
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Towards a Tableau Algorithm for Fuzzy ALC
with Product T-norm

Rafael Peñaloza

LTCS-Report 11-03

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Towards a Tableau Algorithm for Fuzzy ALC
with Product T-norm

Rafael Peñaloza

Abstract

Very recently, the tableau-based algorithm for deciding consistency of gen-
eral fuzzy DL ontologies over the product t-norm was shown to be incorrect,
due to a very weak blocking condition. In this report we take the first steps
towards a correct algorithm by modifying the blocking condition, such that
the (finite) structure obtained through the algorithm uniquely describes an
infinite system of quadratic constraints. We show that this procedure ter-
minates, and is sound and complete in the sense that the input is consistent
iff the corresponding infinite system of constraints is satisfiable.

1 Introduction

The panorama of fuzzy Description Logics (fuzzy DLs) changed drastically when
it was shown that the basic logicALC with t-norm semantics lacks the finite model
property [4, 5]. This result in particular invalidated the proof of correctness of
the algorithm presented in [6] for an expressive fuzzy DL over the product t-
norm, and triggered a series of negative results. It was first shown independently
in [5] and [1] that the algorithm from [6] is unable to detect some inconsistent
ontologies. Then, ontology consistency has been shown to be undecidable for
several variants of fuzzy DLs and semantics [1, 2, 3, 8, 10]. However, none of
these undecidability results corresponds precisely to the logic considered in [6].

The algorithm from [6] uses a tableau-like procedure to construct a set of quadratic
constraints, that then is solved by an external constraint solver. Since the algo-
rithm needs to deal with general ontologies, the standard tableau algorithm may
not terminate. This problem arises already for crisp description logics, and is
solved in the DL literature through a cycle-checking technique usually called
blocking. The idea behind blocking is to stop the execution of the algorithm
once enough information for generating a model has been produced. For crisp
ALC, blocking is triggered once two equivalent nodes–that is, nodes containing
the same concepts–are found. In [6], this blocking condition is used also for fuzzy
ALC, without any consideration of the fuzzy degree with which the concepts are

1

satisfied. However, as the examples in [5, 1] show, this blocking condition is too
weak, and hence the algorithm stops before the inconsistency of the ontology is
detected. A simple idea for strengthening the blocking condition is to ensure
that the fuzzy degrees of all concepts are also equivalent in both, the blocking
and the blocked node. Unfortunately, since this logic does not have the finite
model property, such a condition may never trigger, yielding a non-terminating
procedure.

In this report we introduce a new tableau-based algorithm, based on the princi-
pal ideas of [6], and improved with a new blocking condition that yields a sound,
complete and terminating reduction from the problem of ontology consistency
of fuzzy ALC with product t-norm to satisfiability of a system of quadratic con-
straints. This, however, does not show decidability for this logic, as the algorithm
outputs a finite representation of an infinite system of constraints, for which, to
the best of our knowledge, no decidability results are yet known.

The work is divided as follows. We first introduce the syntax and semantics of
the fuzzy DL under consideration. Following [9], we call this logic Π-ALC. Af-
terwards, we introduce the algorithm producing an infinite system of constraints.
We show that this algorithm is correct and terminates.

2 The Logic Π-ALC

The syntax of Π-ALC is the same as for crisp ALC. From two disjoint setsNC and
NR of concept- and role-names, respectively, Π-ALC concepts are built through
the syntactic rule:

C ::= > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | ∃r.C | ∀r.C,

where A ∈ NC and r ∈ NR.

The syntax of the axioms in this logic is slightly different from the crisp case
since they also include a bound to the degree of truth with which they must
hold. A Π-ALC ABox is a set of assertion axioms of the form 〈a : C, q〉 or
〈(a, b) : r, q〉, where C is a Π-ALC concept, r ∈ NR, q is a rational number in
[0, 1], and a, b ∈ NI , with NI the set of individual names. A Π-ALC TBox is a
set of concept inclusion axioms of the form 〈C v D, q〉, where C,D are Π-ALC
concepts and q is a rational in [0, 1]. A fuzzy ontology is the union of a Π-ALC
ABox and a Π-ALC TBox.

The semantics of this logic extend the classical semantics of ALC by interpreting
concept and roles as fuzzy sets over an interpretation domain. Given a domain
∆, a fuzzy set is a function F : ∆ → [0, 1], with the intuition that an element
δ ∈ ∆ belongs to F with degree F (δ). The semantics of the different concept
constructors depend on the class of fuzzy operators chosen. In the logic Π-ALC,

2

we use the binary operators product t-norm ⊗, product t-conorm ⊕ and residuum
→ over the interval [0, 1]. These operators are defined as follows, for every α, β ∈
[0, 1]:

α⊗ β := α · β,
α⊕ β := α + β − α · β,

α→ β :=

{
1 if α ≤ β

β/α otherwise.

It is worth noticing that for every α, β, q ∈ [0, 1] it holds that α → β ≥ q iff
β ≥ q · α. In particular this means that α → β ≥ 1 iff β ≥ α. We will make use
of this property when describing the reasoning algorithms.

Definition 1 (semantics of Π-ALC). An interpretation is a tuple I = (∆I , ·I)
where ∆I is a non-empty set, called the domain, and the function ·I maps each
individual name a to an element of ∆I , each concept name A to a function
AI : ∆I → [0, 1] and each role name r to a function rI : ∆I ×∆I → [0, 1]. The
interpretation function is extended to arbitrary Π-ALC concepts as follows. For
every δ ∈ ∆I ,

>I(δ) = 1

⊥I(δ) = 0

(C1 u C2)I(δ) = CI1 (δ) · CI2 (δ)

(C1 t C2)I(δ) = CI1 (δ) + CI2 (δ)− CI1 (δ) · CI2 (δ)

(¬C)I(δ) = 1− CI(δ)
(∃r.C)I(δ) = sup

γ∈∆I
rI(δ, γ) · CI(γ)

(∀r.C)I(δ) = inf
γ∈∆I

rI(δ, γ)→ CI(γ).

Notice that, contrary to the crisp case, existential and universal restrictions are
not dual to each other; that is, in general (¬∃r.C)I(δ) 6= (∀r.¬C)I(δ).

Definition 2 (model). An interpretation I = (∆I , ·I) satisfies the axiom 〈a : C, q〉
iff CI(aI) ≥ q, it satisfies 〈(a, b) : r, q〉 iff rI(aI , bI) ≥ q and it satisfies the con-
cept inclusion 〈C v D, q〉 iff infδ∈∆I CI(δ) → DI(δ) ≥ q. This interpretation is
called a model of the ontology O if it satisfies all the axioms in O.

A model is called witnessed if for every δ ∈ ∆I , role r and concept C there exist
γ, γ′ ∈ ∆I such that

• (∃r.C)I(δ) = rI(δ, γ) · CI(γ), and

• (∀r.C)I(δ) = rI(δ, γ′)→ CI(γ′).

3

Although it has been shown in [7] that fuzzy ALC does not have the witnessed
model property, reasoning is sometimes restricted to witnessed models only (see,
for instance [6, 7]). The restriction to witnessed models is useful when trying
to design a reasoning algorithm that deals locally with every individual created.
Indeed, as the semantics of the existential restriction ∃r.C consider a supremum
over all individuals of the domain, it is possible that such supremum is not reached
by any individual of the (infinite) domain. An algorithm for general models
would then have to be able to deal with such a “global” condition when deciding
consistency. The restriction to witnessed models allows the algorithm to change
this condition to a local one by producing one individual that is the witness
for this supremum, and hence changing it to a maximum. Since our tableaux
algorithm will have only local rules, it will deal only with witnessed models.

3 The Algorithm

A tableau-based algorithm for deciding consistency of a fuzzy ontology in Π-
ALCF(D) was presented in [6].1 The algorithm applies rules to produce a system
of quadratic constraints that verify that the fuzzy semantics are satisfied by a tree-
like interpretation. However, this algorithm has been shown to be incorrect, even
if restricted to fuzzy ALC [5, 1], since it uses a very weak blocking condition. We
will now describe a modified algorithm that fixes the problems of [6] by providing
a stronger blocking condition, such that the cyclic structure recognized by it
uniquely determines an infinite system of quadratic constraints. The tableau-
based algorithm obtained this way is ensured to terminate, and is sound and
complete in the sense that the input is consistent iff the corresponding infinite
constraint system is satisfiable.

In the following, x (possibly with sub- or superindices) denotes a continuous
variable taking values from [0, 1], q denotes a constant in [0, 1], l denotes a literal,
i.e., a continuous variable x, a negated variable 1−x or a constant, and y denotes
a Boolean variable taking values from {0, 1}.

The algorithm constructs a completion forest; one can think of this as a collection
of trees whose roots may be arbitrarily interconnected by edges. Every node v
in this forest is labeled by a set L(v) of labeled concepts of the form 〈C, l〉 and a
set C(v) of constraints. Intuitively, 〈C, l〉 ∈ L(v) means that v belongs to C with
degree at least l and the constraints in C(v) restrict the valuations of the different
variables used. Additionally, every edge (v1, v2) is labeled with a set L(v1, v2) of
labeled role names 〈r, l〉 with the meaning that (v1, v2) are in an r-relation with
degree at least l.

The algorithm initializes the completion forest to contain one root node vi for each

1Π-ALCF(D) extends Π-ALC with additional constructors that are not relevant for this
report.

4

(A) if 〈A, l〉 ∈ L(v) then add xv:A ≥ l to C(v)

(A) if 〈¬A, l〉 ∈ L(v) then add xv:A ≤ 1− l to C(v)

(r) if 〈r, l〉 ∈ L(v, w) then add x(v,w):r ≥ l to C(w)

(>) if 〈>, l〉 ∈ L(v) or 〈¬⊥, l〉 ∈ L(v) then add l = 1 to C(v)

(⊥) if 〈⊥, l〉 ∈ L(v) or 〈¬>, l〉 ∈ L(v) then add l = 0 to C(v)

(¬¬) if 〈¬¬C, l〉 ∈ L(v) then add 〈C, l〉 to L(v)

(u) if 〈C uD, l〉 ∈ L(v) then add 〈C, x1〉 , 〈D, x2〉 to L(v) and x1 · x2 ≥ l to
C(v)

(u) if 〈¬(C uD), l〉 ∈ L(v) then add 〈¬C t ¬D, l〉 to L(v)

(t) if 〈C tD, l〉 ∈ L(v) then add 〈C, x1〉 , 〈D, x2〉 to L(v) and x1+x2−x1·x2 ≥ l
to C(v)

(t) if 〈¬(C tD), l〉 ∈ L(v) then add 〈¬C u ¬D, l〉 to L(v)

(∀) if 〈∀r.C, l1〉 ∈ L(v) and 〈r, l2〉 ∈ L(v, w) then add 〈C, x〉 to L(w) and
x ≥ l1 · l2 to C(w)

(∃) if 〈¬∃r.C, l1〉 ∈ L(v) and 〈r, l2〉 ∈ L(v, w) then add 〈¬C, 1− x1〉 to L(w)
and x(v,w):r ≤ x2, x1 · x2 ≤ 1− l1 to C(w)

(∀) if 〈¬∀r.C, l〉 ∈ L(v) then create a new node w and add 〈r, x1〉 to L(v, w),
〈C, x2〉 to L(w) and y · x1 + (1− y) · x2 ≥ y · x2 + (1− y) · x1, l ≤ y, y · x2 ≤
x1 − l · x1 to C(w)

(∃) if 〈∃r.C, l〉 ∈ L(v) then create a new node w and add 〈r, x1〉 to L(v, w),
〈C, x2〉 to L(w) and x1 · x2 ≥ l to C(w)

(v) if 〈C v D, q〉 ∈ T and v is a node in the forest, then add
〈¬C, 1− x1〉 , 〈D, x2〉 to L(v) and x2 ≥ x1 · q to C(v).

Table 1: Completion rules for fuzzyALC consistency. x, x1, x2, y are new variables

individual name ai appearing in the ABoxA with L(vi) = {〈C, l〉 | 〈ai : C, l〉 ∈ A}
and L(vi, vj) = {〈r, l〉 | 〈(ai, aj) : r, l〉 ∈ A}. The sets C(vi) are all initialized as
empty. This completion forest is extended by application of the completion rules
from Table 1. As is standard with tableau-based algorithms, these rules are only
applied as long as something new is added to the completion forest.

The main idea of these rules is that they decompose complex concepts into their
subconcepts, while preserving the fuzzy semantics through the restrictions in
C :=

⋃
v C(v). The initialization and rule applications are consistency preserving.

Lemma 3. If an ontology O is witnessed consistent, then after every rule appli-
cation the system of contraints C is satisfiable.

Proof. Since O is consistent, there is a model I of O. We will show by induction
on the rule applications that this model is a solution for the system C at every

5

step. To do this, we will build a function f from the nodes of the completion
forest to ∆I such that for every node v and every 〈C, `〉 ∈ L(v) (resp. every

〈r, `〉 ∈ L(v, v′)) it holds that CI(f(v)) ≥ ̂̀ (resp. rI(f(v), f(v′)) ≥ ̂̀), wherề= ` if ` is a constant and ̂̀ is the valuation of ` if it is a variable or a negated
variable.

After the initialization, the system C is empty and hence is trivially satisfiable.
Given a root node v, let a be the individual name in the ABox from which v was
produced. We then set f(v) = aI . Since I is a model of O, this function satisfies
the condition described above.

Suppose now that the condition holds at some step of the execution and that a
rule is applied. We show by a case analysis on the rule used that after the rule
application, it still holds.

(A) The rule (A) only adds the restriction xv:A ≥ ` to C(v). By induction hy-

pothesis, we know that AI(f(v)) ≥ ̂̀ and hence setting xv:A := AI(f(v))
yields a satisfying valuation of C. The rest of the condition is untouched.

(u) Let 〈C uD, `〉 ∈ L(v). By induction hypothesis we know that (CuD)I(f(v)) ≥̂̀. We can set the valuation x1 := CI(f(v)) and x2 := DI(f(v)). We thus
obtain x1 · x2 = (C uD)I(f(v)) ≥ ` and CI(f(v)) ≥ x1, D

I(f(v)) ≥ x2, as
desired.

(∀) Since (∀r.C)I(f(v)) = infδ∈∆I rI(f(v), δ) ≥ ̂̀
1 and rI(f(v), f(w)) ≥ ̂̀

2 we
know that CI(f(w)) ≥ `1 · `2, and hence setting x := CI(f(w)) yields the
desired condition.

(∃) As (∃r.C)I(f(v)) ≥ ̂̀ and I is witnessed, we know that there must exist a
node δ ∈ ∆I such that (∃r.C)I(f(v)) = rI(f(v), δ) · CI(δ). We thus define
f(w) := δ and x1 := rI(f(v), δ), x2 := CI(δ) to satisfy the condition.

(v) Since I is a model of O, it must satisfy CI(f(v))→ DI(f(v)) ≥ q. We thus
set x1 := CI(f(v)), x2 := DI(f(v)) to obtain the desired condition.

All other rules can be treated analogously.

Remark. The proof depends on the first condition of witnessed models, and does
not hold for general models.

Assume for the moment that the completion forest is saturated; that is, no com-
pletion rule is further applicable. This completion forest describes a model, where
the membership degrees of a node v to a concept name A corresponds to the value
of the variable xv:A. Thus, if the constraint system C is satisfiable, then we can
build a model for the ontology, which means that it is consistent.

6

Lemma 4. Consider the (possibly non-terminating) algorithm consisting of a fair
application of all completion rules to an ontology O. O is witnessed consistent if
after every rule application the system of constraints C is satisfiable.

Proof. Notice first that the solution space of each constraint added to C by a rule
application is closed and hence the solution of any finite set of such constraints is
also closed. Since rule applications only add constraints, we have a sequence of
decreasing closed solution spaces. Each of these solution spaces is by assumption
non-empty, and hence this sequence converges to a non-empty solution set. Any
element of this solution set can be used to build an interpretation I for O, using
as domain the infinite set of nodes generated by rule applications and AI(v) =
xv:A for each node v and concept name A. We need now to show that this
interpretation is indeed a model of O.

Let v be a node in the completion forest created by this algorithm, and 〈C, `〉 ∈
L(v). Since we use a fair rule application, we know that at some step, we will
apply a completion rule to this labeled concept. From a simple case analysis
and induction argument on the structure of C, it can be shown that CI(v) ≥ ̂̀:
for the base case, C is a concept name, then CI(v) = xv:C = ̂̀; for complex
concepts, the property follows from the decomposition rule used. In particular,
this implies that, for every 〈C v D, q〉 ∈ O and every v ∈ ∆I it holds that
CI(v)→ DI(v) ≥ q, and hence I is a model of O.

This model is trivially witnessed, since every node has finitely many successors
with degree greater than 0.

Hence, we have a sound and complete precedure for deciding consistency of a
Π-ALC ontology. However, as is also the case for crisp ALC, this completion
forest construction may not terminate, due to the presence of cyclic axioms. In
order to ensure termination, a blocking condition is used, which disallows the
application of “generating” rules; i.e., the (∃) and (∀) rules cannot be applied in
any node that is considered blocked. Intuitively, one can stop the execution of
the algorithm once we can find nodes in every path that are equivalent, since we
have all the information required for building the full completion forest. While a
correct definition of equivalence of nodes is simple for crisp ALC, in the case of
Π-ALC it requires a more detailed analysis.

4 Adding Blocking

In the case of Π-ALC, equivalence of nodes is defined in terms of the labeled
concepts and the restrictions they define. The idea behind the blocking condition
is that once we produce a node that is equivalent to a previously explored one,
then one does not need to continue expanding the tree, since all the information

7

required has been already produced. Intuitively, one could produce a cycle be-
tween the blocked and the blocking node, which represents the whole model. In
the case of Π-ALC, due to the lack of the finite model property, this cycle may
be more complex, since the same concepts may be considered with different truth
degrees at every node. In this case, we need to check that the constraints de-
fined by the nodes are isomorphic. Although this does not define a finite (cyclic)
model, it gives a finite description of the infinite system of constraints that would
be produced by the algorithm without blocking.

Definition 5 (blocking). Two nodes v, w are equivalent, denoted as L(v) ≈ L(w),
if there exists an isomorphism f between C(v) and C(w) such that for every
concept C and literal ` in C(v), 〈C, `〉 ∈ L(v) iff 〈C, f(l)〉 ∈ L(w).

A node v is directly blocked iff it is not a root node and it has an ancestor w such
that L(v) ≈ L(w); in this case we say that w is the blocking node of v. A node
is blocked if it is directly blocked or its predecessor is blocked.

When a node is (directly or indirectly) blocked, then none of the rules (∃) or
(∀) may be applied, disallowing this way the creation of new individuals. Notice
that none of the other rules produce any new individuals or edges; they only
decompose the information contained in the respective node to basic concepts.
As the following lemma shows, this notion suffices for obtaining a terminating
procedure.

Lemma 6. If no generating rule is applied over blocked nodes, then the algorithm
terminates.

Proof. The algorithm starts with a graph structure that is extended in a tree-like
manner. The branching of these trees is bounded by the number of existential (∃)
and negated universal (∀) concepts appearing in the ontology, and hence is finite.
Each node is labeled with a finite set of labeled concepts, where each concept
may appear at most as many times as it occurs in the ontology and a finite set
of constraints. Since every rule adds at least one such labeled concept to a node
or at least one constraint, only finitely many rules applications can be triggered
at any specific node.

It remains only to show that each of these trees has also finite depth; that is,
that a blocked node is found eventually on each branch. Once again, every node
is generated by a finite number of rule applications. Since every rule adds at
most three variables to the set C, each node has finitely many variables. Every
inequality in C uses at most three variables. Thus, there are also finitely many
sets of inequalities up to isomorphism. This means that the tree has a finite
depth, since every path long enough will get a blocked node. Hence the whole
tree is finite. Thus the algorithm terminates.

When the algorithm terminates, it produces a finite forest where every leaf is
blocked. We can prune this forest in such a way that every leaf is directly blocked.

8

We call this the prunned forest. This forest has an associated finite system of con-
straints. We can then “unravel” this system into an infinite one that characterizes
ontology consistency.

Let F be a prunned forest with n leafs and block a function that maps every
leaf (and hence directly blocked) node to its blocking node. For every leaf vi,
1 ≤ i ≤ n, let ti be the subtree of t with root block(vi) with nodes labeled
with their respective set of restrictions C. We call Ci the set of all restrictions
appearing in this tree. We define the binary relation 7→⊆ {1, . . . , n}× {1, . . . , n}
where i 7→ j iff vj is a successor of block(vi). Finally, we define the language Lt as
the smallest set of words in {1, . . . , n}∗ that contains {ε, 1, . . . , n} and such that
if ηi ∈ Lt and i 7→ j, then also ηij ∈ Lt.

Definition 7. We define CO as the system of constraints that contains Cε :=
C and for each word ηi in Lt a disjoint copy of Ci and for each variable x of
C(vi) the restriction xη = f(x)ηi, where f is the isomorphism between C(vi) and
C(block(vi)).

Intuitively, CO describes how the infinite system of constraints would look like if
the infinite completion forest was constructed without using the blocking condi-
tion. However, the forest itself is not constructed.

Theorem 8. Let CO be the system of constraints obtained from the prunned
output forest of the algorithm applied to the ontology O. Then CO is satisfiable
iff O is consistent.

Proof. Consider the non-terminating algorithm that uses the completion rules
without any blocking condition. It is easy to show by induction on rule application
that at every step of this algorithm, the system of constraints C is contained in
CO. Thus, if CO is satisfiable, then at every rule application C is also satisfiable.
From Lemma 4 it follows that O is consistent.

Conversely, if CO is not satisfiable, then by compactness of this system it follows
that there must be a finite subset C of CO that is not satisfiable. Then, there is a
finite number of rule applications that produce a system C such that C ⊆ C, and
hence C is not satisfiable. Lemma 3 yields inconsistency of O.

5 Conclusions

We have provided the first steps towards an algorithm for deciding consistency
of Π-ALC ontologies, by giving a sound, complete and terminating reduction to
satisfiability of an infinite system of quadratic constraints. This method does not
yield a decision procedure, since it is not clear how to test whether the finitely
described infinite constraint system is satisfiable. The next steps in this direction

9

correspond to finding a bound on the number of constraints that are necessary
for finding inconsistencies in the system, thus obtaining a finite system for which
satisfiability can be decided.

It should be clear that the same blocking condition introduced here would yield
a similar reduction for the fuzzy DL L-ALC, whose semantics is based on the
 Lukasiewicz t-norm. The main difference is that the constraint system obtained
will consist of only linear inequalities. Its applicability to other continuous t-
norms is still to be explored.

References

[1] Franz Baader and Rafael Peñaloza. Are fuzzy description logics with general
concept inclusion axioms decidable? In Proceedings of the 2011 IEEE Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE 2011), pages 1735–1742.
IEEE Press, 2011.

[2] Franz Baader and Rafael Peñaloza. GCIs make reasoning in fuzzy DL with
the product t-norm undecidable. In Riccardo Rosati, Sebastian Rudolph,
and Michael Zakharyaschev, editors, Proceedings of the 2011 International
Workshop on Description Logics (DL’11), volume 745 of CEUR Workshop
Proceedings, 2011.

[3] Franz Baader and Rafael Peñaloza. On the undecidability of fuzzy descrip-
tion logics with GCIs and product t-norm. In Cesare Tinelli and Viorica
Sofronie-Stokkermans, editors, Proceedings of 8th International Symposium
on Frontiers of Combining Systems (FroCoS 2011), volume 6989 of Lecture
Notes in Computer Science, pages 55–70. Springer-Verlag, 2011.

[4] Fernando Bobillo, Félix Bou, and Umberto Straccia. On the failure of the
finite model property in some fuzzy description logics. CoRR, abs/1003.1588,
2010.

[5] Fernando Bobillo, Félix Bou, and Umberto Straccia. On the failure of the
finite model property in some fuzzy description logics. Fuzzy Sets and Sys-
tems, 172(1):1–12, 2011.

[6] Fernando Bobillo and Umberto Straccia. A fuzzy description logic with
product t-norm. In Proceedings of the 2007 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE 2007), pages 1–6. IEEE Press, 2007.

[7] Fernando Bobillo and Umberto Straccia. Fuzzy description logics with gen-
eral t-norms and datatypes. Fuzzy Sets and Systems, 160(23):3382–3402,
2009.

10

[8] Stefan Borgwardt and Rafael Peñaloza. Fuzzy ontologies over lattices with t-
norms. In Riccardo Rosati, Sebastian Rudolph, and Michael Zakharyaschev,
editors, Proceedings of the 2011 International Workshop on Description Log-
ics (DL’11), volume 745 of CEUR Workshop Proceedings, pages 70–80, 2011.

[9] Marco Cerami, Francesc Esteva, and Félix Bou. Decidability of a descrip-
tion logic over infinite-valued product logic. In Proceedings of the 12th In-
ternational Conference on the Principles of Knowledge Representation and
Reasoning (KR 2010), pages 203–213. AAAI Press, 2010.

[10] Marco Cerami and Umberto Straccia. On the undecidability of fuzzy de-
scription logics with GCIs with Lukasiewicz t-norm. CoRR, abs/1107.4212,
2011.

11

