
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Finding Finite Herbrand Models

Stefan Borgwardt Barbara Morawska

LTCS-Report 11-04

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Finding Finite Herbrand Models

Stefan Borgwardt Barbara Morawska

Abstract

We show that finding finite Herbrand models for a restricted class of
first-order clauses is ExpTime-complete. A Herbrand model is called finite
if it interprets all predicates by finite subsets of the Herbrand universe. The
restricted class of clauses consists of anti-Horn clauses with monadic pred-
icates and terms constructed over unary function symbols and constants.

The decision procedure can be used as a new goal-oriented algorithm to
solve linear language equations and unification problems in the description
logic FL0. The new algorithm has only worst-case exponential runtime, in
contrast to the previous one which was even best-case exponential.

1 Introduction

Satisfiability of formulas in First Order Logic (FOL) has always been of interest
for computer science and is an active field of research. The main problem is that
satisfiability of such formulas is not even semi-decidable. Thus, the focus lies
on finding algorithms that decide satisfiability for restricted classes. A possible
approach is to use restrictions on the resolution or superposition calculi to obtain
decision procedures [7, 9].

Related to this is the problem of model building that asks for an actual model
witnessing the satisfiability of the given clauses. Additionally, one usually asks
for a finite representation of such a model. For example, the completeness proofs
of resolution-style inference systems often explicitly construct (counter-)models,
but there are also other approaches [2, 10, 15].

Here, we want to study a related problem. We not only want our models to
be finitely representable, but actually ask for finite Herbrand models. We call
a Herbrand model finite if each predicate is interpreted by a finite subset of the
infinite Herbrand universe. This problem is semi-decidable since the set of all
finite Herbrand interpretations over a fixed signature is recursively enumerable.
Since this problem has not been studied before, it is unknown whether it is
decidable for arbitrary first-order formulae. The existence of finite Herbrand

1

models implies the existence of finite models in the usual sense, where the domain
is required to be finite, but the other implication does not hold in general.

We restrict ourselves to finite sets of propagation rules, which are anti-Horn
clauses that use only monadic predicates and function symbols, one constant
symbol, and one variable. In particular, we do not allow the equality predicate.
These sets of clauses can be seen as skolemized versions of Ackermann formulas,
for which satisfiability is known to be decidable [6, 9]. This class of clause sets is
also similar to the decidable Bernays-Schönfinkel class [9], but neither is actually
included in the other.

In this report, we show that the problem of deciding the existence of a finite Her-
brand model for a finite set of propagation rules is ExpTime-complete. Our de-
cision procedure is aided by a new computational model that we call propagation
nets . The process of building a model is simulated by the process of saturating
the net with terms. This process terminates iff a finite Herbrand model exists.
We decide this by analyzing the structure of the net.

The problem of finding finite Herbrand models for a set of propagation rules
occurred while designing a new unification procedure for the description logic
FL0. The unification problem in this logic was shown to be ExpTime-complete
in [1]. There, solving unification in FL0 is shown to be equivalent to solving linear
language equations. It turns out that the problem of solving these equations
reduces in a natural way to the problem of finding finite Herbrand models for
propagation rules. In this reduction, variables become predicates and their finite
interpretation in the Herbrand universe defines a solution to the original language
equation.

Our decision procedure thus provides a new way to solve linear language equa-
tions. It is worst-case exponential, but there are cases in which our algorithm
runs in polynomial time. Thus, it has advantages over the previous algorithm [1],
which is always exponential. Moreover, our procedure can be modified to compute
solutions for the formal language equations.

We think that this method of finding finite Herbrand models can find various
applications and can be generalized to larger classes of clauses. As detailed above,
it has an immediate application to unification and formal language equations.

In the next section, we introduce propagation rules and describe a simple flat-
tening procedure. In Section 3, we will present propagation nets and illustrate
their connection to propagation rules. After describing the ideas on how to find
finite Herbrand models for finite sets of propagation rules, we will present a de-
cision procedure in Section 4. There we prove its correctness and that it always
terminates after at most exponential time. We also show that the problem is
ExpTime-hard, which is done by a reduction from linear language equations in
Section 5. In Section 6, we will summarize our main results and finally present
our conclusions in Section 7.

2

2 Propagation Rules

We first introduce the clausal formalism for which we want to decide the existence
of finite Herbrand models. We deal with a special kind of first-order anti-Horn
clauses, which we call propagation rules. The signature of our first-order logic
consists of a finite set P of unary predicates, a finite set F of unary function
symbols, one constant a, and one variable x. The variable x is always implicitly
universally quantified.

We will use the notation P,Q, P1, P2, . . . for predicates and f, g, . . . for function
symbols. Every ground term over this signature is of the form f1(. . . fn(a) . . .),
which we will abbreviate as f1 . . . fn(a).

Definition 1. A propagation rule is a clause of the form

• > → P1(a) ∨ · · · ∨ Pn(a) (positive clause),

• P0(a)→ P1(a) ∨ · · · ∨ Pn(a), or

• P0(t0)→ P1(t1) ∨ · · · ∨ Pn(tn)

for P0, . . . , Pn ∈ P and non-ground terms t0, . . . , tn over F and x.1

We assume that the reader is familiar with the concept of Herbrand interpreta-
tions (see, e.g., [9]). In the following, a Herbrand interpretation H over the above
signature is called finite if it interprets every predicate P ∈ P by a finite set PH.
The task we are interested in is to decide the existence of finite Herbrand models
for finite sets of propagation rules. As a first step towards a decision procedure,
we will flatten the propagation rules to get rid of terms of depth larger than 0,
except in some special clauses.

Definition 2. A finite set C of propagation rules is called normalized if there is
a set D(C) ⊆ P × F such that

• For every (P, f) ∈ D(C), we have P f ∈ P and the two clauses P f (x) →
P (f(x)) (increasing clause) and P (f(x)) → P f (x) (decreasing clause) are
contained in C.

• All clauses in C except the ones above must be flat, i.e., of the form

1) > → P1(a) ∨ · · · ∨ Pn(a),

2) P0(a)→ P1(a) ∨ · · · ∨ Pn(a), or

3) P0(x)→ P1(x) ∨ · · · ∨ Pn(x)

1Note that n might be 0, in which case the right-hand side of the clause is ⊥. Positive
clauses must be ground since otherwise no finite Herbrand model could exist.

3

for P0, . . . , Pn ∈ P .

We denote by Df (C) the set {P ∈ P | (P, f) ∈ D(C)} for any f ∈ F .

The interesting property of such sets is that in order to check whether a flat clause
P0(x)→ P1(x)∨ · · ·∨Pn(x) is satisfied by a term, one only needs to consider this
term. The only case where different terms can occur in the same instance of a
clause are the increasing and decreasing clauses, which only allow a very limited
connection between the terms, i.e., adding and removing the leading function
symbol.

The special predicates P f represent all the terms in P that have the prefix f : For
any Herbrand model H of the clauses P f (x) → P (f(x)) and P (f(x)) → P f (x)

and any word w ∈ F∗, the term f(w(a)) is in PH iff w(a) is in P fH. These
predicates are stored in the set D(C), which acts as an “interface” between terms
of different lengths: A clause can only contain different terms if a predicate P f

with (P, f) ∈ D(C) is involved.

We assume in the following that C is a finite set of propagation rules and will
transform it into a normalized set C ′. Observe that the ground clauses of C can
remain unchanged since they are already flat by Definition 1. Thus, we only have
to consider clauses where the variable x occurs in each atom.

1) We initialize C ′ := C and the set D(C ′) as follows.

If for (P, f) ∈ P ×F there is a unique predicate Q such that Q(x)→ P (f(x))
and P (f(x))→ Q(x) are in C ′ and the same does not hold for any other pair
in P×F and Q, then we rename Q to P f and add (P, f) to D(C ′).2 (The cases
where Q is not unique or assumes the roles of both P f

1 and P g
2 for P1 6= P2 or

f 6= g are handled by the next step.)

2) While C ′ is not yet normalized, we choose a clause c = P0(t0)→ P1(t1)∨ · · · ∨
Pn(tn) that still contains a term ti = f(t′i) for some f ∈ F and term t′i.

If (Pi, f) is already in D(C), we simply replace Pi(ti) by P f
i (t′i).

Otherwise, we add the new predicate P f
i to P ,2 extend D(C ′) by (Pi, f), add

the clauses Pi(f(x)) → P f
i (x) and P f

i (x) → Pi(f(x)) to C, and replace the
atom Pi(ti) in c by P f

i (t′i).

Since C is finite, the terms occurring in C have a maximal depth, which decreases
by 1 in each step of the flattening procedure. Thus, this process terminates. In
contrast to common flattening procedures for first-order clauses, we do not use
new variables or equality [2].

2If this predicate already occurs in C′, we rename it.

4

Lemma 3. C has a finite Herbrand model iff C ′ does.

Proof. Regarding step 1), the renaming of predicates does not affect the existence
of a finite Herbrand model. For step 2), it is enough to prove the claim for one
replacement step.

If H is a finite Herbrand model of C ′ before the replacement, we can extend it to

the new predicate P f
i as follows: P f

i

H
:= {w(a) | f(w(a)) ∈ PHi }. The set P f

i

H

is finite since PHi is finite. Since the atom Pi(f(w(a))) is true in H iff P f
i (w(a))

is, this interpretation satisfies the increasing and decreasing clauses as well as all
the clauses in which Pi(f(t′i)) was replaced by P f

i (t′i).

Let now H be a finite Herbrand model of C ′ after the replacement. Since it
satisfies the increasing and decreasing clauses for (Pi, f) ∈ D(C ′), we again have

P f
i

H
= {w(a) | f(w(a)) ∈ PHi }. Thus, Pi(f(w(a))) is true in H iff P f

i (w(a)) is,
which implies that changing P f

i (t′i) back to Pi(f(t′i)) does not affect the truth
value of the clause under H.

For each non-ground atom P (f1 . . . fn(x)) occurring in C, polynomially many new
predicates P f1 , P f1f2 , . . . , P f1...fn are created. Furthermore, for each of the new
predicates, only two new clauses of polynomial size are created. Thus, the size of
C ′ is polynomial in the size of C.

Example 4. Consider the set

C1 := {> → P0(a), P0(f(x))→ ⊥, P0(g(x))→ ⊥,
P3(a)→ ⊥, P3(f(x))→ ⊥, P3(g(x))→ P0(x), P0(x)→ P3(g(x)),

P0(a)→ P1(a), P1(a)→ P0(a),

P2(x)→ P3(x) ∨ P1(f(x)), P3(x)→ P2(x), P1(f(x))→ P2(x)

P1(x)→ P2(x) ∨ P1(g(x)), P2(x)→ P1(x), P1(g(x))→ P1(x)}

of propagation rules.

To construct the normalized set C ′1, observe that P0 can be renamed to P g
3 . Sub-

sequently, the atoms P3(f(x)), P1(f(x)), P1(g(x)), P g
3 (f(x)), and P g

3 (g(x)) are
replaced by P f

3 (x), P f
1 (x), P g

1 (x), P gf
3 (x), and P gg

3 (x), respectively. This results
in the set

D(C ′1) = {(P3, f), (P3, g), (P1, f), (P1, g), (P f
3 , g), (P g

3 , g)}

5

and the corresponding increasing and decreasing clauses. The resulting flat
clauses are the following:

> → P g
3 (a), P gf

3 (x)→ ⊥, P gg
3 (x)→ ⊥,

P3(a)→ ⊥, P f
3 (x)→ ⊥,

P g
3 (a)→ P1(a), P1(a)→ P g

3 (a),

P2(x)→ P3(x) ∨ P f
1 (x), P3(x)→ P2(x), P f

1 (x)→ P2(x),

P1(x)→ P2(x) ∨ P g
1 (x), P2(x)→ P1(x), P g

1 (x)→ P1(x).

We will use the set C ′1 throughout this report to illustrate the presented construc-
tions and algorithms.

A notion that will be useful later is that of possibilities of clauses and sets of
clauses.

Definition 5. For a flat clause c, the set possibilities(c) is the set of all
predicates occurring on the right-hand side of c. For a finite set C = {c1, . . . , cn}
of flat clauses, we define possibilities(C) as the set

{{P1, . . . , Pn} | ∀i ∈ {1, . . . , n} : Pi ∈ possibilities(ci)}.

For example, the clause P1(a) → P2(a) ∨ P3(a) has the possibilities P2 and P3,
while the set {P1(x) → P2(x) ∨ P3(x),> → P0(a)} has the possibilities {P2, P0}
and {P3, P0}.

To simplify the following descriptions, we assume that any normalized set C
of propagation rules contains at most one positive clause, which is of the form
> → A(a), and that the special predicate A otherwise only occurs on the left-
hand side of other ground clauses. If this is not the case, we can introduce a
new predicate A, add the clause > → A(a) to C, and replace > by A(a) in every
other positive clause. It is easy to see that this modification does not affect the
existence of a finite Herbrand model for C.

Example 6. For the set C ′1 from Example 4, we simply add > → A(a) to C ′1 and
replace the propagation rule > → P g

3 (a) by A(a)→ P g
3 (a).

3 Propagation Nets

We now introduce a new computational model that will be used to decide the
existence of finite Herbrand models for finite sets of propagation rules. These
propagation nets are similar to Petri nets, hence we use notions borrowed from
the theory of Petri nets, like places, transitions, tokens, markings, and firings,
which will be fully explained below. In Section 3.2, we will show how to use

6

propagation nets to simulate the search for Herbrand models of finite sets of
propagation rules.

A propagation net consists of places and transitions which are connected by
directed arcs in such a way that places are connected only to transitions and
transitions are connected only to places. A computation in this structure moves
words from places to other places using the transitions between them. If a place
has several outgoing arcs to transitions, it can choose one of them to fire. This
means that a word from this place is transported to the transition and then
distributed to all places reachable from this transition by outgoing arcs. An
arc from a place to a transition can also change the word by adding a letter or
removing the first letter. An arc from a transition to a place can filter out words
that should not be transported to the place.

Actually, the firing of a transition does not remove the word from the place but
just deactivates it. The goal is to find a computation of the propagation net
thats starts with a given distribution of words among places and terminates in
the sense that all words are deactivated.

Definition 7. A propagation net N = (P, T,Σ, E, I, π, τ) consists of

• a finite set P of places,

• a finite set T of transitions,

• a finite alphabet Σ,

• a set E ⊆ (P × T) ∪ (T × P) of arcs,

• an initial marking I : (P ∪ T)→ P(Σ∗) and Ia : P → P(Σ∗),

• a partial filter function π :
(
E ∩ (T × P)

)
→ Σ ∪ {ε}, and

• a successor function τ :
(
E ∩ (P × T)

)
→ Σ ∪ {f−1|f ∈ Σ} ∪ {ε}.

A token in N is a word over Σ. A marking M of N is a pair of mappings
M : (P ∪ T) → P(Σ∗) and Ma : P → P(Σ∗) assigning to each place and each
transition finite sets of tokens such that Ma(p) ⊆M(p) for every p ∈ P . The set
M(p) is called the set of tokens of a place p ∈ P , while the set M(t) is called the
set of tokens of a transition t ∈ T in the marking M . The set Ma(p) is the set of
active tokens of a place p in M . We always assume that the initial marking I is
a proper marking, i.e., it satisfies the above conditions.

We say that a token w matches the filter π(t, p) of an arc (t, p) ∈ E ∩ (T × P) if
either

(i) π(t, p) is undefined (no restriction on w),

7

(ii) π(t, p) = ε and then w = ε, or

(iii) π(t, p) = f ∈ Σ and then w starts with f .

There are two elementary operations on markings:

• Deactivating a token at a place: A token w is deactivated at a place p ∈ P
by removing it from Ma(p), if it is in Ma(p), and adding it to M(p), if it is
not already in M(p). Note that w need not be in M(p) to be deactivated.

• Producing a token at a transition: A token w is produced at a transition
t ∈ T by adding it to M(t). This operation has the side effect of also
producing the token at all places p ∈ P with (t, p) ∈ E. This secondary
operation is executed only if w matches the filter π(t, p). If this is the case
and w /∈M(p), then w is added to M(p) and Ma(p). Otherwise, the token
w is not added to the marking at p.

A firing in N is a triple f = (p, w, t), where p is a place, w is a token, and t is a
transition such that (p, t) ∈ E and τ(p, t)w is defined, i.e., if τ(p, t) = f−1, then
w begins with f . The result of firing f in a marking M is a new marking M ′

which is defined as follows:

1. Initialize M ′ := M and M ′
a := Ma.

2. Deactivate the token w at p in M ′.

3. Compute the successor token w′ := τ(p, t)w.

4. Produce w′ at t in M ′, thereby also producing w′ at every place reachable
from t by an outgoing arc whose filter matches w′.

If M ′ is the result of the firing f in M , then we write M
f−→ M ′. If M(p) =

M ′(p) for all p ∈ P , this firing is called unproductive in M ; otherwise, it is
called productive. An unproductive firing only removes an active token from the
marking, while a productive firing also introduces new active tokens.

Given a marking M0, a firing sequence (starting in M0) is a finite sequence M0
f1−→

. . .
fm−→ Mm of firings. If the initial marking is not important or clear from the

context, we also denote this sequence simply by f1, . . . , fm. The marking Mm is
called the final marking of this sequence. The sequence is called terminating if
Mm is stable, i.e., Mm,a(p) = ∅ holds for all p ∈ P . We say that N terminates
if it has a terminating firing sequence that starts in I. Note that such a firing
sequence has to end with a nonproductive firing since otherwise new active tokens
would be created.

Figures 1, 2, and 3 depict a simple propagation net and the effect of different
firings on the initial marking.

8

p1

ε

t1 p2

t2 p3

g

t3

f

ε ε f−1

g

f

Figure 1: A simple propagation net with P = {p1, p2, p3} and T = {t1, t2, t3}.
Edge labels denote the functions π and τ , where filters are depicted as triangles.
Filled circles are the tokens of the initial marking; active tokens have a black
background.

p1

ε

t1

r

p2

r

t2 p3

g

t3

f

ε ε f−1

g

f

Figure 2: The propagation net from Figure 1 after firing (p1, ε, t1). The token f is
produced at t1 and p2, but not at p3 since f does not match the filter τ(t1, p3) = ε.

3.1 Other Computational Models

We will now compare the behavior of propagation nets to that of traditional
models of computation.

The terminology employed for defining propagation nets is borrowed from Petri
nets [11, 12], although there are several key differences to ordinary Petri nets. In
propagation nets, tokens are not atomic objects, but have the structure of words
over an alphabet Σ. Additionally, transitions do not need to be synchronized,
i.e., do not require the input token to be present at every input place.

In that respect, propagation nets behave much more like two-way alternating
automata on finite words [4, 8, 3]. Places are the existential states, i.e., there
is a nondeterministic choice between the output transitions. Transitions are the
universal states since they distribute each token to all output places. Contrary
to the standard model of automata, however, propagation nets do not read an
input word, but rather write several words, i.e., the tokens that are produced.

9

p1

ε

t1 p2

t2

ε

p3

g

t3

f

ε ε f−1

g

f

Figure 3: The propagation net from Figure 1 after firing (p1, ε, t2). The resulting
marking is stable, which means that the propagation net terminates.

The computational model that comes closest to propagation nets is that of two-
way alternating automata on finite trees [13, 5]. One can imagine the set Σ∗ as a
tree rooted in ε, where each node u has a successor fu for each f ∈ Σ.3 In this
representation, a finite subtree of Σ∗ represents the set of all tokens produced by
a terminating firing sequence. As described before, the places and transitions are
existential and universal states, respectively. Adding the prefix f to a token w
then corresponds to moving from w to fw in the tree, while keeping w or removing
the first letter is similar to an ε- or a backwards-transition, respectively.

However, again there are some differences: The initial marking allows to designate
arbitrary tokens as the starting point of the computation, while tree automata
usually start only at the root ε, and only in one state. Furthermore, two-way
alternating tree automata require all computations to end in a final state.4 In
propagation nets, however, coming back to a place with the same token is con-
sidered acceptable, because nonproductive firings are allowed, while this might
lead to a cycle in the computation of an alternating automaton.

3.2 From Clauses to Propagation Nets

We now present a translation from a normalized set C of propagation rules to a
propagation net NC. The goal is to express the finite Herbrand models of C by
stable markings of NC.

We will represent terms by tokens, clauses by places, and predicates by transi-
tions. From a clause, a token can be transferred to any of the predicates that
occur in the clause. From a predicate, a token is then distributed to all clauses
that have this predicate on their left-hand side. The filter function allows to dis-

3Usually, positions are interpreted from left to right. However, in our setting, new symbols
are always concatenated on the left. This is because linear terms are built in this direction.

4Final states are basically transitions without outgoing arcs.

10

card those terms (tokens) that are irrelevant for satisfaction of the clause. The
successor function allows to express increasing and decreasing clauses by adding
or removing letters, respectively. For a flat clause, the successor function is ε,
i.e., it leaves the term as it is. The initial marking simply consists of the active
token ε at > → A(a).

Definition 8. Let C be a normalized set of propagation rules over the set P
of predicates and the set F of function symbols. The propagation net NC :=
(C,P ,F , EC, IC, πC, τC) has the following components:

• EC :=
{

(c, Pi) | c = . . .→ P1(t1) ∨ · · · ∨ Pn(tn) ∈ C and i ∈ {1, . . . , n}
}

∪
{

(P0, c) | c = P0(t0)→ · · · ∈ C
}

• IC : (C ∪ P)→ P(F∗) : c 7→
{
{ε} if c = > → A(a)
∅ otherwise

• IC,a := IC

• πC
(
P0, P0(t0)→ . . .

)
:=

ε if t0 = a
undefined if t0 = x
f if t0 = f(x)

• τC
(
P0(t0)→ P1(t1) ∨ · · · ∨ Pn(tn), Pi

)
:=

f if t0 = x, ti = f(x)
f−1 if t0 = f(x), ti = x
ε otherwise

• τC(> → A(a), A) := ε

Note that this means that a clause is connected to all its possibilities. Thus,
every firing (c, w, P) of a clause c represents a possibility of c. Firing sequences
can thus be seen as sequences of applying possibilities to tokens on the left-hand
side of clauses: If w(a) is a term in PH for a Herbrand interpretation H and we
want H to satisfy a clause P (x) → P1(x) ∨ · · · ∨ Pn(x), then we have to find
a possibility Pi for which to put w(a) into PHi . In this way, propagation nets
provide a convenient way to express sequences of applying possibilities in order
to satisfy a set of clauses. These sequences always start with the token ε at the
clause > → A(a) since this is the only clause without precondition.

Example 9. Since the propagation net for the set C ′1 from Example 4 is quite
large, we consider instead the smaller set

C2 = {> → A(a), A(a)→ P1(a) ∨ P2(a), P2(x)→ P f
1 (x) ∨ P3(x),

P f
1 (x)→ P1(f(x)), P1(f(x))→ P f

1 (x)}

of propagation rules. The propagation net NC2 is depicted in Figure 4.

11

P1(f(x))→ P f
1 (x)

A(a)→ P1(a) ∨ P2(a)

P2

P2(x)→ P f
1 (x) ∨ P3(x)P3

P1

P f
1

P f
1 (x)→ P1(f(x))

A

> → A(a)

ε
ε

ε

ε

f

f−1

ε

ε

f

Figure 4: The propagation net for C2 from Example 9, with initial marking.

In the proof of the following lemma, we describe how this propagation net can be
used to construct finite Herbrand models of C.

Lemma 10. C has a finite Herbrand model iff NC terminates.

Proof. Given a finite Herbrand model H of C, we inductively define a firing se-
quence of NC that satisfies the following invariant:

• For every predicate P ∈ P and token w ∈Mj(P) in any of the constructed
markings, we have w(a) ∈ PH.

We will show that while there are active tokens in the marking Mj, we can find
a firing that deactivates one of these tokens such that the invariant is satisfied in
the resulting marking Mj+1.

We start the construction with M0 := IC. Since the initial marking contains no
tokens at transitions (i.e., predicates), the invariant is vacuously satisfied. Let
now Mj be a marking of NC that satisfies the invariant and c ∈ C have an active
token w ∈Mj,a(c). We consider the structure of c.

If c = > → A(a), then c has no incoming arc, and thus w must already have
been in M0,a(c) = IC(c). By definition of IC, we have w = ε. Since H satisfies c,
we have a ∈ AH. This means that the firing (c, ε, A) preserves the invariant since
only the successor token τC(c, A)w = ε is added to Mj(A).

12

Otherwise, c is of the form P0(t0)→ P1(t1) ∨ · · · ∨ Pn(tn), where either t0 = t1 =
· · · = tn ∈ {x, a} or n = 1 and {t0, t1} = {x, f(x)} for some f ∈ F . In any
case, by assumption we have w ∈ Mj(P0) since w cannot be active at c without
having been produced at P0 first. Thus, we have w(a) ∈ PH0 by the invariant.
Furthermore, w must match πC(P0, c) since otherwise it would not have been
produced at c. Since H satisfies c, there is i ∈ {1, . . . , n} and a term u(a) in PHi
that depends on the cases for t0 and ti depicted in the following table:

t0 ti πC(P0, c) τC(c, Pi) w u τC(c, Pi)w
a a ε ε ε ε ε
x x undefined ε w w w
x f(x) undefined f w fw fw

f(x) x f f−1 fw′ w′ w′

In all of these cases, the firing (c, w, Pi) preserves the invariant since the successor
token τC(c, Pi)w is always equal to u and u(a) ∈ PHi .

The invariant ensures that the sets Mj(P) cannot grow indefinitely since their
size is bounded by the size of the finite sets PH. Thus, there is an index m0 ∈ N
after which no more productive transitions are fired. The remaining active tokens
are then deactivated by unproductive firings, resulting in a stable marking Mm.

Let now M0
f1−→ . . .

fm−→ Mm be a terminating firing sequence of NC starting in
M0 = IC. We define the finite Herbrand interpretation H by

PH := {w(a) | ∃j ∈ {1, . . . ,m} : fj = (c, w′, P), w = τC(c, P)w′}

for every predicate P . The set PH thus contains w(a) for all tokens w that were
produced by the firing sequence at the transition P . This implies that for every
P and w(a) ∈ PH we have w ∈ Mm(P) since every token that was produced at
P must still be present in the final marking of P .

To show that H is a model of C, consider any clause c ∈ C. If c = > → A(a),
then Mm(c) = M0(c) = {ε} since this clause has no incoming transitions. Since
the token ε is not active in Mm at c, the sequence must contain the firing (c, ε, A)
that deactivated it. Since τC(c, A) = ε, the term a = (τC(c, A)ε) (a) is contained
in AH, and thus c is satisfied by H.

Let now c be of the form P0(t0) → P1(t1) ∨ · · · ∨ Pn(tn), where either t0 = t1 =
· · · = tn ∈ {x, a} or n = 1 and {t0, t1} = {x, f(x)} for some f ∈ F . To show that
H satisfies c, we assume that the left-hand side of the clause is satisfied by H with
some term w(a), i.e., w(a) ∈ PH0 and P0(w(a)) is an instance of P0(t0). Since this
means that w was produced at P0, it also had to be distributed to all connected
places with matching filter. In particular, c is such a place with (P0, c) ∈ EC.

If w does not match the filter πC(P0, c) of this arc, then P0(w(a)) is not an
instance of P0(t0), which contradicts our assumption. Otherwise, w was added
to the marking of c, which implies that we have w ∈Mm(c) in the final marking.

13

Since Mm is stable, the token w is not active in Mm at c, and thus the firing
sequence must contain a firing (c, w, Pi) for some i ∈ {1, . . . , n} that deactivated
it.

• If t0 = ti = a, then w = ε = τC(c, Pi), and thus a = (τC(c, Pi)w) (a) ∈ PHi .

• If t0 = f(x) and ti = x, then w = fw′ for some w′ ∈ F∗. Thus, w′(a) =
(f−1w)(a) = (τC(c, Pi)w) (a) ∈ PHi .

• If t0 = x and ti = f(x), then fw(a) = (τC(c, Pi)w) (a) ∈ PHi .

In each of the above cases, the ground instance of c that has P0(w(a)) on its
left-hand side is satisfied by H.

Example 11. Consider the propagation net N1 := NC′1 based on the rules from
Example 4. If we omit unproductive firings, the following is a terminating firing
sequence of N1 starting in IC′1 :

(> → A(a), ε, A), (A(a)→ P g
3 (a), ε, P g

3),

(P g
3 (x)→ P3(g(x)), ε, P3), (P3(x)→ P2(x), g, P2),

(P2(x)→ P1(x), g, P1), (P1(g(x))→ P g
1 (x), g, P g

1),

(P g
1 (x)→ P1(x), ε, P1)

Since this representation is hard to understand, in the following we abbreviate
firings like (P1(x)→ P2(x) ∨ P g

1 (x), g, P2) by P1(g)→ P2(g) and join “adjacent”
firings that share a ground atom:

> A(ε) P g
3 (ε)

P3(g) P2(g) P1(g)

P g
1 (ε) P1(ε)

In this representation, the missing nonproductive firings would appear as arrows
leading “back” to a previously created atom, thus forming a cycle in the graph.
It is easy to read off the corresponding finite Herbrand model H of C ′1 (see the
proof of Lemma 10):

AH = P gH
1 = P gH

3 = {a},
PH1 = {a, g(a)},
PH2 = PH3 = {g(a)},
P fH

1 = P fH
3 = P gfH

3 = P ggH
3 = ∅.

14

3.3 Behavior of Propagation Nets

Our goal is not to decide termination of arbitrary propagation nets, but only of
those of the form NC for normalized sets C of propagation rules. In essence, we
will present a decision procedure for the existence of finite Herbrand models for
these clause sets. However, we will use propagation nets to formulate the ideas
behind the decision procedure and to prove its correctness. Before we present the
algorithm, we take a more detailed look at propagation nets of the form NC.

Termination of Propagation Nets

We first analyze what it means for NC to have a terminating firing sequence
starting in IC. A first observation is that the initial marking IC only causes the
token ε to be produced at A. Any such firing sequence will thus start with one
active token ε and gradually distribute it to other predicates, while sometimes
increasing it. There are two reasons why this might not be possible. First, it
may be impossible to avoid a contradiction, i.e., a clause with ⊥ on the right-
hand side, in any firing sequence starting in IC. The other possibility is that every
firing sequence that avoids all contradictions is forced into a cycle of creating ever
longer tokens. Thus, in order to terminate, the length of the produced tokens has
to be bounded.

To analyze the detailed structure of terminating firing sequences, we introduce
the notion of replacement sequences.

Definition 12. Let P ∈ X ⊆ P and w = fw′ ∈ F+. A (P,X , w)-replacement
sequence is a firing sequence of NC starting in M0 and ending in Mm such that

• M0 only contains the token w at P and the active token w at all clauses
with P (x) or P (f(x)) on the left-hand side,

• Mm only contains tokens with the suffix w,

• w ∈Mm(Q) iff Q ∈ X , and

• if w′ ∈Mm,a(c), then w′ = w and c = Q(f(x))→ Qf (x).

A (P, ε)-replacement sequence is a firing sequence starting in M0 and ending in
Mm such that

• M0 only contains the token ε at P and the active token ε at all clauses with
P (x) or P (a) on the left-hand side, and

• Mm is stable.

15

The height of a replacement sequence is the maximal number |w′| − |w| for any
token w′ in Mm.

It is easy to see that any terminating firing sequence starting in IC consists of the
firing (> → A(a), ε, A) and an (A, ε)-replacement sequence. Thus, our goal is to
decide the existence of such replacement sequences.

If there is an (A, ε)-replacement sequence of height 0, then only the token ε is
produced in this sequence. Deciding the existence of such sequences is easy, as
will be demonstrated later (see Algorithm 2). But first, we assume that we have
to look for (A, ε)-replacement sequences of height larger than 0.

If such a sequence produces a token w = fw′ 6= ε at a predicate P , this means
that w must have been active in all clauses with P (x) or P (f(x)) on the left-hand
side at some point in the sequence. We can now extract a (P,X , w)-replacement
sequence as follows: Starting from the active token w at all clauses with P (x)
or P (f(x)) on the left-hand side, we extract all firings that deactivate these
tokens and the tokens produced from these firings, except firings of the form
(Q(f(x))→ Qf (x), w,Qf). The extracted firings form the replacement sequence
and the set X consists of all those predicates Q at which w was produced in this
sequence.

Assume that this replacement sequence has height h. If a longer token w′ is
produced in this sequence at a predicate Q, we can use the same procedure to
extract a (Q,Y , w′)-replacement sequence, which will be of height smaller than
h. This process can be continued until the height of the replacement sequences
is 0.

Example 13. Consider the terminating firing sequence from Example 11. It con-
sists of the firing (> → A(a), ε, A), followed by an (A, ε)-replacement sequence.
The firing (P g

3 (x)→ P3(g(x)), ε, P3) produces the token g at all clauses with P3(x)
or P3(g(x)) on the left-hand side, which is the starting point of a replacement
sequence.

The corresponding (P3, {P3, P2, P1}, g)-replacement sequence is

(P3(x)→ P2(x), g, P2), (P2(x)→ P1(x), g, P1),

(P2(x)→ P3(x) ∨ P f
1 (x), g, P3), (P1(x)→ P2(x) ∨ P g

1 (x), g, P2).

Note that the last two firings are unproductive.

In this way, every terminating firing sequence can be decomposed into nested
replacement sequences. To decide termination of NC, we will iteratively construct
all possible replacement sequences, starting with those of height 0. These will
then be used to build replacement sequences of increasingly larger heights, until
we can construct an (A, ε)-replacement sequence.

16

In the following, we will describe the intuition behind the algorithm which will
be presented in Section 4.

Replacement Sequences of Height 0

To construct replacement sequences of height 0 for a given predicate P and a
word w, we use the notion of possibilities introduced in Section 2. We define the
set possibilities(P) to contain all possibilities of the set of all flat clauses with
P (x) on the left-hand side. Such a possibility represents one way of firing all these
flat clauses by specifying which predicates will contain the token w afterwards.
Of course, one possibility {Q1, . . . , Qn} for P only expresses the beginning of the
desired replacement sequence. We then also have to consider the possibilities for
each of the reached predicates Q1, . . . , Qn and repeat this process until no new
predicates are reached.

Since we want to construct only replacement sequences of height 0, we must
prevent this process to reach predicates of the form P f with (P, f) ∈ D(C).
Thus, we define possibilities(P f (x) → P (f(x))) := ∅ and extend the set
possibilities(P f) to also consider this increasing clause. Thus, we have that
possibilities(P f) = ∅, which indicates that we have no way of dealing with
the token w if it is produced at P f .5

Example 14. We can use the possibilities of the predicates to construct the
(P3, {P3, P2, P1}, g)-replacement sequence of height 0 from Example 13 as follows:

• For P3, we have the possibility {P2}, which yields the firing (P3(x) →
P2(x), g, P2), which creates the token g at P2.

• P2 has the possibilities {P1, P3} and {P1, P
f
1 }. The first one yields the

firings (P2(x) → P1(x), g, P1) and (P2(x) → P3(x) ∨ P f
1 (x), g, P3). The

second possibility would lead to the active token g at P f
1 , and thus to the

active token fg at P1, which would force the replacement sequence to be of
height > 0.

• Finally, the possibilities for P1 are {P2} and {P g
1 }. We choose the first one,

which yields the firing (P1(x)→ P2(x) ∨ P g
1 (x), g, P2).

The token g is now deactivated at every place except at the decreasing clauses
P3(g(x))→ P g

3 (x) and P1(g(x))→ P g
1 (x).

It is easy to see that any (P,X , w)-replacement sequence can be changed into
a (P,X , w′)-replacement sequence by substituting the suffix w by w′ in every
token that occurs in the sequence. Thus, the token w is not necessary to describe

5This restriction will be relaxed later.

17

the replacement sequence. Similarly, it is not important which firings are used to
deactivate tokens, only which predicates are reached. We thus propose the notion
of shortcuts to simplify the representation.

Definition 15. A shortcut is a pair (P,X) with P ∈ X ⊆ P .

Of course, we are only interested in shortcuts (P,X) for which a (P,X , w)-
replacement sequence exists. Since there may be several possibilities for each
predicate P , there are several replacement sequences for P , and thus several
shortcuts (P,X1), (P,X2), . . . representing them. In Section 4, we will present
an algorithm that computes all these shortcuts.

Example 16. Consider again the set C ′1 of propagation rules from Example 4.
The (P3, {P3, P2, P1}, g)-replacement sequence shown in Example 13 yields the
shortcut (P3, {P3, P2, P1}). Similarly, we can find replacement sequences for P1

and P2, represented by the shortcuts (P1, {P1, P2, P3}) and (P2, {P1, P2, P3}).

Note that a token at P2 cannot be produced by an increasing clause since neither
(P2, f) nor (P2, g) are in D(C). Tokens at P2 can only be produced by firing
the clauses P3(x) → P2(x), P f

1 (x) → P2(x), or P1(x) → P2(x) ∨ P g
1 (x). Thus,

every replacement sequence for P2 will always be part of a replacement sequence
for another predicate. This demonstrates that our algorithm does not need to
compute shortcuts for predicates Q that have no pair (Q, f) in D(C).

Replacement Sequences of Larger Height

If we have shortcuts for all possible replacement sequences of height 0, we can
use these as building blocks for replacement sequences of height 1 as follows.
Such a sequence will contain firings of increasing clauses P f (x)→ P (f(x)) w.r.t.
some token w. This firing produces the token fw at all clauses having P (x) or
P (f(x)) on the left-hand side. This is a possible starting point for a (P,X , fw)-
replacement sequence of height 0.

If we have already computed a shortcut (P,X), there is a firing sequence that
deactivates the token fw and distributes it to all predicates of X . This leaves us
to consider the tokens that were created by this sequence at decreasing clauses.
These clauses must be of the form Q(f(x)) → Qf (x) for Q ∈ X since the token
begins with f and is distributed only to predicates in X . We then simply fire
these decreasing clauses, which gets us back to the original token w.

Thus, when looking for replacement sequences of height 1, we can use the previ-
ously created shortcuts as possibilities for the predicates P f . Recall that so far,
we have defined these possibilities to be ∅. Now, each shortcut (P,X) yields a
possibility {Qf | Q ∈ X ∩ Df (C)} for the increasing clause P f (x) → P (f(x)).
Hence, if there is no such shortcut, possibilities(P f) = ∅ as before. However,

18

if there is at least one shortcut (P,X), then possibilities(P f) can now be non-
empty. With this new definition of possibilities, we can compute shortcuts
for replacement sequences of height 1. These yield more possibilities and serve
as building blocks for shortcuts representing replacement sequences of height 2,
and so on.

The following procedure implements the computation of all possibilities for a
predicate P w.r.t. a set R of previously computed shortcuts.

Algorithm 1 (possibilities(C,R, P)).

Input: a normalized set C of propagation rules, a set R of shortcuts, and a
predicate P

Output: the set of possibilities for P w.r.t. C and R
if P = Qf with (Q, f) ∈ D(C) then
L ← {{Qf

1 , . . . , Q
f
n} | (Q,X) ∈ R, {Q1, . . . , Qn} = X ∩ Df (C)}

else L ← {∅}
for all P (x)→ P1(x) ∨ · · · ∨ Pn(x) ∈ C do
L ← {Y ∪ {Pl} | Y ∈ L, l ∈ {1, . . . , n}}

return L

As detailed before, the set possibilities(C,R, P) represents the choices we can
make when constructing a firing sequence that produces a token at P . If P = Qf ,
then we have to fire the increasing clause Qf (x) → Q(f(x)), which is simulated
by one of the available shortcuts (Q,X) ∈ R. Every such shortcut gives rise
to one initial possibility. Subsequently, for each flat clause starting with P , we
can choose among its possibilities. The combination of all these choices leads to
several possible sets of reachable predicates.

Example 17. If the shortcuts R = {(P1, {P1, P2, P3}), (P3, {P1, P2, P3})} from
Example 16 are available, we have

possibilities(C ′1,R, P
f
1) = {{P f

1 , P
f
3 , P2}},

possibilities(C ′1,R, P
g
1) = {{P g

1 , P
g
3 , P1}},

possibilities(C ′1,R, P
f
3) = ∅, and

possibilities(C ′1,R, P
g
3) = {{P g

1 , P
g
3 }}.

Without the shortcuts, all these sets would be empty.

It remains to decide whether we can actually construct an (A, ε)-replacement
sequence from the computed shortcuts.

Replacement Sequences for ε

To construct a replacement sequence for ε, we can use the same approach as
above, only that we also have to consider the ground clauses of C since they

19

can also distribute ε to other predicates. Since we will not use this replacement
sequence as a building block for other replacement sequences and only have to
decide its existence, we will not compute shortcuts, but simply a set of good
predicates.

Definition 18. A predicate P ∈ P is good if there is a (P, ε)-replacement se-
quence. All other predicates are bad.

Our goal can thus be reformulated as follows: We want to decide whether A is
good. To do this, we inductively construct the set B of all bad predicates using
the following procedure and then test whether A /∈ B. This approach is similar
to the emptiness test for looping automata on infinite trees [14].

Initially, B is empty. We then saturate B according to the following rule: If all
possibilities of the set

CP := {c ∈ C | c = P (x)→ . . . or c = P (a)→ . . . }

contain a predicate from B, then we add P to B.

Thus, if every possibility of firing all clauses beginning with P leads to a bad
predicate, then P must also be bad. Note that the possibilities of CP might
include the possibilities for an increasing clause, which are defined based on the
shortcuts computed so far. Thus, a predicate P f without a shortcut (P,X) is
immediately bad. Similarly, a predicate P with a clause P (x)→ ⊥ or P (a)→ ⊥
in C will be recognized as bad.

Example 19. Consider the set C ′1 from Example 4 and assume that we have not
yet computed any shortcuts. The predicates P f

1 , P g
1 , P f

3 , P g
3 , P gf

3 , and P gg
3 are

immediately bad. Because of the clause A(a) → P g
3 (a), A is also bad. Thus,

there is no (A, ε)-replacement sequence of height 0.

We now consider the first shortcuts computed in Example 16. Since the predicate
P g

3 is no longer bad, A is good. This means that there is an (A, ε)-replacement
sequence of height 1. Observe that the one that was already shown in Example 11
uses the shortcut (P3, {P1, P2, P3}) to take care of the token ε at P g

3 .

20

The following procedure implements this computation and will be used in the
main algorithm to decide if A is good w.r.t. a set R of available shortcuts.

Algorithm 2 (isTerminating(C,R)).

Input: a normalized set C of propagation rules and a set R of shortcuts
Output: true iff A is good w.r.t. R
B0 ← ∅, k ← 0
repeat
Bk+1 ← Bk
∪ {P ∈ P | ∃P (x)→ P1(x) ∨ · · · ∨ Pn(x) ∈ C : {P1, . . . , Pn} ⊆ Bk}
∪ {P ∈ P | ∃P (a)→ P1(a) ∨ · · · ∨ Pn(a) ∈ C : {P1, . . . , Pn} ⊆ Bk}
∪ {P f ∈ P | (P, f) ∈ D(C), ∀(P,X) ∈ R ∃Q ∈ X ∩ Df (C) : Qf ∈ Bk}

k ← k + 1
until Bk = Bk−1

if A ∈ Bk then
return false

else
return true

4 Deciding Termination

Considering all the observations about the behavior of NC, we can now formulate
our main algorithm that decides its termination.

Algorithm 3 (Main algorithm).

Input: a normalized set C of propagation rules
Output: true iff NC terminates
R0 ← ∅, i← 0
repeat

if isTerminating(C,Ri) then return true

Ri+1 ← nextShortcuts(C,Ri)
i← i+ 1

until Ri = Ri−1

return false

The algorithm iteratively computes shortcuts representing replacement sequences
of increasing height until it has found all of them. The setsRi are used to store all
shortcuts computed so far. In each iteration, the algorithm checks whether these
shortcuts already suffice to prove termination of NC using isTerminating(C,Ri)
(Algorithm 2). If not, shortcuts for the next height are computed. If there are no

21

new shortcuts, the algorithm stops and returns false, indicating that NC does
not terminate.

The procedure nextShortcuts(C,R) implements the computation of the short-
cuts representing replacement sequences of the next height.

Algorithm 4 (nextShortcuts(C,R)).

Input: a normalized set C of propagation rules and a set R of shortcuts
Output: a set R′ of shortcuts for the next height
T ← {(P, {P}, ∅) | r ∈ F , (P, r) ∈ D(C)}
while there is (P,RP , VP) ∈ T with RP \ VP 6= ∅ do
T ← T \ {(P,RP , VP)}
choose Q from RP \ VP
for all Y ∈ possibilities(C,R, Q) do
T ← T ∪ {(P,RP ∪ Y , VP ∪ {Q})}

return {(P,RP) | (P,RP , RP) ∈ T }

It uses the possibilities of the predicates to construct all possible shortcuts. Start-
ing from an initial predicate P , it considers its possibilities and adds the reached
predicates to the shortcut. This process is iterated until no more predicates are
reached.

In this computation, we use a set T of triples of the form (P,RP , VP), where RP is
the set of predicates we have reached so far starting from P , and VP contains those
predicates of RP that were already visited, i.e., for which we have considered all
possibilities. Visiting a predicate Q thus corresponds to firing all clauses starting
with Q(x).

The computation of shortcuts for P starts with the triple (P, {P}, ∅). In each
step, we choose a triple (P,RP , VP) ∈ T that still contains an unvisited predicate
Q ∈ RP \ VP and consider the possibilities for Q. For each possibility Y ∈
possibilities(C,R, Q), we add the new triple (P,RP ∪Y , VP ∪{Q}) to T since
the predicates from Y have been reached and Q has just been visited. The original
triple is then removed from T .

We continue this process until there are no more triples with unvisited predicates.
A triple (P,RP , RP) then yields the shortcut (P,RP). Note that no predicate Q
with possibilities(C,R, Q) = ∅ can be in RP since visiting Q only removes
the current triple and does not create new ones. As mentioned before, we restrict
the starting triples (P, {P}, ∅) to satisfy that (P, f) ∈ D(C) for some f ∈ F , since
our algorithm only needs replacement sequences for such predicates.

Example 20. Consider the set C ′1 from Example 4. We describe the computa-
tion of nextShortcuts(C ′1, ∅) to see how the first shortcuts mentioned in Exam-
ple 16 are actually computed. The idea behind the computation was already illus-

22

trated in Example 14. We start with the four triples (P1, {P1}, ∅), (P3, {P3}, ∅),
(P f

3 , {P
f
3 }, ∅), and (P g

3 , {P
g
3 }, ∅).

Consider the expansion of the first triple, which first visits P1. The possibili-
ties for P1 are {P2} and {P g

1 } and yield the two triples (P1, {P1, P2}, {P1}) and
(P1, {P1, P

g
1 }, {P1}). However, the set of possibilities for P g

1 is empty since there
is no shortcut (P1,X), and thus the second triple is removed without being re-
placed by another one. The possibilities for P2 are {P3, P1} and {P f

1 , P1}. The
second resulting triple is again removed subsequently, which leaves the triple
(P1, {P1, P2, P3}, {P1, P2}). Finally, P3 is visited, which reaches no new predi-
cates and thus results in the triple (P1, {P1, P2, P3}, {P1, P2, P3}).

The second initial triple is expanded similarly. First, P3 is visited, which has
the only possibility {P2}. This yields the triple (P3, {P3, P2}, {P3}). Again, vis-
iting P2 creates two triples, one of which is discarded. The remaining triple is
(P3, {P3, P2, P1}, {P3, P2}), which is again expanded according to the possibilities
{P2} and {P g

1 } for P1. We get two triples, (P3, {P3, P2, P1}, {P3, P2, P1}) and
(P3, {P3, P2, P1, P

g
1 }, {P3, P2, P1}). Since the set of possibilities for P g

1 is empty,
the second triple is removed without being replaced by another one.

Since the predicate P3 has no shortcuts, the sets of possibilities for P f
3 and P g

3

are empty, and thus the triples (P f
3 , {P

f
3 }, ∅) and (P g

3 , {P
g
3 }, ∅) are also removed.

To summarize, this computation yields the two shortcuts (P1, {P1, P2, P3}) and
(P3, {P1, P2, P3}). As mentioned before, the shortcut (P3, {P3, P2, P1}) corre-
sponds to the (P3, {P1, P2, P3}, g)-replacement sequence shown in Example 13.

4.1 Shortcuts and Replacement Sequences

In this section, we formalize the intuition behind the computed shortcuts, i.e.,
that they represent replacement sequences. More precisely, shortcuts computed
in the i-th iteration of the main loop of Algorithm 3 represent all replacement
sequences of height at most i− 1.

Lemma 21. Let i ≥ 1 be such that Ri was computed by Algorithm 3, (P,X) ∈ Ri,
and w ∈ F+. Then there is a (P,X , w)-replacement sequence of height ≤ i− 1.

Proof. Let i ≥ 1 and assume that the claim holds for all indices i′ with i > i′ ≥ 1.
Since (P,X) ∈ Ri, this shortcut had to be computed by nextShortcuts(C,Ri−1).
Thus, after the main loop of this algorithm, the set T must have contained the
triple (P,X ,X). By following the computation of this triple from (P, {P}, ∅) to
(P,X ,X), we will construct the desired firing sequence starting in the marking
M0. This marking contains only the token w at P and the active token w at all
clauses with P (x) or P (f(x)) on the left-hand side. For the following, let f ∈ F
be the first letter of w.

23

At any point in this construction, we will maintain the invariant that if we have
reached the triple (P,RP , VP) in the computation of (P,X ,X), then the current
marking

• contains the token w at a predicate Q iff Q ∈ RP ,

• contains active tokens w at all clauses Q(x) → . . . with Q ∈ RP \ VP and
all decreasing clauses Q(f(x))→ Qf (x) with Q ∈ RP ∩ Df (C),

• contains no more active tokens, and

• contains only tokens that have the suffix w and are of length ≤ |w|+(i−1).

The invariant is satisfied initially since the initial triple is (P, {P}, ∅) and the only
tokens in M0 are w at P and active tokens w at all clauses with P (x) or P (f(x))
on the left-hand side.

Assume that we have constructed a partial firing sequence f1 . . . fk, the resulting
marking satisfies the invariant, and the computation of nextShortcuts(C,Ri−1)
has reached the triple (P,RP , VP). At some point, the main loop will choose this
triple and a predicate P ′ ∈ RP \VP . One of the possibilities for P ′ will be added to
RP , while P ′ is added to VP . Since the computation leads to the triple (P,X ,X),
this means that there is a possibility Y ∈ possibilities(C,Ri−1, P

′) with Y ⊆
X . We now consider the computation of this set in possibilities(C,Ri−1, P

′)
in order to determine how to deactivate the token w at the flat and increasing
clauses with P ′(x) on the left-hand side.

If P ′ is of the form Qg with (Q, g) ∈ D(C), then we must deactivate the to-
ken w at the increasing clause Qg(x) → Q(g(x)). For this, we use the firing
(Qg(x) → Q(g(x)), w,Q), which produces the token gw at all clauses with Q(x)
or Q(g(x)) on the left-hand side. Fortunately, Y must contain a set {Qg

1, . . . , Q
g
n}

with (Q,Z) ∈ Ri−1 and {Q1, . . . , Qn} = Z∩Dg(C). This implies that Ri−1 is not
empty, and thus i − 1 ≥ 1. By induction, there is a (Q,Z, gw)-replacement
sequence f′1 . . . f

′
o. This sequence results only in active tokens gw at the de-

creasing clauses Qj(g(x)) → Qg
j (x) for all j ∈ {1, . . . , n}. All tokens produced

by this sequence have the suffix gw (and thus the suffix w) and are of length
≤ |gw|+ (i− 2) = |w|+ (i− 1).

After concatenating f′1 . . . f
′
o to our partial firing sequence, we only have to take

care of the active tokens gw at decreasing clauses. To do this, we append the
firings (Qj(g(x))→ Qg

j (x), gw,Qg
j) for every j ∈ {1, . . . , n}. These firings produce

the token w at all clauses with Qg
1, . . . , Q

g
n on the left-hand side. If Qg

j ∈ Y is
already in VP , then w has already been deactivated at all the clauses with Qg

j (x)
on the left-hand side; otherwise, these tokens are still active. In any case, the
invariant is still satisfied after appending all these firings to the partial firing
sequence constructed so far.

24

This leaves us to deal with the active token w at the flat clauses of the form
P ′(x) → P ′1(x) ∨ · · · ∨ P ′n(x). Since Y is an element of the set computed by
possibilities(C,Ri−1, P

′), at some point this procedure must have considered
this clause and chosen some P ′l to be added to Y . Thus, by adding the firing
(P ′(x) → P ′1(x) ∨ · · · ∨ P ′n(x), w, P ′l) we can be certain that the invariant is still
satisfied. The token w will be active at every clause having P ′l (x) on the left-hand
side iff P ′l /∈ VP .

After we have considered all P ′ ∈ X , we have deactivated all tokens except the
token w at the decreasing clauses P ′(f(x)) → P ′f (x) with P ′ ∈ X ∩ Df (C).
Furthermore, all tokens occurring in this sequence have the suffix w. Thus, the
constructed sequence is a (P,X)-replacement sequence. Since all tokens in the
final marking are of length ≤ |w|+(i−1), the height of this sequence is ≤ i−1.

To show the correspondence in the other direction, we first show an auxiliary
result that demonstrates how to extract replacement sequences of height ≤ i− 1
from a replacement sequence of height i. This formalizes the idea of the nested
replacement sequences illustrated in Example 13.

Lemma 22. Let f1, . . . , fm be a (P,X , w)-replacement sequence of height i and
fj = (Qg(x) → Q(g(x)), w,Q) for a j ∈ {1, . . . ,m}. Then there is a (Q,Y , gw)-
replacement sequence of height ≤ i−1 that contains only firings from {f1, . . . , fm}.

Proof. We will extract a subsequence of the sequence M0
f1−→ . . .

fm−→ Mm that
has the desired properties. We will start this sequence in the marking M ′

0 that
contains only the token gw at Q and the active token gw at all clauses with Q(x)
or Q(g(x)) on the left-hand side. Since the original firing sequence contained the
firing fj and the subsequence will use only firings from {f1, . . . , fm}, every token
occurring in this subsequence is also contained in Mm.

Assume now that we have already constructed a partial firing sequence f′1 . . . f
′
o′

with {f′1, . . . , f′o} ⊆ {f1, . . . , fm} and that the current marking contains an active
token w′ that is either 6= gw or at a place other than Q(g(x)) → Qg(x) for
(Q, g) ∈ D(C). This token is also contained in Mm and it is longer than w. Thus,
there must be a firing fk that deactivates it in the original replacement sequence.
This firing will produce either the same token at another predicate or a longer
token. Thus, by adding fk to the partial firing sequence, we maintain the property
that all tokens have the suffix gw.

After we have thus deactivated all unwanted active tokens, we have extracted a
firing sequence that ends in a marking M ′

o. Since we only used firings of the orig-
inal firing sequence, M ′

o contains only tokens from Mm. Since the new sequence
starts with the token gw, which is longer than w, the height of this sequence is
smaller than that of the original sequence. We define the set Y to contain all
predicates Q′ for which gw ∈M ′

o(Q
′). The constructed sequence is a (Q,Y , gw)-

replacement sequence of NC.

25

We now prove the complementary result to Lemma 21: Every replacement se-
quence of NC of height at most i corresponds to a shortcut computed in the
i+ 1-th iteration of the main algorithm. However, this shortcut does not need to
have the same set X of reached predicates, but only a subset of it.

The reason for this is that a replacement sequence is not restricted to firings
that deactivate tokens that are already present. Firings can always be applied,
regardless of whether they are necessary to deactivate some token or not. This
means that replacement sequences might contain irrelevant firings. However,
Algorithm 3 computes shortcuts in such a way that only necessary firings are
considered, i.e., only possibilities for predicates that were already reached.

Lemma 23. Consider the variant of Algorithm 3 that never returns, but simply
computes the sets Ri for all i ≥ 0. Let P ∈ Df (C). If there is a (P,X , fw)-
replacement sequence of height ≤ i, then (P,X ′) ∈ Ri+1 for some X ′ ⊆ X .

Proof. Let i ≥ 0 and asume that the claim is true for all i′ with i > i′ ≥ 0. Let
f1 . . . fm be a (P,X , fw)-replacement sequence of NC of height ≤ i starting in M0

and ending in Mm.

To show the claim, we will demonstrate that nextShortcuts(C,Ri) will com-
pute a triple (P,RP , RP) ∈ T with RP ⊆ X . Initially, T will contain the triple
(P, {P}, ∅) since we assumed that P ∈ Df (C). We will follow this triple through-
out the execution of the algorithm and maintain the following invariant: If the
currently computed triple is (P,R′P , VP), then Mm contains the token fw at
every Q ∈ R′P . The invariant is satisfied initially since f1 . . . fm is a (P,X , fw)-
replacement sequence, and thus contains the token fw at P by definition.

Let (P,R′P , VP) be the triple computed so far and assume that it satisfies the
invariant. If R′P \ VP is non-empty, the algorithm will at some point choose
a predicate P ′ ∈ R′P \ VP and consider the set possibilities(C,Ri, P

′). In
order to maintain the invariant, we have to show that there is a possibility Y ∈
possibilities(C,Ri, P

′) such that Mm contains fw at all predicates in this set.

We first consider the case that P ′ is of the form Qg. By the invariant, we know
that Mm(Qg(x)→ Q(g(x))) contains the token fw. Thus, there must be a firing
fj = (Qg(x) → Q(g(x)), fw,Q). By Lemma 22, there is a set Z ⊆ P such that
there is a (Q,Z, gfw)-replacement sequence of height smaller than i, and thus
≤ i− 1. Since this height cannot be negative, we have i− 1 ≥ 0. By assumption,
we know that Ri−1 must contain a shortcut (Q,Z ′) for some Z ′ ⊆ Z.

Thus, the initial set L computed by possibilities(C,Ri−1, P
′) before the main

loop will contain the set {Qg
1, . . . , Q

g
n} for {Q1, . . . , Qn} = Z ′ ∩ Dg(C). Since

the (Q,Z, gfw)-replacement sequence we have obtained by Lemma 22 is a sub-
sequence of f1 . . . fm, the original sequence must contain a firing (Qj(g(x)) →
Qg
j (x), gfw, Zg

j) for each Qj ∈ Z ′ ∩ Dg(C) ⊆ Z. Thus, the final marking Mm

contains the token fw at all of the predicates Qg
1, . . . , Q

g
n.

26

It remains to be verified that this property is maintained in the main loop of
possibilities(C,Ri−1, P

′). For this, consider any clause P ′(x)→ P1(x)∨ · · · ∨
Pn(x) ∈ C. Since Mm contains the token fw at P ′, there must be a firing
fj = (P ′(x)→ P1(x)∨· · ·∨Pn(x), fw, Pl) with j ∈ {1, . . . ,m} and l ∈ {1, . . . , n}.
Thus, by adding Pl to the set constructed in L so far, we do not violate the
property that this set contains only predicates that are marked by fw in Mm.

Thus, nextShortcuts(C,Ri) computes a triple (P,RP , RP) such that fw ∈
Mm(P ′) for each P ′ ∈ RP . This means that the set Ri contains the shortcut
(P,RP) with RP ⊆ X .

In the following sections, we use these results to show that the main algorithm is
sound and complete and terminates after time at most exponential in the size of
C.

4.2 Correctness

We now employ Lemma 21 to actually construct a terminating firing sequence of
NC starting in IC.

Lemma 24. (Soundness) If Algorithm 3 returns true, then NC terminates.

Proof. Let m ∈ N be the index for which isTerminating(C,Rm) returned true

and t ∈ N be the index of the last set Bt computed by this algorithm, i.e., for
which Bt+1 = Bt holds. First note that since Bt is equal to Bt+1, we know that
P ∈ P \ Bt implies that

• for all clauses P (x) → P1(x) ∨ · · · ∨ Pn(x) ∈ C there must be an index
l ∈ {1, . . . , n} such that Pl /∈ Bt,

• for all clauses P (a) → P1(a) ∨ · · · ∨ Pn(a) ∈ C there must be an index
l ∈ {1, . . . , n} such that Pl /∈ Bt, and

• if P = Qf for (Q, f) ∈ D(C), there is a shortcut (Q,Y) ∈ Rm such that
Q′f /∈ Bt for every Q′ ∈ Y ∩ Df (C).

In order to construct a terminating firing sequence ofNC starting in IC, we employ
the same strategy as in the proof of Lemma 21. We will maintain the invariant
that the current marking

• contains the token ε only at predicates that are not contained in Bt and

• does not contain active tokens other than ε.

27

We start the construction by deactivating the token ε at > → A(a) as follows:
Since isTerminating(C,Rm) returned true, we know that A /∈ Bt. Thus, the
firing (> → A(a), ε, A) does not violate the invariant.

Assume now that we have already constructed a partial firing sequence f1 . . . fm
and the resulting marking satisfies the invariant. Let c ∈ C be a clause at which
the token ε is active.

We first consider the case that c is of the form P (t)→ P1(t) ∨ · · · ∨ Pn(t), where
t is either x or a. By the invariant we know that P /∈ Bt, and thus there is
l ∈ {1, . . . , n} with Pl /∈ Bt. Thus, by adding the firing (c, ε, Pl) we deactivate
the active token ε at c and produce ε only at a predicate not contained in Bt.

If c is of the form P f (x) → P (f(x)), then (P, f) ∈ D(C) and P f /∈ Bt, and thus
there is a shortcut (P,X) ∈ Rm with Qf /∈ Bt for all Q ∈ X ∩ Df (C). By firing
(P f (x) → P (f(x)), ε, P), the token f is produced at all clauses with P (x) or
P (f(x)) on the left-hand side. These tokens might be active, and thus we have
to deactivate them.

By Lemma 21, there is an (P,X , f)-replacement sequence f′1 . . . f
′
o that results

only in the active tokens f at the places Q(f(x))→ Qf (x) with Q ∈ X ∩Df (C).
After concatenating f′1 . . . f

′
o to our partial firing sequence, we thus only have

to take care of the possibly active tokens f at these decreasing clauses. To do
this, we append the firing (Q(f(x)) → Qf (x), f, Qf) for every Q ∈ X ∩ Df (C).
These firings produce only tokens ε for predicates not contained in Bt. Thus, the
resulting sequence still satisfies the invariant.

Since there are only finitely many predicates, at some point all produced tokens
ε have been deactivated in the constructed sequence. Since all tokens longer than
ε are also deactivated, the sequence is terminating.

The following lemma uses Lemma 23 to show that the algorithm computes suffi-
ciently many shortcuts to prove termination of NC.
Lemma 25. (Completeness) If NC terminates, then Algorithm 3 returns true.

Proof. Let f1 . . . fm be a terminating firing sequence of NC starting in IC and
ending in Mm. Let further i ∈ N be the maximal length of tokens appearing
in Mm. We consider the variant of Algorithm 3 that never returns and take a
closer look at the execution of isTerminating(C,Ri). Let Bt be the last of the
sets computed by the algorithm. We claim that for every predicate P ∈ P with
ε ∈Mm(P) we have P /∈ Bt.

Assume the converse, i.e., that there is a predicate P ∈ Bt with ε ∈Mm(P). Then
there is an index 0 < j < t with P ∈ Bj and P /∈ Bj−1. We further assume that
P is one of the first of these predicates in the sense that j is the smallest index
such that Bj contains a predicate Q with ε ∈ Mm(Q). There are two possible
reasons for P to be included in Bj.

28

1. There is a clause P (t) → P1(t) ∨ · · · ∨ Pn(t) ∈ C with t ∈ {a, x} such that
{P1, . . . , Pn} ⊆ Bj−1. By assumption, we know that ε /∈ Mm(Pl) for every
l ∈ {1, . . . , n}. Thus, the token ε must still be active in Mm at P , which
contradicts the stability of Mm.

2. P is of the form Qf and for every shortcut (Q,Y) ∈ Ri there is a variable
Q′ ∈ Y ∩ Df (C) with Q′f ∈ Bj−1.

Since ε ∈Mm(Qf), there must be a firing fj = (Qf (x)→ Q(f(x)), ε, Q). Using
the ideas from the proof of Lemma 22, it is easy to extract a subsequence of
f1 . . . fm that is a (Q,Y ′, f)-replacement sequence of height ≤ i − 1 for some
Y ′ ⊆ P .

By Lemma 23, Ri contains a shortcut (Q,Y ′′) with Y ′′ ⊆ Y ′. Thus, there
is Q′ ∈ Y ′′ ∩ Df (C) ⊆ Y ′ with Q′f ∈ Bj−1. Since the (Q,Y ′, f)-replacement
sequence constructed above is a subsequence of f1 . . . fm, the token f is also
produced at Q′ in the sequence f1 . . . fm. Thus, it must still be contained
in the final marking Mm at Q′. Since Mm is stable, the firing (Q′(f(x)) →
Q′f (x), f, Qf) must occur in the sequence, and thus ε ∈ Mm(Q′f). However,
since Q′f ∈ Bj−1, this contradicts the minimality of j.

This concludes the proof of the claim that any predicate P with ε ∈ Mm(P)
cannot be contained in Bt.

Since the token ε at > → A(a) cannot be active in Mm, it must have been
deactivated by the firing (> → A(a), ε, A). This means that ε ∈ Mm(A), which
implies A /∈ Bt. Thus, isTerminating(C,Ri) returns true.

Assume that the unmodified version of Algorithm 3 returns false. Then there
must be an index j < i with Rj = Rj+1. Assume that j is the smallest such
index. Since the result of nextShortcuts depends only on the previous shortcuts,
the sets Rj,Rj+1, . . . ,Ri, . . . are all equal. Since the result of isTerminating
also depends only on the given shortcuts, we have isTerminating(C,Rj) =
isTerminating(C,Ri) = true, contradicting the assumption that the main al-
gorithm returns false.

This concludes the proof of correctness of Algorithm 3.

4.3 Complexity

To show that the algorithm terminates after time exponential in the size of the
input set C, we first prove that the set of shortcuts increases in each iteration.

Lemma 26. Let i > 0 be such that Ri was computed by Algorithm 3. Then
Ri−1 ⊆ Ri.

29

Proof. We show the claim by induction on i. Since R0 = ∅, this is obviously
true for i = 1. Consider now i > 1 and assume Ri−2 ⊆ Ri−1. If Ri−2 =
∅, then it is easy to see that for every Q ∈ P , possibilities(C,Ri−2, Q) ⊆
possibilities(C,Ri−1, Q) holds. We now assume that Ri−2 is nonempty.

Observe that for every Q ∈ P and every nonempty set R of shortcuts the equality

possibilities(C,R, Q) =
⋃

(P,X)∈R

possibilities(C, {(P,X)}, Q)

holds. Thus, the set of possibilities increases when more shortcuts are available,
i.e., possibilities(C,Ri−2, Q) ⊆ possibilities(C,Ri−1, Q).

Let now (P,X) be a shortcut in Ri−1. This means that it had to be computed by
nextShortcuts(C,Ri−2). Thus, there is a triple (P,X ,X) in the final set T com-
puted by this algorithm. The result (P,X ,X) depends only on the possibilities
chosen in the main loop of the algorithm. By the above observations, the same
possibilities are still available in the run of nextShortcuts(C,Ri−1), and thus the
triple (P,X ,X) is also computed by nextShortcuts(C,Ri−1). This shows that
the shortcut (P,X) is also contained in Ri.

We now use this result to show that the algorithm uses at most exponential time.

Lemma 27. Any execution of Algorithm 3 terminates after time at most expo-
nential in the size of C.

Proof. By Lemma 26, the sets Ri always increase. Furthermore, there are only
exponentially many possible shortcuts. Thus, even if the algorithm does not
return true, it must return false after at most exponentially many computations
of isTerminating(C,Ri) and nextShortcuts(C,Ri).

An execution of isTerminating(C,Ri) takes only time polynomial in the size of
C. Indeed, the computation of bad states is saturated after at most |P| steps
since B0 ⊆ B1 ⊆ · · · ⊆ P .

To analyze the runtime of nextShortcuts(C,Ri), consider the number of times
a triple of the set T is replaced by new triples. At each of these replacement
steps, at most exponentially many successor triples are created since there are
at most exponentially many elements in possibilities(C,Ri, Q) for a predicate
Q. Additionally, the set VP in the third component of these triples will always
be increased by one element, and thus can be replaced only |P| many times.

Thus, an execution of nextShortcuts(C,Ri) can be seen as a set of trees rooted
in the initial triples (P, {P}, ∅), where each triple is connected to its successor
triples and the leaves are labeled by triples of the form (P,RP , RP). The height
of this tree is bounded by |P| and the branching degree is bounded exponentially
in the size of C. Since there are at most |P| many such trees, the total number of

30

nodes and thus the runtime of nextShortcuts(C,Ri) is bounded exponentially
in the size of C.

Since Algorithm 3 makes exponentially many iteration steps, each of which takes
exponential time, the overall runtime is still bounded exponentially in C.

This concludes the proof of the following result.

Theorem 28. Termination of propagation nets of the form NC for normalized
sets C of propagation rules can be decided in time exponential in the size of C.

In particular, one can decide the existence of finite Herbrand models for finite
sets C of propagation rules. As described in the reductions of Sections 2 and 3.2,
the above result yields an ExpTime-algorithm for this problem.

Corollary 29. The existence of finite Herbrand models for finite sets of propa-
gation rules can be decided in ExpTime.

Deterministic Propagation Nets

The propagation net NC is called deterministic if all the clauses of C are deter-
ministic, i.e., have at most one possibility. In this case, all places of NC have at
most one outgoing arc.

Lemma 30. Termination of deterministic propagation nets of the form NC for
normalized sets C of propagation rules can be decided in time polynomial in the
size of C.

Proof. It suffices to show that each of the sets Ri contains at most one (P,RP)
for each predicate P ∈ P and is computed by Algorithm 3 in polynomial time
in the size of C. By Lemma 26, the final set of shortcuts is then computed after
at most polynomially many steps. Since each call to isTerminating takes only
polynomial time, this bounds the overall runtime of the algorithm by a polynomial
in the size of C.

We show the claim by induction on i. The claim is trivially satisfied for R0. If
the claim holds for Ri−1, then possibilities(C,Ri−1, P) contains at most one
element which is computed in polynomial time. But then, in the computation of
nextShortcuts(C,Ri−1), every triple is replaced by at most one successor triple.
Since each such replacement step increases the second component of this triple,
only polynomially many such steps are possible for each initial triple. This means
that each initial triple (P, {P}, ∅) gives rise to at most one final triple (P,RP , RP),
and thus to at most one shortcut (P,RP), in polynomial time.

For every additional nondeterministic clause in the set C, the runtime of the algo-
rithm increases by an exponential factor due to the computation of all possibilities
and all shortcuts in possibilities(C,R, P) and nextShortcuts(C,R).

31

5 Hardness

To conclude the complexity analysis, we will present a reduction from linear
language equations to finite sets of propagation rules. The equations are of the
form

S0 ∪ S1X1 ∪ · · · ∪ SnXn = T0 ∪ T1X1 ∪ · · · ∪ TnXn

for finite sets S0, . . . , Sn, T0, . . . , Tn of words over an alphabet Σ. A solution
assigns finite sets of words over Σ to the variables Xi such that the equation
holds. Deciding whether such an equation has a solution is an ExpTime-complete
problem [1].

For easier presentation of our results, we will modify the presentation of the above
linear language equations. First, we introduce a new variable A so that we can
write T0 as T0A, which is of the same form as the other terms of the equation.
We have to keep in mind that the value of A has to be restricted to {ε}.

Furthermore, we will transform the above equation over finite languages into a
system of polynomially many flat linear language inclusions of the form

L0X0 ⊆ L1X1 ∪ · · · ∪ LnXn

for L0, . . . , Ln ⊆ Σ∪{ε}. By flat we mean that all coefficients contain only words
of length at most 1.

To achieve this, we successively replace terms LX by
⋃
r∈Σ LrXr ∪ LεX for new

variables Xr, Lr := {w | wr ∈ L}, and Lε := {w | w = ε ∈ L} and introduce
the new equations Xr = {r}X for each r ∈ Σ.6 This is a polynomial reduction,
since the number of new variables is bounded by the sum of the lengths of the
words occurring in the original equation. Once all equations are flat, we can
easily replace them by equivalent flat inclusions.

Example 31. Consider the linear language equation

{rs} ∪ {s}Y ∪X = {r}Y ∪ {s}X ∪ {ε}.

To flatten it, we introduce the new variable Z and arrive at the following equa-
tions. We use the variable A introduced above and abbreviate {r} by r:

rZ ∪ sY ∪X = rY ∪ sX ∪ A, Z = sA.

These equations are then split into the following 8 language inclusions:

I1 := {rZ ⊆ rY ∪ sX ∪ A, sY ⊆ rY ∪ sX ∪ A, X ⊆ rY ∪ sX ∪ A,
rY ⊆ rZ ∪ sY ∪X, sX ⊆ rZ ∪ sY ∪X, A ⊆ rZ ∪ sY ∪X,
Z ⊆ sA, sA ⊆ Z}.

6Of course, if Lr is empty, then we do not need to introduce Xr.

32

In the following, we are concerned with solving finite sets I of inclusions of the
above form. The set of variables occurring in I is denoted by Var(I). Note that
this includes the special variable A which is restricted to be {ε} in all solutions.

5.1 Translation to Clauses

We now translate any finite set I of language inclusions into a finite set CI of
propagation rules that express the same restrictions as the inclusions. Recall that
our inclusions are of the form

L0X0 ⊆ L1X1 ∪ · · · ∪ LnXn

with L0, . . . , Ln ⊆ NR∪{ε}. We will treat each r ∈ Σ as a unary function symbol,
each variable X ∈ Var(I) as a unary predicate.

The intended meaning of the propagation rules we will construct is that a finite
Herbrand model H of CI represents a solution θ of I with θ(X) = {w | w(a) ∈
XH}. Thus, the clauses in CI have to impose the same restrictions on the vari-
ables as the inclusions in I. Accordingly, we have to make sure that the special
predicate A is always interpreted as {a}.

To express an inclusion L0X0 ⊆ L1X1∪· · ·∪LnXn by clauses, we use the following
idea. The clauses have to restrict the interpretation of the variables such that
every word w ∈ Σ∗ occurring on the left-hand side of the inclusion also occurs on
the right-hand side. For each word w occurring in L0X0, we make a case analysis
based on the first letter of w. We create one clause for the case w = ε, and one
clause each for every possible first letter of w.

Example 32. Consider the inclusion rZ ⊆ rY ∪ sX ∪ A from the set I1 con-
structed in Example 31. Every word w on the left-hand side of the inclusion has
to begin with r, so the case analysis can be narrowed to one case. The corre-
sponding clause is Z(x) → Y (x) ∨ A(r(x)), where x represents the suffix of w
that starts after the initial r. Note that the term sX can never be responsible
for this inclusion to be satisfied, which is why it is not represented in the clause.

The term A(r(x)) also deserves further explanation. Without knowledge about
the special role of A, it is simply another variable. Thus, it is possible that the
inclusion is satisfied by w being in the solution for A. To ensure that this does not
happen, we introduce another clause A(r(x)) → ⊥. While the formal reduction
will include terms like A(r(x)) on the right-hand side of clauses, in the examples
we will leave them out for better readability.

Consider now another inclusion X ⊆ rY ∪sX∪A, which has to be split according
to s, r, and ε. For the case that a word w on the left-hand side begins with r,
we introduce the clause X(r(x))→ Y (x) ∨ A(r(x)) as above. Similarly, for s we
obtain X(s(x))→ X(x)∨A(s(x)). If w = ε, then w has to be in the solution for

33

A. This is expressed by the clause X(a)→ A(a). Knowing that A(a) always has
to hold, we could also leave out this clause.

In order to formalize this translation, we need the following auxiliary mappings.
For every language term αX with α ∈ Σ ∪ {ε} and every β ∈ Σ ∪ {ε}, we define
the first order formula

(αX)β(x) :=

X(x) if α = β

X(β(x)) if α = ε and β ∈ Σ

⊥ otherwise

.

For L ⊆ Σ ∪ {ε}, we define (LX)β(x) :=
∨
α∈L(αX)β(x). We now define the set

CI :=
⋃4
i=1 CiI of propagation rules to contain the following clauses:

• Clauses ensuring that A is interpreted as the singleton set {a}:

C1
I : > → A(a) and

C2
I : A(r(x))→ ⊥ for every r ∈ Σ.

• For every inclusion L0X0 ⊆ L1X1 ∪ · · · ∪ LnXn ∈ I and every α ∈ L0, the
clauses:

C3
I : (αX0)ε(a)→ (L1X1)ε(a) ∨ · · · ∨ (LnXn)ε(a) and

C4
I : (αX0)r(x)→ (L1X1)r(x) ∨ · · · ∨ (LnXn)r(x) for all r ∈ Σ.

Note that for α = s, the left-hand side of the clauses in C3
I and C4

I with r 6= s is
⊥. These clauses can be removed from CI in a subsequent cleaning step.

Lemma 33. I has a solution that maps A to {ε} iff CI has a finite Herbrand
model.

Proof. Given a finite Herbrand model H of CI , we define the mapping θ by
θ(X) := {w ∈ Σ∗ | w(a) ∈ XH}. Note first that θ satisfies θ(A) = {ε}, since
AH = {a} by C1

I and C2
I . We now show that θ is a solution of I.

Let L0X0 ⊆ L1X1 ∪ · · · ∪ LnXn be an inclusion in I and w ∈ L0θ(X0). This
means that there is an α ∈ L0 such that w = αw′ for a w′(a) ∈ XH0 . This implies
that the atom (αX0)α(w′(a)) = X0(w′(a)) is true in H.

1. If α ∈ Σ, then, since H satisfies the clauses in C4
I , there must be i ∈ {1, . . . , n}

and β ∈ Li such that (βXi)
α(w′(a)) is true in H. Thus, (βXi)

α(w′(a)) cannot
be ⊥ and we must have one of the following cases:

a) If β = α, then Xi(w
′(a)) is true in H. Thus, we have w′ ∈ θ(Xi), which

implies that w = αw′ = βw′ ∈ Liθ(Xi), i.e., w also occurs on the right-hand
side of the inclusion.

34

b) If β = ε, then Xi(α(w′(a))) is true in H. Thus, we again have w = αw′ ∈
θ(Xi) ⊆ Liθ(Xi).

2. If α = ε, then w = w′.

a) If w = ε, then, since H satisfies the clauses in C3
I , there must be i ∈

{1, . . . , n} and β ∈ Li such that (βXi)
ε(a) is true in H. Thus, we must

have β = ε and Xi(a) true in H, which implies w = ε ∈ θ(Xi) ⊆ Liθ(Xi).

b) If w = sw′′ for some s ∈ Σ and w′′ ∈ Σ∗, then the atom (αX0)s(w′′(a)) =
X0(s(w′′(a))) = X0(w(a)) is true in H. Since H satisfies the clauses in
C4
I , there is i ∈ {1, . . . , n} and β ∈ Li such that (βXi)

s(w′′(a)) is true
in H. We can now proceed as in the cases 1.a) and 1.b) to show that
w = sw′′ ∈ Liθ(Xi).

On the other hand, if there is a solution θ of I with θ(A) = {ε}, we can define a
finite Herbrand model H of CI by XH := {w(a) | w ∈ θ(X)} for every variable
X ∈ Var(I). Since AH = {a}, the clauses C1

I and C2
I are satisfied by H. Let now

L0X0 ⊆ L1X1 ∪ · · · ∪ LnXn ∈ I be an inclusion of I and α ∈ L0. We will show
that all propagation rules created from this inclusion are satisfied by H.

Let (αX0)ε(a)→ (L1X1)ε(a)∨· · ·∨(LnXn)ε(a) be the corresponding propagation
rule in C3

I and assume that the atom (αX0)ε(a) is true in H. This can only be
the case if α = ε, and thus we have a ∈ XH0 and ε ∈ θ(X0) ⊆ L0θ(X0). Since θ is
a solution of I, there is i ∈ {1, . . . , n} such that ε ∈ Liθ(Xi). This implies that
ε ∈ Li and a ∈ XHi . Thus, the atom (LiXi)

ε(a) = (εXi)
ε(a) = Xi(a) is true in

H, i.e., the clause is satisfied by H.

We now consider the clause (αX0)r(x)→ (L1X1)r(x)∨ · · · ∨ (LnXn)r(x) of C4
I for

some r ∈ Σ and assume that (αX0)r(w(a)) is true in H. Thus, (αX0)r(w(a)) is
not ⊥, which implies that α ∈ {ε, r}.

a) If α = ε, then X0(r(w(a))) is true in H and we have rw(a) ∈ XH0 , and thus
rw ∈ θ(X0) ⊆ L0θ(X0).

b) If α = r, then w(a) ∈ XH0 and we again have rw ∈ {r}θ(X0) ⊆ L0θ(X0).

Since θ is a solution of I, there is i ∈ {1, . . . , n} with rw ∈ Liθ(Xi), which implies
that there is β ∈ Li such that rw = βw′ for a word w′ ∈ θ(Xi.

a) If β = ε, then rw(a) = w′(a) ∈ XHi , and thus (βXi)
r(w(a)) = Xi(r(w(a))) is

true in H.

b) If β = r, then w(a) = w′(a) ∈ XHi , and again (βXi)
r(w(a)) = Xi(w(a)) is

true in H.

In both cases, H satisfies (LiXi)
r(w(a)), and thus the whole clause.

35

It is also important to note that the size of CI is polynomial in the size of I: For
each inclusion, |Σ|+ 1 clauses are created.

Example 34. Consider again the set I1 from Example 31. The following is the
corresponding set of clauses:

C1 := {> → A(a), A(r(x))→ ⊥, A(s(x))→ ⊥,
Z(a)→ ⊥, Z(r(x))→ ⊥, Z(s(x))→ A(x), A(x)→ Z(s(x)),

A(a)→ X(a), X(a)→ A(a),

Y (x)→ Z(x) ∨X(r(x)), Z(x)→ Y (x), X(r(x))→ Y (x)

X(x)→ Y (x) ∨X(s(x)), Y (x)→ X(x), X(s(x))→ X(x)}

These are the same propagation rules as in Example 4, up to a renaming of the
predicates.

This reduction allows us to conclude the following.

Theorem 35. Deciding the existence of finite Herbrand models for finite sets of
propagation rules is ExpTime-hard.

6 Summary

From Corollary 29 and Theorem 35, we know that the following holds.

Theorem 36. Deciding the existence of finite Herbrand models for finite sets of
propagation rules is an ExpTime-complete problem.

Viewed from a different perspective, Algorithm 3 and the reduction in Lemma 33
yield a new ExpTime-algorithm for deciding solvability of a linear language equa-
tion of the form presented in the previous section. While the original decision
procedure from [1] constructs a tree automaton of size exponential in the cumu-
lative size of the coefficients L occurring in the equation and uses the linear-time
emptiness test for this automaton, our algorithm constructs a polynomial-size
propagation net and uses an algorithm that is worst-case exponential, but ex-
hibits a better behavior if the structure of the equation is “easy”.

Here, “easy” means that the constructed set CI of propagation rules contains few
nondeterministic clauses. As described in Section 4, for deterministic problems
we can decide solvability in polynomial time, and every nondeterministic clause
increases the runtime of the algorithm by an exponential factor due to the com-
putation of all possibilities and all shortcuts in possibilities(CI ,R, Q) and
nextShortcuts(CI ,R).

We now analyze what kind of solutions are produced by our algorithm. If we
consider the size of a solution to be the maximal length of the words occurring in

36

it, then the algorithm produces solutions of minimal size. This is due to the fact
that the algorithm stops as soon as it is possible to construct a terminating firing
sequence from the current shortcuts. The shortcuts computed in the i-th iteration
represent all replacement sequences of height ≤ i (see Lemmata 21 and 23).

Assume to the contrary that the algorithm terminated in the i-th iteration and
that there is a terminating firing sequence of height j < i. By Lemma 25,
the existence of this firing sequence implies that isTerminating(C,Rj) already
returns true, which contradicts the assumption. The claim now follows from the
fact that the height of firing sequences and the size of the corresponding solutions
are the same (see the proofs of Lemmata 33, 3, and 10).

7 Conclusions

We have shown that the existence of finite Herbrand models for finite sets of
propagation rules can be decided in ExpTime. The problem is even ExpTime-
hard since solving linear language equations is ExpTime-hard. This also yields
a new algorithm solving these linear language equations. This new approach has
the advantage that it exploits the structure of the equations to guide the search
for a solution.

In future work, we want to analyze the usefulness of the solutions of minimal size
that are computed by the algorithm. Optionally, we may modify the algorithm to
output minimal solutions w.r.t. a different order. We also want to implement the
algorithm and compare it with an implementation of the naive tree automaton
construction. To this end, we will have to design optimizations to our algorithm.

Another interesting open question is whether the presented approach can also
be applied to finite sets of arbitrary clauses with unary predicates and function
symbols. The formalism of propagation nets is certainly powerful enough to
reflect this change, but the decision procedure would also have to be adapted.

Acknowledgements

We would like to thank Prof. Franz Baader for his helpful comments on early
drafts of this report.

References

[1] Franz Baader and Paliath Narendran. Unification of concept terms in de-
scription logics. Journal of Symbolic Computation, 31(3):277–305, 2001.

37

[2] Peter Baumgartner, Alexander Fuchs, Hans de Nivelle, and Cesare Tinelli.
Computing finite models by reduction to function-free clause logic. Journal
of Applied Logic, 7(1):58–74, 2009.

[3] Jean-Camille Birget. State-complexity of finite-state devices, state compress-
ibility and incompressibility. Mathematical Systems Theory, 26(3):237–269,
1993.

[4] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.
Journal of the ACM, 28(1):114–133, 1981.

[5] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Florent
Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree au-
tomata techniques and applications. Available on: http://www.grappa.

univ-lille3.fr/tata, 2007.

[6] B. Dreben and W. D. Goldfarb. The Decision Problem: Solvable Classes of
Quantificational Formulas. Addison-Wesley, 1979.

[7] William H. Joyner Jr. Resolution strategies as decision procedures. Journal
of the ACM, 23(3):398–417, 1976.

[8] Richard E. Ladner, Richard J. Lipton, and Larry J. Stockmeyer. Alternating
pushdown and stack automata. SIAM Journal on Computing, 13(1):135–155,
1984.

[9] Alexander Leitsch. The Resolution Calculus. Springer-Verlag, 1997.

[10] Nicolas Peltier. Model building with ordered resolution: Extracting models
from saturated clause sets. Journal of Symbolic Computation, 36(1-2):5–48,
2003.

[11] Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für
Instrumentelle Mathematik, Universität Bonn, 1962.

[12] Wolfgang Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.

[13] Giora Slutzki. Alternating tree automata. Theoretical Computer Science,
41:305–318, 1985.

[14] Moshe Y. Vardi and Pierre Wolper. Automata theoretic techniques for modal
logics of programs (extended abstract). In Proc. of the 16th Annual ACM
Symp. on Theory of Computing (STOC’84), pages 446–456. ACM, 1984.

[15] Jian Zhang. Constructing finite algebras with FALCON. Journal of Auto-
mated Reasoning, 17:1–22, 1996.

38

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

