For OSnomed, LP takes 130.4 and BS takes 77.1 seconds to
label all 27,477 subsumptions. For OFunct, LP takes 133.9 and BS takes
68.6 seconds to label all 716 consequences. So BS is about twice as fast
as LP. Interestingly, labeling all consequences of OFunct and OSnomed takes
roughly the same time, perhaps due to a tradeoff between ontology size and
expressivity.

References

[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Pro-
ceedings of the Nineteenth International Joint Conference on Artificial
Intelligence IJCAI-05, Edinburgh, UK, 2005. Morgan-Kaufmann Pub-
lishers.

20

[2] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general
tableaux. In Proc. of the Int. Conf. on Analytic Tableaux and Related
Methods (TABLEAUX 2007), volume 4548 of Lecture Notes in Artificial
Intelligence, pages 11–27. Springer-Verlag, 2007.

[3] Franz Baader and Rafael Peñaloza. Automata-based axiom pinpointing.
In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2008),
Lecture Notes in Artificial Intelligence, pages 226–241. Springer-Verlag,
2008.

[4] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general
tableaux. Journal of Logic and Computation, 2009. To appear.

[5] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn. Pin-
pointing in the description logic EL+. In Proc. of the 30th German
Annual Conf. on Artificial Intelligence (KI’07), volume 4667 of Lecture
Notes in Artificial Intelligence, pages 52–67, Osnabrück, Germany, 2007.
Springer-Verlag.

[6] Franz Baader and Boontawee Suntisrivaraporn. Debugging SNOMED
CT using axiom pinpointing in the description logic EL+. In Proceedings
of the International Conference on Representing and Sharing Knowledge
Using SNOMED (KR-MED’08), Phoenix, Arizona, 2008.

[7] Frithjof Dau and Martin Knechtel. Access policy design supported by
FCA methods. In Frithjof Dau and Sebastian Rudolph, editors, Pro-
ceedings of the 17th International Conference on Conceptual Structures,
(ICCS 2009), 2009.

[8] A. Gaag, A. Kohn, and U. Lindemann. Function-based solution retrieval
and semantic search in mechanical engineering. In Proceedings of the17th
International Conference on Engineering Design (ICED’09), 2009. To
appear.

[9] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin.
Finding all justifications of OWL DL entailments. In Proceedings of the
6th International Semantic Web Conference and 2nd Asian Semantic
Web Conference, ISWC 2007 + ASWC 2007, volume 4825 of LNCS,
pages 267–280, Busan, Korea, 2007. Springer-Verlag.

[10] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James A. Hendler. De-
bugging unsatisfiable classes in OWL ontologies. J. Web Sem., 3(4):268–
293, 2005.

21

[11] Marie-Jeanne Lesot, Olivier Couchariere, Bernadette Bouchon-Meunier,
and Jean-Luc Rogier. Inconsistency degree computation for possibilistic
description logic: An extension of the tableau algorithm. In Proc. of the
Annual Meeting of the North American Fuzzy Information Processing
Society (NAFIPS 2008), pages 1–6. IEEE Computer Society Press, 2008.

[12] Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z. Pan. Finding
maximally satisfiable terminologies for the description logic ALC. In
Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006).
AAAI Press/The MIT Press, 2006.

[13] Guilin Qi and Jeff Z. Pan. A tableau algorithm for possibilistic descrip-
tion logic. In John Domingue and Chutiporn Anutariya, editors, Proc. of
the 3rd Asian Semantic Web Conf. (ASWC’08), volume 5367 of Lecture
Notes in Computer Science, pages 61–75. Springer-Verlag, 2008.

[14] Guilin Qi, Jeff Z. Pan, and Qiu Ji. Extending description logics with
uncertainty reasoning in possibilistic logic. In Khaled Mellouli, editor,
Proc. of the 9th Eur. Conf. on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU 2007), volume 4724 of Lecture
Notes in Computer Science, pages 828–839. Springer-Verlag, 2007.

[15] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[16] Simon Schenk. On the semantics of trust and caching in the semantic
web. In International Semantic Web Conference, pages 533–549, 2008.

[17] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services
for the debugging of description logic terminologies. In Georg Gottlob
and Toby Walsh, editors, Proc. of the 18th Int. Joint Conf. on Artifi-
cial Intelligence (IJCAI 2003), pages 355–362, Acapulco, Mexico, 2003.
Morgan Kaufmann, Los Altos.

[18] Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proc. of
the 2004 Description Logic Workshop (DL 2004), pages 212–213, 2004.

[19] Boontawee Suntisrivaraporn. Polynomial-Time Reasoning Support for
Design and Maintenance of Large-Scale Biomedical Ontologies. PhD
thesis, Fakultät Informatik, TU Dresden, 2009. http://lat.inf.tu-
dresden.de/research/phd/#Sun-PhD-2008.

22

