
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Consistency in Fuzzy Description Logics over
Residuated De Morgan Lattices

Stefan Borgwardt Rafael Peñaloza

LTCS-Report 12-04

Postal Address:
Lehrstuhl fr Automatentheorie
Institut fr Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nthnitzer Str. 46

Dresden

Consistency in Fuzzy Description Logics over
Residuated De Morgan Lattices

Stefan Borgwardt Rafael Peñaloza

Abstract

Fuzzy description logics can be used to model vague knowledge in ap-
plication domains. This paper analyses the consistency and satisfiability
problems in the description logic SHI with semantics based on a complete
residuated De Morgan lattice. The problems are undecidable in the general
case, but can be decided by a tableau algorithm when restricted to finite
lattices. For some sublogics of SHI, we provide upper complexity bounds
that match the complexity of crisp reasoning.

1 Introduction

Description Logics (DLs) [1] are a family of knowledge representation formalisms
that are widely used to model application domains. In DLs, knowledge is repre-
sented with the help of concepts (unary predicates) and roles (binary predicates)
that express the relationships between concepts. They have been successfully
employed to formulate ontologies–especially in the medical domain–like Galen1

and serve as the underpinning for the current semantic web language OWL 2.2
Standard reasoning in these logics includes concept satisfiability (is a given con-
cept non-contradictory?) and ontology consistency (does a given ontology have
a model?). These and other reasoning problems have been studied for DLs, and
several algorithms have been proposed and implemented.

One of the main challenges in knowledge representation is the correct modeling
and use of imprecise or vague knowledge. For example, medical diagnoses from
experts are rarely clear-cut and usually depend on concepts like HighBloodPressure
that are necessarily vague. Fuzzy variants of description logics were introduced
in the nineties as a means to tackle this challenge. Their applicability to the
representation of medical knowledge was studied in [19].

1http://www.opengalen.org/
2http://www.w3.org/TR/owl2-overview/

1

http://www.opengalen.org/
http://www.w3.org/TR/owl2-overview/

Fuzzy DLs generalize (crisp) DLs by providing a membership degree semantics
for their concepts. Thus, e.g. 130/85 belongs to the concept HighBloodPressure
with a lower degree than, say 140/80. In their original form, membership degrees
are elements of the real-number interval [0, 1], but this was later generalized to
lattices [18, 23]. The papers [18, 23] consider only a limited kind of semantics over
lattices, where conjunction and disjunction are interpreted through the lattice
operators meet and join, respectively.

In this paper, we consider a more general lattice-based semantics that uses a
triangular norm (t-norm) and its residuum as interpretation functions for the
logical constructors. We study fuzzy variants of the standard reasoning problems
like concept satisfiability and ontology consistency in this setting.

We show that concept satisfiability in ALC under this semantics is undecidable
in general, even if we restrict ourselves to a very simple class of infinite lattices.
However, we show with the help of a tableaux-based algorithm that decidability
of reasoning can be regained—even for the more expressive DL SHI—if the un-
derlying lattice is required to be finite. Moreover, we describe a black-box method
that can be used to transform any decision algorithm for (a small generalization
of) satisfiability into a decision procedure for consistency.

2 Preliminaries

We start with a short introduction to residuated lattices, which will be the base
for the semantics of the fuzzy DL L-SHI. For a more comprehensive view on
these lattices, we refer the reader to [13, 15].

2.1 Lattices

A lattice is a triple (L,∨,∧), consisting of a carrier set L and two idempotent,
associative, and commutative binary operators join ∨ and meet ∧ on L that
satisfy the absorption laws `1 ∨ (`1 ∧ `2) = `1 = `1 ∧ (`1 ∨ `2) for all `1, `2 ∈ L.
These operations induce a partial order ≤ on L: `1 ≤ `2 iff `1∧ `2 = `1. As usual,
we write `1 < `2 if `1 ≤ `2 and `1 6= `2. A subset T ⊆ L is called an antichain (in
L) if there are no two elements `1, `2 ∈ T with `1 < `2. Whenever it is clear from
the context, we will use the carrier set L to represent the lattice (L,∨,∧).

The lattice L is distributive if ∨ and ∧ distribute over each other, finite if L is
finite, and bounded if it has a minimum and a maximum element, denoted as 0
and 1, respectively. It is complete if joins and meets of arbitrary subsets T ⊆ L,∨
t∈T t and

∧
t∈T t, respectively, exist. Clearly, every finite lattice is also complete,

and every complete lattice is bounded.

2

t

u i

f

Figure 1: The De Morgan residuated lattice L4 with ∼ u = u and ∼ i = i.

A De Morgan lattice is a bounded distributive lattice L extended with an invo-
lutive and anti-monotonic unary operation ∼, called (De Morgan) negation, sat-
isfying the De Morgan laws ∼(`1 ∨ `2) = ∼ `1 ∧∼ `2 and ∼(`1 ∧ `2) = ∼ `1 ∨∼ `2

for all `1, `2 ∈ L.

Given a lattice L, a t-norm is an associative and commutative binary operator
on L that is monotonic and has 1 as its unit. A residuated lattice is a lattice
L with a t-norm ⊗ and a binary operator ⇒ (called residuum) such that for all
`1, `2, `3 ∈ L we have `1 ⊗ `2 ≤ `3 iff `2 ≤ `1 ⇒ `3. A simple consequence is that
for all `1, `2 ∈ L we have 1⇒ `1 = `1, and `1 ≤ `2 iff `1 ⇒ `2 = 1.

A t-norm ⊗ over a complete lattice L is continuous if for all ` ∈ L and T ⊆ L we
have ` ⊗ (

∨
`′∈T `

′) =
∨
`′∈T (` ⊗ `′). Every continuous t-norm ⊗ has the unique

residuum ⇒ defined by `1 ⇒ `2 =
∨
{x | `1 ⊗ x ≤ `2} for all `1, `2 ∈ L. If L is

a distributive lattice, then the meet operator `1 ∧ `2 always defines a continuous
t-norm, called the Gödel t-norm. In a residuated De Morgan lattice L, the t-
conorm ⊕ is defined as as `1 ⊕ `2 := ∼(∼ `1 ⊗∼ `2). The t-conorm of the Gödel
t-norm is the join operator `1 ∨ `2.

For example, consider the finite lattice L4, with the elements f, u, i, and t as
shown in Figure 1. This lattice has been used for reasoning about incomplete and
contradictory knowledge [5] and as a basis for a paraconsistent rough DL [25].
In our blood pressure scenario, the two degrees i and u may be used to express
readings that are potentially and partially high blood pressures, respectively. The
incomparability of these degrees reflects the fact that none of them can be stated
to belong more to the concept HighBloodPressure than the other.

For the rest of this paper, L denotes a complete residuated De Morgan lattice
with t-norm ⊗ and residuum ⇒, unless explicitely stated otherwise.

2.2 The Fuzzy DL L-SHI

The fuzzy DL L-SHI is a generalization of the crisp DL SHI that uses the
elements of L as truth values, instead of just the Boolean true and false. The
syntax of L-SHI is the same as in SHI with the addition of the constructor →.

Definition 1 (syntax of L-SHI). Let NC, NR, and NI be pairwise disjoint sets of

3

concept-, role-, and individual names, respectively, and N+
R ⊆ NR a set of transitive

role names. The set of (complex) roles is NR∪{r− | r ∈ NR}. The set of (complex)
concepts C is obtained through the following syntactic rule, where A ∈ NC and s
is a complex role:

C ::= A | C1 u C2 | C1 t C2 | C1 → C2 | ¬C | ∃s.C | ∀s.C | > | ⊥.

The inverse of a complex role s (denoted by s) is s− if s ∈ NR and r if s = r−. A
complex role s is transitive if either s or s belongs to N+

R .

The semantics of this logic is based on functions specifying the membership degree
of every domain element in a concept C.

Definition 2 (semantics of L-SHI). An interpretation is a pair I = (∆I , ·I)
where ∆I is a non-empty domain, and ·I is a function that assigns to every
individual name a an element aI ∈ ∆I , to every concept name A a function
AI : ∆I → L, and to every role name r a function rI : ∆I × ∆I → L, where
rI(x, y)⊗ rI(y, z) ≤ rI(x, z) holds for all r ∈ N+

R and x, y, z ∈ ∆I .

The function ·I is extended to L-SHI concepts as follows for every x ∈ ∆I :

• >I(x) = 1,

• ⊥I(x) = 0,

• (C uD)I(x) = CI(x)⊗DI(x),

• (C tD)I(x) = CI(x)⊕DI(x),

• (C → D)I(x) = CI(x)⇒ DI(x),

• (¬C)I(x) = ∼CI(x),

• (∃s.C)I(x) =
∨
y∈∆I

(
sI(x, y)⊗ CI(y)

)
,

• (∀s.C)I(x) =
∧
y∈∆I

(
sI(x, y)⇒ CI(y)

)
,

where (r−)I(x, y) = rI(y, x) for all x, y ∈ ∆I and r ∈ NR.

Notice that, unlike in crisp SHI, existential and universal quantifiers are not dual
to each other, i.e. in general, (¬∃s.C)I(x) = (∀s.¬C)I(x) does not hold. Likewise,
the implication constructor → cannot be expressed in terms of the negation ¬
and conjunction u.

The axioms of this logic are those of crisp SHI, but with associated lattice values,
which express the degree to which the restrictions must be satisfied.

4

Definition 3 (axioms). An assertion can be a concept assertion of the form
〈a : C . `〉 or a role assertion of the form 〈(a, b) : s . `〉, where C is a concept,
s is a complex role, a, b are individual names, ` ∈ L, and .∈ {=,≥}. If . is =,
then it is called an equality assertion. A general concept inclusion (GCI) is of the
form 〈C v D, `〉, where C,D are concepts, and ` ∈ L. A role inclusion is of the
form s v s′, where s and s′ are complex roles.

An ontology (A, T ,R) consists of a finite set A of assertions (ABox), a finite set
T of GCIs (TBox), and a finite set R of role inclusions (RBox). The ABox A is
called local if there is an individual a ∈ NI such that all assertions in A are of the
form 〈a : C = `〉, for some concept C and ` ∈ L.

An interpretation I satisfies the assertion 〈a : C . `〉 if CI(aI) . ` and the
assertion 〈(a, b) : s . `〉 if sI(aI , bI) . `. It satisfies the GCI 〈C v D, `〉 if
CI(x)⇒ DI(x) ≥ ` holds for every x ∈ ∆I . It satisfies the role inclusion s v s′

if for all x, y ∈ ∆I we have sI(x, y) ≤ s′I(x, y).

I is a model of the ontology (A,T ,R) if it satisfies all axioms in A, T , R.

Given an RBox R, the role hierarchy vR on the set of complex roles is the
reflexive and transitive closure of the relation

{(s, s′) | s v s′ ∈ R or s v s′ ∈ R}.

Using reachability algorithms, the role hierarchy can be computed in polynomial
time in the size of R. An RBox R is called acyclic if it contains no cycles of the
form svR s′, s′vR s for two roles s 6= s′.

The fuzzy DL L-ALC is the sublogic of L-SHI where no role inclusions, transitive
roles, or inverse roles are allowed. SHI is the sublogic of L-SHI where the
underlying lattice contains only the elements 0 and 1, which may be interpreted
as false and true, respectively, and the t-norm and t-conorm are conjunction and
disjunction, respectively.

Recall that the semantics of the quantifiers require the computation of a supre-
mum or infimum of the membership degrees of a possibly infinite set of elements
of the domain. To obtain effective decision procedures, reasoning is usually re-
stricted to a special kind of models, called witnessed models [16].

Definition 4 (witnessed model). Let n ∈ N. A model I of an ontology O is
n-witnessed if for every x ∈ ∆I , every role s and every concept C there are
x1, . . . , xn, y1, . . . , yn ∈ ∆I such that

(∃s.C)I(x) =
n∨
i=1

(
sI(x, xi)⊗ CI(xi)

)
, (∀s.C)I(x) =

n∧
i=1

(
sI(x, yi)⇒ CI(yi)

)
.

In particular, if n = 1, the suprema and infima from the semantics of ∃s.C and
∀s.C are maxima and minima, respectively, and we say that I is witnessed.

5

The reasoning problems for SHI generalize to the fuzzy semantics of L-SHI.

Definition 5 (decision problems). Let O be an ontology, C,D be two concepts,
a ∈ NI, and ` ∈ L. O is consistent if it has a (witnessed) model. C is strongly
`-satisfiable if there is a (witnessed) model I of O and x ∈ ∆I with CI(x) ≥ `.
The individual a is an `-instance of C if 〈a : C ≥ `〉 is satisfied by all (witnessed)
models of O. C is `-subsumed by D if 〈C v D, `〉 is satisfied by all (witnessed)
models of O.

Example 6. It is known that coffee drinkers and salt consumers tend to have a
higher blood pressure. On the other hand, bradycardia is highly correlated with
a lower blood pressure. This knowledge can be expressed through the TBox

{〈CoffeeDrinker v HighBloodPressure, i〉, 〈SaltConsumer v HighBloodPressure, i〉,
〈Bradycardia v ¬HighBloodPressure, i〉},

over the lattice L4 from Figure 1. The degree i in these axioms expresses that the
relation between the causes and HighBloodPressure is not absolute. Consider the
patients ana, who is a coffee drinker, and bob, a salt consumer with bradycardia,
as expressed by the ABox

{〈ana : CoffeeDrinker = t〉, 〈bob : SaltConsumer u Bradycardia = t〉}.

We can deduce that both patients are an i-instance of HighBloodPressure, but
only bob is an i-instance of ¬HighBloodPressure. Notice that if we changed all the
degrees from the GCIs to the value t, the ontology would be inconsistent.

We will focus first on a version of the consistency problem where the ABox is
required to be a local ABox; we call this problem local consistency. We show in
Section 5 that local consistency can be used for solving other reasoning problems
in L-SHI if L is finite. Before that, we show that satisfiability and (local)
consistency are undecidable in L-ALC, and hence also in L-SHI, in general.

3 Undecidability

To show undecidability, we use a reduction from the Post Correspondence Prob-
lem [21] to strong satisfiability in L-ALC over a specific infinite lattice. The
reduction uses ideas that have been successfully applied to showing undecidabil-
ity of reasoning for several fuzzy description logics [2, 3, 12].

Although the basic idea of the proof is not new, it is interesting for several
reasons. First, previous incarnations of the proof idea focused on decidability of
ontology consistency [3, 11, 12], while we are concerned with strong `-satisfiability.
Second, most of the previous undecidability results only hold for reasoning w.r.t.

6

witnessed models, but the current proof works for both witnessed and general
models. Finally, in contrast to an earlier version of this proof [10], the employed
lattice has a quite simple structure in the sense that it is a total order that has
only the two limit points −∞ and ∞ instead of infinitely many. Note that any
distributive lattice without limit points is already finite and reasoning in finite
residuated De Morgan lattices is decidable (see Sections 4 and 5).

Definition 7 (PCP). Let P = {(v1, w1), . . . , (vn, wn)} be a finite set of pairs of
words over the alphabet Σ = {1, . . . , s} with s > 1. The Post Correspondence
Problem (PCP) asks for a finite non-empty sequence i1 . . . ik ∈ {1, . . . , n}+ such
that vi1 . . . vik = wi1 . . . wik . If this sequence exists, it is called a solution for P .

For ν = i1 · · · ik ∈ {1, . . . , n}∗, we define vν := vi1 · · · vik and wν := wi1 · · ·wik .

We consider the lattice Z∞ whose domain is Z ∪ {−∞,∞} with the usual or-
dering over the integers and −∞ and ∞ as the minimal and maximal element,
respectively. Its De Morgan negation is ∼ ` = −` if ` ∈ Z, ∼∞ = −∞, and
∼(−∞) =∞. The t-norm ⊗ is defined as follows for all `,m ∈ Z∞:

`⊗m :=

{
`+m if `,m ∈ Z and `,m ≤ 0

min{`,m} otherwise.

This is in fact a residuated lattice with the following residuum:

`⇒ m :=

∞ if ` ≤ m

m if ` > m and ` ≥ 0

m− ` if ` > m and ` < 0.

Given an instance P of the PCP, we will construct a TBox TP such that the
designated concept name S is strongly∞-satisfiable iff P has no solution. Recall
that the alphabet Σ consists of the first s positive integers. Thus, every word in
Σ+ can be seen as a positive integer written in base s+1; we extend this intuition
and denote the empty word by 0. We encode each word u ∈ Σ∗ with the number
−u ≤ 0.

The idea is that the TBox TP describes the search tree of P with the nodes
{1, . . . , n}∗. At its root ε, it encodes the value vε = wε = ε, which is repre-
sented by 0, using the concept names V and W . These concept names are used
throughout the tree to express the values vν and wν at every node ν ∈ {1, . . . , n}∗.
Additionally, we will use the auxiliary concept names Vi and Wi to encode the
constant words vi and wi, respectively, for each i ∈ {1, . . . , n}. These will be used
to compute the concatenation vνi = vνvi at each node.

To simplify the reduction, we will use some abbreviations. Given two L-ALC
concepts C and D and r ∈ NR, 〈C ≡ D〉 abbreviates the axioms 〈C v D,∞〉,
〈D v C,∞〉; and 〈C r

 D〉 stands for the axioms 〈C v ∀r.D,∞〉, 〈∃r.D v C,∞〉.
For n ≥ 1, the concept Cn is inductively defined by C1 := C and Cn+1 := CnuC.

7

Proposition 8. Let I be an interpretation and x ∈ ∆I.

• If I satisfies 〈C ≡ D〉, then CI(x) = DI(x).

• If I satisfies 〈C r
 D〉 and CI(x) ≤ 0, then CI(x) = DI(y) holds for all

y ∈ ∆I with rI(x, y) ≥ 1.

• If CI(x) ∈ Z, CI(x) ≤ 0, and n ≥ 1, then (Cn)I(x) = n · CI(x).

We now introduce the TBox T0 :=
⋃n
i=0 T iP that encodes the search tree of the

instance P of the PCP:

T 0
P := { 〈S v V, 0〉, 〈S v ¬V, 0〉, 〈S v W, 0〉, 〈S v ¬W, 0〉},
T iP := { 〈> v ∃ri.>, 1〉,

〈> v Vi,−vi〉, 〈> v ¬Vi, vi〉, 〈> v Wi,−wi〉, 〈> v ¬Wi, wi〉,
〈(V (s+1)|vi| u Vi)

ri V 〉, 〈(W (s+1)|wi| uWi)
ri W 〉}

The TBox T 0
P initializes the search tree by ensuring for every model I and every

domain element x ∈ ∆I that satisfies SI(x) = ∞ that the values of V and W
are both 0, which is the encoding of the empty word. Each TBox T iP ensures the
existence of an ri-successor for every domain element and describes the constant
pair (vi, wi) using the concepts Vi and Wi, i.e. it forces that V Ii (x) = −vi and
W I
i (x) = −wi for every x ∈ ∆I . Using the last two axioms, the search tree is

then extended by concatenating the words v and w produced so far with vi and
wi, respectively. In the following, we will describe this in more detail.

Consider the interpretation IP over the domain ∆IP = {1, . . . , n}∗, where for all
ν, ν ′ ∈ {1, . . . , n}∗ and i ∈ {1, . . . , n},

• V IP (ν) = −vν , W IP (ν) = −wν ,

• V IPi (ν) = −vi, W IP
i (ν) = −wi,

• rIPi (ν, νi) =∞ and rIPi (ν, ν ′) = −∞ if ν ′ 6= νi,

• SIP (ε) =∞ and SIP (ν ′) = −∞ if ν ′ 6= ε.

It is easy to see that IP is in fact a model of T0 and it strongly satisfies S with
degree ∞. Moreover, every model of this TBox that strongly ∞-satisfies S must
“include” IP in the following sense.

Lemma 9. Let I be a model of T0 such that SI(x0) = ∞ for some x0 ∈ ∆I.
Then there exists a function g : ∆IP → ∆I such that AIP (ν) = AI(g(ν)) and
ri(g(ν), g(νi)) ≥ 1 hold for every concept name A ∈ {V,W, V1,W1, . . . , Vn,Wn},
every ν ∈ ∆IP , and every i ∈ {1, . . . , n}.

8

Proof. We construct the function g by induction on ν and set g(ε) := x0. Since
I is a model of T 0

P and SI(x0) =∞, we have V I(x0) ≥ 0 and ∼V I(x0) ≥ 0, i.e.
V I(x0) = 0, and similarly W I(x0) = 0. In the same way, for every i ∈ {1, . . . , n},
V Ii (x0) and W I

i (x0) are restricted by T iP to be −vi and −wi, respectively.

Let now ν ∈ {1, . . . , n}∗ and assume that g(ν) already satisfies the condition.
For each i ∈ {1, . . . , n}, the first axiom of T iP ensures that

∨
y∈∆I rIi (g(ν), y) ≥ 1.

Thus, there is yi ∈ ∆I such that rIi (g(ν), yi) ≥ 1. We define g(νi) := yi. By
Proposition 8, we have

V I(yi) = (V (s+1)|vi| u Vi)I(g(ν)) = −
(
(s+ 1)|vi|vν + vi

)
= −vνvi = −vνi,

and similarly for W I(yi). The claim for Vi and Wi can be shown as above.

This proposition shows that every model of T0 encodes a description of the search
tree for a solution of P . Thus, to decide the PCP, it suffices to detect whether
there is a node ν ∈ {1, . . . , n}+ of IP where V IP (ν) = W IP (ν). We accomplish
this using the TBox

T ′ := {〈> v ∀ri.¬((V → W) u (W → V)), 0〉 | 1 ≤ i ≤ n}.

The interpretation IP is a model of T ′ iff V IP (ν) 6= W IP (ν) holds for every
ν ∈ {1, . . . , n}+.

Lemma 10. P has a solution iff S is not ∞-satisfiable w.r.t. TP := T0 ∪ T ′.

Proof. For any two values `,m ≤ 0, we have ` 6= m iff (`⇒ m)⊗ (m⇒ `) ≤ 0.

Assume now that S is not ∞-satisfiable w.r.t. TP . Then, in particular, IP does
not satisfy T ′, i.e. we have (∀ri.¬((V → W) u (W → V)))IP (ν) < 0 for some
ν ∈ {1, . . . , n}∗ and i ∈ {1, . . . , n}. There must be a ν ∈ {1, . . . , n}+ with
(¬((V → W) u (W → V)))IP (ν) < 0; thus, −vν = V IP (ν) = W IP (ν) = −wν .
This shows that vν = wν , i.e. P has a solution.

For the other direction, let I be a model of TP and x0 ∈ ∆I such that SI(x0) =∞.
In particular, we have

rIi (g(ν), g(νi))⇒ (¬((V → W) u (W → V)))I(g(νi)) ≥ 0

for every ν ∈ {1, . . . , n}∗ and i ∈ {1, . . . , n}, where g is the function constructed
in Lemma 9. Thus, ((V → W)u(W → V))I(g(ν)) ≤ 0 for every ν ∈ {1, . . . , n}+,
which implies −vν = V I(g(ν)) 6= W I(g(ν)) = −wν . This shows that vν 6= wν for
all ν ∈ {1, . . . , n}+, i.e. P has no solution.

As mentioned before, since the interpretation IP is witnessed, undecidability
holds even if we restrict reasoning to n-witnessed models, for any n ∈ N.

9

Theorem 11. Strong satisfiability is undecidable in L-ALC, even if L is a count-
able total order with at most two limit points and reasoning is restricted to n-
witnessed models.

This theorem also shows that (local) consistency is undecidable in L-ALC since
S is strongly ∞-satisfiable w.r.t. TP iff ({〈a : S =∞〉}, TP) is locally consistent,
where a is an arbitrary individual name. Notice that these do not exclude the
existence of classes of infinite lattices for which reasoning in L-SHI is decidable.
If we restrict to finite lattices, then a tableau algorithm can be used for reasoning.

4 A Tableaux Algorithm for Local Consistency

Before presenting a tableau algorithm [4] that decides local consistency by con-
structing a model of a given L-SHI ontology, we discuss previous approaches to
deciding consistency of fuzzy DLs over finite residuated De Morgan lattices in the
presence of GCIs.

A popular method is the reduction of fuzzy ontologies into crisp ones, which has
so far only been done for finite total orders [7, 8, 23]. Reasoning can then be
performed through existing optimized reasoners for crisp DLs. The main idea is
to translate every concept name A into finitely many crisp concept names A≥`,
one for each truth value `, where A≥` collects all those individuals that belong
to A with a truth degree ≥ `. The lattice structure is expressed through GCIs of
the form A≥`2 v A≥`1 , where `2 is a minimal element above `1, and analogously
for the role names. All axioms are then recursively translated into crisp axioms
that use only the introduced crisp concept and role names. The resulting crisp
ontology is consistent iff the original fuzzy ontology is consistent.

In general such a translation is exponential in the size of the concepts that occur in
the fuzzy ontology. The reason is that, depending on the t-norm used, there may
be many possible combinations of values `1, `2 for C,D, respectively, that lead to
C uD having the value ` = `1 ⊗ `2, and similarly for the other constructors. All
these possibilities have to be expressed in the translation. If after the translation
one uses a crisp DL reasoner, which usually implement tableaux algorithms with
a worst-case complexity above NExpTime, one gets a 2-NExpTime reasoning
procedure. In contrast, our tableau algorithm has a worst-case complexity of
NExpTime, matching the complexity of crisp SHI.

To the best of our knowledge, at the moment there exists only one (correct)
tableaux algorithm that can deal with a finite total order of truth values and
GCIs [22],3 but it is restricted to the Gödel t-norm. The main difference be-
tween this algorithm and ours is that we non-deterministically guess the degree

3Several tableau algorithms for fuzzy DLs exist, but they are either restricted to acyclic
TBoxes or are not correct in the presence of GCIs, as shown in [2, 6].

10

of membership of each individual to every relevant concept, while the approach
from [22] sets only lower and upper bounds for these degrees; this greatly reduces
the amount of non-determinism, but introduces several complications when a
t-norm different from the Gödel t-norm is used.

We present a straightforward tableaux algorithm with a larger amount of non-
determinism that nevertheless matches the theoretical worst-case complexity of
tableaux algorithms for crisp SHI. It is loosely based on the crisp tableaux al-
gorithm in [17]. A first observation that simplifies the algorithm is that since L
is finite, we can w.l.o.g. restrict reasoning to n-witnessed models.

Proposition 12. If the maximal cardinality of an antichain of L is n, then every
interpretation in L-SHI is n-witnessed.

For simplicity, we consider only the case n = 1. For n > 1, the construction is
similar, but several witnesses have to be produced for satisfying each existential
and value restriction. The necessary changes in the algorithm are described at
the end of this section. We can also assume w.l.o.g. that the RBox is acyclic.
The proof of this follows similar arguments as for crisp SHI [24].

Proposition 13. Deciding local consistency in L-SHI is polynomially equivalent
to deciding local consistency in L-SHI w.r.t. acyclic RBoxes.

In the following, let O = (A, T ,R) be an ontology where A is a local ABox
that contains only the individual name a and R is an acyclic RBox. We first
show that O has a model if we can find a tableau; intuitively, a possibly infinite
“completed version” of A. Later we describe an algorithm for constructing a finite
representation of such a tableau.

Definition 14. A tableau for O is a set T of equality assertions over a set Ind of
individuals such that a ∈ Ind, A ⊆ T, and the following conditions are satisfied
for all C,C1, C2 ∈ sub(O), x, y ∈ Ind, r, s ∈ NR, and ` ∈ L:

Clash-free: If 〈x : C = `〉 ∈ T or 〈(x, y) : r = `〉 ∈ T, then there is no `′ ∈ L
such that `′ 6= ` and 〈x : C = `′〉 ∈ T or 〈(x, y) : r = `′〉 ∈ T, respectively.

Complete: For every row of Table 1, the following condition holds:

“If 〈trigger〉 is in T, there are 〈values〉 such that 〈assertions〉 are in T.”

These conditions help to abstract from the interplay between transitive roles and
existential and value restrictions. It suffices to satisfy the above conditions to
make certain that O has a model.

Lemma 15. O is locally consistent iff it has a tableau.

11

〈trigger〉 〈values〉 〈assertions〉
u 〈x : C1 u C2 = `〉 `1, `2 ∈ L with

`1 ⊗ `2 = `
〈x : C1 = `1〉,
〈x : C2 = `2〉

t 〈x : C1 t C2 = `〉 `1, `2 ∈ L with
`1 ⊕ `2 = `

〈x : C1 = `1〉,
〈x : C2 = `2〉

→ 〈x : C1 → C2 = `〉 `1, `2 ∈ L with
`1 ⇒ `2 = `

〈x : C1 = `1〉,
〈x : C2 = `2〉

¬ 〈x : ¬C = `〉 〈x : C = ∼ `〉
∃ 〈x : ∃r.C = `〉 `1, `2 ∈ L with

`1 ⊗ `2 = `,
individual y

〈(x, y) : r = `1〉,
〈y : C = `2〉

∃≤ 〈x : ∃r.C = `〉,
〈(x, y) : r = `1〉

`2 ∈ L with
`1 ⊗ `2 ≤ `

〈y : C = `2〉

∃+ 〈x : ∃s.C = `〉,
〈(x, y) : r = `1〉 with r
transitive and rvR s

`2 ∈ L with
`1 ⊗ `2 ≤ `

〈y : ∃r.C = `2〉

∀ 〈x : ∀r.C = `〉 `1, `2 ∈ L with
`1 ⇒ `2 = `,
individual y

〈(x, y) : r = `1〉,
〈y : C = `2〉

∀≥ 〈x : ∀r.C = `〉,
〈(x, y) : r = `1〉

`2 ∈ L with
`1 ⇒ `2 ≥ `

〈y : C = `2〉

∀+ 〈x : ∀s.C = `〉,
〈(x, y) : r = `1〉 with r
transitive and rvR s

`2 ∈ L with
`1 ⇒ `2 ≥ `

〈y : ∀r.C = `2〉

inv 〈(x, y) : r = `1〉 〈(y, x) : r = `1〉
vR 〈(x, y) : r = `1〉, rvR s `2 ∈ L with `1 ≤ `2 〈(x, y) : s = `2〉
vT individual x,

〈C1 v C2, `〉 in T
`1, `2 ∈ L with
`1 ⇒ `2 ≥ `

〈x : C1 = `1〉,
〈x : C2 = `2〉

Table 1: The tableau conditions for L-SHI.

Proof. Let T be a tableau for O over the set Ind of individuals. We define
CT(x) = ` if 〈x : C = `〉 ∈ T and rT(x, y) = ` if 〈(x, y) : r = `〉 ∈ T. Note
that these values are either unique or undefined since T is clash-free. In this
way, T immediately defines a rudimentary interpretation. However, transitive
roles are not yet interpreted by transitive fuzzy relations. In the following, we
denote by rT(z1, . . . , zn) the value rT(z1, z2)⊗ . . .⊗ rT(zn−1, zn) for any sequence
z1, . . . , zn ∈ Ind. This value is 1 if n = 1 since 1 is the unit element for ⊗.

We now define a proper model I of O by setting ∆I := Ind, AI(x) = AT(x) for

12

all concept names A and x ∈ Ind,

rI(x, y) =
∨
n≥0

∨
z1,...,zn∈Ind

rT(x, z1, . . . , zn, y) if the role r is transitive, and

rI(x, y) = rT(x, y) ∨
∨

svR r, s6=r

sI(x, y) otherwise.

Thus, I correctly interprets transitive roles by transitive relations. This construc-
tion was inspired by a similar one used for crisp SHI in [17]. It is well-defined if
R is acyclic (see Lemma 13). By the inv- and vR-conditions, I satisfies R and
inverse roles are interpreted correctly. Furthermore, one can show by induction
on the role depth that for every concept C we have CI(x) = CT(x) whenever the
latter is defined. Together with the vT -condition and the fact that A ⊆ T, this
shows that I also satisfies A and T , and thus it satisfies O.

Let now I be a model of O. We can easily construct a tableau T over the set ∆I

of individuals as follows. For every concept C and x ∈ ∆I , we add 〈x : C = `〉
to T if CI(x) = `. Similarly, for every role r and x, y ∈ ∆I , we add the assertion
〈(x, y) : r = rI(x, y)〉 to T. We have A ⊆ T since I satisfies A. T is clash-free
since the values are uniquely defined by I.

Furthermore, the semantics of L-SHI concepts and axioms yield completeness:
consider the ∃+-condition and assume that (∃s.C)I(x) = `, rI(x, y) = `1 with r
transitive, and rvR s. Since the value `2 = (∃r.C)I(y) is defined, by monotonicity
of ⊗ this value satisfies

`1 ⊗ `2 = rI(x, y)⊗ (∃r.C)I(y) =
∨
z∈∆I

rI(x, y)⊗ rI(y, z)⊗ CI(z)

≤
∨
z∈∆I

rI(x, z)⊗ CI(z) ≤
∨
z∈∆I

sI(x, z)⊗ CI(z) = (∃s.C)I(x) = `.

Similar arguments show that T satisfies the other completeness conditions.

We now present a tableaux algorithm that nondeterministically expands A to
a tree-like ABox Â that represents a model of O. It uses the conditions from
Table 1 and reformulates them into expansion rules of the form:

“If there is 〈trigger〉 in Â and there are no 〈values〉 such that 〈assertions〉
are in A, then introduce 〈values〉 and add 〈assertions〉 to Â.”

The rules ∃ and ∀ always introduce new individuals y that do not appear in Â.
Initially, the ABox A contains the single individual a. It is expanded by the rules
in a tree-like way: role connections are only created by adding new successors
to existing individuals. If an individual y was created by a rule ∃ or ∀ that was
applied to an assertion involving an individual x, then we say that y is a successor

13

of x, and x is the predecessor of y; ancestor is the transitive closure of predecessor.
Note that the presence of an assertion 〈(x, y) : r = `〉 in Â does not imply that y
is a successor of x—it could also be the case that this assertion was introduced
by the inv-rule. We further denote by Âx the set of all concept assertions from
Â that involve the individual x, i.e. are of the form 〈x : C = `〉 for some concept
C and ` ∈ L. To ensure that the application of the rules terminates, we need to
add a blocking condition. We use anywhere blocking [20], which is based on the
idea that it suffices to examine each set Âx only once in the whole ABox Â.

Let � be a total order on the individuals of Â that includes the ancestor relation-
ship, i.e. whenever y is a successor of x, then y � x. An individual y is directly
blocked if for some other individual x in Â with y � x, Âx is equal to Ây modulo
the individual names; in this case, we write Âx ≡ Ây and also say that x blocks
y. It is indirectly blocked if its predecessor is either directly or indirectly blocked.
A node is blocked if it is either directly or indirectly blocked. The rules ∃ and ∀
are applied to Â only if the node x that triggers their execution is not blocked.
All other rules are applied only if x is not indirectly blocked.

The total order � avoids cycles in the blocking relation. One possibility is to
simply use the order in which the individuals were created by the expansion
rules. Note that the only individual a that occurs in A, which is the root of the
tree-like structure represented by Â, cannot be blocked since it is an ancestor of
all other individuals in Â. With this blocking condition, we can show that the
size of Â is bounded exponentially in the size of A, as in the crisp case [20].

Lemma 16. Every application of expansion rules to A terminates after at most
exponentially many rule applications.

Proof. Let sub(O) denote the set of all subconcepts of concepts appearing in O
and recall that every rule application expands Â in a tree-like manner. Note
that there are at most |L||sub(O)| possible concept assertions for one individ-
ual x. Thus, every node in this tree has at most |L||sub(O)| successors: one
for each possible assertion with a quantified concept. Moreover, there can be
at most 2|L||sub(O)| non-blocked nodes in Â at any time, and thus, when a node
becomes blocked, at most exponentially many nodes become indirectly blocked.
This shows that we obtain a tree of at most exponential size before every rule
application is disallowed by the blocking condition. The claim now follows from
the fact that every rule application adds at least one assertion to Â and cannot
remove assertions from Â.

We say that Â contains a clash if it contains two assertions that are equal except
for their lattice value (see Definition 14). Â is complete if it contains a clash or
none of the expansion rules are applicable. The algorithm is correct in the sense
that it produces a clash iff O is not locally consistent.

14

Lemma 17. O is locally consistent iff some application of the expansion rules to
A yields a complete and clash-free ABox.

Proof. By Lemma 15, O is locally consistent iff it has a tableau. Assume first
that T is a tableau for O over the set Ind of individuals. We show how to guide
the application of the expansion rules in such a way that no clash is produced.

Observe that the initial ABox A is included in T by definition. We will ensure
that the expansion rules add only assertions to Â that are also in T. Assume
that, for some row of Table 1, an expansion rule is applicable, i.e. 〈trigger〉 is
in Â and there are no 〈values〉 such that 〈assertions〉 are in Â and the blocking
condition does not apply. Since 〈trigger〉 is also in the tableau T, there must be
〈values〉 such that 〈assertions〉 are in T, and thus we can add 〈assertions〉 to Â.

Since T is clash-free, this process cannot create any clashes in Â. Lemma 16
shows that at some point Â must also be complete.

Assume now that the expansion rules have produced a complete and clash-free
ABox Â. We define a tableau T for O over the set

Ind := {x ∈ NI | x occurs in Â and is not blocked}

of individuals as follows:

T := {〈x : C = `〉 ∈ Â | x ∈ Ind}
∪ {〈(x, y) : r = `〉 ∈ Â | x, y ∈ Ind}
∪ {〈(x, y) : r = `〉 | x, y ∈ Ind, 〈(x, z) : r = `〉 ∈ Â, and y blocks z}
∪ {〈(x, y) : r = `〉 | x, y ∈ Ind, 〈(z, y) : r = `〉 ∈ Â, and x blocks z}.

Thus, whenever y blocks z and z is not indirectly blocked, then all incoming
role connections of z are “re-routed” back to y. Since the root a of the tree-like
structure Â has no predecessors, it cannot be blocked, and thus the initial ABox
A is still contained in T. Furthermore, since Â is clash-free, T is also clash-free.

Assume now that T violates the condition specified by some row of Table 1, i.e.
there is 〈trigger〉 in T, but no 〈values〉 such that 〈assertions〉 are in T.

a) If 〈trigger〉 involves only assertions from Â, then the corresponding expansion
rule was applied at some point and introduced 〈values〉 and 〈assertions〉. If no
new individual was introduced, all 〈assertions〉 must also be in T. We consider
now the case of the ∃-rule; the ∀-rule can be handled similarly.

Assume that 〈x : ∃r.C = `〉 ∈ Â and x is not blocked. Then a new individual y
was introduced, together with the assertions 〈(x, y) : r = `1〉 and 〈y : C = `2〉,
where `1 ⊗ `2 = `. If y is not blocked, these assertions are also in T. If y
is blocked by an individual z, then the assertion 〈(x, z) : r = `2〉 is in T.
Additionally, we have Ây ≡ Âz, and thus also 〈z : C = `2〉 is in T.

15

b) If 〈trigger〉 involves a role assertion 〈(x, y) : r = `1〉 where 〈(x, z) : r = `1〉 ∈ Â
and y blocks z, then x is not blocked and the corresponding expansion rule was
applied to Â with z instead of y. Consider the case of the ∃≤-rule. Then the
assertions 〈x : ∃r.C = `〉 and 〈z : C = `2〉 must be in Â with `1⊗`2 ≤ `. Since
Âz ≡ Ây, we have 〈y : C = `2〉 in Â and also in T. The rules ∃+, ∀≥, and ∀+

behave similarly. If the inv-rule was applied, then we have 〈(z, x) : r = `1〉 ∈ Â,
and thus 〈(y, x) : r = `1〉 is in T. If the vR-rule was applied with rvR s,
then 〈(x, z) : s = `2〉 ∈ Â with some `2 ∈ L such that `1 ≤ `2. Thus, we have
〈(x, y) : s = `2〉 in T.

c) If 〈trigger〉 involves a role assertion 〈(x, y) : r = `1〉 where 〈(z, y) : r = `1〉 ∈ Â
and x blocks z, then consider the concrete condition concerned. If it is the
∃≤-condition, then we have 〈x : ∃r.C = `〉 in T and also in Â. Since Âx ≡ Âz,
this implies that 〈z : ∃r.C = `〉 is in Â. Since z must be a successor of y, z is
not indirectly blocked, and thus by the ∃≤-rule there is 〈y : C = `2〉 in Â with
`1⊗`2 ≤ `. The same assertion must also be present inT since y is not blocked.
Again, the conditions ∃+, ∀≥, and ∀+ can be handled similarly. If it is the inv-
condition, then since z is not indirectly blocked, we have 〈(y, z) : r = `1〉 ∈ Â,
and thus 〈(y, x) : r = `1〉 in T. If it is the vR-condition with rvR s, then
since z is not indirectly blocked, there must be a value `2 ∈ L with `1 ≤ `2

such that 〈(z, y) : s = `2〉 is in Â, and thus 〈(x, y) : s = `2〉 is in T.

Since the tableau rules are nondeterministic, Lemmata 16 and 17 together imply
that the tableaux algorithm decides local consistency in NExpTime.

Theorem 18. Local consistency in L-SHI w.r.t. witnessed models can be decided
in NExpTime.

As explained before, L-SHI has the n-witnessed model property for some n ≥ 1.
We have so far restricted our description to the case where n = 1. If n > 1, it
does not suffice to generate only one successor for every existential and universal
restriction, but one must produce n different successors to ensure that the degrees
guessed for these complex concepts are indeed witnessed by the model. The only
required change to the algorithm is in the rows ∃ and ∀ of Table 1, where we
have to introduce n individuals y1, . . . , yn, and 2n values `1

1, `
1
2, . . . , `

n
1 , `

n
2 ∈ L

that satisfy
∨n
i=1 `

i
1 ⊗ `i2 = ` or

∧n
i=1 `

i
1 ⇒ `i2 = `, respectively.

5 Local Completion and Other Black-Box Reduc-
tions

In the following, we assume that we have a black-box procedure that decides local
consistency in a sublogic of L-SHI. This procedure can be, e.g. the tableau-based

16

algorithm from the previous section, or any other method for solving this decision
problem. We show how to employ such a procedure to solve other reasoning
problems for this sublogic.

5.1 Consistency

To reduce consistency of an arbitrary ontologyO = (A, T ,R) to local consistency,
we first make sure that the information contained in A is consistent “in itself”,
i.e. if we only consider the individuals occurring in A. It then suffices to check a
local consistency condition for each of the individuals.

Let IndA denote the set of individual names occurring in A and sub(A, T) the
set of all subconcepts of concepts occurring in A or T . We first guess a set Â of
equality assertions of the forms 〈a : C = `〉 and 〈(a, b) : r = `〉 with a, b ∈ IndA,
C ∈ sub(A, T), r ∈ NR, and ` ∈ L. We then check whether Â is clash-free and
satisfies the tableau conditions listed in Table 1, except the witnessing conditions
∃ and ∀. Additionally, we impose the following condition on Â:

“If there is an assertion 〈α . `〉 in A, then there is `′ ∈ L such that `′ . `
and 〈α = `′〉 is in Â.”

We call Â locally complete iff it is of the above form and satisfies all of the above
conditions. Guessing this set and checking whether it is locally complete can be
done in polynomial time in the size of O.

Lemma 19. An ontology O = (A, T ,R) is consistent iff there is a locally com-
plete set Â such that Ox = (Âx, T ,R) is locally consistent for every x ∈ IndA.

Proof. Let I be a model of O and Â be the set of all assertions 〈a : C = CI(aI)〉
and 〈(a, b) : r = rI(aI , bI)〉 for a, b ∈ IndA, r ∈ NR, and C ∈ sub(A, T). Using
the same arguments as in the proof of Lemma 15, we can show that Â is locally
complete. Furthermore, by construction I satisfies Ox for any x ∈ IndA.

Let now Â be a locally complete set for O and Ox be locally consistent for every
x ∈ IndA. By Lemma 15, for each x ∈ IndA there is a tableau Tx for Ox over the
set Indx of individuals. We can assume that the sets Indx are mutually disjoint.
Note that x ∈ Indx for every x ∈ IndA.

We now define CT(y) = ` whenever 〈y : C = `〉 ∈ Tx for some x ∈ IndA.
Similarly, we set rT(y, z) = ` if 〈(y, z) : r = `〉 ∈ Tx for some x ∈ IndA. Note
that, since T is clash-free and the sets Indx are disjoint, these values are uniquely
defined. To reconnect the individuals of IndA, we additionally define rT(x, y) = `

whenever 〈(x, y) : r = `〉 ∈ Â.

17

As in the proof of Lemma 15, we can now define an interpretation I from these
values by constructing the transitive closure of rT if r is transitive. It then holds
that CI(x) = CT(x) whenever the latter is defined. Since the assertions in Â
satisfy A, I also satisfies A and by the vT - and vR-conditions, I satisfies T and
R.

Theorem 20. If local consistency in L-SHI can be decided in a complexity class
C, then consistency in L-SHI can be decided in any complexity class that contains
both NP and C.

This means that consistency in L-SHI is decidable in NExpTime. In [9], an
automata-based algorithm was presented that can decide satisfiability and sub-
sumption in L-ALCI in ExpTime. Moreover, if the TBox is acyclic, then this
bound can be improved to PSpace. The algorithm can easily be adapted to
decide local consistency. With the above reduction, this shows that consistency
in L-ALCI w.r.t. general and acyclic TBoxes can be decided in ExpTime and
PSpace, respectively. The same argument applies to any sublogic of L-SHI for
which local consistency can be decided in ExpTime or PSpace.

5.2 Satisfiability, Instance Checking, and Subsumption

To decide whether a concept C is strongly `-satisfiable w.r.t. O = (A, T ,R), we
can simply check whether (A ∪ {a : C ≥ `}, T ,R) is consistent for an arbitrary
individual name a. Thus, strong `-satisfiability is in the same complexity class
as consistency. Moreover, we can easily compute the set of all values ` ∈ L such
that the ontology (A ∪ {a : C ≥ `}, T ,R) is consistent by calling the decision
procedure for consistency a constant number of times, i.e. once for each ` ∈ L. We
can use this set to compute the best bound for the satisfiability of C. Formally,
the best satisfiability degree of a concept C is the supremum of all ` ∈ L such
that C is `-satisfiable w.r.t. O. Since we can compute the set of all elements of
L satisfying this property, obtaining the best satisfiability degree requires only a
supremum computation. As the lattice L is fixed, this adds a constant factor to
the complexity of checking consistency.

To check `-instances, we can exploit the fact that a is not an `-instance of C
w.r.t. O iff there is a model I of O and a domain element x ∈ ∆I such that
CI(aI) � `. This is the case iff there is a value `′ � ` such that the ontology
(A∪{a : C = `′}, T ,R) is consistent. Thus, `-instances can be decided by calling
the decision procedure for consistency a constant number of times, namely at
most once for each `′ ∈ L with `′ � `. We can also compute the best instance
degree for a and C, which is the supremum of all ` ∈ L such that a is an `-instance
of C w.r.t. O. Let L denote the set of all `′ such that ({a : C = `′}, T ,R) is

18

consistent. The best instance degree for a and C is the infimum of all `′ ∈ L since∨
{` ∈ L | a is an `-instance of C} =

∨
{` ∈ L | ∀`′ � ` : `′ /∈ L}

=
∨
{` ∈ L | ∀`′ ∈ L : ` ≤ `′} =

∧
L.

Finally, note that C is `-subsumed by D iff a is an `-instance of C → D, where a
is a new individual name. Thus, deciding `-subsumption and computing the best
subsumption degree can be done using the same approach as above.

Lemma 21. If local consistency in L-SHI can be decided in a complexity class
C, then strong satisfiability, instance checking, and subsumption in L-SHI can
be decided in any complexity class that contains both NP and C.

This shows that also strong satisfiability, instance checking, and subsumption in
L-SHI are in NExpTime. This bound reduces to ExpTime or PSpace if we
consider L-ALCI w.r.t. general or acyclic TBoxes, respectively [9].

6 Conclusions

We have studied fuzzy description logics with semantics based on complete resid-
uated De Morgan lattices. We showed that even for the fairly inexpressive DL
L-ALC, strong satisfiability w.r.t. general TBoxes is undecidable when the un-
derlying lattice is infinite. For finite lattices, decidability is regained. In fact,
local consistency can be decided with a nondeterministic tableaux-based proce-
dure in exponential time. We conjecture that this upper bound can be improved
to ExpTime either by an automata-based algorithm or with the help of advanced
caching techniques [14]. Other decision and computation problems can also be
solved using a local consistency reasoner as a black box. In particular, this yields
tight complexity bounds for deciding consistency in L-ALCI w.r.t. acyclic and
general TBoxes–PSpace and ExpTime, respectively.

The presented tableaux algorithm has highly nondeterministic rules, and as such
is unsuitable for an implementation. Most of the optimizations developed for
tableaux algorithms for crisp DLs, like the use of an optimized rule-application
ordering, can be transfered to our setting. However, the most important task is
to reduce the search space created by the choice of lattice values in most of the
rules. We plan to study these optimizations in the future.

References

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,

19

Implementation, and Applications. Cambridge University Press, 2nd edition,
2007.

[2] Franz Baader and Rafael Peñaloza. Are fuzzy description logics with general
concept inclusion axioms decidable? In Proc. FUZZ-IEEE’11, pages 1735–
1742, 2011.

[3] Franz Baader and Rafael Peñaloza. On the undecidability of fuzzy descrip-
tion logics with GCIs and product t-norm. In Proc. FroCoS’11, volume 6989
of LNCS, pages 55–70. 2011.

[4] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69(1):5–40, 2001.

[5] Nuel D. Belnap. A useful four-valued logic. In Modern Uses of Multiple-
Valued Logic, pages 7–37. Reidel Publishing Company, 1977.

[6] Fernando Bobillo, Félix Bou, and Umberto Straccia. On the failure of the
finite model property in some fuzzy description logics. Fuzzy Set. Syst.,
172(1):1–12, 2011.

[7] Fernando Bobillo and Umberto Straccia. Finite fuzzy description logics: A
crisp representation for finite fuzzy ALCH. In Proc. URSW’10, volume 654
of CEUR, pages 61–72, 2010.

[8] Fernando Bobillo and Umberto Straccia. Reasoning with the finitely many-
valued Łukasiewicz fuzzy description logic SROIQ. Inform. Sciences,
181:758–778, 2011.

[9] Stefan Borgwardt and Rafael Peñaloza. Finite lattices do not make reasoning
in ALCI harder. In URSW’11, volume 778 of CEUR, pages 51–62, 2011.

[10] Stefan Borgwardt and Rafael Peñaloza. Fuzzy ontologies over lattices with
t-norms. In Proc. DL’11, volume 745, pages 70–80. CEUR, 2011.

[11] Stefan Borgwardt and Rafael Peñaloza. Undecidability of fuzzy description
logics. In Proc. KR’12. AAAI Press, 2012. To appear.

[12] Marco Cerami and Umberto Straccia. On the undecidability of fuzzy de-
scription logics with GCIs with Łukasiewicz t-norm. Technical report, 2011.
arXiv:1107.4212v3 [cs.LO].

[13] Gert De Cooman and Etienne E. Kerre. Order norms on bounded partially
ordered sets. J. of Fuzzy Math., 2:281–310, 1993.

[14] Rajeev Goré and Linh Anh Nguyen. EXPTIME tableaux with global caching
for description logics with transitive roles, inverse roles and role hierarchies.
In Proc. TABLEAUX’07, volume 4548 of LNCS, pages 133–148. Springer,
2007.

20

[15] George Grätzer. General Lattice Theory. Birkhäuser Verlag, 2nd edition,
2003.

[16] Petr Hájek. Making fuzzy description logic more general. Fuzzy Set. Syst.,
154(1):1–15, 2005.

[17] Ian Horrocks and Ulrike Sattler. A description logic with transitive and
inverse roles and role hierarchies. J. Logic and Computation, 9(3):385–410,
1999.

[18] Yuncheng Jiang, Yong Tang, Ju Wang, Peimin Deng, and Suqin Tang. Ex-
pressive fuzzy description logics over lattices. Knowl.-Based Syst., 23(2):150–
161, 2010.

[19] Ralf Molitor and Christopher B. Tresp. Extending description logics to vague
knowledge in medicine. In Fuzzy Systems in Medicine, volume 41 of Studies
in Fuzziness and Soft Computing, pages 617–635. Springer, 2000.

[20] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in de-
scription logics using hypertableaux. In Proc. CADE’07, volume 4603 of
LNCS, pages 67–83. Springer, 2007.

[21] Emil L. Post. A variant of a recursively unsolvable problem. Bull. AMS,
52(4):264–268, 1946.

[22] Giorgos Stoilos, Umberto Straccia, Giorgos Stamou, and Jeff Z. Pan. General
concept inclusions in fuzzy description logics. In Proc. ECAI’06, pages 457–
461. IOS Press, 2006.

[23] Umberto Straccia. Description logics over lattices. Int. J. Uncert. Fuzz.,
14(1):1–16, 2006.

[24] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, RWTH Aachen, 2001.

[25] Henrique Viana, João Alcântara, and Ana Teresa C. Martins. Paraconsistent
rough description logic. In Proc. DL’11, volume 745 of CEUR, 2011.

21

