
Dresden University of Technology

Institute for Theoretical Computer Science

Chair for Automata Theory

LTCS–Report

Completion-based computation of most specific

concepts with limited role-depth for EL and

Prob-EL01

Rafael Peñaloza and Anni-Yasmin Turhan

Theoretical Computer Science, TU Dresden, Germany
last name@tcs.inf.tu-dresden.de

LTCS-Report 10-03

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Completion-based computation of most specific

concepts with limited role-depth for EL and

Prob-EL01

Abstract

In Description Logics the reasoning service most specific concept (msc)
constructs a concept description that generalizes an ABox individual into
a concept description. For the Description Logic EL the msc may not
exist, if computed with respect to general EL-TBoxes or cyclic ABoxes.
However, it is still possible to find a concept description that is the msc up
to a fixed role-depth, i.e. with respect to a maximal nesting of quantifiers.
In this report we present a practical approach for computing the role-
depth bounded msc, based on the polynomial-time completion algorithm
for EL. We extend these methods to Prob-EL01

c , which is a probabilistic
variant of EL. Together with the companion report [9] this report devises
computation methods for the bottom-up construction of knowledge bases
for EL and Prob-EL01

c .

1 Introduction

In Description Logics the inference most specific concept (msc) constructs a con-
cept description that generalizes an individual into a concept description. For
the Description Logic EL the msc needs not exist [2], if computed with respect to
general EL-TBoxes. However, it is still possible to find a concept description that
is the msc up to a fixed role-depth. In this report we present a practical approach
for computing the role-depth bounded msc, based on the polynomial-time com-
pletion algorithm for EL. We extend this method to a simple probabilistic variant
of EL that can express subjective probabilities and that was recently introduced
in [8]. The probabilistic DL that we use, called Prob-EL01

c , allows only a fairly
limited use of uncertainty. More precisely, it is only possible to express that a
concept may hold (P>0C), or that it holds almost surely (P=1C). Despite its lim-
ited expressivity, this logic is interesting due to its nice algorithmic properties;
as shown in [8], subsumption can be decided in polynomial time and instance
checking can be performed in polynomial time as well.

1

Many practical applications that need to represent probabilistic information, such
as medical applications or context-aware applications, need to characterize that
observations only hold with certain probability. Furthermore, these applications
face the problem that information from different sources does not coincide or that
different diagnoses yield differing results. These applications need to “integrate”
differing observations for the same state of affairs. A way to determine what
the different information sources agree upon is to represent this information as
ABox individuals and to find a common generalization of these individuals. A
description of such a generalization of a group of ABox individuals can be ob-
tained by applying the so-called bottom-up approach for constructing knowledge
bases [5]. In this approach a set of individuals is generalized into a single concept
description by first generating the msc of each concept and then apply the least
common subsumer (lcs) to the set of obtained concept descriptions to extract
their commonalities.

The second step, i.e., a computation procedure for the approximative lcs has
been investigated for EL and Prob-EL01

c in [10]. In this report we present a
similar procedure for the msc. We devise a practical algorithm for computing
the msc up to a certain role-depth for EL and Prob-EL01

c . The so-called k-msc
obtained by the algorithm is still a generalization of the input, but not necessarily
the least one – in this sense it is only an approximation of the msc. Moreover,
our algorithms are based upon the completion algorithms for EL and Prob-EL01

c ,
and thus can be easily implemented on top of reasoners of these DLs.

2 Description Logics

In Description logics (DLs), concept descriptions are inductively defined with the
help of a set of concept constructors, starting with a set NC of concept names, a
set NR of role names, and a set NI of individual names. From elements of these
sets complex concept descriptions can be obtained by concept constructors. In
this report we are interested to reasoning with concept descriptions.

2.1 The DL EL

The DL EL allows for two concept constructors: conjunction and existential re-
strictions. The DL EL also contains the top-concept, denoted ⊤.

Definition 1 (Syntax of EL-concept descriptions) Let A denote a concept
name, r denotes a role and C1, C2 denote arbitrary EL-concepts. An EL-concept
description C can be obtained by the following rule:

C ::= ⊤ | A | C1 ⊓ C2 | ∃r.C1.

2

The semantics of a concept description is defined in terms of an interpretation
I = (∆, ·I). The domain ∆ of I is a non-empty set of individuals and the
interpretation function ·I maps each concept name A ∈ NC to a set P I ⊆ ∆,
each role name r ∈ NR to a binary relation rI ⊆ ∆×∆, and each individual name
a ∈ NI to an element aI ∈ ∆I . This function is extended to arbitrary EL-concept
descriptions as follows:

Definition 2 (Semantics of EL-concept descriptions) The top-concept is in-
terpreted as the domain (⊤I = ∆). The extension of ·I to arbitrary EL-concept
descriptions is inductively defined, as follows:

• (C ⊓ D)I = CI ∩ DI, and

• (∃r.C)I = {x ∈ ∆ | ∃y : (x, y) ∈ rI ∧ y ∈ CI} for r ∈ NR.

Concept descriptions can be assigned a name or sub-concept super-concept rela-
tionships between arbitrary concept descriptions established in the TBox.

Definition 3 (GCI, TBox) Let C1, C2, D1 and D2 be concept descriptions,
then

C1 ⊑ C2

is a general concept inclusion axiom (GCI). The semantics of GCIs is given by the
interpretation function. A GCI C1 ⊑ C2 is satisfied for a TBox T , iff CI

1 ⊆ CI
2

for all models I of T .

A TBox T is finite set of contains GCIs. An interpretation is a model of a TBox,
if for all C1 ⊑ C2 ∈ T and D1 ≡ D2 ∈ T , it holds that CI

1 ⊆ CI
2 and DI

1 = DI
2 .

If the concept axioms in the TBox contain only EL-concept descriptions, we call
it an EL-TBox.

It is easy to see that concept equivalence between two concept descriptions (writ-
ten C1 ≡ C2) can be stated by two GCIs: C1 ≡ C2 and C1 ⊑ C1.

In the ABox individuals can be characterized by concepts and relations between
individuals can be stated.

Definition 4 (assertion, ABox) Let a, b be individual names, r a role name
and C be a concept description, then

• C(a) is a concept assertion, and

• r(a, b) is a role assertion.

3

An ABox A is finite set of assertions.

An interpretation I satisfies an assertion C(a), iff aI ∈ CI and an assertion
r(a, b) is satisfied, iff (aI , bI) ∈ rI. An interpretation is a model of an ABox A,
if all assertions A contains are satisfied.

If the concept assertions in the ABox A contain only EL-concept descriptions, we
call A an EL-ABox. A Knowledge Base (KB) is a tuple K = (T ,A) consisting of
a TBox T and an ABox A.

Based on the semantics of concept descriptions, TBoxes and ABoxes a number
of inference problems for DLs have been defined. Some of the most relevant ones
are the following:

• Concept satisfiability. A concept C is satisfiable w.r.t. a TBox T if there
exists a model I of T such that CI 6= ∅.

• Concept subsumption. A concept C subsumes a concept D w.r.t. a TBox
T (written C ⊑T D) if CI ⊆ DI in every model I of T .

• ABox consistency. An ABox A is consistent w.r.t. a TBox T if A and T
have a common model.

• The instance problem. For a KB K = (T ,A) an individual name a is an
instance of a concept C in an ABox A w.r.t. a TBox T (written K |= C(a))
if aI ∈ CI for every common model I of A and T .

• ABox realization problem. For an KB K with ABox A (and a TBox T)
the realization problem computes for each individual a in A the set of
named concepts from K that have a as an instance and that is least (w.r.t.
subsumption).

In this report we will use the instance problem. However, as we will see in
Section 3, the completion algorithm computes in fact ABox realization. Also
based on the instance relation the most specific concept is defined.

Definition 5 (most specific concept, msc) Let L be a DL, K = (T , A) be
a L-KB. The most specific concept of an individual a from A is the L-concept
description C such that

• K |= C(a), and

• for each L-concept description D K |= D(a) implies C ⊑T D.

The msc depends on the DL in use. For the DL FL− that only offers conjunction
as concept constructor the msc always exists for cyclic ABoxes and TBoxes. For
EL the msc does not need to exist if computed w.r.t. a cyclic ABox and an empty
TBox as it was shown in [7].

4

2.2 Prob-EL01
c

We now introduce Prob-EL01
c , a probabilistic variant of EL that allows reason-

ing with limited uncertainty through probabilistic concepts. In this logic, it is
only possible to express that a concept may hold (i.e., holds with probability
greater than 0), or that it holds almost surely (that is, with probability 1). This
probabilistic logic was first introduced in [8].

The probabilistic DL Prob-EL01
c extends EL with the constructors P>0 and P=1.

That is, Prob-EL concepts are constructed as

C ::= ⊤ | A | C ⊓ D | ∃r.C | P>0C | P=1C,

where A is a concept name and r a role name. The intuition behind these last
two expressions is that C holds with probability greater than 0 or equal to 1,
respectively.

The semantics of Prob-EL01
c generalizes the interpretation-based semantics of EL.

A probabilistic interpretation is of the form

I = (∆I , W, (Iw)w∈W , µ),

where ∆I is the (non-empty) domain, W is a set of worlds, µ is a discrete prob-
ability distribution on W , and for each world w ∈ W, Iw is a classical EL inter-
pretation with domain ∆I . Additionally, it must hold that for every individual
name a ∈ NI and every two worlds w, w′ ∈ W : aIw = aI

w
′ .

This last restriction expresses that named individuals must be interpreted alike
in all worlds of a probabilistic interpretation. Thus, we can use the expression aI

without ambiguity.

The probability that a given element of the domain d ∈ ∆I belongs to the concept
name A is given by

pId (A) := µ({w ∈ W | d ∈ AIw}).

The interpretation function Iw and pId are extended to complex concepts in the
usual way for the classical constructors, while the extension to the new construc-
tors P∗ is defined as

(P>0C)Iw := {d ∈ ∆I | pId (C) > 0}, (P=1C)Iw := {d ∈ ∆I | pId(C) = 1},

A probabilistic interpretation I satisfies a concept inclusion C ⊑ D, denoted as
I |= C ⊑ D, if for every w ∈ W it holds that CIw ⊆ DIw . It is a model of a
TBox T if it satisfies all concept inclusions in T .

The relevant decision problems introduced previously for EL can also be defined
in an analogous manner for Prob-EL01

c . Of particular interest in this report is the
instance problem, that asks whether an individual name a must be interpreted
as an instance of a concept C in every model of a given ABox and TBox.

5

This simple probabilistic logic retains the good complexity properties held by EL.
Moreover, as it will be shown in the following section, reasoning in Prob-EL01

c

can be performed through a variant of the completion algorithm for EL.

3 Completion-based Instance Checking Algorithms

We briefly sketch the completion algorithms for instance checking in EL [3] and
Prob-EL01

c [8].

3.1 Instance checking in EL

Assume we want to test for an EL-KB K = (T ,A) whether K |= D(a) holds.
The completion algorithm first augments the knowledge base by introducing a
concept name for the complex concept description D from the instance check.
More precisely, it sets K = (T ∪ {Aq ≡ D},A), where Aq is a new concept name
not appearing in K. The instance checking algorithm for EL works on normalized
knowledge bases.

Normalization of the EL KB

Normalization is done two steps: first the ABox is transformed into a simple
ABox.

An ABox is a simple ABox, if it only contains concept names in concept assertions.
An EL-ABox A can be transformed into a simple ABox by the following two steps:

1. replace each complex assertion C(A) in A by A(a) with a fresh name A

2. and introduce A ≡ C in the TBox.

This normalization step of naming complex concept descriptions is performed
first before completion. After this step the (now already augmented) TBox is
normalized. By BCT we denote the set of basic concept descriptions for an EL-
TBox T , i.e., the smallest set of concept descriptions which contains ⊤ and all
concept names used in T . Based on this, a normal form for TBoxes can be defined
as follows.

Definition 6 (Normal form for EL-TBoxes) An EL-TBox T is in normal
form if all concept inclusions have one of the following forms, where C1, C2 ∈ BCT

6

NF1 C ⊓ D̂ ⊑ E −→ { D̂ ⊑ A, C ⊓ A ⊑ E }

NF2 ∃r.Ĉ ⊑ D −→ { Ĉ ⊑ A, ∃r.A ⊑ D }

NF3 Ĉ ⊑ D̂ −→ { Ĉ ⊑ A, A ⊑ D̂ }

NF4 B ⊑ ∃r.Ĉ −→ { B ⊑ ∃r.A, A ⊑ Ĉ }

NF5 B ⊑ C ⊓ D −→ { B ⊑ C, B ⊑ D }

where Ĉ, D̂ 6∈ BCT and A is a new concept name.

Figure 1: EL normalization rules

and D ∈ BCT ∪ {⊥}:

C1 ⊑ D,

C1 ⊓ C2 ⊑ D,

C1 ⊑ ∃r.C2 or

∃r.C1 ⊑ D.

Any EL-TBox can be transformed into normal form by introducing new concept
names and by applying the normalization rules displayed in Figure 1 exhaustively.
These rules replace the GCI on the left-hand side of the rules with the set of GCIs
on the right-hand side. This transformation can be done in linear time.

For a concept description C let CN(C) denote the set of all concept names and
RN(C) denote the set of all role names that appear in C. The signature of a
concept description C (denoted sig(C)) is CN(C) ∪ RN(C). Similarly, the set of
concept names that appear in a TBox are denoted by CN(T) and role names by
RN(T). The signature of a TBox T (denoted sig(T)) is CN(T) ∪ RN(T). The
signature of an ABox A (denoted sig(A)) is the set of concept names CN(A), role
names RN(A) and individual names IN(A) that appear in A. The signature of
a KB K (denoted sig(K)) is the set of concept and role names that appear in T
and A.

Clearly, for a KB K = (T ,A) the signature of A may be changed only during
the first of the two normalization steps and the signature of T may be extended
during both of them. However, since the first normalization step just introduces
new names for complex concept descriptions appearing in concept assertions, it
does not affect instance relations w.r.t. the signature of the original KB. The nor-
malization of the TBox does not affect instance tests for EL-concept descriptions
formulated w.r.t. the signature of the original KB K as well.

The completion algorithm for instance checking is based on the one for classifying
EL-TBoxes introduced in [3]. The completion algorithm constructs a represen-
tation of the minimal model of K. Let K =(T , A) be an EL-KB with a simple

7

CR1 If C ∈ S(X), C ⊑ D ∈ T , and D 6∈ S(X)
then S(X) := S(X) ∪ {D}

CR2 If C1, C2 ∈ S(X), C1 ⊓ C2 ⊑ D ∈ T , and D 6∈ S(X)
then S(X) := S(X) ∪ {D}

CR3 If C ∈ S(X), C ⊑ ∃r.D ∈ T , and D 6∈ S(X, r)
then S(X, r) := S(X, r) ∪ {D}

CR4 If C ∈ S(X, r), D ∈ S(C), ∃r.C ⊑ D ∈ T , and
D 6∈ S(X) then S(X) := S(X) ∪ {D}

Figure 2: EL completion rules

ABox A and T in normal form. The completion algorithm works on four kinds
of completion sets : S(a), S(a, r), S(C) and S(C, r) for a ∈ IN(A), C ∈ CN(K),
and r ∈ RN(K). These sets contain concept names from CN(K). Let D, C be
concept names, r be a role name and a be an individual name. Intuitively, the
completion rules make implicit subsumption and instance relationships explicit
in the following sense:

• D ∈ S(C) implies that C ⊑T D,

• D ∈ S(C, r) implies that C ⊑T ∃r.D.

• D ∈ S(a) implies that a is an instance of D w.r.t. K,

• D ∈ S(a, r) implies that a is an instance of ∃r.D w.r.t. K.

SK denotes the set of all completion sets of K. The completion sets are initialized
for each a ∈ IN(A) and each C ∈ CN(K) as follows:

• S(C) := {C,⊤} for each C ∈ CN(K),

• S(C, r) := ∅ for each r ∈ RN(K),

• S(a) := {C ∈ CN(A) | C(a) appears in A} ∪ {⊤}, and

• S(a, r) := {b ∈ IN(A) | r(a, b) appears in A} for each r ∈ RN(K).

Then these sets are extended by applying the completion rules shown in Figure 2
until no more rule applies. In these rules X and Y can refer to concept or
individual names.

After the completion has terminated, the following relations hold:

8

• subsumption relation between two named concepts A and B from K holds
iff B ∈ S(A)

• instance relation between an individual a and a named concept B from K
holds iff B ∈ S(a),

as shown in [3]. Hence, to decide the initial query K |= D(a), one has to test
whether Aq appears in S(a). In fact, instance queries for all individuals and all
named concepts from the KB can be answered now; the completion algorithm
does not only perform one instance checking, but ABox realization.

The completion algorithm runs in polynomial time in size of the knowledge base.

3.2 Completion Algorithms for Prob-EL01
c

To describe the completion algorithm for Prob-EL01
c , we need the notion of basic

concepts. The set BCT of Prob-EL01
c basic concepts for a KB K is the smallest

set that contains (1) ⊤, (2) all concept names used in K, and (3) all concepts
of the form P∗A, where A is a concept name in K. A Prob-EL01

c -TBox T is in
normal form if all its axioms are of one of the following forms

C ⊑ D, C1 ⊓ C2 ⊑ D, C ⊑ ∃r.A, ∃r.A ⊑ D,

where C, C1, C2, D ∈ BCT and A is a concept name. The normalization rules
in Figure 1 can also be used to transform a Prob-EL01

c -TBox into this extended
notion of normal form. We further assume that for all assertions C(a) in the ABox
A, C is a concept name. We denote as PT

0 , PT
1 and RT

0 the set of all concepts
of the form P>0A, P=1A, and P>0r(a, b) respectively, occurring in a normalized
knowledge base K.

The completion algorithm for Prob-EL01
c follows the same idea as the algorithm

for EL, but uses several completion sets to deal with the information of what
needs to be satisfied in the different worlds of a model. We define the set of
worlds V := {0, ε, 1} ∪ PT

0 ∪ RT
0 , where the probability distribution µ assigns a

probability of 0 to the world 0, and the uniform probability 1/(|V | − 1) to all
other worlds. For each individual name a, concept name A, role name r and world
v, we store the completion sets S0(A, v), Sε(A, v), S0(A, r, v), Sε(A, r, v), S(a, v),
and S(a, r, v).

The algorithm initializes the sets as follows for every A ∈ BCT , r ∈ RN(K), and
a ∈ IN(A):

• S0(A, 0) = {⊤, A} and S0(A, v) = {⊤} for all v ∈ V \ {0},

• Sε(A, ε) = {⊤, A} and Sε(A, v) = {⊤} for all v ∈ V \ {ε},

9

PR1 If C′ ∈ S∗(X, v), C′ ⊑ D ∈ T , and D 6∈ S∗(X, v)
then S∗(X, v) := S∗(X, v) ∪ {D}

PR2 If C1, C2 ∈ S∗(X, v), C1 ⊓ C2 ⊑ D ∈ T , and D 6∈ S∗(X, v)
then S∗(X, v) := S∗(X, v) ∪ {D}

PR3 If C′ ∈ S∗(X, v), C′ ⊑ ∃r.D ∈ T , and D /∈ S∗(X, r, v)
then S∗(X, r, v) := S∗(X, r, v) ∪ {D}

PR4 If D ∈ S∗(X, r, v), D′ ∈ Sγ(v)(D, γ(v)), ∃r.D′ ⊑ E ∈ T ,
and E /∈ S∗(X, v) then S∗(X, v) := S∗(X, v) ∪ {E}

PR5 If P>0A ∈ S∗(X, v), and A /∈ S∗(X, P>0A)
then S∗(X, P>0A) := S∗(X, P>0A) ∪ {A}

PR6 If P=1A ∈ S∗(X, v), v 6= 0, and A /∈ S∗(X, v)
then S∗(X, v) := S∗(X, v) ∪ {A}

PR7 If A ∈ S∗(X, v), v 6= 0, P>0A ∈ PT
0 , and P>0A /∈ S∗(X, v′)

then S∗(X, v′) := S∗(X, v′) ∪ {P>0A}

PR8 If A ∈ S∗(X, 1), P=1A ∈ PT
1 , and P=1A /∈ S∗(X, v)

then S∗(X, v) := S∗(X, v) ∪ {P=1A}

PR9 If r(a, b) ∈ A, C ∈ S(b, 0), ∃r.C ⊑ D ∈ T ,
and D 6∈ S(a, 0) then S(a, 0) := S(a, 0) ∪ {D}

PR10 If P>0r(a, b) ∈ A, C ∈ S(b, P>0r(a, b)), ∃r.C ⊑ D ∈ T ,
and D 6∈ S(a, P>0r(a, b))
then S(a, P>0r(a, b)) := S(a, P>0r(a, b)) ∪ {D}

PR11 If P=1r(a, b) ∈ A, C ∈ S(b, v) with v 6= 0, ∃r.C ⊑ D ∈ T
and D 6∈ S(a, v) then S(a, v) := S(a, v) ∪ {D}

Figure 3: Prob-EL01
c completion rules

• S(a, 0) = {⊤} ∪ {A | A(a) ∈ A}, S(a, v) = {⊤} for all v 6= 0,

• S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V , S(a, r, v) = ∅ for v 6= 0,

• S(a, r, 0) = {b ∈ IN(A) | r(a, b) ∈ A}.

These sets are then extended by exhaustively applying the rules shown in Figure 3,
where X ranges over BCT ∪IN(A), S∗(X, v) stands for S(X, v) if X is an individual
and for S0(X, v), Sε(X, v) if X ∈ BCT , and γ : V → {0, ε} is defined by γ(0) = 0,
and γ(v) = ε for all v ∈ V \ {0}.

This algorithm terminates in polynomial time. After termination, the comple-
tion sets store all the information necessary to decide subsumption of concept
names, as well as checking whether an individual is an instance of a given con-
cept name [8]. For the former decision, it holds that for every pair A, B of concept
names: B ∈ S0(A, 0) iff A ⊑K B. In the case of instance checking, we have that
K |= A(a) iff A ∈ S(a, 0).

10

4 Computing the k-MSC using Completion

The msc was first investigated for EL-concept descriptions and w.r.t. unfoldable
TBoxes and possibly cyclic ABoxes in [7]. It was shown that the msc does not
need to exist for cyclic ABoxes. Consider the ABox A = {r(a, a), C(a)}. The
msc of a is then

C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ · · ·

and cannot be expressed by a finite concept description. For cyclic TBoxes it has
been shown in [2] that the msc does not need to exists even if the ABox is acyclic.

To avoid infinite nestings in presence of cyclic ABoxes it was proposed in [7] to
limit the role-depth of the concept description to be computed. This limitation
yields an approximation of the msc, which is still a concept description with the
input individual as an instance, but it does not need to be the least one (w.r.t.
subsumption) with this property. We follow this idea to compute approximative
msc also in presence of general TBoxes.

The role-depth of a concept description C (denoted rd(C)) is the maximal number
of nested quantifiers of C. Now we can define the msc with limited role-depth for
EL.

Definition 7 (role-depth bounded EL-msc) Let K =(T , A) be an EL-KB
and a an individual in A and k ∈ IN. Then the EL-concept description C is
the role-depth bounded EL-most specific concept of a w.r.t. K and role-depth k
(written k-mscK(a)) iff

1. rd(C) ≤ k,

2. K |= C(a), and

3. for all EL-concept descriptions E with rd(E) ≤ k holds: K |= E(a) implies
C ⊑T E.

Notice that in case the exact msc has a role-depth less than k the role-depth
bounded msc is the exact msc.

4.1 Computing the k-msc in EL by completion

The computation of the msc relies on a characterization of the instance relation.
While in earlier works this was given by homomorphism [7] or simulations [2]
between graph representations of the knowledge base and the concept in question,
we use the completion algorithm as such a characterization. Furthermore, we
construct the msc by traversing the completion sets to “collect” the msc. More
precisely, the set of completion sets encodes a graph structure, where the sets

11

Algorithm 1 Computation of a role-depth bounded EL-msc.

Procedure k-msc (a,K, k)
Input: a: individual from K; K =(T , A) an EL-KB; k ∈ IN
Output: role-depth bounded EL-msc of a w.r.t. K and k.

1: (T ′, A′) := simplify-ABox(T , A)
2: K′′ := (normalize(T ′), A′)
3: SK := apply-completion-rules(K)
4: return Remove-normalization-names (traversal-concept-i (a, SK, k))

Procedure traversal-concept-i (a, S, k)
Input: a: individual name from K; S: set of completion sets; k ∈ IN
Output: role-depth traversal concept (w.r.t. K) and k.

1: if k = 0 then return
d

A ∈ S(a) A

2: else return
d

A ∈ S(a) A ⊓d
r∈RN(K′′)

d
A ∈ CN(K′′)∩S(a,r)

∃r. traversal-concept-c (A, S, k − 1) ⊓
d

r∈RN(K′′)

d
b ∈ IN(K′′)∩S(a,r)

∃r. traversal-concept-i (b, S, k − 1)

3: end if

Procedure traversal-concept-c (A, S, k)
Input: A: concept name from K′′; S: set of completion sets; k ∈ IN
Output: role-depth bounded traversal concept.

1: if k = 0 then return
d

B∈S(A) B

2: else return
d

B∈S(A)

B ⊓
d

r∈RN(K′′)

d
B∈S(A,r)

∃r.traversal-concept-c (B, S, k − 1)

3: end if

S(X) are the nodes and the sets S(X, r) encode the edges. Traversing this graph
structure, one can construct an EL-concept. To obtain a finite concept in the
presence of cyclic ABoxes or TBoxes one has to limit the role-depth of the concept
to be obtained.

Definition 8 (traversal concept) Let K be an EL-KB, K′′ be its normalized
form, SK the completion set obtained from K and k ∈ IN. Then the traversal
concept of a named concept A (denoted k-CSK

(A)) with sig(A) ⊆ sig(K′′) is the
concept obtained from executing the procedure call traversal-concept-c(A, SK, k)
shown in Algorithm 1.

The traversal concept of an individual a (denoted k-CSK
(a)) with a ⊆ sig(K) is the

concept description obtained from executing the procedure call traversal-concept-
i(a, SK, k) shown in Algorithm 1.

The idea is that the traversal concept of an individual yields its msc. However,
the traversal concept contains names from sig(K′′) \ sig(K), i.e., concept names

12

that were introduced during normalization – we call this kind of concept names
normalization names in the following. The returned msc should be formulated
w.r.t. the signature of the original KB, thus the normalization names need to be
removed or replaced.

Lemma 9 Let K be an EL-KB, K′′ its normalized version, SK be the set of com-
pletion sets obtained for K, k ∈ IN a natural number and a ∈ IN(K). Furthermore

let C = k-CSK
(a) and Ĉ be obtained from C by removing the normalization names.

Then
K′′ |= C(a) iff K |= Ĉ(a).

Proof. The only-if direction is trivial since C is constructed by a conjunction of
concepts. Removing some conjuncts will only produce a more general concept;
that is, C ⊑ Ĉ holds.

For the other direction, assume that K′′ 6|= C(a). Then, there must be a concept
of the form D := ∃r1.∃r2. . . .∃rm.B with B a concept name from K′′ such that
K′′ 6|= D(a). If B is not a normalization name, then it follows directly that
K′′ 6|= C(a). Otherwise, by construction, there must be a concept D′ such that,
either D′ := ∃r1.∃r2. . . .∃rm.B′ and B ∈ S(B′) or D′ := ∃r1.∃r2. . . .∃rm−1.B

′ and
B ∈ S(B′, rm). This approach can be repeated until we find such a D′ where B is
not a normalization name, or we reach an individual name. In any of both cases,
it follows that K′′ 6|= C(a). Since the normalization rules preserve instances w.r.t.
the original concept names, we can then deduce that K 6|= C(a).

This lemma guarantees that removing the normalization names from the traversal
concept preserves the instance relationships.

We now ready to describe a computation algorithm for the role-depth bounded
msc. This is the procedure k-msc as displayed in Algorithm 1.

The procedure k-msc has an individual a from a knowledge base K, the knowl-
edge base K itself and number k for the role depth-bound as parameter. It first
performs the two normalization steps on K, then applies the completion rules
from Figure 2 to the normalized KB K′′ and stores the set of completion sets in
SK. Afterwards it computes the traversal-concept of a from SK w.r.t. role-depth
bound k. In a post-processing step it applies Remove-normalization-names to the
traversal concept.

Obviously, the concept description returned from the procedure k-msc has a role-
depth less or equal to k. Thus the first condition of Definition 7 is fulfilled. We
prove next that the concept description obtained from k-msc fulfills the second
condition from Definition 7.

Lemma 10 Let K = (T ,A) be an EL-KB and a an individual in A and k ∈ IN.
If C = k-msc(a,K, k), then K |= C(a).

13

Proof. The proof is an easy induction on k. For the base case, when k = 0,
C is the conjunction of all concept names in S(a). By the properties of the
completion algorithm, we know that for every A ∈ S(a) it holds that K |= A(a).
Thus, K |=

d
A∈S(a) A(a) = C(a).

For the induction step, the algorithm simply adds the elements of a completion
set either from an individual (if there is an assertion of the form r(a, b)) or from a
concept, by means of the completion set S(a, r). Again, by the properties of the
completion algorithm, it holds that for every A ∈ S(a, r), K |= ∃r.A(a). Thus, it
follows that K |= C(a).

We have then shown that the concept obtained by the procedure k-msc(a,K, k)
contains a as an instance, and has role depth at most k. It remains only to show
that it is the least concept with these two properties.

Lemma 11 Let K = (T ,A) be an EL-KB and a an individual in A and k ∈ IN.
If C = k-msc(a,K, k), then for all EL-concept descriptions E with rd(E) ≤ k
holds: K |= E(a) implies C ⊑T E.

Proof. The proof is by induction on the role depth k. Assume first that k = 0.
Then, any EL-concept description E must be of the form B1 ⊓ . . . ⊓ Bm, where
m ≥ 0 and each Bi is a concept name. Likewise, C is the conjunction of all
concept names that have a as an instance. Suppose that C 6⊑T E. Then, there
must exist a conjunct Bi from E that does not appear as a conjunct in C. But
then, by the properties of the completion algorithm, it follows that a is not an
instance of Bi; i.e. K 6|= Bi(a). But this implies that K 6|= E(a).

Let now k > 0. Then E is of the form

B1 ⊓ . . . Bm ⊓ ∃r1.D1 ⊓ . . . ∃rm′ .Dm′ ,

where Bi is a concept name and rd(Di) < k for all i. Suppose that C 6⊑T E.
Then, there must be a conjunct of E that has no conjunct of C as a subconcept.
We assume w.l.o.g. that this conjunct is of the form ∃ri.Di (otherwise, we can
treat it as in the base case). Let b be an individual such that ri(a, b) ∈ K. Then,
by induction hypothesis we know that K 6|= Di(b). Additionally, for any concept
name A′ ∈ S(a, ri), Di cannot subsume C ′ :=traversal-concept-c (A′, S, k−1) (see
Lemma 9). But then, this implies that there is a conjunct in Di that does not
subsume any of the conjuncts of C ′. Thus, putting all these arguments together
and using once again the properties of the completion algorithm, we can conclude
that a is not an instance of ∃ri.Di, and hence K 6|= E(a).

The two lemmas yield the correctness of the overall procedure.

Theorem 12 Let K = (T ,A) be an EL-KB and a an individual in A and k ∈ IN.
Then k-msc(a,K, k) ≡ k-mscK(a).

14

Notice that the k-msc can grow exponential in the size of the knowledge base.
However, using structure sharing, one can represent this concept using only poly-
nomial space.

4.2 Most specific concept in Prob-EL01
c

In order to compute the msc in Prob-EL01
c , we follow the same idea used for EL:

we simply accumulate all concepts to which the individual a belongs, given the
information in the completion sets. This process needs to be done recursively in
order to account for both, the successors of a explicitly encoded in the ABox, and
the nesting of existential restrictions masked by normalization names.

In the following we use the abbreviation S>0(a, r) :=
⋃

v∈V \{0} S(a, r, v). We then

define traversal-concept-i(a, S, k) as

l

B∈S(a,0)

B ⊓
l

r∈RN(K′′)

(l

r(a,b)∈K′′

∃r.traversal-concept-i(b, S, k − 1) ⊓

l

B∈CN(K′′)∩S(a,r,0)

∃r.traversal-concept-c(B, S, k − 1) ⊓

l

B∈CN(K′′)∩S(a,r,1)

P=1(∃r.traversal-concept-c(B, S, k − 1)) ⊓

l

B∈CN(K′′)∩S>0(a,r)

P>0(∃r.traversal-concept-c(B, S, k − 1))
)
,

where traversal-concept-c(B, S, k + 1) is

l

C∈S0(B,0)

B ⊓
l

r∈RN

(l

C∈S0(B,r,0)

∃r.traversal-concept-c(C, S, k) ⊓

l

C∈S0(B,r,1)

P=1(∃r.traversal-concept-c(C, S, k)) ⊓

l

C∈S>0

0
(B,r)

P>0(∃r.traversal-concept-c(C, S, k))
)

and traversal-concept-c(B, S, 0) =
d

C∈S0(B,0) B.

Once the traversal concept has been computed, it is possible to remove all nor-
malization names preserving the instance relation, which gives us the msc in the
original signature of K. The proof is analogous to the one for EL, only treating the
probabilistic constructors in a similar way as done for the existential restrictions.

Theorem 13 Let K a Prob-EL01
c -knowledge base, a ∈ IN(A), and k ∈ IN; then

Remove-normalization-names(traversal-concept-i(a, S, k)) ≡ k-mscK(a).

15

5 Conclusions

In this report we have presented a practical method for computing the role-depth
bounded msc of EL concepts w.r.t. a general TBox. Our approach is based on the
completion sets that are computed during realization of a KB. Thus, any of the
available implementations of the EL completion algorithm can be easily extended
to an implementation of the (approximative) msc computation algorithm. We
also showed that the same idea can be adapted for the computation of the msc
in the probabilistic DL Prob-EL01

c .

Together with the completion-based computation of role-depth limited (least)
common subsumers given in [10] these results complete the bottom-up approach
for general EL- and Prob-EL01

c -KBs. This approach yields a practical method to
compute commonalities for differing observations regarding individuals. To the
best of our knowledge this has not been investigated for DLs that can express
uncertainty.

References

[1] F. Baader. Least common subsumers, most specific concepts, and role-
value-maps in a description logic with existential restrictions and termi-
nological cycles. LTCS-Report LTCS-02-07, Chair f. Automata Theory,
Inst. for Theoretical Computer Science, TU Dresden, Germany, 2002. See
http://lat.inf.tu-dresden.de/research/reports.html.

[2] F. Baader. Least common subsumers and most specific concepts in a descrip-
tion logic with existential restrictions and terminological cycles. In G. Got-
tlob and T. Walsh, editors, Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI-03), pages 325–330. Morgan Kaufmann, 2003.

[3] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh,
UK, 2005. Morgan-Kaufmann Publishers.

[4] F. Baader and R. Küsters. Computing the least common subsumer and the
most specific concept in the presence of cyclic ALN -concept descriptions. In
O. Herzog and A. Günter, editors, Proc. of the 22th German Annual Conf.
on Artificial Intelligence (KI’98), volume 1504 of Lecture Notes in Computer
Science, pages 129–140, Bremen, Germany, 1998. Springer.

[5] F. Baader, R. Küsters, and R. Molitor. Computing least common subsumer
in description logics with existential restrictions. In T. Dean, editor, Proc. of
the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI-99), pages 96–101,
Stockholm, Sweden, 1999. Morgan Kaufmann, Los Altos.

16

[6] R. Küsters and R. Molitor. Approximating most specifc concepts in de-
scription logics with existential restrictions. In F. Baader, G. Brewka, and
T. Eiter, editors, Proc. of the 24th German Annual Conf. on Artificial In-
telligence (KI’01), volume 2174 of Lecture Notes In Artificial Intelligence,
pages 33–47. Springer, 2001.

[7] R. Küsters and R. Molitor. Approximating most specific concepts in descrip-
tion logics with existential restrictions. AI Communications, 15(1):47–59,
2002.

[8] C. Lutz and L. Schröder. Probabilistic description logics for subjective prob-
abilities. In F. Lin and U. Sattler, editors, Proc. of the 12th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR-10), 2010.
To appear.

[9] R. Peñaloza and A.-Y. Turhan. Completion-based computation of least com-
mon subsumers with limited role-depth for EL and prob-EL01. LTCS-Report
LTCS-10-02, Chair f. Automata Theory, Inst. for Theoretical Computer Sci-
ence, TU Dresden, Germany, 2010.

[10] R. Peñaloza and A.-Y. Turhan. Role-depth bounded least common sub-
sumers by completion for EL- and Prob-EL-TBoxes. In V. Haarslev,
D. Toman, and G. Weddell, editors, Proc. of the 2010 Description Logic
Workshop (DL’10), 2010.

17

