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LTCS-Report 11-02

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
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Abstract

Weighted automata can be seen as a natural generalization of finite state
automata to more complex algebraic structures. The standard reasoning
tasks for unweighted automata can also be generalized to the weighted
setting. In this report we study the problems of intersection, complemen-
tation, and inclusion for weighted automata on infinite trees and show
that they are not harder complexity-wise than reasoning with unweighted
automata. We also present explicit methods for solving these problems
optimally.

1 Introduction

One of the current areas of interest in the field of automata theory is the study
of weighted automata. These automata can be seen as a generalization of finite
state automata in which the input structures are not accepted or rejected, but
rather given a value called their weight. More formally, a weighted automaton
defines a formal power series over a suitable algebraic structure [22, 10].

The natural question to ask in the presence of such a generalization is whether
the properties of the special case still hold. We can find several instances in the
literature where this question is answered affirmatively. For example, the rela-
tionship between automata and MSO logic, originally shown by Büchi [6], has
been proven to hold also for weighted automata over finite and infinite words and
trees [8, 11, 12, 21] and some weighted MSO logics. In the area of Model Check-
ing, where Büchi automata are used to model properties of transition systems,
weighted Büchi automata have recently been considered for multi-valued model
checking [5].

For this purpose, standard tasks like deciding emptiness or complementing au-
tomata over finite or infinite words have been generalized to the weighted set-
ting, and algorithms solving these generalized problems have been developed.
One interesting result obtained is that often the complexity of these general-
ized tasks is not higher than in the unweighted case. For instance, the so-called

1



emptiness value problem of weighted automata on infinite words is NLogSpace-
complete [14].

Despite reasoning with weighted automata on infinite words being well studied,
there is a significant lack of results for weighted automata over infinite trees. In
fact, to the best of our knowledge, the only explicit reasoning algorithm for these
automata was given in [4], where a polynomial-time algorithm for computing the
emptiness value of automata on infinite unlabeled trees, if the weights belong
to a distributive lattice, is described. For labeled trees, a method that reduces
the problem to several (unweighted) emptiness tests was described in [9]. The
execution time of this approach, however, depends on the structure of the lattice.

In this paper we cover this gap by looking at reasoning problems for weighted
automata on infinite trees that arise from generalizing standard problems for
unweighted tree automata. In particular, we show that (weighted) union, in-
tersection and emptiness of tree automata are computable in polynomial time,
independently of the lattice used. We also look at the inclusion and comple-
mentation problems, and we show that their complexity remains equal to the
unweighted case.

As for automata on infinite words, there are different kinds of automata on in-
finite trees mainly depending on the acceptance condition used (e.g., Büchi or
co-Büchi automata; see Section 2.2). Since some of these classes are not closed
under complementation, we analyze several different types of automata with their
closure properties relative to each other. Most of these closure relationships are
well-known for unweighted automata, but had not been analyzed for weighted
automata. We also present explicit constructions for the complement of some
classes of weighted and unweighted tree automata.

2 Automata on Infinite Trees

The main object of our study are weighted automata on infinite trees, whose
weights belong to a distributive lattice [13]. We give a brief introduction to
lattices before formally defining our automata models.

2.1 Lattices

A lattice is a partially ordered set (S,≤) where infima and suprema of arbitrary
finite subsets of S always exist. The lattice (S,≤) is finite if its carrier set S is
finite, it is distributive if the infimum and supremum operators distribute over
each other, and it is bounded if it has a smallest element 0S and a greatest element
1S. In the following, we will often use the carrier set S to denote the lattice (S,≤).
The infimum (supremum) of a finite subset T ⊆ S will be denoted by

⊗
a∈T a
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(
⊕

a∈T a). We will also use the infix notation if the set contains only two elements;
i.e., a⊗ b denotes the infimum of {a, b}.

A De Morgan lattice S is a bounded distributive lattice with a negation function
− : S → S that satisfies the property a = a for every a ∈ S and one De Morgan
law, e.g., a⊗ b = a ⊕ b for every a, b ∈ S. In every De Morgan lattice the other
De Morgan law a⊕ b = a ⊗ b also holds and we have a ≤ b iff b ≤ a for all
a, b ∈ S. Furthermore, 0S = 1S and 1S = 0S.

A Boolean lattice is a De Morgan lattice such that a ⊗ a = 0S holds for every
a ∈ S. This requirement is equivalent to the property a⊕ a = 1S. In this case, a
is called the complement of a. Every Boolean lattice is isomorphic to a powerset
lattice (P(X),⊆), for some set X.

An element p of a lattice S is called meet prime if for every a, b ∈ S, a ⊗ b ≤ p
implies that either a ≤ p or b ≤ p. The dual notion is that of a join prime element.
Every element of a distributive lattice S can be computed as the infimum of all
meet prime elements above it. In a De Morgan lattice S, the negation a of a meet
prime element a ∈ S is join prime and vice versa. If the finite Boolean lattice S
is isomorphic to the powerset lattice over some set X, then there are exactly |X|
meet prime and |X| join prime elements in S.

In the following we will often deal with finite Boolean lattices. We now prove a
few useful facts about these structures.

Lemma 1. Let S be a finite Boolean lattice.

a) For all a, b ∈ S, a⊕ b = 1S iff a ≤ b.

b) For every index set I and families (fi), (gi) ∈ SI , the following holds:(⊕
i∈I

fi

)
⊗

(⊗
j∈I

gj

)
≤
⊕
i∈I

(fi ⊗ gi) .

Proof. If a ≤ b, then a⊕ b ≥ a⊕ a = 1S. Let now a⊕ b = 1S and assume a � b.
Then b � a and thus b 6= b⊗a. But (b⊗a)⊗ b = 0S and (b⊗a)⊕ b = a⊕ b = 1S,
which means that b ⊗ a is another complement of b. This contradicts the fact
that the complement in S is unique.

For b), we have(⊕
i∈I

fi

)
⊗

(⊗
j∈I

gj

)
=
⊕
i∈I

(
fi ⊗

⊗
j∈I

gj

)
≤
⊕
i∈I

(fi ⊗ gi)

by distributivity of S.
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2.2 Weighted Automata

We consider automata that receive as input infinite trees of a fixed arity k. For
a positive integer k, we define K := {1, . . . , k}. Our main object of study is the
full k-ary tree K∗, where the root is denoted by the empty word ε, and the i-th
successor of the node u is identified by ui.1 For a node u, we denote the full
subtree of K∗ with root u by u[K∗].

Sometimes we will also speak about (finite) subtrees, i.e., finite prefix-closed
subsets of u[K∗].2 A node in such a (finite) tree T is called inner node if all its
successors are also elements of T . It is called leaf if it has no successors in T .
The set of all inner nodes of T is called interior of T and is denoted by int(T ).
The set of all leaves of T is called frontier of T and is denoted by fr(T ). T is
called closed if T = int(T ) ∪ fr(T ).

A path p is a prefix-closed set of nodes such that if u ∈ p, then there is at most
one i ∈ K with ui ∈ p. Path(u[K∗]) denotes the set of all infinite paths in u[K∗].
A labeled tree is a mapping t : u[K∗]→ Σ for some labeling alphabet Σ. As usual,
the set of all such mappings is denoted by Σu[K∗].

For an alphabet Σ and a lattice S, a formal tree series over Σ and S is a mapping
ΣK∗ → S; i.e., a function that maps each labeled tree to a value from S. For a
formal tree series f : ΣK∗ → S, the expression (f, t), called the coefficient of f at
t, denotes the image of a tree t under f .

Definition 2. A weighted generalized Büchi tree automaton (WGBA) is a tuple
A = (Q,Σ, S, in,wt, F1, . . . , Fn) where

• Q is a finite set of states,

• Σ is the input alphabet,

• S is a distributive lattice,

• in : Q→ S is the initial distribution,

• wt : Q× Σ×Qk → S is the transition weight function, and

• F1, . . . , Fn ⊆ Q are the sets of final states.

A WGBA is called a weighted Büchi tree automaton (WBA) if n = 1 and weighted
looping tree automaton (WLA) if n = 0.

1One may also want to deal with infinite trees built over a ranked alphabet. However, such
trees can always be embedded in a full k-ary tree as long as the arity of the symbols is bounded
by k.

2Prefix-closed relative to u, i.e., up to and including u, but no prefix of u is considered.
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A run of the WGBA A is a labeled tree r ∈ QK∗ . This run is called successful
if for every path p ∈ Path(K∗) and every i, 1 ≤ i ≤ n there are infinitely many
nodes u ∈ p such that r(u) ∈ Fi. The set of all successful runs of A is denoted
by succ(A). We define the transition of r on t ∈ ΣK∗ at a node u ∈ K∗ as
−−−→
r(t, u) := (r(u), t(u), r(u1), . . . , r(uk)). The weight of r on t is the value

wt(t, r) := in(r(ε))⊗
⊗
u∈K∗

wt(
−−−→
r(t, u)) .

The behavior of A on an input tree t ∈ ΣK∗ is

(‖A‖, t) :=
⊕

r∈succ(A)

wt(t, r) .

Since the images of in and wt are finite, the infima and suprema in the above
definitions are restricted to a finitely generated (and thus finite) distributive sub-
lattice. Hence, even if S is an infinite lattice, the formal tree series ‖A‖ has a
finite image. In consequence, we can always assume w.l.o.g. that S is finite.

Every WGBA can be simulated by a WBA of polynomial size [27, 4], so every
result for WBA also holds for WGBA. We will additionally consider weighted
co-Büchi tree automata (WCA). A WCA is like a WBA (i.e., n = 1), except that
a run is successful if every infinite path contains only finitely many states from
Q \ F1. Notice that WLA can be seen as special cases of both WBA and WCA
in which F1 = Q and hence every run is successful.

In some of our proofs we will make use of known results for more expressive
acceptance conditions that we now briefly describe. The parity condition is based
on a priority function Q → N. A run is accepted if on every path the minimal
priority occurring infinitely often is even. The Streett acceptance condition is
based on pairs (E1, F1), . . . , (En, Fn) of state sets. A run is accepted if for every
path p ∈ Path(K∗) there is a pair (Ei, Fi) such that p contains infinitely many
states from Ei or only finitely many states from Fi. The Rabin chain acceptance
condition is also based on pairs (E1, F1), . . . , (En, Fn) where the strict inclusions
E1 ( F1 ( E2 ( . . . ( En ( Fn hold. A run is accepted if for every path
p ∈ Path(K∗) and every pair (Ei, Fi), p contains infinitely many states from Fi
and only finitely many states from Ei.

The corresponding classes of tree automata are denoted by WPA, WSA and
WRCA. For a given WBA or WCA it is easy to construct an equivalent WPA,
WSA or WRCA. Also, parity, Streett and Rabin chain conditions can be reduced
to each other. The class of tree series recognizable by WPA, WSA or WRCA
strictly includes those recognizable by WBA or WCA. These in turn strictly
include the tree series recognizable by WLA [25].

In the following we will use expressions of the form WXA or XA, where X is
a placeholder for the different acceptance conditions; i.e., WXA stands for an
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arbitrary weighted tree automaton. We will denote a generic weighted tree au-
tomaton as a tuple (Q,Σ, S, in,wt,F), where F is the acceptance condition, i.e.,
it stands for several sets of states, pairs of sets of states or a priority function.

Standard (unweighted) tree automata can be seen as weighted tree automata
over the lattice B := ({0, 1},≤), with 0 < 1. The supremum and infimum in this
lattice are denoted as ∨ and ∧, respectively. The behavior of such automata is
the characteristic function of the set L(A) := {t ∈ ΣK∗ | (‖A‖, t) = 1} of all trees
accepted by A. Likewise, the functions in and wt can be seen as a set I ⊆ Q and
a relation ∆ ⊆ Q × Σ × Qk, respectively. The abbreviations PA, BA, CA, and
LA will be used when the underlying lattice of the automaton is B.

Finally, we consider also alternating versions of these automata.

Definition 3. An alternating tree automaton is a tuple A = (Q,Σ, I, δ,F), where
Q, Σ, I, and F are defined as for (unweighted) tree automata. The transition
function δ : Q×Σ→ F(Q×K) maps each state and input symbol to a monotone
Boolean formula over Q×K.

Intuitively, an atomic formula (q, i) means that the automaton goes to state q at
the i-th successor of the current node. Conjunction ∧ means that the automaton
splits up into several copies which each pursues the directions given by the con-
juncts. Disjunction ∨ means that the automaton can make a non-deterministic
choice as to which disjunct to follow.

Starting from the root and an initial state, from one starting automaton many
copies can be generated, depending on the non-deterministic choices. Basically,
each of these copies consists of a path taken through K∗ and an associated se-
quence of states. An input tree is accepted if it is possible to make each of the
non-deterministic choices in such a way that the state sequences generated by the
resulting copies all satisfy the acceptance condition F.

Alternating tree automata are designated by the prefix A to the classification,
e.g., ABA stands for the class of all alternating tree automata with a Büchi
acceptance condition.

Example 4. A non-deterministic unweighted tree automaton (Q,Σ, I,∆,F) can
easily be transformed into an alternating one by replacing ∆ with the function

δ(q, α) :=
∨

(q,α,q1,...,qk)∈∆

∧
i∈K

(qi, i) ,

i.e., the automaton non-deterministically chooses a transition to take and then
sends one copy in every direction.
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2.3 Basic Results

A result that will be useful later is that to compute the behavior of a weighted
tree automaton on a given input tree t it suffices to consider a finite subtree of K∗.
We prove a more general result.

Lemma 5. Let S be a finite lattice, Σ an input alphabet, t ∈ ΣK∗ an input tree,
Q a state set and P : K∗ × (Q × Σ × Qk) → S a function that assigns a lattice
element to each pair (u, y) consisting of a node and a transition. There is a
closed, finite subtree T ⊆ K∗ such that for every run r ∈ QK∗ we have⊗

u∈K∗
P (u,

−−−→
r(t, u)) =

⊗
u∈int(T )

P (u,
−−−→
r(t, u)) .

Proof. We first construct the infinite tree R of all finite subruns. The root of R is
labeled by the empty subrun r : ∅ → Q and its direct successors are labeled with
all subruns r : {ε} → Q of depth 0. For each node of R of depth n that is labeled
with a subrun r of depth n − 1, its successors are labeled with all extensions
of r to subruns r′ of depth n. Since r has kn−1 leaves, there are kn−1|Q|k such
extensions. Thus, R is finitely branching.

The tree R′ is now constructed from R by pruning it as follows. We traverse R
depth-first and check the label r ∈ QT of each node. If there is an extension of r
to a finite subrun r′ ∈ QT ′ with⊗

u∈int(T )

P (u,
−−−→
r(t, u)) >S

⊗
u∈int(T ′)

P (u,
−−−−→
r′(t, u)) ,

then we continue. Otherwise, we remove all nodes below the current node.

Since S is finite, for every run r ∈ QK∗ the expression P (u,
−−−→
r(t, u)) can only yield

finitely many different values. Thus, there must be a depth below which the value

of the infimum of all P (u,
−−−→
r(t, u)) is not changed anymore. Since every infinite

path in R uniquely corresponds to a run r ∈ QK∗ , this path must have been
pruned in the construction of R′, and thus R′ can have no infinite paths.

Since R′ is still finitely branching, by König’s Lemma, R′ must be finite and thus
have a maximal depth m. Now it is easily seen that the tree T :=

⋃m
n=0K

n has
the desired property.

Note that this does not only hold for the infimum of the values P (u,
−−−→
r(t, u)). Using

the same arguments, an analogous result can be proven where
⊗

is substituted
by
⊕

.

Corollary 6. For every weighted tree automaton A = (Q,Σ, S, in,wt,F) with
finite S and every input tree t ∈ ΣK∗, there is a closed, finite subtree T ⊆ K∗
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with the property that

(‖A‖, t) = (‖A‖T , t) :=
⊗

r∈succ(A)

in(r(ε))⊗
⊗

u∈int(T )

wt(
−−−→
r(t, u)) .

Proof. Apply Lemma 5 with P (u, y) := wt(y) for every node u ∈ K∗ and transi-
tion y ∈ Q× Σ×Qk.

This means that the computation of (‖A‖, t) for a given t can be carried out in
a finite amount of time, which is of course due to the finiteness of S. We now
reformulate the above results for unweighted automata.

Corollary 7. Let Σ be an input alphabet, t ∈ ΣK∗ an input tree, Q a state set
and P ⊆ K∗ × (Q×Σ×Qk) a predicate on pairs (u, y) of nodes and transitions.
There is a closed, finite subtree T ⊆ K∗ such that for every run r ∈ QK∗ we have

∀
u∈K∗

P (u,
−−−→
r(t, u)) ⇐⇒ ∀

u∈int(T )

P (u,
−−−→
r(t, u)).

Corollary 8. For every unweighted tree automaton A = (Q,Σ, I,∆,F) and every
input tree t ∈ ΣK∗, there is a closed, finite subtree T ⊆ K∗ with the property that

t ∈ L(A) ⇐⇒ ∃
r∈succ(A)

r(ε) ∈ I ∧ ∀
u∈int(T )

−−−→
r(t, u) ∈ ∆ .

Since weighted tree automata are a generalization of unweighted tree automata,
a natural question is whether the standard results and constructions available for
the latter can be adapted to the former. For unweighted automata, one is often
interested in computing the union and intersection of the languages accepted by
two automata. These operations correspond to a supremum and an infimum
computation, respectively, in the weighed setting. As the following lemma shows,
these problems can be solved in polynomial time.

Lemma 9. Let A,B be two WXA with X ∈ {L,B,C}. Then one can construct
WXA C and C ′ of size polynomial in the sizes of A and B such that (‖C‖, t) =
(‖A‖, t)⊗ (‖B‖, t) and (‖C ′‖, t) = (‖A‖, t)⊕ (‖B‖, t) for all t ∈ ΣK∗.

Proof. These constructions closely follow the traditional constructions for inter-
section and union of finite automata, i.e., their state sets consist of the product
and union of the original state sets, respectively. The weight functions can be
combined in such a way that the desired behaviors are achieved.
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Another important problem for unweighted automata is deciding emptiness of
the accepted language; i.e., whether there is at least one tree that is accepted.
The natural generalization of this problem is to compute the supremum of the
behavior of A over all possible input trees. Using the ideas developed in [4], it is
possible to show that this problem can be solved in polynomial time for WBA.

Lemma 10. Given a WBA A, the value
⊕

t∈ΣK∗ (‖A‖, t) is computable in time
polynomial in the size of A.

Proof. By combining the input alphabet Σ with the state set of A, we can con-
struct an automaton working over a singleton alphabet whose behavior on the
unique input tree is exactly the desired supremum. We can then use the polyno-
mial algorithm from [4] to compute this value.

Before looking at the problem of deciding inclusion of the languages accepted by
two tree automata and its generalization to the weighted case, we will motivate
our interest in this problem, by showing how it can be used for reasoning in
description logics.

3 Motivation

In addition to the theoretical interest in deciding the inclusion of two tree au-
tomata, we are also motivated by the fact that this kind of automata can be used
for reasoning tasks in Description Logics (DLs) [1]. DLs are decidable fragments
of first-order logic that have been successfully employed in the area of knowledge
representation.

Consider for example the DL ALC. Formulae of ALC, also called concept de-
scriptions, are built using the syntactic rule C ::= A | C1 u C2 | ¬C1 | ∀r.C1,
where A is an element of a fixed set NC of concept names, r is an element of a
fixed set NR of role names, and C1, C2 are concept descriptions.

The semantics of these formulae is defined using interpretations I = (∆I , ·I)
consisting of a domain ∆I and a function assigning a subset of ∆I to every concept
name and binary relations over ∆I to every role name. Such an interpretation can
be viewed as a labeled directed graph over the node set ∆I with edges labeled
by role names and nodes labeled by sets of concept names. Complex concept
descriptions are interpreted as the sets

• (C1 u C2)I := CI1 ∩ CI2 ,

• (¬C1)I := ∆I \ CI1 , and

• (∀r.C1)I := {d ∈ ∆I | ∀e ∈ ∆I : (d, e) ∈ rI → e ∈ CI1 }.
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A terminological axiom of ALC is of the form C v D for two concept descriptions
C,D. The axiom C v D is satisfied by an interpretation I if CI ⊆ DI holds. In
this case, I is called a model of the axiom. A concept description C is satisfiable
w.r.t. a given set T of terminological axioms if there is a model of all axioms in
T such that CI 6= ∅.

The DLALC has the tree model property, i.e., every satisfiable concept description
also has a (possibly infinite) tree-shaped model. This gives rise to a character-
ization of satisfiability in ALC using the emptiness problem for automata on
infinite trees. One can construct a looping tree automaton AC that accepts all
tree models of a given concept description C [2].

Weighted tree automata over lattices have recently been used for more specific
reasoning tasks in ALC. If one has a large set T of terminological axioms, it
often does not suffice to know that a given concept C is unsatisfiable w.r.t. these
axioms; to correct errors in the axioms, one may also want to know the spe-
cific axioms that are responsible for the unsatisfiability of C. For this purpose,
all axioms are labeled with unique propositional variables, and one computes
a so-called pinpointing formula that is a monotone Boolean formula over these
labels identifying the responsible axioms. For example, a pinpointing formula
(ax1 ∧ ax2) ∨ (ax2 ∧ ax3) would mean that ax1 and ax2 are enough to cause the
unsatisfiability of C, but also ax2 and ax3 together have this effect. The set of all
these formulae forms a distributive lattice and looping tree automata weighted
over this lattice can be used to compute pinpointing formulae [4].

Other applications include the presence of access restrictions on the terminological
axioms, where one wants to know whether a certain person has access to certain
knowledge based on their access to the axioms [3], or fuzzy DLs, where concept
descriptions are interpreted as fuzzy sets and one wants to decide whether a given
concept description is satisfiable with at least a given certainty [28, 24].

All these applications motivate us to look at the properties of unweighted and
weighted tree automata. In particular, deciding inclusion of tree automata can
be used to decide whether a terminological axiom C v D is a consequence of a
set T of axioms, i.e., CI ⊆ DI holds in all models of T . One can construct tree
automata AC and AD such that L(AC) ⊆ L(AD) iff C v D is a consequence
of T . This task can usually be reduced to checking satisfiability of the concept
C u ¬D w.r.t. T , thus eliminating the need for checking the inclusion of two
languages. However, in DLs without negation this reduction is not possible and
the inclusion test for tree automata has to be applied.

There are also other cases in which it may be necessary to compute such conse-
quences via the inclusion check between tree automata. Consider for example the
DL ALC(¬), which additionally allows for role expressions of the form ¬r which
are interpreted as (¬r)I := (∆I×∆I)\rI . This DL does not have the tree model
property, as, e.g., the concept description A u ∀¬r.¬A is satisfiable, but has no
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tree model. Any domain element belonging to this concept would need to have
itself as an r-successor, which forms a loop in the model.

Reasoning in ALC(¬) is of course more complex than in ALC. One may, however,
look at the more restricted reasoning task of deciding whether C v ∀¬r.D holds
for some ALC-concept descriptions C,D w.r.t. to a set of ALC-terminogical
axioms T . This is a reasoning task in ALC and thus can be decided over tree
models. It cannot be decided using reasoning methods for ALC(¬) since these
would have to consider all models of T and not just the tree models. However,
one can easily construct a Büchi automaton checking whether ∀¬r.D holds, i.e.,
whether all individuals not connected by an r-edge satisfy D. Thus, this restricted
reasoning task can be solved using the inclusion test between two tree automata.

This argument can be made for all DLs that do not have the tree model property,
as long as the restrictions imposed by the additional constructors can be checked
by a tree automaton. For example, the DL ALCHI allows for roles of the form
r− which are interpreted by (r−)I := (rI)−1 and axioms r v s asserting that the
relation rI ⊆ sI holds between two roles. This logic also does not have the tree
model property. However, role inclusion axioms and inverse roles can easily be
checked by tree automata.

In the following sections, we will investigate the complexity of deciding inclusion
for tree automata and generalize this problem to weighted tree automata.

4 Deciding Inclusion

We are interested in the inclusion problem of two tree automata which can use
different acceptance conditions. This problem is formally defined as follows.

Problem (Inclusion IX,Y). Given an XA A and a YA A′, decide whether L(A′) ⊆
L(A).

One approach for solving this problem is to construct a tree automaton that
accepts the complement of L(A), since the inclusion L(A′) ⊆ L(A) holds iff
L(A′) ∩ L(A) = ∅. If one is able to efficiently decide the emptiness of this
intersection, then the inclusion problem can be easily solved. Thus, we look also
at the complementation problem.

Problem (Complementation CX,Y). Given an XA A, construct a YA A with

L(A) = L(A).

Notice that we do not require that the complement automaton has the same
acceptance condition as the original one. This is motivated by the fact that LA,
BA and CA are not closed under complement [25, 17], but, e.g., the complement
of the language accepted by an LA can be recognized by a BA (see Theorem 13).
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Despite the difference in expressivity, the inclusion problems IX,Y have the same
complexity for all X, Y ∈ {L,B,C, P}; they are all ExpTime-complete. This
follows from known constructions [23, 26, 7, 15].

Theorem 11. The problem IX,Y is ExpTime-complete for X, Y ∈ {L,B,C, P}.

Proof. Note that we only have to show ExpTime-hardness of IL,L and that IP,P is
in ExpTime since looping tree automata are special cases of all the other models
and looping, Büchi, and co-Büchi tree automata can be transformed into parity
tree automata in linear time.

We show ExpTime-hardness of IL,L by reduction of the inclusion problem for
finite trees, i.e., given two automata A and A′ on finite trees, decide whether
L(A′) ⊆ L(A). It was shown in [23, Theorem 2.1] that this problem is ExpTime-
complete.

The reduction uses a translation of automata on finite trees to looping automata.
Given an automaton A = (Q,Σ, I,∆) on finite trees, the equivalent LA B =
(Q′,Σ′, I ′,∆′) is constructed as follows:

• Q′ := Q ∪ {q?, q0}, where q?, q0 are new states.

• Σ′ := Σ ∪ {?}, where ? is a new symbol.

• I ′ := I ∪ {q0}.

• ∆′ := ∆ ∪ {(q, ?, q?, . . . , q?) | q ∈ Q} ∪ {(q?, α′, q?, . . . , q?) | α′ ∈ Σ′} ∪
{(q0, α, q1, . . . , qk) | ∃1 ≤ i ≤ k.qi = q0 ∧ ∀j 6= i.qj = q?}.

In this construction, every infinite tree t′ ∈ Σ′K
∗

with a ? on every path represents
the finite tree t ∈ ΣT that is the subtree of t′ before the first ? of each path. B
accepts all trees that have an infinite path without a ? (guessed via q0). On all
trees that represent finite trees it behaves the same as A. It is easy to see that
L(A′) ⊆ L(A) holds for two automata on finite trees iff L(B′) ⊆ L(B) holds for
their corresponding looping automata.

We will now give an algorithm that decides IP,P in time exponential in the size
of the input PA A and A′. Let n and k be the numbers of states and priorities
of A and n′ and k′ those of A′.

1. We translate A into an equivalent APA B. The transition function δ of this
automaton can be determined as in Example 4. This construction yields
an automaton with n states and k priorities.

2. We use [26, Lemma 6.8] to construct an equivalent PA B′.3 This non-
deterministic automaton has a number of states exponential and a number

3In [26] alternating automata are defined differently, but the two descriptions can be trans-
formed into each other in polynomial time.
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of priorities polynomial in n and k. Let 2p(n,k) be a bound on the number of
states and p′(n, k) be a bound on the number of priorities of B′ for suitable
polynomials p and p′.

3. Now we have to construct an automaton C recognizing the intersection of
L(A′) and L(B′). To do this, we use a standard product construction on
the automata, where the acceptance conditions have first been rewritten
as Streett conditions. For B′, the equivalent Streett condition has at most
p′(n, k) pairs and for A′ we need at most k′ pairs. The product automaton
then has as acceptance condition the conjunction of these two Streett con-
ditions, which is again a Streett condition with at most p′(n, k) + k′ pairs.
The number of states of C is bounded by n′2p(n,k).

4. We rewrite the SA C again as a PA C ′. For this we use the construction
in [7, Theorem 7]. This construction takes a finite-state Streett game and
constructs an equivalent Rabin chain game. Unweighted automata can
be interpreted as special finite-state games, so this result also holds for
Streett automata and Rabin chain automata (see, e.g., [25]). Rabin chain
conditions can equivalently be expressed as parity conditions of the same
size.

We arrive at a PA with O(n′2p(n,k)(p′(n, k)+k′)!) states and O(p′(n, k)+k′)
priorities. Thus, the number of states is bounded by n′2r(n,k,k

′) and the
number of priorities by r′(n, k, k′) for polynomials r and r′.4

5. By testing emptiness of L(C ′), we effectively decide the inclusion problem
for A and A′. It was shown in [15, Theorem 5.1 (1)] that emptiness of
the parity automaton C ′ is decidable in time O

(
(n′2r(n,k,k

′))r
′(n,k,k′)

)
, i.e.,

exponential in the size of the input automata A and A′.

We want to present the above construction in more detail for two special cases.
The reasons for this are that at some point we may want to implement the
inclusion check for certain applications (see Section 3) and later we want to adapt
these constructions in order to solve the weighted version of the inclusion problem.
For both of these reasons it is useful to have an explicit description of an efficient
complementation construction.

The following construction details the complementation step of the above proof for
a looping tree automaton A. The resulting automaton A uses a Büchi acceptance
condition since complementation of alternating automata involves complementing
the acceptance condition (see [19] for details).5 Removing the alternation is done
with a subset construction which results in an exponential blow-up of the number
of states.

4The factorial x! is bounded by xx = 2x log x ≤ 2x
2

.
5Actually, a reachability or weak Büchi condition would suffice.
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Definition 12. Let A = (Q,Σ, I,∆) be an LA. The complement automaton of
A is the BA A := (Qc,Σ, Ic,∆c, Fc) where

• Qc := P(Q),

• Ic := {I},

• (Q0, α,Q1, . . . , Qk) ∈ ∆c iff for all q0 ∈ Q0 and (q0, α, q1, . . . , qk) ∈ ∆ there
is an index i ∈ K such that qi ∈ Qi,

• Fc := {∅}.

Correctness of this construction follows from the more general results in [26].
However, we will present a direct proof here, which will later be used to show the
correctness of the weighted complementation construction by lifting this proof to
the more general lattice operations.

Theorem 13. If A is an LA and A its complement automaton (from Defini-
tion 12), then L(A) = L(A).

Proof. Let t ∈ L(A). Then there is a successful run r ∈ QK∗
c of A on t. Assume

that there also is a valid run r ∈ QK∗ of A on t. We now inductively construct a
path p ∈ Path(K∗) for which r(u) ∈ r(u) holds for all nodes u ∈ p.

• For u = ε we have r(ε) ∈ I = r(ε).

• Let u ∈ p be a node for which r(u) ∈ r(u) holds. Since r and r are valid, we
have (r(u), t(u), r(u1), . . . , r(uk)) ∈ ∆ and (r(u), t(u), r(u1), . . . , r(uk)) ∈
∆c. By definition of ∆c, there must be an i ∈ K with r(ui) ∈ r(ui). We
now append ui to the path p and continue.

The run r cannot fulfill the final state condition {∅} of A on the path p, since
every label along the path must contain at least one element. This contradicts
the fact that r is successful, and thus t cannot be accepted by A.

For the other inclusion, let t /∈ L(A). By Corollary 8, there must be a closed,
finite subtree T ⊆ K∗ on which no valid subrun exists. We now inductively
construct a successful run r ∈ QK∗

c of A on t for which every node u ∈ T has the
following property:

P (u) ≡ ∀
r∈Qu[K∗]

[
r(u) ∈ r(u)→

(
∃

w∈u[K∗]∩int(T )

−−−−→
r(t, w) /∈ ∆

)]
This means that every mapping r ∈ Qu[K∗] that starts in a state q0 ∈ r(u) at u
must violate ∆ at some node in int(T ) that lies below u.
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• If we set r(ε) := {I}, then P (ε) holds because of Corollary 8.

• If u is a leaf of T or u /∈ T , we set r(ui) := ∅ for each i ∈ K.

• Let now u be an inner node of T where r(u) has already been defined and
P (u) holds. We initially set r(ui) := ∅ for every i ∈ K. Thus, P (ui)

trivially holds for every i ∈ K, but the transition
−−−→
r(t, u) need not be valid.

We now have to expand the label sets r(ui) in such a way that

1. the transition
−−−→
r(t, u) becomes valid and

2. the properties P (ui) are not violated.

We do this by checking the conditions of ∆c step by step.

– Let q0 ∈ r(u) and y = (q0, t(u), q1, . . . , qk) ∈ ∆.

– Assume that for each index i ∈ K there is a mapping ri ∈ Qui[K∗] with
ri(ui) = qi that does not violate ∆ below ui in int(T ). Then we could
join these mappings into a mapping r ∈ Qu[K∗] with r(u) := q0 and
r(uiw) := ri(uiw) for all i ∈ K and w ∈ K∗. This mapping does not
violate ∆ below u in int(T ), which contradicts P (u).

– Thus we can find an index i ∈ K such that P (ui) still holds after we
add qi to r(ui).

After we have done this for every q0 ∈ r(u) and every matching transition
y ∈ ∆, we have fully determined the successor labels r(ui) and P (ui) still

holds for every i ∈ K. Additionally,
−−−→
r(t, u) now is a valid transition in ∆c.

To show that r is a valid run of A on t, we need to show that every transition is
compatible with ∆c. If the transition fully lies in T or T , this is clear from the
construction.

Let now u ∈ fr(T ). Since P (u) holds, all mappings r ∈ Qu[K∗] with r(u) ∈ r(u)
must violate ∆ in u[K∗] ∩ int(T ) = ∅, which is clearly not possible. This implies

that r(u) = ∅, and thus, the transition
−−−→
r(t, u) = (∅, t(u), ∅, . . . , ∅) is valid in ∆c.

It is clear that r is successful since every infinite path must leave T at some node
u and thus has the label ∅ at every node below u. This implies t ∈ L(A).

We will now present another explicit complementation construction: the comple-
ment automaton A of a CA is a BA. The difficult step here is again to simulate
the alternation by a nondeterministic automaton. In [20] such a simulation was
presented for alternating Streett tree automata. However, in this special case we
can adapt the construction for alternating Büchi word automata from [18].

Definition 14. The complement automaton of a CA A = (Q,Σ, I,∆, F ) is the
BA A := (Qc,Σ, Ic,∆c, Fc), where
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• Qc := P(Q)× P(F ),

• Ic := {(I \ F, I ∩ F )},

• χF (q) :=

{
1 if q ∈ F
0 otherwise

,

•
((
Q

(0)
0 , ∅

)
, α,
(
Q

(1)
0 , Q

(1)
1

)
, . . . ,

(
Q

(k)
0 , Q

(k)
1

))
∈ ∆c iff

– for all q ∈ Q(0)
0 and (q, α, q1, . . . , qk) ∈ ∆ there is an index i ∈ K such

that qi ∈ Q(i)
χF (qi)

,

• for Q
(0)
1 6= ∅,

((
Q

(0)
0 , Q

(0)
1

)
, α,
(
Q

(1)
0 , Q

(1)
1

)
, . . . ,

(
Q

(k)
0 , Q

(k)
1

))
∈ ∆c iff

– for all q ∈ Q(0)
0 and (q, α, q1, . . . , qk) ∈ ∆ there is an index i ∈ K with

qi ∈ Q(i)
0 and

– for all q ∈ Q(0)
1 and (q, α, q1, . . . , qk) ∈ ∆ there is an index i ∈ K with

qi ∈ Q(i)
χF (qi)

,

• Fc := {(Q0, Q1) ∈ Qc | Q1 = ∅}.

The correctness of this construction can be proven as in [18], taking into account
that our automata are working over infinite trees instead of infinite words. The
proof we present here follows the main ideas used in the proof of Theorem 13.

Lemma 15. Let A = (Q,Σ, I,∆, F ) be a CA and A its complement automaton
(from Definition 14). Then L(A) ⊆ L(A).

Proof. Let t ∈ L(A), i.e., there is a successful run r ∈ QK∗
c of A on t, and assume

that there also is a successful run r ∈ QK∗ of A on t. Then there is a finite tree
T ⊆ K∗ outside of which no state from Q \ F occurs in r, i.e., r(u) ∈ F for all
u ∈ K∗ \ T . For a node u ∈ K∗, define R(u) := r(u)0 ∪ r(u)1. Then we can
inductively construct an infinite path p ∈ Path(K∗) for which r(u) ∈ R(u) holds
for all u ∈ p and r(u) ∈ r(u)1 holds for all u ∈ p∩u0[K∗] for some node u0 ∈ K∗:

• Since r(ε) ∈ I, either r(ε) ∈ I \ F = r(u)0 or r(ε) ∈ I ∩ F = r(u)1 must
hold, and thus r(ε) ∈ R(ε).

• Let u ∈ p ∩ T be a node with the property r(u) ∈ R(u). Since
−−−→
r(t, u) ∈ ∆

and
−−−→
r(t, u) ∈ ∆c, there must be an i ∈ K such that r(ui) ∈ r(ui)j holds for

some j ∈ {0, 1}. Thus r(ui) ∈ R(ui) holds and we can append ui to the
path p.
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• If u ∈ p \ T is the first node of p outside of T , then we continue the
construction from above until we reach a node u′ with r(u′)1 = ∅. We must
always reach such a node since r is successful.

• For u′ we know from the definition of ∆c that we can find i ∈ K such that
r(u′i) ∈ r(u′i)1. We set u0 := u′i.

• Let u ∈ p∩u0[K∗] with r(u) ∈ r(u)1. Since r(u)1 6= ∅, we can choose i ∈ K
such that r(ui) ∈ r(ui)1.

Since r(u) ∈ r(u)1 holds for all nodes u ∈ p ∩ u0[K∗] that occur below u0 along
p, r(u)1 can never be empty after u0. This contradicts the success of r.

For this direction, it is easy to see the similarity to the proof of Theorem 13.
The other direction is also similar. The property P (u) is replaced by a more
complex property Fail(u) and the proof is generally more complex to account for
the different components of each state. Instead of Corollary 8, we have to use the
more general version in Corollary 7 for this proof.

Lemma 16. Let A = (Q,Σ, I,∆, F ) be a CA and A its complement automaton
(from Definition 14). Then L(A) ⊇ L(A).

Proof. Let t /∈ L(A). We inductively construct a successful run r ∈ QK∗
c of A on

t. For every node u ∈ K∗ the following property Fail(u) will be satisfied.

Fail(u) ≡
1∧
j=0
∀

r∈Qu[K∗]

r(u) ∈ r(u)j → ∃
w∈u[K∗]

Fail(w,
−−−−→
r(t, w))

Fail(u, y = (q0, . . .)) ≡

y ∈ ∆→

q0 /∈ F ∧ ∀
r′∈Qu[K∗]

r′(u)=q0

¬Valid(r′, u) ∨ ¬Success(r′, u)


Valid(r, u) ≡ ∀

w∈u[K∗]

−−−−→
r(t, w) ∈ ∆

Success(r, u) ≡ ∀
p∈Path(u[K∗])

Inf(r, p) \ F = ∅

Success(r, u) expresses that a run r is “successful below u”, i.e., all infinite
paths starting from u must contain only finitely many states from Q \ F .6 The

6Inf(r, p) denotes the set of states occurring infinitely often in r along p.
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property Valid(r, u) ensures that all transitions of a run r below a node u are
valid transitions of A. Using these two properties, we formulate Fail(u, y) by
saying that if y is a valid transition at u, then the current state must be non-final
and no valid run starting from this state can be successful. Finally, Fail(u) says
that every run starting in a state occurring in r(u)1 must fail somewhere below
u.

The property Fail(u, y) is clearly of the form required by Corollary 7, and thus
Fail(u) is equivalent to a property Fail(u, Tu) for a closed, finite tree Tu ⊆ u[K∗].
This property is the same as Fail(u), except that in the conjunct for j = 1
“w ∈ u[K∗]” is replaced by “w ∈ Tu”.

To start the construction of r, we set r(ε) := (I \ F, I ∩ F ) and deduce Fail(ε)
as follows. If Fail(ε) was not fulfilled, there would be a run r ∈ QK∗ with
r(ε) ∈ I \ F ⊆ I for which all transitions are valid and for every w ∈ K∗ with
r(w) /∈ F there would be a run r′w ∈ Qw[K∗] with r′w(w) = r(w) that is both valid
and successful below w. Then we could construct a run r′ ∈ QK∗ by replacing the
labels of r on the subtree w[K∗] with those of r′w at every such node w ∈ K∗.7
This run r′ would be a valid and successful run of A on t, which contradicts the
assumption that t /∈ L(A).

Suppose now that u ∈ K∗ is a node where r(u) has already been defined and
for which Fail(u, Tu) holds for some finite tree Tu ⊆ u[K∗]. For every i ∈ K we
construct r(ui) from r(u) in several steps.

• We initially set r(ui) := (∅, ∅) for each i ∈ K, and thus Fail(ui) holds for

our initial definiton of r(ui). But clearly, the resulting transition
−−−→
r(t, u)

need not satisfy the transition relation ∆c. We now enlarge the sets r(ui)

in such a way that Fail(ui) remains satisfied and
−−−→
r(t, u) becomes a valid

transition.

• For every j ∈ {0, 1}, q ∈ r(u)j and y = (q, t(u), q1, . . . , qk) ∈ ∆, we do the
following.

– We choose one index i ∈ K for which qi is added to a component of
r(ui). The index of this new component is determined according to
∆c as follows:

∗ If r(u) = ∅, then qi is added to r(ui)0 (resp. r(ui)1) if qi /∈ F
(resp. qi ∈ F ).

∗ If r(u) 6= ∅, then qi is added to r(ui)0 (resp. r(ui)1) if j = 0 or
j = 1 and qi /∈ F (resp. j = 1 and qi ∈ F ).

We choose i such that Fail(ui) remains satisfied after we add qi to
r(ui) as specified above. As we will show in the following, such an

7We only do this replacement for the first occurrence of a state from Q \ F , not inside a
subtree that has already been replaced.
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index always exists. For this, we make a case distinction depending on
j.

∗ Let j = 0 and assume that Fail(ui) is violated by adding qi to
r(ui). Then there are subruns ri ∈ Qui[K∗] with the properties

· ri(ui) = qi and

· Fail(w,
−−−−→
ri(t, w)) is not satisfied for any w ∈ ui[K∗], i.e., if

w /∈ F , then there is a valid and successful subrun r′w ∈ Qw[K∗]

with r′w(w) = ri(w).

As in the argument for Fail(ε), we can now construct a subrun r′ ∈
Qu[K∗] with

−−−−→
r′(t, u) = y which is valid and successful. This means

that Fail(u, y) is not satisfied. If we now construct the subrun

r ∈ Qu[K∗] by concatenating y and the subruns ri, Fail(w,
−−−−→
r(t, w))

is not satisfied for any w ∈ u[K∗], which is a contradiction to
Fail(u).

∗ If j = 1, we could use the same argument as above. However, in
this case we take a closer look at the finite tree Tui because this
will later enable us to show that r is successful. We will show that
we can choose i ∈ K such that the property Fail(ui, Tui) remains
satisfied if we set Tui := Tu ∩ ui[K∗].
If we assume the converse, we can deduce that there exist subruns
ri ∈ Qui[K∗] with the following properties:

· ri(ui) = qi.

· Fail(w,
−−−−→
ri(t, w)) is not satisfied for any w ∈ Tu ∩ ui[K∗].

If we now construct the subrun r ∈ Qu[K∗] by concatenating the
transition y and the subruns ri, then it is easily seen that r starts

in r(u) = q and no Fail(w,
−−−−→
r(t, w)) is satisfied for any w ∈ Tu ∩

ui[K∗] and for any i ∈ K. Furthermore, Fail(u,
−−−→
r(t, u)) is also not

satisfied, since
−−−→
r(t, u) = y ∈ ∆, but q ∈ F . This means that r is a

counterexample to Fail(u, Tu).

After we have done this for every j, q and y, the transition
−−−→
r(t, u) is valid

and the properties Fail(ui) still hold.

• Since Fail(ui) holds, there is a finite tree Tui such that Fail(ui, Tui) holds.
This tree can be determined as follows.

– If r(u)1 = ∅, then Tui can be determined from Fail(ui) using Corol-
lary 7.

– Otherwise, we can set Tj,ui := Tj,u∩ui[K∗]. This is possible because of
the above argument and the fact that we only added states to r(ui)1

in the case j = 1.
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It remains to show that r is a successful run of A. For this we assume that there
is a path p ∈ Path(K∗) such that the set r(u)1 is empty only finitely often for
nodes u ∈ p. Then there is a node u ∈ p after which no empty set occurs in the
second component of r along p. By construction of r, the property Fail(u, Tu)
must be satisfied for a finit tree Tu ⊆ u[K∗].

Let v be the first node of p that lies outside of Tu. By construction of r, Fail(v, Tv)
must hold for the finite tree Tv = Tu∩ v[K∗] = ∅ since no empty set occurs in the
second component along the path from u to v. Since Fail(v, Tv) is satisfied, this
means that r(v)1 must be empty, which contradicts the assumption. Thus, r is a
successful run of A on t and t ∈ L(A).

We obtain the following theorem.

Theorem 17. If A is a CA and A its complement automaton (from Defini-
tion 14), then L(A) = L(A).

Notice that the construction of A is again exponential in the size of A. This in
particular provides a direct proof of the fact that IC,B is in ExpTime.

Unfortunately, a similar construction for the problem CB,C is not possible. This
was shown in [16] by means of a counterexample, i.e., a tree language that is
recognizable by a BA, but whose complement is not recognizable by a CA.

5 The Weighted Inclusion Problem

As mentioned already, unweighted tree automata are weighted tree automata over
the Boolean lattice B, whose operators correspond to the logical connectives. De
Morgan lattices can be seen as a generalization of Boolean logic, where conjunc-
tion, disjunction and negation are translated to infimum ⊗, supremum ⊕, and
complementation −, respectively. We can use this fact to describe generalizations
of the decision problems for unweighted tree automata to the weighted setting.

From a low-level point of view, the inclusion problem consists of deciding whether
the implication t ∈ L(A′)⇒ t ∈ L(A) holds for every input tree t. Equivalently,
we can express this property using the formula:∧

t∈ΣK∗

¬(‖A′‖, t) ∨ (‖A‖, t) ,

which can then be generalized to arbitrary De Morgan lattices as follows.

Problem (Weighted Inclusion IWX,WY). Given a WXA A and a WYA A′ over the

same De Morgan lattice, compute
⊗

t∈ΣK∗ (‖A′‖, t)⊕ (‖A‖, t).

20



Remark. A more intuitive generalization of the inclusion problem is to decide
whether (‖A′‖, t) ≤ (‖A‖, t) holds for all input trees t. For Boolean lattices, this
is only a special case of the above problem, since

(‖A′‖, t) ≤ (‖A‖, t)⇔ (‖A′‖, t)⊕ (‖A‖, t) = 1S .

Related to inclusion is the problem of deciding the equivalence of two unweighted
tree automata, which can be decided by two inclusion tests. Generalizing this
to Boolean lattices, one can compute the weighted equivalence of a WXA A and
a WYA A′ as the infimum of the two weighted inclusions of type IWX,WY and
IWY,WX . This value expresses the degree to which the two automata recognize
the same tree series. For Boolean lattices, this value will be 1S iff these tree series
are equal.

As in the unweighted case, the problem IWX,WY can sometimes be reduced to a
complementation problem.

Problem (Weighted Complementation CWX,WY). Given a WXA A, construct a

WYA A over the same De Morgan lattice such that (‖A‖, t) = (‖A‖, t) holds for
every t ∈ ΣK∗ .

Similar to the unweighted case, this reduction depends on the feasibility of com-
puting the behavior of the binary infimum of two tree automata. Recall that
this task is of polynomial complexity for WBA over distributive lattices (see
Lemmata 9 and 10).

We now present two methods for solving the weighted inclusion problem. The
first method uses a glass-box approach, i.e., it modifies the complementation
constructions from the previous section to perform the computations directly
over the lattice. This transformation generalizes the logical operators to their
lattice counterparts. However, this approach only works for Boolean lattices.

The second method uses the algorithm for testing the inclusion of unweighted tree
automata as a black-box in the sense that this algorithm is called several times
in a systematic way until the desired aggregated infimum is found. A surprising
result is that the black-box approach turns out to be more efficient than the
glass-box method.

5.1 Glass-Box Approach

We now describe a construction that directly computes IWX,WY by generalizing
the method used for deciding inclusion of unweighted tree automata presented
in the previous section; hence the name glass-box. The advantage of a glass-
box approach is that one has more direct control over the algorithm and can
apply optimizations on a deeper level. However, this is also more laborious since
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it requires intimate knowledge of the inner workings of the original unweighted
algorithm.

Recall from Section 4 that the procedure deciding inclusion of two tree automata
A and A′ (i.e., whether L(A′) ⊆ L(A)) required three steps: first construct an
automaton A accepting the complement of L(A); then, intersect A′ and A, and
finally decide emptiness of the resulting automaton. We have shown that the last
two steps can be solved for WBA in polynomial time (see Lemmata 9 and 10).
Thus, if we can solve the problem CWX,WB, then we will also have a procedure
that solves IWX,WB.

There are several drawbacks to this approach. First, we can only apply it if an
explicit and efficient complementation construction is known for the unweighted
automata and we have to do it for every construction separately. Second, the
construction presented below only works for Boolean lattices.

We will demonstrate this approach by considering the case of looping tree au-
tomata. Definition 12 shows us how to build an automaton that accepts the
complement language of a given LA. Notice first that the transition relation of
the automaton A is equivalent to the following formula:∧

(q0,α,q1,...,qk)∈Q×Σ×Qk

q0 /∈ Q0 ∨ y /∈ ∆ ∨
∨
i∈K

qi ∈ Qi .

In the weighted complementation construction, we replace the Boolean operators
by their lattice counterparts.

Definition 18. The complement automaton of a WLA A = (Q,Σ, S, in,wt) is
the WBA A = (Qc,Σ, S, inc,wtc, Fc) where

• Qc := SQ.

• For ϕ ∈ Qc, inc(ϕ) :=

{
1S if ϕ(q) ≥ in(q) for all q ∈ Q
0S otherwise

.

• For ϕ0, . . . , ϕk ∈ Qc and α ∈ Σ, wtc(ϕ0, α, ϕ1, . . . , ϕk) :=⊗
y=(q0,α,q1,...,qk)∈Q×{α}×Qk

ϕ0(q0)⊕ wt(y)⊕
⊕
i∈K

ϕi(qi) .

• Fc := {0S} where 0S : Q→ S : q 7→ 0S.

We now show that this construction solves the weighted complementation problem
CWL,WB. For this, we fix a WLA A = (Q,Σ, S, in,wt) and an input tree t ∈ ΣK∗

and need to show that (‖A‖, t) = (‖A‖, t) holds. The next two sections are
dedicated to proving the two halves of this claim. The proof uses similar ideas to
those of Theorem 13, generalized to Boolean lattices.
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5.1.1 Proof of (‖A‖, t) ≤ (‖A‖, t)

We show this direction by proving the inequality wtc(t, r) ≤ wt(t, r) for all r ∈
succ(A) and r ∈ QK∗ . If wtc(t, r) = 0S or wt(t, r) = 0S this is trivially satisfied,
so we fix two runs r ∈ succ(A) and r ∈ QK∗ with wtc(t, r) > 0S and wt(t, r) > 0S.

We proceed by showing that wtc(t, r) ⊗ wt(t, r) is smaller than a ⊗ a = 0S for
some suitably chosen a ∈ S. Looking at Theorem 13 one can already guess
that this argument has to do with paths p ∈ Path(K∗) for which r(u) ∈ r(u)
holds for all u ∈ p. In the weighted case, this property is replaced by the value⊗

u∈p r(u)(r(u)). To be exact, a has the form⊕
p∈Path(K∗,n)

⊗
u∈p

r(u)(r(u))

for some n ∈ N.

Lemma 19. There is a depth m ∈ N such that

wtc(t, r) ≤
⊗

p∈Path(K∗,m)

⊕
u∈p

r(u)(r(u)) .

Proof. Since r is successful, there is a minimal depth m ∈ N such that any path
p visits at least one node labeled by 0S before reaching depth m.

Let now p ∈ Path(K∗,m) and assume that wtc(t, r) �
⊕

u∈p r(u)(r(u)). Then⊕
u∈p r(u)(r(u)) < 1S and thus r(u)(r(u)) > 0S holds for every u ∈ p. Hence

there cannot be a node labeled with 0S along p in r, which contradicts the above
choice of m.

We now show the second part, which leads to the “contradiction” wt(t, r) ⊗
wtc(t, r) ≤ 0S.

Lemma 20. For all n ∈ N the following inequation holds:

wt(t, r)⊗ wtc(t, r) ≤
⊕

p∈Path(K∗,n)

⊗
u∈p

r(u)(r(u)) .

Proof. For n = 0 we have

wt(t, r)⊗ wtc(t, r) ≤ in(r(ε)) ≤ r(ε)(r(ε)) =
⊕

p∈Path(K∗,0)

⊗
u∈p

r(u)(r(u)) .

This holds since wtc(t, r) > 0S and thus inc(r(ε)) > 0S and r(ε)(r(ε)) ≥ in(r(ε)).
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Let now the inequation hold for some n ∈ N. For p ∈ Path(K∗, n), we let
p = {p0, . . . , pn}, where p0 = ε and the nodes are ordered by the successor
relation. For any such path p we know that

wt(t, r)⊗ wtc(t, r) ≤ wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn)) ,

and thus

wt(t, r)⊗ wtc(t, r) ≤
⊗

p∈Path(K∗,n)

wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn)) .

Furthermore,

r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn))

=

(
r(pn)(r(pn))⊕ wt(

−−−−→
r(t, pn))

)
⊗⊗

y=(q0,t(pn),q1,...,qk)

(
r(pn)(q0)⊕ wt(y)

)
⊕
⊕
i∈K

r(pni)(qi)

(by de Morgan’s law)

≤
(
r(pn)(r(pn))⊕ wt(

−−−−→
r(t, pn))

)
⊗((

r(pn)(r(pn))⊕ wt(
−−−−→
r(t, pn))

)
⊕
⊕
i∈K

r(pni)(r(pni))

)
(choose y =

−−−−→
r(t, pn))

= r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗

⊕
i∈K

r(pni)(r(pni))

(by distributivity of S)

=
⊕
i∈K

r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗ r(pni)(r(pni)) .

Using the above two inequations we get

wt(t, r)⊗ wtc(t, r)

≤

 ⊕
p∈Path(K∗,n)

n⊗
j=0

r(pj)(r(pj))

⊗
 ⊗
p∈Path(K∗,n)

wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn))


(by induction hypothesis and the first inequation)

≤
⊕

p∈Path(K∗,n)

(
n−1⊗
j=0

r(pj)(r(pj))

)
⊗ r(pn)(r(pn))

⊗ wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn))

(by Lemma 1 b))
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≤
⊕

p∈Path(K∗,n)

⊕
i∈K

(
n−1⊗
j=0

r(pj)(r(pj))

)
⊗ r(pn)(r(pn))

⊗ wt(
−−−−→
r(t, pn))⊗ r(pni)(r(pni))

(by the second inequation and distributivity of S)

≤
⊕

p∈Path(K∗,n+1)

⊗
u∈p

r(u)(r(u)) .

(combining p with pni)

This completes the proof by induction on n.

This allows us to conclude the first half of the proof of correctness.

Lemma 21. (‖A‖, t) ≤ (‖A‖, t).

Proof. Combining Lemmata 19 and 20, we get wt(t, r)⊗wtc(t, r) ≤ 0S. Lemma 1
now implies wtc(t, r) ≤ wt(t, r). Since this holds for all r ∈ succ(A) and all runs
r of A, we have (‖A‖, t) ≤ (‖A‖, t).

5.1.2 Proof of (‖A‖, t) ≥ (‖A‖, t)

From Corollary 6 we know that there must be a closed, finite subtree T ⊆ K∗

such that for the computation of the weight (‖A‖, t), we only need to consider
the nodes in T .

Similar to the proof of Theorem 13, we now define a successful run r ∈ QK∗
c of A

with wtc(t, r) = (‖A‖, t).

Definition 22. Let the run r ∈ QK∗
c be inductively defined as follows:

• r(ε) := in.

• If u ∈ fr(T ) or u /∈ T , set r(ui) := 0S for each i ∈ K.

• If u ∈ int(T ) is a node where r(u) has already been defined, set

r(ui)(q) :=
⊗

r∈Qui[K∗]

r(ui)=q

⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
r(t, w))

for each i ∈ K and q ∈ Q.
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From this definition, it is already clear that r is a successful run of A, since every
path will be labeled by 0S from some point on.

We additionally define a value P (u) for each node u ∈ T :

P (u) :=
⊗

r∈Qu[K∗]

r(u)(r(u))⊕
⊕

w∈u[K∗]∩int(T )

wt(
−−−−→
r(t, w))

Lemma 23. The following hold:

• P (ε) = (‖A‖, t).

• P (ui) = 1S for all ui ∈ T .

Proof. The first claim is easily proven by considering the definitions and Corol-
lary 6.

Additionally, for any ui ∈ T we have

P (ui) =
⊗

r∈Qui[K∗]

r(ui)(r(ui))⊕
⊕

w∈ui[K∗]∩int(T )

wt(
−−−−→
r(t, w))

≥
⊗

r∈Qui[K∗]

 ⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
r(t, w))

⊕
 ⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
r(t, w))


= 1S ,

which proves the second claim.

We now show that the run r has the claimed weight.

Lemma 24. The following hold:

a) inc(r(ε)) = 1S.

b) wtc(
−−−→
r(t, u)) = 1S for all u /∈ T .

c) wtc(
−−−→
r(t, u)) = P (u) for all u ∈ T .

Proof. a) holds by definition of inc and r(ε) and b) follows from the fact that
r(u) = 0S holds for all u /∈ T . For c), we consider two cases:

• wtc(
−−−→
r(t, u)) = P (u) for every u ∈ fr(T ):

wtc(
−−−→
r(t, u)) =

⊗
y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)

=
⊗

r∈Qu[K∗]

r(u)(r(u))⊕ wt(
−−−→
r(t, u))

= P (u) .
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The second equation holds because of idempotency of ⊗. We consider any

transition y at u as the beginning of every run r ∈ Qu[K∗] with
−−−→
r(t, u) = y.

• wtc(
−−−→
r(t, u)) = P (u) for every u ∈ int(T ):

wtc(
−−−→
r(t, u))

=
⊗

y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)⊕
⊕
i∈K

r(ui)(qi)

=
⊗

y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)⊕
⊕
i∈K

⊗
ri∈Qui[K∗]

ri(ui)=qi

⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
ri(t, w))

=
⊗

y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)⊕

⊗
r1∈Qu1[K∗]

r1(u1)=q1

. . .
⊗

rk∈Quk[K∗]

rk(uk)=qk

⊕
i∈K

⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
ri(t, w))

(by distributivity of S)

=
⊗

y=(q0,t(u),q1,...,qk)

⊗
r1∈Qu1[K∗]

r1(u1)=q1

. . .
⊗

rk∈Quk[K∗]

rk(uk)=qk

r(u)(q0)⊕ wt(y)⊕
⊕
i∈K

⊕
w∈ui[K∗]∩int(T )

wt(
−−−−→
ri(t, w))

(by distributivity of S)

=
⊗

r∈Qu[K∗]

r(u)(r(u))⊕
⊕

w∈u[K∗]∩int(T )

wt(
−−−−→
r(t, w))

(concatenate y and r1, . . . , rk to r)

= P (u) .

These two cases account for all the nodes of T , since T is closed.

This completes the second half of the proof of correctness.

Lemma 25. (‖A‖, t) ≥ (‖A‖, t).

Proof. We deduce

(‖A‖, t) ≥ wtc(t, r) = inc(r(ε))⊗
⊗
u∈K∗

wtc(
−−−→
r(t, u)) = (‖A‖, t)

from Lemmata 23 and 24.
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Theorem 26. If A is a WLA and A is its complement automaton (from Defi-
nition 18), then for all t ∈ ΣK∗, (‖A‖, t) = (‖A‖, t).

Proof. Since the construction of A does not depend on the input tree t, this
follows from Lemmata 21 and 25.

This construction gives us an automaton that has |S||Q| states, where |Q| is the
number of states of the original automaton, and hence can be used to solve the
problems CWL,WB and IWL,WB in exponential time. This is optimal with respect
to the complexity of the problems, as shown by Theorem 11.

5.2 Black-Box Approach

Since we already have a decision procedure for the unweighted problem IX,Y

for X, Y ∈ {L,B,C, P}, we can use this to construct a black-box algorithm for
IWX,WY. This approach reduces the problem IWX,WY to several inclusion checks.
The main advantage of such an approach is that one can use any procedure
deciding the unweighted problem, including any optimizations developed for it,
since this procedure needs not be modified.

The black-box reduction of IWX,WY to IX,Y is based on an idea from [14, 9] and
exploits the fact that every lattice element can be represented as the infimum
of all the meet prime elements above it. We demonstrate it first on the case of
IWB,WB.

Let A = (Q,Σ, S, in,wt, F ) and A′ = (Q′,Σ, S, in′,wt′, F ′) be two WBA over the
same De Morgan lattice S and p ∈ S a meet prime element. We define the cropped
automata Ap and A′p as the BA (Q,Σ, I,∆, F ) and (Q′,Σ, I ′,∆′, F ′), respectively,
where the initial state sets and transition relations are as follows:

• I := {q ∈ Q | in(q) � p}, ∆ := {y ∈ Q× Σ×Qk | wt(y) � p},

• I ′ := {q′ ∈ Q′ | in′(q′) ≥ p}, ∆′ := {y′ ∈ Q′ × Σ×Q′k | wt′(y′) ≥ p}.

The transitions allowed in Ap (resp. A′p) are exactly those transitions of A (resp.
A′) having weight � p (resp. ≥ p). It is easy to show that this property is trans-
ferred to the behavior of the weighted automata as follows. We have (‖A‖, t) ≤ p
iff t /∈ L(Ap) and (‖A′‖, t) ≥ p iff t ∈ L(A′p) for all t ∈ ΣK∗ . From this it follows

that
⊗

t∈ΣK∗ (‖A‖, t)⊕ (‖A′‖, t) ≤ p holds iff L(A′p) * L(Ap).

We have assumed that the De Morgan lattice S is generated by the elements in
the images of the initial distribution and transition weight functions of A and A′.
Since the number of meet prime elements in any distributive lattice is at most
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exponential in the number of elements generating it,8 S has at most exponentially
many meet prime elements measured in the sizes of A and A′. Thus, this black-
box approach requires at most exponentially many inclusion tests, each of which
is itself exponential in the sizes of these automata. This means that this algorithm
solves the problem IWB,WB in exponential time, and hence is also optimal w.r.t.
complexity.

Notice, additionally, that the reduction we used depends only on the number of
meet prime elements and on the existence of an exponential-time inclusion test
for the unweighted version of the automata, but not on the specific acceptance
condition used. In other words, if IX,Y can be decided in exponential time, then
IWX,WY is computable in exponential time, too. This yields the next theorem.

Theorem 27. Let S be a De Morgan lattice and X, Y be two acceptance con-
ditions such that the problem IX,Y is decidable in some complexity class C that
includes ExpTime. Then the problem of deciding whether a given value a ∈ S
solves an instance of IWX,WY is also in C.

Corollary 28. Let S be a De Morgan lattice. The problem of deciding whether
a given value a ∈ S solves an instance of IWX,WY is ExpTime-complete for
X, Y ∈ {L,B,C, P}.

5.3 Complexity Comparison

We presented a glass-box and a black-box approach to solve IWL,WB, both of which
are of optimal (ExpTime) complexity. However, a more fine-grained analysis of
the algorithms shows that the black-box approach is in fact more efficient than
the glass-box approach. The main consideration is that the number of meet
prime elements of any Boolean lattice is logarithmic in the size of the lattice.
Hence, if there are n meet prime elements, then the black-box approach involves
n emptiness tests9 of automata of size 2|Q|.

On the other hand, the glass-box approach will apply a polynomial time algorithm
to an automaton of size (2n)|Q|. Additionally, n cannot be considered indepen-
dently from |Q|, but, given our assumption that the lattice S is generated by
the input automata, n actually grows proportionally to |Q|. This means that the
bigger the input automata become, the more expensive the glass-box approach
is, relative to the black-box procedure. This is surprising because it shows that
an all-purpose procedure performs better than a specifically designed algorithm.

Obviously, looping tree automata are not the only ones that can be used in a
glass-box approach. In fact, by generalizing the construction from Definition 14

8Each meet prime element can be expressed as the supremum of some generating elements
and complements of generating elements.

9The emptiness of Büchi automata can be tested in quadratic time.
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to arbitrary Boolean lattices as we did for Definition 12, we could obtain a method
for solving CWC,WB. However, this would again result in an automaton having
|S||Q| states, which is less efficient than the black-box approach.

6 Conclusions

We have investigated some of the standard problems for unweighted automata on
infinite trees and their generalizations to weighted tree automata. In particular,
we have looked at the inclusion and complementation problems for parity tree
automata. Despite the class of Büchi tree automata not being closed under
complementation, for every looping or co-Büchi tree automaton it is possible
to build a Büchi tree automaton of exponential size accepting the complement
language. We demonstrated that these constructions can be generalized to the
weighted setting, thus giving exponential time solutions to the weighted inclusion
and complementation problems. Additionally, we described a black-box approach
that solves these problems by performing several (unweighted) inclusion tests.

Since automata on infinite trees provide a clear characterization of reasoning in
logics with the tree model property (e.g., some description logics), in our future
work we will study the relation between the generalized problems for weighted
automata and some non-standard inferences in these logics. In particular, we will
study their application to uncertainty and multi-valued reasoning.
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PSPACE results for description logics. Information and Computation,
206(9,10):1045–1056, 2008.

[3] Franz Baader, Martin Knechtel, and Rafael Peñaloza. A generic approach
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