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Abstract

In the work of Baader and Distel, a method has been proposed to axiomatize all general
concept inclusions (GCIs) expressible in the description logic ℰℒK and valid in a given
interpretation ℐ. This provides us with an effective method to learn ℰℒK-ontologies from
interpretations, which itself can be seen as a different representation of linked data. In
another report, we have extended this approach to handle errors in the data. This has been
done by not only considering valid GCIs but also those whose confidence is above a certain
threshold 𝑐. In the present work, we shall extend the results by describing another way to
compute bases of confident GCIs. We furthermore provide experimental evidence that this
approach can be useful for practical applications. We finally show that the technique of
unravelling can also be used to effectively turn confident ℰℒK

gfp-bases into ℰℒK-bases.

1 Introduction

Description logic ontologies provide a practical yet formally well-defined way of representing
large amounts of knowledge. They have been applied especially successfully in the area of
medical and biological knowledge, examples being the widely used ontologies SNOMED CT [16],
GALEN [17] and the Gene Ontology [2].

A part of description logic ontologies, the so called TBox, contains the terminological knowledge
of the ontology. Terminological knowledge constitutes connections between concept descriptions
and is represented by general concept inclusions (GCIs). For example, we could fix in an ontology
the fact that everything that has a child is actually a person. Using the description logic ℰℒK,
this could be written as

Dchild.J Ď Person.

Here, Dchild.J and Person are examples of concept descriptions, and the Ď sign can be read
as “implies.” General concept inclusions are, on this intuitive level, therefore quite similar to
implications.

The construction of TBoxes of ontologies, which are supposed to represent the knowledge of a
certain domain of interest, is normally conducted by human experts. Although this guarantees a
high level of quality of the resulting ontology, the process itself is long and expensive. Automating
this process would both decrease the time and cost for creating ontologies and would therefore
foster the use of formal ontologies in other applications. However, one cannot expect to entirely
replace human experts in the process of creating domain-specific ontologies, as these experts are
the original source of this knowledge. Hence constructing ontologies completely automatically
does not seem reasonable.

A compromise for this would be to devise a semi-automatic way of constructing ontologies, for
example by learning relevant parts of the ontology from a set of typical examples of the domain

1



of interest. The resulting ontologies could be used by ontology engineers as a starting point for
further refinement and development.

This approach has been taken by Baader and Distel [5, 6, 11] for constructing ℰℒK-ontologies
from finite interpretations. The reason why this approach is restricted to ℰℒK is manifold.
Foremost, the approach exploits a tight connection between the description logic ℰℒK and formal
concept analysis [12], and such a connection has not been worked out for other description
logics. Moreover, the description logic ℰℒK can be sufficient for practical applications, as, for
example, SNOMED CT is formulated in a variant of ℰℒK. Lastly, ℰℒK is computationally much
less complex as other description logics, say 𝒜ℒ𝒞 or even ℱℒ0.

In their approach, Baader and Distel are able to effectively construct a base of all valid GCIs of
a given interpretation, where this interpretation can be understood as the collection of typical
examples of our domain of interest. This base therefore constitutes the complete terminological
knowledge that is valid in this interpretation. Moreover, these interpretations can be seen as a
different way to represent linked data [7], the data format used by the semantic web community
to store its data. Hence, this approach allows us to construct ontologies from parts of the linked
data cloud, providing us with a vast amount of real-world data for experiments and practical
applications.

In [10], a sample construction has been conducted on a small part of the DBpedia data set [8],
which is part of the linked open data cloud. As it turned out, the approach is effective. However,
one result of these experiments was a different observation: in the data set extracted from
DBpedia, a small set of errors were present. These errors, although very few, greatly influenced
the result of the construction in the way these errors invalidated certain GCIs, and hence these
GCIs were not extracted by the algorithm anymore. Then, instead of these general GCIs, more
special GCIs were extracted that “circumvent” these errors by being more specific. This not
only lead to more extracted GCIs, but also to GCIs which may be hard to comprehend.

As the original approach by Baader and Distel considers only valid GCIs, even a single error
may invalidate a certain, otherwise valid GCI. Since we cannot assume from real-world data
that it does not contain any errors, this approach is quite limited for practical applications.
Therefore, we want to present in this work a generalization to the approach of Baader and Distel
which does not only consider valid GCIs but also those which are “almost valid.” The rationale
behind this is that these GCIs should be much less sensitive to a small amount of errors than
valid GCIs. To decide whether a GCIs is “almost valid,” we shall use its confidence in the given
interpretation. We then consider the set of all GCIs of a finite interpretation whose confidence
is above a certain threshold 𝑐 P r0, 1s, and try to find a base for them. This base can then be
seen as the terminological part of an ontology learned from the data set.

This report sets out to extend the results found in [9]. In this report, first results have been
given on how to construct bases of confident GCIs of finite interpretations. We augment these
results by another construction that allows us to directly obtain a confident base from a set of
implications of a suitable formal contexts. Furthermore, we shall provide experimental results
using the DBpedia data set. With these results we want to show that our approach of considering
confident GCI may provide useful information in practical applications. Lastly, we answer an
open question raised in [9] and show that confident ℰℒKgfp-bases can effectively turned into
confident ℰℒK-bases. For this, we shall use the techniques of unravelling that have also been
used in [11] to show a similar result for bases of valid GCIs.

This report is structured as follows. In the following two section we shall introduce the necessary
notions from the field of formal concept analysis and description logics needed for this paper. We
shall then discuss a construction of a confident base from a suitable formal context. Afterwards,
we apply our results to the same interpretation as it has been used in [10], where we not only
consider particular confident GCIs and discuss their validity, but where we also examine the
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1 2 3 4 5 6 7 8 9 10

2 . ˆ . ˆ . ˆ . ˆ . ˆ

3 . . ˆ . . ˆ . . ˆ .
5 . . . . ˆ . . . . ˆ

7 . . . . . . ˆ . . .

Figure 1: A formal context depicted as cross table

number of confident GCIs for varying thresholds 𝑐 an ontology engineer would have to examine.
Then, in the subsequent section, we show that unravelling applied to confident bases of finite
interpretations can effectively be used to obtain ℰℒK-bases from ℰℒKgfp-bases. We finish this
report with some conclusions and outlook on future work.

2 Formal Concept Analysis

In this section we want to introduce the necessary definitions from formal concept analysis [12]
needed in this work.

2.1 Formal Contexts and Contextual Derivation Operators

Formal concept analysis originated as an attempt to unify modern lattice theory with philo-
sophical ideas about concepts as hierarchies [12]. The fundamental definition of formal concept
analysis is the one of a formal context.

2.1 Definition Let 𝐺,𝑀 be two sets and let 𝐼 Ď 𝐺 ˆ𝑀 . Then the triple K “ p𝐺,𝑀, 𝐼q is
called a formal context, whereas the set 𝐺 is denoted as the set of objects of K and the set 𝑀
is denoted as the set of attributes of K. For 𝑔 P 𝐺,𝑚 P𝑀 we read p𝑔,𝑚q P 𝐼 as “object g has
attribute m” and write 𝑔 𝐼 𝑚 in this case. ♢

If a formal context K “ p𝐺,𝑀, 𝐼q is finite, i. e. if the sets 𝐺 and 𝑀 are finite, it is sometimes
convenient to depict K as a cross table, as shown in the following example.

2.2 Example Let 𝐺 “ t 2, 3, 5, 7 u,𝑀 “ t 1, . . . , 10 u and

𝐼 “ t p𝑔,𝑚q P 𝐺ˆ𝑀 | 𝑔 divides 𝑚 u.

Then K “ p𝐺,𝑀, 𝐼q is a formal context, which is depicted as a cross table in Figure 1. Here, we
have a table where the rows are labeled with elements from 𝐺 and the rows are labeled with
elements from 𝑀 . In a cell corresponding to a pair p𝑔,𝑚q P 𝐺ˆ𝑀 we write a cross “ˆ” if and
only if p𝑔,𝑚q P 𝐼. Otherwise, we leave this cell blank or write a single dot “.” in it. ♢

Given a formal context K “ p𝐺,𝑀, 𝐼q and some set 𝐴 Ď 𝐺 of objects one can ask what the
largest set of attributes is that all objects in 𝐴 share. Likewise, one can ask for a set 𝐵 Ď𝑀
of attributes what the largest set of objects is that have all attributes in 𝐵. To answer this
question we introduce the derivation operators for a formal context K.

2.3 Definition Let K “ p𝐺,𝑀, 𝐼q and 𝐴 Ď 𝐺,𝐵 Ď𝑀 . Then we define the derivations in the
formal context K as

𝐴1 :“ t𝑚 P𝑀 | @𝑔 P 𝐴 : 𝑔 𝐼 𝑚 u,

𝐵1 :“ t 𝑔 P 𝐺 | @𝑚 P 𝐵 : 𝑔 𝐼 𝑚 u.
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The set 𝐴 is called an extent of K if and only if 𝐴 “ p𝐴1q1. The set 𝐵 is called an intent of K if
and only if 𝐵 “ p𝐵1q1. ♢

For convenience, we shall drop the extra parentheses and write shorter p𝐴1q1 “ 𝐴2 and p𝐵1q1 “ 𝐵2.

As a first observation on the derivation operators let us note that the functions

¨1 : Pp𝐺q Ñ Pp𝑀q,

¨1 : Pp𝑀q Ñ Pp𝐺q

form a so called Galois connection. For this let us recall that for a set 𝑃 an order relation ď𝑃 is
just a set ď𝑃 Ď 𝑃 ˆ 𝑃 such that ď𝑃 is reflexive, antisymmetric and transitive.

2.4 Definition Let 𝑃,𝑄 be two sets and let ď𝑃 and ď𝑄 be order relations on 𝑃 and 𝑄,
respectively. Then the two mappings

𝜙 : 𝑃 Ñ 𝑄,

𝜓 : 𝑄Ñ 𝑃

form an antitone Galois connection between p𝑃,ď𝑃 q and p𝑄,ď𝑄q if and only if for all 𝑥 P 𝑃, 𝑦 P 𝑄
holds

𝑥 ď𝑃 𝜓p𝑦q ðñ 𝑦 ď𝑄 𝜙p𝑥q. ♢

We can now see the Galois connection of the derivation operators between the ordered sets
pPp𝐺q,Ďq and pPp𝑀q,Ďq. We collect this fact, among other, immediate consequences, in the
following proposition.

2.5 Proposition Let K “ p𝐺,𝑀, 𝐼q be a formal context, 𝐴1, 𝐴2 Ď 𝐺,𝐵1, 𝐵2 Ď𝑀 . Then the
following conditions hold:

∙ 𝐴1 Ď 𝐴2 ùñ 𝐴11 Ě 𝐴12,

∙ 𝐵1 Ď 𝐵2 ùñ 𝐵11 Ě 𝐵12,

∙ 𝐴1 Ď 𝐴21,

∙ 𝐵1 Ď 𝐵21 ,

∙ 𝐴11 “ 𝐴31 ,

∙ 𝐵11 “ 𝐵31 ,

∙ 𝐴11 Ď 𝐵1 ðñ 𝐴1 Ě 𝐵11.

Another easy observation regarding derivation operators is the following: If 𝐴 Ď 𝑀 and
p𝐵𝑖 | 𝑖 P 𝐼q is a family of subsets of 𝐴 such that

Ť

𝑖P𝐼 𝐵𝑖 “ 𝐴, then

𝐴1 “
č

t𝐵1𝑖 | 𝑖 P 𝐼 u. (2.1)

In particular, for 𝒜 Ď Pp𝑀q it is true that
č

𝐴P𝒜
𝐴1 “ p

ď

𝐴P𝒜
𝐴q1. (2.2)

We shall make use of these observations in our further discussions.
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2.2 Implications

If we have given a formal context K “ p𝐺,𝑀, 𝐼q, it may very well be that all objects that have
certain attributes 𝐴 Ď𝑀 always have the attributes 𝐵 Ď𝑀 in addition. In this case, we say
may that the attributes from 𝐴 imply the attributes from 𝐵 in the formal context K.

2.6 Definition Let 𝑀 be a set. An implication 𝐴Ñ 𝐵 on 𝑀 is a pair p𝐴,𝐵q where 𝐴,𝐵 Ď𝑀 .
In this case, 𝐴 is called the premise and 𝐵 is called the conclusion of the implication 𝐴Ñ 𝐵.
We shall denote the set of all implications on 𝑀 by Impp𝑀q.

Let K “ p𝐺,𝑀, 𝐼q be a formal context. An implication 𝐴 Ñ 𝐵 of K is an implication on 𝑀 .
The set of all implications of K is denoted by ImppKq, i. e.

ImppKq “ Impp𝑀q.

The implication 𝐴Ñ 𝐵 holds in K (or is valid in K) if 𝐵 Ď 𝐴2. We then write K |ù p𝐴Ñ 𝐵q.
If 𝒥 is a set of implications of K such that each implication in 𝒥 holds in K, then we may
denote this with K |ù 𝒥 . The set of all implications of K that hold in K is denoted by ThpKq.♢

Note that the condition 𝐵 Ď 𝐴2 is equivalent to 𝐴1 Ď 𝐵1 by Proposition 2.5, i. e. an implication
𝐴Ñ 𝐵 holds in K “ p𝐺,𝑀, 𝐼q if and only if every object 𝑔 P 𝐺 that has all attributes in 𝐴 also
has all attribute in 𝐵.

2.7 Definition Let 𝑀 be a set and let 𝒥 Ď Impp𝑀q be a set of implications. Then an
implication 𝐴 Ñ 𝐵 is entailed by 𝒥 if for every context K with attribute set 𝑀 in which
all implications from 𝒥 hold, the implication 𝐴 Ñ 𝐵 holds as well. In this case, we write
𝒥 |ù p𝐴 Ñ 𝐵q. The set of all implications in Impp𝑀q entailed by 𝒥 shall be denoted by
Cnp𝒥 q. ♢

Implications on a set 𝑀 give rise to a certain class of mappings on the powerset lattices
pPp𝑀q,Ďq, namely closure operators on 𝑀 . Abstractly, a closure operator is a mapping

𝑐 : Pp𝑀q Ñ Pp𝑀q

such that

∙ 𝐴 Ď 𝑐p𝐴q, i. e. 𝑐 is extensive,

∙ 𝐴 Ď 𝐵 ñ 𝑐p𝐴q Ď 𝑐p𝐵q, i. e. 𝑐 is monotone, and

∙ 𝑐p𝑐p𝐴qq “ 𝑐p𝐴q, i. e. 𝑐 is idempotent,

is true for all sets 𝐴,𝐵 Ď𝑀 . A set 𝐴 Ď𝑀 is said to be closed under 𝑐 if and only if 𝑐p𝐴q “ 𝐴.

Now, implications give rise to closure operators on 𝑀 , as described in the following definition.
Additionally, it is not hard to see that every closure operator on 𝑀 is equal to a closure operator
induced by implications.

2.8 Definition Let 𝑀 be a set and ℒ Ď Impp𝑀q. Then define for 𝐴 Ď𝑀

ℒ1p𝐴q :“
ď

t𝑌 | p𝑋 Ñ 𝑌 q P ℒ, 𝑋 Ď 𝐴 u,

ℒ𝑖`1p𝐴q :“ ℒpℒ𝑖p𝐴qq p𝑖 P Ną0q,

ℒp𝐴q :“
ď

𝑖PNą0

ℒ𝑖p𝐴q.

The mapping ℒ : Pp𝑀q Ñ Pp𝑀q with 𝐴 ÞÑ ℒp𝐴q is then called the closure operator induced by
ℒ. A set 𝐴 Ď𝑀 is said to be closed under ℒ if and only if ℒp𝐴q “ 𝐴. ♢
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It is easy to see that every closure operator induced by a set of implications on a set 𝑀 is indeed
a closure operator on 𝑀 in the sense of the aforementioned definition.

An interesting observation now is that entailment for implications can be rephrased in terms of
the induced closure operators. See [9, 12] for more details on this.

2.9 Lemma Let 𝑀 be a set and let ℒ Ď Impp𝑀q, p𝐴Ñ 𝐵q P Impp𝑀q. Then

ℒ |ù p𝐴Ñ 𝐵q ðñ 𝐵 Ď ℒp𝐴q.

2.3 Bases of Implications

Implications can be understood as logical objects for which we can decide validity in formal
contexts. This automatically yields the following definition of implicational bases, which results
in a way to represent all valid implications of a formal context in a compact way.

2.10 Definition Let K be a formal context. A set 𝒥 of implications of K is an implicational
base (or just a base) of K if the following conditions hold:

1) 𝒥 is sound for K, i. e. every implication in 𝒥 holds in K,

2) 𝒥 is complete for K, i. e. every implication holding in K follows from 𝒥 .

Moreover, a base 𝒥 of K is said to be non-redundant if each proper subset of 𝒥 is not a base of
K. ♢

An obvious base is the following.

2.11 Theorem Let K be a formal context. Then the set

ℒ :“ t𝐴Ñ 𝐴2 | 𝐴 Ď𝑀K u

is a base of K.

Checking completeness of a set ℒ of implications may be a tedious task, as, naively, one may
have to consider all valid implications of K. However, completeness of ℒ can also be verified by
considering the intents of K, as the following lemma shows.

2.12 Lemma Let K “ p𝐺,𝑀, 𝐼q be a formal context and let ℒ Ď Impp𝑀q. Then ℒ is complete
for K if and only if

@𝑈 Ď𝑀 : ℒp𝑈q “ 𝑈 ùñ 𝑈 “ 𝑈2,

i. e. the closed sets of ℒ are intents of K.

It is easy to see that if we reverse the direction of the implication in the previous lemma, that
we then obtain a characterization for ℒ to be sound for K.

The base that is described in Theorem 2.11 is not very practical, as it always contains exponen-
tially many implications measured in the size of 𝑀 . Luckily, we can explicitly describe a base
that always has minimal cardinality among all bases of a formal context. Unfortunately, even
this base may exponentially many elements in the size of 𝑀 [13].

2.13 Definition (𝒦-pseudo-intent) Let K be a finite formal context and let 𝒦 Ď Impp𝑀q.
A set 𝑃 Ď𝑀 is said to be a 𝒦-pseudo-intent of K if and only if
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i. 𝑃 ‰ 𝑃 2,

ii. 𝒦p𝑃 q “ 𝑃 and

iii. for all 𝒦-pseudo-intents 𝑄 Ĺ 𝑃 it holds that 𝑄2 Ď 𝑃 .

If 𝒦 “ H, then 𝑃 is also called a pseudo-intent of K. ♢

Let us define for a formal context K and 𝒦 Ď Thp𝑀q the canonical base of K with background
knowledge 𝒦 to be the set

CanpK,𝒦q :“ t𝑃 Ñ 𝑃 2 | 𝑃 a 𝒦-pseudo-intent of K u.

We may write CanpKq if 𝒦 “ H and just call it the canonical base of K.

We can consider the canonical base of K with background knowledge 𝒦 as a smallest set of valid
implications of K such that CanpK,𝒦q Y 𝒦 is a base for K. Intuitively, if we assume that we
already know the implications of 𝒦 but want to learn all valid implications of K, then CanpK,𝒦q
is a smallest set of valid implications that we need to add.

2.14 Theorem (Theorem 3.8 from [11]) Let K be a finite formal context and 𝒦 Ď Thp𝑀q.
Then the set CanpK,𝒦q Y𝒦 is base of K having the least number of elements among all bases
of K containing 𝒦.

This theorem assumes the background knowledge 𝒦 to contain only valid implications of K.
However, this is not necessary, as the following theorem shows.

2.15 Theorem (Theorem 2.17 from [9]) Let K “ p𝐺,𝑀, 𝐼q be a formal context and let
𝒦 Ď Impp𝑀q. Then CanpK,𝒦q is the set of valid implications with minimal cardinality such
that CanpK,𝒦q Y𝒦 is complete for K.

2.4 Canonical Bases of Sets of Implications

We have discussed the canonical base CanpKq of a formal context K. We can understand CanpKq
as a smallest set of implications ℒ such that Cnpℒq “ ThpKq. Indeed, instead of only considering
the set ThpKq, we can consider any set of implications 𝒦 and ask for a smallest set ℒ such that

Cnpℒq “ Cnp𝒦q.

We shall give such sets ℒ a special name.

2.16 Definition Let 𝑀 be a finite set and let 𝒦 Ď Impp𝑀q. A set ℒ Ď Impp𝑀q is called a
base of 𝒦 if and only if Cnpℒq “ Cnp𝒦q. ♢

In [18], Rudolph describes a method to effectively convert the set 𝒦 into a base Canp𝒦q of 𝒦 of
least cardinality. We shall call this set the canonical base of 𝒦, since this construction yields
CanpThpKqq “ CanpKq. It is the purpose of this section to repeat these results, as we shall
make use of them later on.

We shall first introduce the notion of pseudo-closed sets of 𝒦.

2.17 Definition Let 𝑀 be a finite set and let 𝒦 Ď Impp𝑀q. A set 𝑃 Ď 𝑀 is called a
pseudo-closed set of 𝒦 if and only if the following conditions hold:

i. 𝑃 ‰ 𝒦p𝑃 q,
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ii. for all 𝑄 Ĺ 𝑃 , it is true that 𝒦p𝑄q Ď 𝑃 . ♢

Now we expect that the set

Canp𝒦q :“ t𝑃 Ñ 𝒦p𝑃 q | 𝑃 pseudo-closed set of 𝒦 u

is a base of 𝒦 of minimal cardinality. The correctness of this intuition is guaranteed by the
following result. Before we are going to prove, let us note that if 𝒦1 and 𝒦2 are two sets of
implications on a finite set 𝑀 such that Cnp𝒦1q “ Cnp𝒦2q, that then Canp𝒦1q “ Canp𝒦2q is
true. This follows immediately from the definition of pseudo-closed sets, as Cnp𝒦1q “ Cnp𝒦2q

implies 𝒦1p𝐴q “ 𝒦2p𝐴q for all 𝐴 Ď𝑀 .

2.18 Theorem Let 𝑀 be a finite set and let 𝒦 Ď Impp𝑀q. Then the set Canp𝒦q is a base of
𝒦 of minimal cardinality.

Proof We can find a formal context K with attribute set 𝑀 such that

𝐴2 “ ℒp𝐴q

is true for each 𝐴 Ď𝑀 . From this, we can immediately infer that Cnpℒq “ CnpThpKqq “ ThpKq,
because for 𝐴,𝐵 Ď𝑀 it is true by Lemma 2.9.

ℒ |ù p𝐴Ñ 𝐵q ðñ 𝐵 Ď ℒp𝐴q
ðñ 𝐵 Ď 𝐴2

ðñ K |ù p𝐴Ñ 𝐵q

It is now easy to see that Canp𝒦q “ CanpThpKqq “ CanpKq. By Theorem 2.15 (with empty
background knowledge) it is true that CanpKq is a base of ThpKq with minimal cardinality.
As ThpKq “ Cnp𝒦q and CanpKq “ Canp𝒦q, it follows that Canp𝒦q is a base of 𝒦 of minimal
cardinality. ˝

2.19 Algorithm (Computing the Canonical Base for a Given Set of Implications)

0 define canonical-base/implications(𝒦)
1 𝒞 := H

2 𝒦1 := t𝐴Ñ 𝒦p𝐴Y𝐵q | p𝐴Ñ 𝐵q P 𝒦 u
3 while (𝒦1 ‰ H)
4 p𝐴Ñ 𝐵q := random element of 𝒦1
5 𝒦1 := 𝒦1zt𝐴Ñ 𝐵 u
6 i f p𝒦1 Y 𝒞qp𝐴q ‰ 𝐵 then
7 𝒞 := 𝒞 Y t p𝒦1 Y 𝒞qp𝐴q Ñ 𝐵 u
8 end if
9 end while

10 return 𝒞
11 end define

Obtaining the canonical base of the set 𝒦 can be done effectively. As shown in [18], Algorithm 2.19
computes for the set 𝒦 of implications on 𝑀 its canonical base Canp𝒦q. Note that the expression
p𝒦1 Y 𝒞qp𝐴q just denotes the application to the set 𝐴 of the closure operator induced by 𝒦1 Y 𝒞.

3 The Description Logics ℰℒK and ℰℒKgfp

Description logics are part of the field of knowledge representation, a branch of artificial
intelligence. Its main focus lies in the representation of knowledge using well-defined semantics.
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For this, description logics provide the notion of ontologies. These ontologies can be understood
as a collection of axioms. More specifically, description logic ontologies consist of assertional
axioms and terminological axioms. Examples for an assertional axioms are “Tom is a cat” and
“Jerry is a mouse”, written in description logic syntax as

CatpTomq and MousepJerryq.

An example for terminological axiom would be to say that “every cat hunts a mouse”, written as

Cat Ď Dhunts.Mouse.

The use of the existential quantifier may be a bit surprising here, but it can be explained as
follows. Consider the reformulation of “every cat hunts a mouse” to “whenever there is a cat,
there exists a mouse it hunts.” The above statement should be read with this reformulation in
mind.

Another example would be to say that “nothing is both a cat and a mouse”, written as

Cat[Mouse Ď K.

Again, a reformulation may clarify the used syntax. The phrase “nothing is both a cat and a
mouse” can be understood as “whenever there is something that is both a cat and a mouse, we
have a contradiction.” The bottom sign K denotes this contradiction.

These examples are formulated in the description logic ℰℒK, the logic we shall mainly use in
this work. The constructors used in ℰℒK are conjunction [, existential restriction D and the
bottom concept K.

During the course of our considerations, however, it shall turn out that ℰℒK does not suffice
for all our purposes. We shall therefore latter on introduce another description logic called
ℰℒKgfp that can be understood as an extension of ℰℒK that allows for cyclic concept descriptions.
The main motivation to consider this description logic shall become clear when we introduce
model-based most-specific concept descriptions, which allow us to reformulate notions from formal
concept analysis in the language of description logics.

3.1 The Description Logic ℰℒK

We are now going to introduce the syntax and semantics of the description logic ℰℒK. For
this, let us fix three disjoint sets 𝑁𝐶 , 𝑁𝑅 and 𝑁𝐼 . We think of these sets as the sets of concept
names, role names and individual names, respectively. We may sometimes refer to the triple
p𝑁𝐶 , 𝑁𝑅, 𝑁𝐼q as the current signature.

3.1 Definition The set 𝒞 of ℰℒ-concept description is defined as follows:

i. If 𝐴 P 𝑁𝐶 , then 𝐴 P 𝒞.

ii. If 𝐶,𝐷 P 𝒞, then 𝐶 [𝐷 P 𝒞.

iii. If 𝐶 P 𝒞 and 𝑟 P 𝑁𝑅, then D𝑟.𝐶 P 𝒞.

iv. J P 𝒞.

v. 𝒞 is minimal with these properties.

An ℰℒK-concept description is either K or an ℰℒ-concept description. ♢

9



Tom

Cat, Animal

𝑥1

Jerry

Mouse, Animal

𝑥2

hunts

Figure 2: An example interpretation

We may simply talk about concept descriptions if it is clear from the context that we refer to
ℰℒK-concept descriptions.

We have already seen some examples for ℰℒK-concept descriptions, but let us consider one more
example, this time a bit more formally.

3.2 Example Let us consider the sets

𝑁𝐶 “ tCat,Mouse,Animal u,

𝑁𝑅 “ t hunts u.

Then
Cat[ Dhunts.Mouse

is a valid ℰℒK-concept description. Informally, it can be understood as the set of all cats that
are (at this very moment) hunting a mouse. ♢

Intuitively associating a meaning with an ℰℒK-concept description is not sufficient for a knowl-
edge representation formalism. Therefore, description logics define the semantics of concept
descriptions in terms of interpretations. An interpretation can be understood as a directed
graph where the vertices are labeled with concept names from 𝑁𝐶 and edges are labeled with
role names from 𝑁𝑅. Additionally, some of the vertices are explicitly named with elements from
𝑁𝐼 and no vertex has more than one name.

3.3 Definition An interpretation ℐ “ p∆ℐ , ¨ℐq consists of a set ∆ℐ and an interpretation
function ¨ℐ such that

𝐴ℐ Ď ∆ℐ for all 𝐴 P 𝑁𝐶 ,

𝑟ℐ Ď ∆ℐ for all 𝑟 P 𝑁𝑅,

𝑎ℐ P ∆ℐ for all 𝑎 P 𝑁𝐼 .

In addition, the unique name assumption holds: If 𝑎, 𝑏 P 𝑁𝐼 , 𝑎 ‰ 𝑏, then 𝑎ℐ ‰ 𝑏ℐ . ♢

3.4 Example Let us choose again 𝑁𝐶 “ tCat,Mouse,Animal u, 𝑁𝑅 “ t hunts u and in addition
𝑁𝐼 “ tTom, Jerry u. An interpretation ℐ “ p∆ℐ , ¨ℐq would then be given by

∆ℐ “ t𝑥1, 𝑥2 u,

¨ℐ “ t pCat, t x1 uq, pMouse, t x2 uq, pAnimal, t x1, x2 uq u,

Tomℐ
“ 𝑥1,

Jerryℐ “ 𝑥2,

where we have specified the interpretation function ¨ℐ through its graph. Figure 2 shows the
interpretation ℐ as a directed and labeled graph. ♢

Given an interpretation ℐ “ p∆ℐ , ¨ℐq, we can extend the interpretation function ¨ℐ to the set of
all ℰℒK-concept descriptions as follows. Let 𝐶 be an ℰℒK-concept description.
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∙ If 𝐶 “ J, then 𝐶ℐ “ ∆ℐ .

∙ If 𝐶 “ K, then 𝐶ℐ “ H.

∙ If 𝐶 “ 𝐶1 [ 𝐶2, then 𝐶ℐ “ 𝐶ℐ
1 X 𝐶

ℐ
2 .

∙ If 𝐶 “ D𝑟.𝐶1 with 𝑟 P 𝑁𝑅, then

𝐶ℐ “ t𝑥 P ∆ℐ | D𝑦 P ∆ℐ : p𝑥, 𝑦q P 𝑟ℐ and 𝑦 P 𝐶ℐ
1 u.

3.5 Definition If 𝐶 is an ℰℒK-concept description and ℐ is an interpretation, then 𝐶ℐ is said
the be the extension of 𝐶 in ℐ. The elements of 𝐶ℐ are said to satisfy the concept description
𝐶 and the elements of ∆ℐz𝐶ℐ are said to not satisfy the concept description 𝐶. ♢

The notion of interpretations also allows us to speak of concept descriptions that are more
specific than other concept descriptions.

3.6 Definition Let 𝐶,𝐷 be two ℰℒK-concept descriptions. Then 𝐶 is said to be more specific
then 𝐷 (or 𝐶 is subsumed by 𝐷), written as 𝐶 Ď 𝐷, if and only if for all interpretations ℐ it is
true that

𝐶ℐ Ď 𝐷ℐ .

Two ℰℒK-concept descriptions 𝐶 and 𝐷 are equivalent, written as 𝐶 ” 𝐷, if and only if 𝐶 is
more specific than 𝐷 and 𝐷 is more specific than 𝐶, i. e.

𝐶 ” 𝐷 ðñ p𝐶 Ď 𝐷q and p𝐷 Ď 𝐶q. ♢

We shall now introduce the notions of terminological axioms and TBoxes.

3.7 Definition An terminological axiom is of the form

𝐶 Ď 𝐷 or 𝐴 ” 𝐷,

where 𝐴 P 𝑁𝐶 and 𝐶,𝐷 are ℰℒK-concept descriptions. Terminological axioms of the form 𝐶 Ď 𝐷
are called general concepts inclusions (GCIs), axioms of the form 𝐴 ” 𝐷 are called concept
definitions. If 𝐶 Ď 𝐷 is a GCI, then 𝐶 is called the subsumee and 𝐷 is called the subsumer of
𝐶 Ď 𝐷.

Let ℐ be an interpretation. Then a general concept inclusion 𝐶 Ď 𝐷 holds in ℐ if and only if
𝐶ℐ Ď 𝐷ℐ . A concept definition 𝐴 ” 𝐶 holds in ℐ if and only if 𝐴ℐ “ 𝐶ℐ . An interpretation ℐ
is a model of a set 𝒯 of terminological axioms if and only if all axioms in 𝒯 hold in ℐ. ♢

3.8 Example We can define the notion of a hunting cat by the concept definition

HuntingCat ” Cat[ Dhunts.J.

A general concept inclusions which expresses that every Cat is also an Animal would be

Cat Ď Animal. ♢

A word of caution is appropriate here. We have introduced the symbol Ď for denoting both
subsumption and general concept inclusions. This may cause some confusions, but is an
established convention in the field of description logics. It may even sometimes be that both
meanings of this sign occur together. In those situations we have to exercise some extra care on
clearly distinguishing both meanings of Ď.
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Collections of terminological axioms are called TBoxes (for terminological boxes). We shall
define two types of TBoxes, namely cyclic TBoxes and general TBoxes. For this, let us fix
another set 𝑁𝐷, begin pairwise disjoint to all 𝑁𝐶 , 𝑁𝑅, 𝑁𝐼 , which we shall call the set of defined
concept names.

3.9 Definition Let 𝒯 be a set of concept definitions and define

𝑁𝐷p𝒯 q :“ t𝐴 | D𝐶 : p𝐴 ” 𝐶q P 𝒯 u.

Then 𝒯 is called a cyclic TBox, if every concept definition p𝐴 ” 𝐶q P 𝒯 is such that 𝐴 is a
defined concept name, 𝐶 is an ℰℒ-concept description with concept names from 𝑁𝐶 and 𝑁𝐷p𝒯 q,
and each 𝐴 P 𝑁𝐷p𝒯 q appears at most once on the left-hand side of a concept definition of 𝒯 .

The set 𝑁𝐷p𝒯 q is then called the set of defined concept names of the cyclic TBox 𝒯 . The set
𝑁𝑃 p𝒯 q of concept names that appear in concept descriptions in 𝒯 but are not defined concept
names is called the set of primitive concept names. ♢

3.10 Example In the case of Tom and Jerry, it is often not really clear who hunts whom. We
can therefore define

HuntingCat ” Cat[ Dhunts.HuntingMouse,

HuntingMouse ” Mouse[ Dhunts.HuntingCat.

The set containing these two concept definitions is a cyclic TBox. Its defined concept names are
tHuntingMouse,HuntingCat u, its primitive concept names are tCat,Mouse u. ♢

Concept definitions are not really necessary if we can use general concept inclusions. To see
this, let us recall the definition of a concept definition to hold in an interpretation ℐ. A concept
definition 𝐴 ” 𝐶 holds in ℐ if and only if 𝐴ℐ “ 𝐶ℐ . But this is the case if and only if 𝐴ℐ Ď 𝐶ℐ

and 𝐴ℐ Ě 𝐶ℐ . Hence 𝐴 ” 𝐶 holds in ℐ if and only if 𝐴 Ď 𝐶 and 𝐶 Ď 𝐴 both hold in ℐ.
Therefore, general concept inclusions can express concept definitions. Thus, if we are given
a cyclic TBox 𝒯1 that contains concept definitions, we can always transform it into a set 𝒯2
containing only general concept inclusions such that the models of 𝒯1 are precisely the models
of 𝒯2. In this respect, sets containing only general concept inclusions are a generalization of
cyclic TBoxes. We shall call such sets general TBoxes.

3.11 Definition A general TBox is a set of general concept inclusions 𝐶 Ď 𝐷, where 𝐶,𝐷 are
ℰℒK-concept descriptions. ♢

To make our argumentation easier to read, we may simply refer to 𝒯 as a TBox whenever 𝒯 is
a cyclic or general TBox.

We have just defined the semantics of both cyclic and general TBoxes. If 𝒯 is such a TBox, an
interpretation ℐ is a model of 𝒯 if and only if all definitions in 𝒯 hold in ℐ. For this we need
that the interpretation mapping ¨ℐ of ℐ has been extended to the set 𝑁𝐷p𝒯 q of defined concept
names of 𝒯 . This semantics then is called descriptive semantics. As we shall see later, there are
also other kinds of semantics for TBoxes. As a particular example, we shall introduce greatest
fixpoint semantics when we discuss the description logic ℰℒKgfp.

3.2 The Description Logic ℰℒK
gfp

In the work of Distel [11], various parallels between the fields of formal concept analysis and
description logics are noted. In particular, in both areas certain elements can be described. Let
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𝑥

𝑟

Figure 3: An interpretation where t𝑥 u has no model-based most-specific concept description in
ℰℒK.

K “ p𝐺,𝑀, 𝐼q be a formal context. Then an object 𝑔 P 𝐺 can be described by a set 𝐴 Ď𝑀 of
attributes if 𝑥 P 𝐴1. The same is true for an interpretation ℐ “ p∆ℐ , ¨ℐq. An element 𝑥 P ∆ℐ is
described by a concept description 𝐶 if 𝑥 P 𝐶ℐ . Furthermore, in both K and ℐ we can obtain
for a description 𝐴 and 𝐶 the set of objects 𝐴1 and elements 𝐶ℐ described by it.

However, in K we can associate for 𝑔 a most-specific description 𝐵 :“ t 𝑔 u
1. By Proposition 2.5,

𝑔 P 𝐵1, i. e. 𝐵 describes 𝑔. If then 𝑔 P 𝐴1, then t 𝑔 u Ď 𝐴1, i. e. t 𝑔 u2 Ď 𝐴3 “ 𝐴1. But then
𝐵1 Ď 𝐴1, and hence 𝐵 describes the fewest objects of all sets 𝐴 Ď𝑀 that describe 𝑔. In other
words, 𝐵 describes 𝑔 in the most specific way.

An analogous notion of a most-specific concept-description with respect to an interpretation ℐ
has been introduced in [11] as model-based most-specific concept description.

3.12 Definition Let ℐ “ p∆ℐ , ¨ℐq be a interpretation and let 𝑋 Ď ∆ℐ . Then a model-based
most-specific concept description for 𝑋 over ℐ is a concept description 𝐶 such that

∙ 𝑋 Ď 𝐶ℐ and

∙ for all concept descriptions 𝐷 with 𝑋 Ď 𝐷ℐ it is true that 𝐶 Ď 𝐷. ♢

Intuitively speaking, a model-based most-specific concept description for 𝑋 Ď ∆ℐ is a most-
specific concept description that describes all elements in 𝑋.

Model-based most-specific concept descriptions may not exist. We shall see in the next example
an interpretation ℐ where some sets of elements do not have model-based most-specific concept
descriptions in ℰℒK. To compensate for this we shall consider the description logic ℰℒKgfp
that allows for cyclic concept descriptions. In this logic, model-based most-specific concept
descriptions always exist.

The following example is a minor variation of one given in [11].

3.13 Example Let 𝑁𝐶 “ H and 𝑁𝑅 “ t 𝑟 u. We consider the interpretation ℐ “ p∆ℐ , ¨ℐq with
∆ℐ “ t𝑥 u and 𝑟ℐ “ t p𝑥, 𝑥q u. The interpretation depicted as a graph is shown in Figure 3.

Now suppose that 𝐶 is an ℰℒK-concept description that is at the same time a model-based
most-specific concept description for 𝑋 “ t𝑥 u over ℐ. Because 𝑁𝐶 “ H and 𝑁𝑅 “ t 𝑟 u, 𝐶 is
equivalent to one of the concept descriptions

J, D𝑟.J, D𝑟.D𝑟.J, . . . ,

i. e.
𝐶 ” D𝑟. . . . D𝑟.

loooomoooon

𝑛 times

J

for some 𝑛 P N. Then define
𝐷 :“ D𝑟. . . . D𝑟.

loooomoooon

𝑛`1 times

J.

Then 𝐷ℐ “ t𝑥 u and 𝐷 Ď 𝐶,𝐷 ı 𝐶, contradicting the fact that 𝐶 is a model-based most-specific
concept description of 𝑋 over ℐ. ♢
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On the other hand, if model-based most-specific concept descriptions exist, they are necessarily
unique up to equivalence. Therefore, if 𝑋 is a set of elements of an interpretation ℐ, we can
denote the model-based most-specific concept description of 𝑋 over ℐ by the special name 𝑋ℐ .
This notation has been used to stress the similarity to the derivation operators from formal
concept analysis.

In the remained of this section, we shall introduce the description logic ℰℒKgfp to overcome the
deficiency of ℰℒK that there may not always exist model-based most-specific concept descriptions.
We start this introduction by definition the syntax of ℰℒKgfp-concept descriptions.

3.14 Definition Let 𝒯 be a cyclic TBox. A concept definition p𝐴 ” 𝐶q P 𝒯 is said to be
normalized, if 𝐶 is of the form

𝐶 “ 𝐵1 [ . . .[𝐵𝑚 [ D𝑟1.𝐴1 [ . . .[ D𝑟𝑛.𝐴𝑛

where 𝑚,𝑛 P N, 𝐵1, . . . , 𝐵𝑚 P 𝑁𝑃 p𝒯 q and 𝐴1, . . . , 𝐴𝑛 P 𝑁𝐷p𝒯 q. If 𝑛 “ 𝑚 “ 0, then 𝐶 “ J. We
call 𝒯 normalized if and only if it contains only normalized concept definitions.

An ℰℒgfp-concept description now is of the form 𝐶 “ p𝐴, 𝒯 q where 𝒯 is a normalized TBox and
𝐴 is a defined concept name of 𝒯 . An ℰℒKgfp-concept description is either K or an ℰℒgfp-concept
description. ♢

3.15 Example Let us reconsider the TBox from Example 3.10, i. e.

𝒯 :“ tHuntingCat ” Cat[ Dhunts.HuntingMouse,

HuntingMouse ” Mouse[ Dhunts.HuntingCat u.

Then 𝒯 is a normalized cyclic TBox and the pair

pHuntingMouse, 𝒯 q

is a valid ℰℒKgfp-concept description. ♢

We have already defined the notion of ℰℒK-GCIs. Of course, this definition can be easily modified
to yield the notion of ℰℒKgfp-GCIs: these are just expressions of the form 𝐶 Ď 𝐷, where 𝐶 and
𝐷 are ℰℒKgfp-concept descriptions.

We shall sometimes omit the logic and call an ℰℒKgfp-concept description just a concept description
and likewise shall call an ℰℒKgfp-GCIs just a GCI, if the description logic used is clear from the
context.

As we have defined the syntax of ℰℒKgfp, the natural next step is to define the semantics of ℰℒKgfp.
This, however, is not as straight forward as in the case of ℰℒK, as we have to deal with circular
concept descriptions. As we shall see shortly, semantics can be defined using fixpoint semantics.
This has been done in [3, 15].

Let 𝐶 be an ℰℒKgfp-concept description and let ℐ “ p∆ℐ , ¨ℐq be an interpretation. If 𝐶 “ K, then
certainly 𝐶ℐ “ H. Hence let 𝐶 “ p𝐴, 𝒯 q. Then 𝐴 P 𝑁𝐷p𝒯 q. The idea to define the extension
of 𝐶 in ℐ is now to extend the interpretation mapping ¨ℐ such that

𝐵ℐ “ 𝐷ℐ

is true for all p𝐵 ” 𝐷q P 𝒯 . If we have given this, we could simply define

𝐶ℐ :“ 𝐴ℐ .
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To make this approach into an actual definition, we have to resolve two issues. Firstly, it is not
clear if such an extension of ¨ℐ to 𝑁𝐷p𝒯 q always exists. Secondly, if such an extensions exists, it
may not necessarily be unique, so we have to make an explicit choice. As it turns out, we can
describe the extensions of ¨ℐ we are looking for as fixpoints of a particular mapping and can
thus prove the existence of such extensions. Furthermore, it turns out that these fixpoint are
naturally ordered, and we can just choose the largest one. See also [4, 15] for more details and
motivation.

We are now going to work out this approach in more detail. For this, we start by formally
defining the notion of an extension of ¨ℐ .

3.16 Definition Let ℐ be an interpretation and let 𝒯 be a TBox. Then an interpretation 𝒥 is
an extension of the interpretation ℐ with respect to 𝒯 if and only if ∆ℐ “ ∆𝒥 , 𝐴𝒥 is defined
for all 𝐴 P 𝑁𝐷p𝒯 q and

∙ @𝐴 P 𝑁𝐶 : 𝐴ℐ “ 𝐴𝒥 ,

∙ @𝑟 P 𝑁𝑅 : 𝑟ℐ “ 𝑟𝒥 and

∙ @𝑎 P 𝑁𝐼 : 𝑎ℐ “ 𝑎𝒥 .

We shall denote with Ext𝒯 pℐq the set of all extensions of ℐ with respect to 𝒯 . ♢

We can define an order relation ĺ on Ext𝒯 pℐq by

ℐ1 ĺ ℐ2 ðñ 𝐴ℐ1 Ď 𝐴ℐ2 for all 𝐴 P 𝑁𝐷p𝒯 q

for ℐ1, ℐ2 P Ext𝒯 pℐq. It is clear that pExt𝒯 pℐq,ĺq is an ordered set.

3.17 Proposition For each interpretation ℐ and TBox 𝒯 , the ordered set pExt𝒯 pℐq,ĺq is a
complete lattice.

Indeed, it is easy to see that

Ext𝒯 pℐq »
ź

𝐴P𝑁𝐷p𝒯 q

pPp∆ℐq,Ďq,

and the latter is, as a product of complete lattices, again a complete lattice.

As already noted, we are interested only in those extensions of ℐ such that

𝐴𝒥 “ 𝐶𝒥

is true for all p𝐴 ” 𝐶q P 𝒯 . In other words, we are only interested in extensions 𝒥 of ℐ that are
models of 𝒯 .

This fact can also be seen from another perspective: let us define a mapping 𝑓 : Ext𝒯 pℐq Ñ
Ext𝒯 pℐq by

𝐴𝑓p𝒥 q :“ 𝐶𝒥

for all p𝐴 ” 𝐶q P 𝒯 and 𝒥 P Ext𝒯 pℐq. Since for each 𝐴 P 𝑁𝐷p𝒯 q, there is exactly one concept
definition p𝐴 ” 𝐶q P 𝒯 , the function 𝑓 is well-defined. Furthermore, it is sufficient to define
𝑓p𝒥 q only on defined concept names, as the value of 𝑓p𝒥 q is already fixed for concept and role
names, since 𝑓p𝒥 q P Ext𝒯 pℐq. Moreover, this mapping is monotone, i. e.

ℐ1 ĺ ℐ2 ùñ 𝑓pℐ1q ĺ 𝑓pℐ2q
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for all ℐ1, ℐ2 P Ext𝒯 pℐq. This is easy to see if one recalls that the concept description 𝐶 is
normalized, i. e.

𝐶 “ 𝐵1 [ . . .[𝐵𝑚 [ D𝑟1.𝐴1 [ . . .[ D𝑟𝑛.𝐴𝑛

where 𝐵1, . . . , 𝐵𝑚 P 𝑁𝐶 and 𝐴1, . . . , 𝐴𝑛 P 𝑁𝐷p𝒯 q.

We can now see that the extensions of ℐ that are models of 𝒯 are actually fixpoints of 𝑓 . This
is because 𝒥 P Ext𝒯 pℐq is a model of 𝒯 if and only if

𝐴𝒥 “ 𝐶𝒥 for all p𝐴 ” 𝐶q P 𝒯 .

But this means that
𝐴𝑓p𝒥 q “ 𝐶𝒥 “ 𝐴𝒥 ,

i. e. 𝑓p𝒥 q “ 𝒥 . Hence to show that there exist extensions of ℐ that are models of 𝒯 it is
sufficient to show that 𝑓 has fixpoints. To do this, we use the fact that 𝑓 is monotone and the
following, well-known theorem by Tarski [19].

3.18 Theorem Let p𝐿,ďq be a complete lattice and let ℎ : 𝐿Ñ 𝐿 be a monotone mapping on
p𝐿,ďq, i. e.

𝑥 ď 𝑦 ùñ ℎp𝑥q ď ℎp𝑦q

holds for all 𝑥, 𝑦 ď 𝐿. Then the set

𝐹 :“ t 𝑧 P 𝐿 | ℎp𝑧q “ 𝑧 u

is such that p𝐹,ďq is a complete sublattice of p𝐿,ďq. In particular, 𝐹 ‰ H and there exists a
least and greatest fixpoint of ℎ.

As a corollary, we obtain the fact that the mapping 𝑓 has fixpoints in Ext𝒯 pℐq and that there
exists a greatest fixpoint of 𝑓 in Ext𝒯 pℐq. We call this fixpoint the greatest fixpoint model
(gfp-model) of 𝒯 in ℐ. Having this, we are finally able to define the extension of the concept
description 𝐶.

3.19 Definition Let 𝐶 be an ℰℒKgfp-concept description and let ℐ be an interpretation. Then

𝐶ℐ :“

#

H if 𝐶 “ K
𝐴𝒥 if 𝐶 “ p𝐴, 𝒯 q and 𝒥 is the gfp-model of 𝒯 in ℐ.

♢

The main result for our considerations about ℰℒKgfp is now the following theorem from [5, 11].

3.20 Theorem (Theorem 4.7 of [11]) Let ℐ “ p∆ℐ , ¨ℐq be an interpretation and 𝑋 Ď ∆ℐ .
Then there exists a model-based most-specific ℰℒKgfp-concept description of 𝑋 over ℐ.

Now that we can guarantee the existence of model-based most-specific concept descriptions we
can consider some first properties. The following result can also be found in [5].

3.21 Lemma (Lemma 4.1 of [11]) Let ℐ be a finite interpretation. Then for each ℰℒKgfp-
concept description 𝐷 and every 𝑋 Ď ∆ℐ , it holds

𝑋 Ď 𝐷ℐ ðñ 𝑋ℐ Ď 𝐷.
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Proof Suppose 𝑋 Ď 𝐷ℐ . Then 𝑋ℐ Ď 𝐷 holds by the definition of model-based most-specific
concept descriptions (Definition 3.12). This shows the direction from left to right.

Suppose conversely that 𝑋ℐ Ď 𝐷. Then 𝑋ℐ is a concept description that is satisfied by all
elements of 𝑋, therefore

𝑋 Ď p𝑋ℐqℐ Ď 𝐷ℐ ,

as 𝑋ℐ Ď 𝐷 implies p𝑋ℐqℐ Ď 𝐷ℐ . This shows the converse direction. ˝

This lemma may remind one of the definition of a Galois connection, however the relation Ď

is not an order relation on the set of all model-based most-specific concept descriptions. This
is because model-based most-specific concept descriptions are only unique up to equivalence.
Yet, most of the properties of a Galois connection are still valid. More precisely, if ℐ is a finite
interpretation, 𝐶,𝐷 are concept descriptions and 𝑋,𝑌 Ď ∆ℐ , then the following statements are
true.

i. 𝑋 Ď 𝑌 ùñ 𝑋ℐ Ď 𝑌 ℐ ,

ii. 𝐶 Ď 𝐷 ùñ 𝐶ℐ Ď 𝐷ℐ ,

iii. 𝑋 Ď p𝑋ℐqℐ ,

iv. p𝐶ℐqℐ Ď 𝐶,

v. 𝑋ℐ ” pp𝑋ℐqℐqℐ ,

vi. 𝐶ℐ “ pp𝐶ℐqℐqℐ .

They can be proven in the same way as for any Galois connection. We shall write 𝑋ℐℐ instead
of p𝑋ℐqℐ .

Another property that was already claimed is that ℰℒKgfp can be considered as an extension of
the description logic ℰℒK. This may not be obvious at a first glance, since the definition of
ℰℒKgfp-concept descriptions is quite different from the one of ℰℒK-concept descriptions. Still,
ℰℒKgfp can be understood as an extension of ℰℒK. To see this we shall first define conjunction
and existential restriction for ℰℒKgfp-concept descriptions.

Let 𝐶,𝐷 be two ℰℒKgfp-concept descriptions. If 𝐶 “ K, then 𝐶[𝐷 :“ K and D𝑟.𝐶 :“ K. Likewise
for 𝐷 “ K. Hence we may assume that both 𝐶,𝐷 are not the K concept description. Then
𝐶 “ p𝐴𝐶 , 𝒯𝐶q, 𝐷 “ p𝐴𝐷, 𝒯𝐷q and we can assume that the defined concept names of 𝒯𝐶 and 𝒯𝐷
are disjoint. Then let us define

𝐶 [𝐷 :“ p𝐴, 𝒯𝐶 Y 𝒯𝐷 Y t𝐴 ” 𝐴𝐶 [𝐴𝐷 uq,

where 𝐴 is a fresh defined concept name. Furthermore, if 𝑟 P 𝑁𝑅, then

D𝑟.𝐶 :“ p𝐴, 𝒯𝐶 Y t𝐴 ” D𝑟.𝐴𝐶 uq

where again 𝐴 is a fresh defined concept name. These definitions preserve the semantics, i. e. for
each interpretation ℐ “ p∆ℐ , ¨ℐq it holds

p𝐶 [𝐷qℐ “ 𝐶ℐ X𝐷ℐ ,

pD𝑟.𝐶qℐ “ t𝑥 P ∆ℐ | D𝑦 P ∆ℐ : p𝑥, 𝑦q P 𝑟ℐ and 𝑦 P 𝐶ℐ u.

We can use these definitions to see that ℰℒKgfp can indeed be regarded as an extension of ℰℒK. For
this we assign for the ℰℒK-concept description J the ℰℒKgfp-concept description p𝐴, t𝐴 ” Juq.
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Furthermore, if 𝐵 is a concept name, then it is equivalent to the ℰℒKgfp-concept description
p𝐴, t𝐴 ” 𝐵 uq. Using the definitions for conjunction and existential restriction for ℰℒKgfp-concept
descriptions, we can inductively assign for each ℰℒK-concept description an equivalent ℰℒKgfp-
concept description. As these constructors preserve the semantics, ℰℒKgfp can be seen as an
extension of ℰℒK.

3.3 Bases for GCIs of Interpretations

In the case of formal contexts, we were able to extract bases of implications form them. As we
view GCIs as the description logic analogue of implications, we want to do the same for GCIs
and finite interpretations.

In [11], the algorithm for computing the canonical base has been generalized to the description
logic ℰℒKgfp. This generalized algorithm is then able to compute bases of valid GCIs of a finite
interpretation ℐ. In this short subsection we want to introduce the notion of a base and some
related definitions.

3.22 Definition Let ℐ be a finite interpretation. The set of valid GCIs of ℐ that consist of
ℰℒKgfp-concept descriptions is denoted by Thpℐq. ♢

One of the main results of [11] was to find a finite set of valid GCIs of ℐ such that every valid
GCI of ℐ was already entail by this finite set. These finite sets are then called bases of ℐ. But
we can also introduce this notion in a more general setting, namely for arbitrary sets of GCIs.

3.23 Definition Let 𝒞 be a set of GCIs. Let 𝒟 be a set of GCIs.

i. 𝒟 is said to be sound for 𝒞 if and only if 𝒞 |ù 𝒟, i. e. every GCI in 𝒟 is entailed by 𝒞;

ii. 𝒟 is said to be complete for 𝒞 if and only if 𝒟 |ù 𝒞, i. e. every GCI in 𝒞 is entailed by 𝒟;

iii. 𝒟 is said to be a base for 𝒞 if and only if 𝒟 is both sound and complete for 𝒞.

If 𝒟 is a base of 𝒞, then 𝒟 is said to be a non-redundant base of 𝒞 if and only if no proper subset
of 𝒟 is a base of 𝒞. ♢

3.24 Definition Let ℐ be a finite interpretation. Then a set ℬ of GCIs is said to be a base for
ℐ if and only if ℬ is a base for Thpℐq. ♢

Equivalently, ℬ is a base for ℐ if and only if it contains only valid GCIs of ℐ and every valid
GCI of ℐ is already entailed from ℬ.

One of the main results of Baader and Distel is now to give explicit descriptions of some finite
bases for ℐ. We shall discuss their results in detail in Section 4.2.

3.4 Unravelling ℰℒK
gfp-concept descriptions

The base of described by Baader and Distel makes use of model-based most-specific concept
descriptions, and therefore in general contains ℰℒKgfp-concept descriptions. This may be undesired,
as ℰℒKgfp-concept descriptions may be very hard to understand due to their cyclic nature. To
overcome this issue, Distel [11] present a method to convert bases of finite interpretations into
equivalent set of GCIs which only contains ℰℒK-concept descriptions. We shall generalize this
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technique to special kinds of confident bases in Section 6. For this, it is necessary to introduce
the notion of unravelling ℰℒgfp-concept descriptions up to a certain depth. This is the purpose
of this section.

Of course, the concept description K is not interesting for this problem, and we therefore restrict
our attention to unravelling ℰℒgfp-concept descriptions 𝐶. The idea of doing this is very natural:
we can view 𝐶 as a graph (with cycles allowed), which we then just “unravel” into an possibly
infinite tree. Then to unravel 𝐶 to a certain depth 𝑑 P N just means describes the concept
description that corresponds to the unravelling of 𝐶 cut at depth 𝑑.

To make this intuition into a formal definition, we shall first define the notion of ℰℒ-description
graphs of ℰℒgfp-concept descriptions, which goes back to [4]. We then give a formal definition as
in [11] of the unravelling of such a description graph, possibly only up to a certain depth 𝑑.

3.25 Definition Let 𝐶 “ p𝐴, 𝒯 q be an ℰℒgfp-concept description. Then its ℰℒ-description
graph 𝐺 :“ p𝑉,𝐸, 𝐿q is defined as follows.

Recall that every concept definition in 𝒯 is of the form 𝐵 ” 𝐷, where

𝐷 “ 𝑃1 [ . . .[ 𝑃𝑛 [ D𝑟1.𝐵1 [ . . . D𝑟𝑚.𝐵𝑚,

where 𝑃1, . . . , 𝑃𝑛 P 𝑁𝐶 , 𝑟1, . . . , 𝑟𝑚 P 𝑁𝑅 and 𝐵1, . . . , 𝐵𝑚 P 𝑁𝐷p𝒯 q. We set

𝑛𝑎𝑚𝑒𝑠p𝐵q :“ t𝑃1, . . . , 𝑃𝑛 u,

𝑠𝑢𝑐𝑐𝑟p𝐵q :“ t𝐵𝑖 | 1 ď 𝑖 ď 𝑚, 𝑟𝑖 “ 𝑟 u.

Then define 𝑉 :“ 𝑁𝐷p𝒯 q, 𝐿 :“ 𝑛𝑎𝑚𝑒𝑠 and 𝐸 :“ t p𝐵1, 𝑟, 𝐵2q | 𝐵2 P 𝑠𝑢𝑐𝑐𝑟p𝐵1q u. The vertex
𝐴 P 𝑉 is called the root of the ℰℒ-description graph of 𝐶.

We shall call 𝑉 the set of vertices, 𝐸 is the set of edges and 𝐿 is the labeling function of the
ℰℒ-description graph of 𝐶. ♢

It is easy to see that every description graph can easily be turned back into an ℰℒgfp-concept
description and that the concept description of the ℰℒ-description graph of a concept description
𝐶 is equivalent to 𝐶.

In accordance to the definition of unravelling as given in [11], we shall introduce the notion of
a directed path in an ℰℒ-description graph 𝐺 “ p𝑉,𝐸, 𝐿q as a word 𝑤 “ 𝐴1𝑟1𝐴2𝑟2 . . . 𝑟𝑛𝐴𝑛`1,
where 𝐴1, . . . 𝐴𝑛`1 P 𝑉 and for each 𝑖 P t 1 . . . 𝑛 u it is true that p𝐴𝑖, 𝑟𝑖, 𝐴𝑖`1q P 𝐸. We shall say
that the path 𝑤 starts at 𝐴 P 𝑉 if and only if 𝐴 “ 𝐴1, and that 𝑤 ends at 𝐵 P 𝑉 if and only if
𝐴𝑛`1 “ 𝐵. We shall also write 𝐴𝑛`1 “: 𝛿p𝑤q and call it its destination. Finally, we shall say
that the length 𝑙𝑒𝑛p𝑤q of 𝑤 is 𝑛.

3.26 Definition Let 𝐶 “ p𝐴, 𝒯 q be an ℰℒgfp-concept description and let 𝐺 “ p𝑉,𝐸, 𝐿q its
ℰℒ-description graph.

The unravelling of 𝐺 is defined as the triple 𝐺8 “ p𝑉 8, 𝐸8, 𝐿8q, where

i. 𝑉 8 is the set of all directed paths of 𝐺 starting at 𝐴;

ii. 𝐸8 :“ t p𝑤, 𝑟, 𝑤𝑟𝐵q | 𝑤,𝑤𝑟𝐵 P 𝑉 8 u;

iii. 𝐿8p𝑤q :“ 𝐿p𝛿p𝑤qq.

Let 𝑑 P N. The unravelling up to depth 𝑑 of 𝐺 is defined as the description graph 𝐺𝑑 “

p𝑉 𝑑, 𝐸𝑑, 𝐿𝑑q, where
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Figure 4: Description graphs of the concept description 𝐶 (left) and its insinuated unravelling

i. 𝑉 𝑑 :“ t𝑤 P 𝑉 8 | 𝑙𝑒𝑛p𝑤q ď 𝑑 u;

ii. 𝐸𝑑 :“ t p𝐴, 𝑟,𝐵q P 𝐸8 | 𝐴,𝐵 P 𝑉 𝑑 u;

iii. 𝐿𝑑p𝑤q :“ 𝐿8p𝑤q, for each 𝑤 P 𝑉 𝑑.

We shall denote with 𝐶𝑑 the concept description corresponding to 𝐺𝑑. Then 𝐶𝑑 is called the
unravelling up to depth 𝑑 of 𝐶. ♢

It is easy to see that 𝐶 is equivalent to an ℰℒ-concept description if and only if its ℰℒ-description
graph does not contain cycles. Consequently, for each 𝑑 P N, 𝐶𝑑 is equivalent to an ℰℒ-concept
description.

3.27 Example As an example to illustrate these definitions, let us consider the concept
description

𝐶 “ p𝐴, t𝐴 ” Dr.𝐷,𝐷 ” B[ Ds.𝐴 uq,

where 𝐵 is a concept name. In Figure 4 the description graph of 𝐶 and its unravelling are
depicted.

Let us compute the concept description 𝐶3, the unravelling of 𝐶 up to depth 3. For this, we use
the unravelling of the description graph of 𝐶 as shown in Figure 4, and cut it at depth 3. We
obtain

𝐶3 “ Dr.pB[ Ds.Dr.Bq. ♢

Now, the results we need for our further considerations are the following.

3.28 Lemma (Lemma 5.3 of [11]) Let 𝐶 be an ℰℒKgfp-concept description and 𝑑 P N. Then
𝐶 Ď 𝐶𝑑.

3.29 Lemma (Lemma 5.5 of [11]) Let ℐ be a finite interpretation. Then there exists a 𝑑 P N
such that 𝐶ℐ

𝑑 “ 𝐶ℐ is true for each ℰℒKgfp-concept description 𝐶.

Lemma 5.5 of [11] also gives a formula to compute the number 𝑑. However, we are not interested
in this formula here and shall not go into further detail here.

4 A Base for Confident GCIs

The goal of this section is to present a way to effectively obtain bases of confident GCIs of
finite interpretations. For this, we shall briefly introduce the notion of confidence in Section 4.1
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and use it to define confident GCIs of finite interpretations ℐ as those GCIs whose confidence
in ℐ is above a certain, user-defined threshold 𝑐 P r0, 1s. Then, to obtain a base of all those
confident GCIs, we shall make use of methods of formal concept analysis. We introduce some
necessary machinery in Section 4.2, which allows us to describe a close relationship between
formal concept analysis and the description logic ℰℒKgfp. We then make use of this machinery in
Section 4.3 to obtain bases of confident GCIs of ℐ from bases of certain implications of Kℐ .

4.1 Confident GCIs of Finite Interpretations

The notion of confidence has been introduced in [1] as a measure of “interest” for association
rules. Translated into the language of formal concept analysis, one can regard association rules
simply as implications. Then the notion of confidence of an implication 𝐴 Ñ 𝐵 just is the
empirical probability that an object that has all attributes from 𝐴 also has all attributes from
𝐵. See also [20].

This idea of considering this empirical probability fits very well in our plan of considering
GCIs which are “almost true.” Furthermore, the notion of confidence admits a straight-forward
generalization to our setting.

4.1 Definition Let K be a finite formal context and let p𝑋 Ñ 𝑌 q P Impp𝑀q. Then its
confidence confKp𝑋 Ñ 𝑌 q is defined as

confKp𝑋 Ñ 𝑌 q :“

#

1 if 𝑋 1 “ H
|p𝑋Y𝑌 q1

|

|𝑋1|
otherwise.

Let ℐ be a finite interpretation and let 𝐶,𝐷 be ℰℒKgfp-concept descriptions. Then the confidence
confℐp𝐶 Ď 𝐷q is defined as

confℐp𝐶 Ď 𝐷q :“

#

1 if 𝐶ℐ “ H,
|p𝐶[𝐷qℐ |
|𝐶ℐ |

otherwise.

Let 𝑐 P r0, 1s. We shall denote with Th𝑐pℐq the set of all implications of K whose confidence is
at least 𝑐, and with Th𝑐pℐq we shall denote the set of all GCI whose confidence is at least 𝑐, i. e.

Th𝑐pℐq :“ t𝐶 Ď 𝐷 | 𝐶,𝐷 some ℰℒKgfp-concept descriptions, confℐp𝐶 Ď 𝐷q ě 𝑐 u. ♢

Note that Thpℐq Ď Th𝑐pℐq, and that confℐp𝐶 Ď 𝐷q “ 1 if and only if 𝐶 Ď 𝐷 holds in ℐ.
Also note that contrary to the case of Thpℐq, the set Th𝑐pℐq is not necessarily closed under
entailment.

The idea is now to consider the set Th𝑐pℐq of GCIs instead of Thpℐq for our construction of
terminological axioms from ℐ. To make this approach reasonable, we need a finite representation
of Th𝑐pℐq, i. e. a base. In this particular case, it may also be interesting to look for special bases
where all GCIs have confidence at least 𝑐. This is because those GCIs may be of most interest
to the ontology engineer.

4.2 Definition Let 𝑐 P r0, 1s. Let K be a finite formal context. A set ℒ Ď Impp𝑀q is called a
confident base of Th𝑐pKq if and only if ℒ is a base of Th𝑐pKq and ℒ Ď Th𝑐pKq.

Let ℐ be a finite interpretation. Then a set ℬ of GCIs is called a confident base of Th𝑐pℐq if and
only if ℬ is a base of Th𝑐pℐq and ℬ Ď Th𝑐pℐq. ♢

Note that in the case of 𝑐 “ 1, bases of Thpℐq “ Th1pℐq are always confident bases of Thpℐq as
well.
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4.2 Projections and Induced Contexts

The main purpose of this section is to introduce the notions of projections and induced contexts.
These notions are important for our further discussions because it forms the basis of connection
the description logic ℰℒKgfp and formal concept analysis.

Projections have been introduced in [5, 6, 11]. The main idea behind its definition is the following:
given a finite interpretation ℐ, we are mainly interested in its model-based most-specific concept
description. To make methods from formal concept analysis applicable, we shall construct a
special formal context Kℐ , whose set of attributes will be a set of certain concept descriptions.
Then, if we have given another concept description 𝐶, we would like to “approximate” this
concept description in terms of attributes of K. By approximation we mean that we want to
find a set 𝑁 Ď 𝑀 such that 𝐶 Ď

d
𝑉 P𝑁 𝑉 is true “as good as possible.” Of course, such a set

can readily be defined by
𝑁 :“ t𝑉 P𝑀 | 𝐶 Ď 𝑉 u.

This is exactly the definition of projections.

4.3 Definition Let 𝑀 be a set of concept descriptions and let 𝐶 be another concept description.
Then the projection pr𝑀 p𝐶q of 𝐶 onto 𝑀 is defined as

pr𝑀 p𝐶q :“ t𝐷 P𝑀 | 𝐶 Ď 𝐷 u. ♢

As projections allow us to approximate 𝐶 in terms of 𝑀 , conjunction 𝑈 ÞÑ
d

𝑉 P𝑈 𝑉 allows us
to go the way back, i. e. from sets of concept descriptions to concept descriptions. For brevity,
let us define for 𝑈 Ď𝑀

l
𝑈 :“

#

J if 𝑈 “ H
d

𝑉 P𝑈 𝑉 otherwise

We also want to lift this definition to sets of implications. Let us define for a set ℒ of implications
the set of GCIs l

ℒ :“ t
l
𝑋 Ď

l
𝑌 | p𝑋 Ñ 𝑌 q P ℒ u.

It now turns out that the mappings 𝐶 ÞÑ pr𝑀 p𝐶q and 𝑈 ÞÑ
d
𝑈 satisfy the main condition of a

Galois connection. But note again that since Ď does not constitute an order relation on the
set of all ℰℒKgfp-concept descriptions, the aforementioned mappings actually cannot be a Galois
connection.

4.4 Lemma Let 𝑀 be a set of concept descriptions. Then for each 𝑈 Ď 𝑀 and for each
concept description 𝐶 it is true that

𝐶 Ď
l
𝑈 ðñ 𝑈 Ď pr𝑀 p𝐶q.

Proof Let us first show the direction from left to right. From 𝐶 Ď
d
𝑈 we can conclude

pr𝑀 p
d
𝑈q Ď pr𝑀 p𝐶q, since every concept description 𝐷 P𝑀 satisfying

d
𝑈 Ď 𝐷 also satisfies

𝐶 Ď 𝐷. Furthermore, for each 𝐹 P 𝑈 we have
d
𝑈 Ď 𝐹 , therefore 𝑈 Ď pr𝑀 p

d
𝑈q and hence

𝑈 Ď pr𝑀 p
l
𝑈q Ď pr𝑀 p𝐶q

as desired.

For the other direction let us suppose that 𝑈 Ď pr𝑀 p𝐶q. Then
d
𝑈 Ě

d
pr𝑀 p𝐶q. Now

𝐶 Ď pr𝑀 p𝐶q is true as well, as we have already argued.Therefore,

𝐶 Ď
l

pr𝑀 p𝐶q Ď
l
𝑈
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as desired. ˝

We have introduced pr𝑀 p𝐶q as an approximation of the concept description 𝐶 in terms of
𝑀 . Occasionally, it may happen that this approximation is as good as possible, i. e. that the
approximation pr𝑀 p𝐶q indeed describes 𝐶 completely. We shall capture this situation in the
following definition.

4.5 Definition Let 𝑀 be a set of concept descriptions and let 𝐶 be another concept description.
We say that 𝐶 is expressible in terms of 𝑀 if and only if there exists a subset 𝑁 Ď𝑀 such that
𝐶 ”

d
𝑁 . ♢

Unsurprisingly, expressibility in terms of 𝑀 can be characterized easily using projections, as the
following result shows.

4.6 Proposition Let 𝑀 be a set of ℰℒKgfp-concept descriptions and let 𝐶 be an ℰℒKgfp-concept
description. Then 𝐶 is expressible in terms of 𝑀 if and only if

𝐶 ”
l

pr𝑀 p𝐶q.

Proof If 𝐶 ”
d

pr𝑀 p𝐶q, then clearly 𝐶 is expressible in terms of 𝑀 . Conversely, let 𝑁 Ď 𝑀
such that 𝐶 ”

d
𝑁 . Then 𝐶 Ď 𝐷 for each 𝐷 P 𝑁 and hence

𝑁 Ď pr𝑀 p𝐶q,

which implies 𝐶 Ě
d

pr𝑀 p𝐶q. On the other hand, 𝐶 Ď
d

pr𝑀 p𝐶q by Lemma 4.4 and hence
𝐶 ”

d
pr𝑀 p𝐶q follows as required. ˝

One of the crucial observations of [11] is that we can explicitly describe a set 𝑀ℐ that is able to
express all model-based most-specific concept descriptions of ℐ:

𝑀ℐ :“ tKu Y𝑁𝐶 Y t D𝑟.𝑋
ℐ | 𝑋 Ď ∆ℐ , 𝑋 ‰ Hu.

4.7 Theorem (Lemma 5.9 from [11]) Let ℐ be a finite interpretation and let 𝐶 be a concept
description. Then 𝐶ℐℐ is expressible in terms of 𝑀ℐ .

The definitions and results given so far allow us to formulate one of the main results of [11],
which is an explicit description of a finite base of ℐ.

4.8 Theorem (Theorem 5.10 of [11]) Let ℐ be a finite interpretation. Then the set

ℬℐ :“ t
l
𝑈 Ď p

l
𝑈qℐℐ | 𝑈 Ď𝑀ℐ u

is a finite base for ℐ.

We now turn out attention to the notion of induced contexts, as they are define in [11]. Using a
special induced context Kℐ for the interpretation ℐ, we shall be able to derive a close relationship
of the model-based most-specific concept descriptions of ℐ and the intents of Kℐ .

4.9 Definition Let ℐ be a finite interpretation and let 𝑀 be a set of concept descriptions.
Define the formal context Kℐ,𝑀 :“ p∆ℐ ,𝑀,∇q, where

𝑥 ∇ 𝐶 ðñ 𝑥 P 𝐶ℐ

for all 𝑥 P ∆ℐ and 𝐶 P𝑀 . The formal context Kℐ,𝑀 is the induced formal context of ℐ and 𝑀 .
If 𝑀 “𝑀ℐ , we write Kℐ instead of Kℐ,𝑀 and call this induced formal context of ℐ. ♢
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Induced context play a crucial role in combining formal concept analysis and ℰℒKgfp. In particular,
they allow us to reduce the size of the base described in Theorem 4.8 as much as possible.

4.10 Theorem (Corollary 5.13 and Theorem 5.18 of [11]) Let ℐ be a finite interpreta-
tion and define

𝑆ℐ :“ t t𝐶 u Ñ t𝐷 u | 𝐶,𝐷 P𝑀ℐ , 𝐶 Ď 𝐷 u.

Then the set ℬCan defined by

ℬCan :“ t
l
𝑈 Ď p

l
𝑈qℐℐ | p𝑈 Ñ 𝑈2q P CanpKℐ , 𝑆ℐq u

is a base of ℐ of minimal cardinality.

Projections and induced formal context allow to express very close relationships between
operations in ℰℒKgfp and in Kℐ,𝑀 for suitable choices of 𝑀 . In particular, we can express the
extensions of concept descriptions 𝐶 in ℐ, which are expressible in terms of 𝑀 , as pr𝑀 p𝐶q

1

in Kℐ,𝑀 for some set 𝑁 Ď 𝑀 . In addition, if we can express for 𝑋 Ď ∆ℐ its model-based
most-specific concept descriptions 𝑋ℐ in terms of 𝑀 , we are also able to represent these concept
description 𝑋ℐ as

d
𝑋 1.

We formulate these relationships in the following two propositions. They already appear in [11].

4.11 Proposition (Lemma 4.11 and Lemma 4.12 from [11]) Let ℐ be a finite interpre-
tation and 𝑀 a set of concept descriptions. Let 𝐶 be a concept description expressible in terms
of 𝑀 . Then

𝐶ℐ “ pr𝑀 p𝐶q
1

where the derivation are computed within the induced context of ℐ and 𝑀 . Furthermore, every
set 𝑂 Ď ∆ℐ satisfies

𝑂1 “ pr𝑀 p𝑂
ℐq.

Proof Since 𝐶 is expressible in terms of 𝑀 , 𝐶 ”
d

pr𝑀 p𝐶q by Proposition 4.6. Therefore

𝑥 P 𝐶ℐ ðñ 𝑥 P p
l

pr𝑀 p𝐶qq
ℐ

ðñ @𝐷 P pr𝑀 p𝐶q : 𝑥 P 𝐷ℐ

ðñ 𝑥 P pr𝑀 p𝐶q
1

as pr𝑀 p𝐶q
1 “ t𝑥 P ∆ℐ | @𝐷 P pr𝑀 p𝐶q : 𝑥 P 𝐷ℐ u.

For the second claim we observe

𝐷 P 𝑂1 ðñ @𝑔 P 𝑂 : 𝑔 P 𝐷ℐ

ðñ 𝑂 Ď 𝐷ℐ

ðñ 𝑂ℐ Ď 𝐷

ðñ 𝐷 P pr𝑀 p𝑂
ℐq,

where 𝑂 Ď 𝐷ℐ ðñ 𝑂ℐ Ď 𝐷 holds due to Lemma 3.21. ˝

4.12 Proposition (Lemma 4.10 and 4.11 from [11]) Let ℐ be a finite interpretation and
let 𝑀 be a set of concept descriptions. Then each 𝐵 Ď𝑀 satisfies

𝐵1 “ p
l
𝐵qℐ ,
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where the derivations are computed in Kℐ,𝑀 .

Let 𝐴 Ď ∆ℐ . If 𝐴ℐ is expressible in terms of 𝑀 , then
l
𝐴1 ” 𝐴ℐ .

Proof Remember that an object 𝑥 P ∆ℐ has an attribute 𝐷 P𝑀 if and only if 𝑥 P 𝐷ℐ . Hence

𝑥 P 𝐵1 ðñ @𝐷 P 𝐵 : 𝑥 P 𝐷ℐ ðñ 𝑥 P p
l
𝐵qℐ .

Let 𝐴 Ď ∆ℐ such that 𝐴ℐ is expressible in terms of 𝑀 . By Proposition 4.6,

𝐴ℐ ”
l

pr𝑀 p𝐴
ℐq.

By Proposition 4.11, pr𝑀 p𝐴
ℐq “ 𝐴1 and hence the claim follows. ˝

In Theorem 4.14 we shall precisely formulate a connection between the model-based most-specific
concept descriptions of ℐ and the intents of Kℐ . To prove this connection, we shall make use of
the following proposition.

4.13 Proposition Let ℐ be a finite interpretation and let 𝑋 Ď𝑀ℐ . Then

𝑋 Ď pr𝑀ℐ
p
l
𝑋q Ď 𝑋2,

where the derivation is computed in Kℐ .

Proof By Lemma 4.4, 𝑋 Ď pr𝑀ℐ
p
d
𝑋q holds. Now

𝐷 P pr𝑀ℐ
p
l
𝑋q ðñ

l
𝑋 Ď 𝐷

ùñ p
l
𝑋qℐ Ď 𝐷ℐ

ðñ 𝑋 1 Ď t𝐷 u
1

ðñ 𝑋2 Ě t𝐷 u
2
Q 𝐷

ùñ 𝐷 P 𝑋2

as required. ˝

Having defined the formal context Kℐ , we are now going to show that this formal context indeed
allows us to view model-based most-specific concept descriptions as intents of a formal context.
We have already seen that all model-based most-specific concept descriptions are expressible in
terms of 𝑀ℐ , the set of attributes of Kℐ . It is therefore not surprising that the lattice of intents
of Kℐ and the equivalence classes of model-based most-specific concept descriptions ordered by
Ě are order-isomorphic.

Before we prove the following theorem, we have to deal with a technical detail. This is because
model-based most-specific concept descriptions are only unique up to equivalence. In particular,
Ď is in general not an order relation on the set of all model-based most-specific concept
descriptions. To overcome this we use the standard approach of considering classes of equivalent
concept descriptions instead.

Let 𝑀 be a set of concept descriptions. Then let us define

𝑀{” :“ t r𝑋s | 𝑋 P𝑀 u
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where
r𝑋s :“ t𝑌 P𝑀 | 𝑋 ” 𝑌 u.

Furthermore, for 𝑋,𝑌 P𝑀 we set

r𝑋s Ď r𝑌 s ðñ 𝑋 Ď 𝑌.

Note that this is well-defined because if �̂� P r𝑋s, 𝑌 P r𝑌 s, then �̂� ” 𝑋,𝑌 ” 𝑌 and hence
𝑋 Ď 𝑌 ðñ �̂� Ď 𝑌 . With this definition it is easy to see that p𝑀{”,Ďq is an ordered set.

4.14 Theorem Let ℐ be a finite interpretation and let ℳ be the set of all model-based
most-specific concept descriptions of ℐ. Then the mappings

l
: Pp𝑀ℐq Ñℳ and pr𝑀ℐ

: ℳÑ Pp𝑀ℐq

describe an order-isomorphism between the ordered sets pPp𝑀ℐq,Ďq and pℳ{”,Ěq via

𝜙 : Pp𝑀ℐq Ñ ℳ{”

𝑁 ÞÑ r
d
𝑁 s

and 𝜙´1pr𝑋sq “ pr𝑀ℐ
p𝑋q. More precisely, the following statements hold:

i.
d
𝑈 Pℳ for each 𝑈 P IntpKℐq.

ii. pr𝑀ℐ
p𝐶q P IntpKℐq for each 𝐶 Pℳ.

iii. 𝑈 Ď 𝑉 implies pr𝑀ℐ
p𝑈q Ě pr𝑀ℐ

p𝑉 q for all 𝑈, 𝑉 Ď𝑀ℐ .

iv. 𝐶 Ď 𝐷 implies
d
𝐶 Ě

d
𝐷 for all 𝐶,𝐷 Pℳ.

v. pr𝑀ℐ
p
d
𝑈q “ 𝑈 for each 𝑈 P IntpKℐq.

vi.
d

pr𝑀𝐼
p𝐶q ” 𝐶 for each 𝐶 Pℳ.

Additionally, 𝑈2 “ pr𝑀ℐ
pp

d
𝑈qℐℐq and 𝐶ℐℐ ”

d
ppr𝑀ℐ

p𝐶qq2 for each set 𝑈 Ď 𝑀ℐ and each
concept description 𝐶 expressible in terms of 𝑀ℐ , where the derivations are computed in Kℐ .

Proof We show each claim step by step.

For i, let 𝑈 P IntpKℐq, i. e. 𝑈 “ 𝑈2. Then
l
𝑈 “

l
𝑈2 ” p𝑈 1qℐ “ p

l
𝑈qℐℐ

by Proposition 4.12. Hence
d
𝑈 ” p

d
𝑈qℐℐ and therefore

d
𝑈 Pℳ.

For ii, let 𝐶 Pℳ, i. e. 𝐶 ” 𝐶ℐℐ . By Theorem 4.7, 𝐶 is expressible in terms of 𝑀ℐ and hence by
Proposition 4.11

pr𝑀ℐ
p𝐶q “ pr𝑀ℐ

p𝐶ℐℐq

“ p𝐶ℐq1

“ ppr𝑀ℐ
p𝐶qq2,

thus pr𝑀ℐ
p𝐶q P IntpKℐq.

Claims iii and iv are already contained in Lemma 4.4.

For v we need to show that
pr𝑀ℐ

p
l
𝑈q “ 𝑈
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for 𝑈 P IntpKℐq. By Proposition 4.13, 𝑈 Ď pr𝑀ℐ
p
d
𝑈q Ď 𝑈2, and since 𝑈 “ 𝑈2, equality follows.

Claim vi follows from Proposition 4.6, as 𝐶 Pℳ is expressible in terms of 𝑀ℐ by Theorem 4.7.

Finally for 𝑈 Ď𝑀ℐ

pr𝑀ℐ
pp

l
𝑈qℐℐq “ pr𝑀ℐ

pp𝑈 1qℐq

“ 𝑈2

by Proposition 4.12 and Proposition 4.11, and
l
ppr𝑀ℐ

p𝐶qq2 ” ppr𝑀ℐ
p𝐶q1qℐ

“ 𝐶ℐℐ

for every ℰℒKgfp-concept description 𝐶, again by Proposition 4.11 and Proposition 4.12. ˝

An immediate consequence of this theorem is the following.

4.15 Corollary Let ℐ be a finite interpretation. Then for each 𝐴 Ď𝑀ℐ it is true that

p
l
𝐴qℐℐ “

l
𝐴2,

where the derivations are done in Kℐ .

Proof It is true that
d
𝐴 is expressible in terms of 𝑀ℐ , therefore Theorem 4.14 yields

p
l
𝐴qℐℐ “

l
ppr𝑀ℐ

p
l
𝐴qq2.

Now by Proposition 4.11 we have pr𝑀ℐ
p
d
𝐴q1 “ p

d
𝐴qℐ . Therefore

p
l
𝐴qℐℐ “

l
pp

l
𝐴qℐq1

“
l
𝐴2,

since p
d
𝐴qℐ “ 𝐴1 by Proposition 4.12. ˝

4.3 Computing Confident Bases of Finite Interpretations

Building upon the results of the previous sections, we are now able to describe a first confident
base of Th𝑐pℐq for arbitrary choices of 𝑐 P r0, 1s. For this, we shall make use of results of [9],
which itself uses ideas from Luxenburger [14]. As [9] already gives a thorough introduction and
motivation of Luxenburger’s results, we shall not repeat it here. Instead, we shall extend the
results obtained in [9] by the result of Theorem 4.20.

Roughly speaking, the ideas by Luxenburger applied to our setting of confident GCIs can be
formulated as follows. We consider the partition Th𝑐pℐq “ Thpℐq Y pTh𝑐pℐqzThpℐqq and try
to separately find a base for Thpℐq and a confident base for Th𝑐pℐqzThpℐq. Of course, a base
ℬ of Thpℐq has already been given by Distel [11], so it remains to find a confident base of
Th𝑐pℐqzThpℐq.

To achieve this we use the following observation from Luxenburger, translated to the language
of description logics: if p𝐶 Ď 𝐷q P Th𝑐pℐqzThpℐq, it is true that

ℬ Y t𝐶ℐℐ Ď 𝐷ℐℐ u |ù p𝐶 Ď 𝐷q,
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because ℬ |ù p𝐶 Ď 𝐶ℐℐq and H |ù p𝐷ℐℐ Ď 𝐷q (note that 𝐶 Ď 𝐶ℐℐ always holds in ℐ.)
Therefore, it suffices to consider only GCIs of the form 𝐶ℐℐ Ď 𝐷ℐℐ .

Let us define

Confpℐ, 𝑐q :“ t𝑋ℐ Ď 𝑌 ℐ | 𝑌,𝑋 Ď ∆ℐ and confℐp𝑋
ℐ Ď 𝑌 ℐq P r𝑐, 1q u.

Then we can formulate the following result.

4.16 Theorem Let ℐ be a finite interpretation, let 𝑐 P r0, 1s and let ℬ be a base of ℐ. Then
ℬ Y Confpℐ, 𝑐q is a confident base of Th𝑐pℐq.

Proof Clearly ℬ Y Confpℐ, 𝑐q Ď Th𝑐pℐq and it only remains to be shown that ℬ Y Confpℐ, 𝑐q
entails all GCIs with confidence at least 𝑐 in ℐ.

Let 𝐶 Ď 𝐷 be a GCI with confℐp𝐶 Ď 𝐷q ě 𝑐. We have to show that ℬ Y Confpℐ, 𝑐q |ù 𝐶 Ď 𝐷.
If 𝐶 Ď 𝐷 is already valid in ℐ, then ℬ |ù 𝐶 Ď 𝐷 and nothing remains to be shown. We therefore
assume that confℐp𝐶 Ď 𝐷q ‰ 1.

As 𝐶 Ď 𝐶ℐℐ is valid in ℐ, ℬ |ù 𝐶 Ď 𝐶ℐℐ . Furthermore, conf𝐼p𝐶 Ď 𝐷q “ confℐp𝐶
ℐℐ Ď 𝐷ℐℐq

and hence p𝐶ℐℐ Ď 𝐷ℐℐq P Confpℐ, 𝑐q. Finally, H |ù 𝐷ℐℐ Ď 𝐷. We therefore obtain

ℬ Y Confpℐ, 𝑐q |ù 𝐶 Ď 𝐶ℐℐ , 𝐶ℐℐ Ď 𝐷ℐℐ , 𝐷ℐℐ Ď 𝐷

and hence ℬ Y Confpℐ, 𝑐q |ù 𝐶 Ď 𝐷 as required. ˝

It is not hard to see that the prerequisites of the previous theorem can be weakened in the
following way: instead of considering the whole set Confpℐ, 𝑐q, it is sufficient to choose a base
𝒞 Ď Confpℐ, 𝑐q of Confpℐ, 𝑐q, since then

ℬ Y 𝒞 |ù ℬ Y Confpℐ, 𝑐q.

Furthermore, it is not necessary for ℬ to be a base of ℐ. Instead, one can choose a set ℬ̂ of valid
GCIs such that ℬ̂ Y 𝒞 is complete for ℐ, because then

ℬ̂ Y 𝒞 |ù ℬ Y 𝒞.

4.17 Corollary Let ℐ be a finite interpretation, 𝑐 P r0, 1s. Let 𝒞 Ď Confpℐ, 𝑐q be a base of
Confpℐ, 𝑐q and let ℬ Ď Thpℐq such that ℬY 𝒞 is complete for ℐ. Then ℬY 𝒞 is a confident base
of Th𝑐pℐq.

Now, this results allows us to describe confident bases of Th𝑐pℐq in a very simple way: if ℒ is a
confident base of Th𝑐pKℐq, then the set

t
l
𝑋 Ď

l
𝑌 | p𝑋 Ñ 𝑌 q P ℒ u

is a confident base of Th𝑐pℐq. This is the content of Theorem 4.20, which we shall prepare with
the following lemmas.

4.18 Lemma Let 𝑀 be a set of concept descriptions and let ℒ Ď Impp𝑀q and p𝑋 Ñ 𝑌 q P
Impp𝑀q. Then ℒ |ù p𝑋 Ñ 𝑌 q implies

d
ℒ |ù p

d
𝑋 Ď

d
𝑌 q.

Proof Let 𝒥 “ p∆𝒥 , ¨𝒥 q be an interpretation such that 𝒥 |ù
d

ℒ. Recall that we denote with
K𝒥 ,𝑀 the formal context induced by 𝑀 and 𝒥 . We shall show that K𝒥 ,𝑀 |ù ℒ. This then
implies K𝒥 ,𝑀 |ù p𝑋 Ñ 𝑌 q and from this we shall infer that 𝒥 |ù p

d
𝑋 Ď

d
𝑌 q, as required.
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Let p𝐸 Ñ 𝐹 q P ℒ. Then p
d
𝐸q𝒥 Ď p

d
𝐹 q𝒥 since 𝒥 |ù

d
ℒ. By Proposition 4.12, p

d
𝐸q𝒥 “ 𝐸1,

where the derivation is done in K𝒥 ,𝑀 . Therefore, 𝐸1 Ď 𝐹 1 is true in K𝒥 ,𝑀 and hence K𝒥 ,𝑀 |ù ℒ.
Since ℒ |ù p𝑋 Ñ 𝑌 q, we obtain𝑋 1 Ď 𝑌 1. Again by Proposition 4.12 we obtain p

d
𝑋q𝒥 Ď p

d
𝑌 q𝒥

and therefore 𝒥 |ù p
d
𝑋 Ď

d
𝑌 q. ˝

Note that the converse direction is not true in general, i. e.
d
ℒ |ù p

d
𝑋 Ď

d
𝑌 q does in general

not imply ℒ |ù p𝑋 Ñ 𝑌 q. This fact is illustrated by the following example.

4.19 Example Let 𝑁𝐶 :“ tA,B u, 𝑁𝑅 :“ t r u and 𝑀 “ tA,B, Dr.A, Dr.B u. Define

ℒ :“ t tA u Ñ tB u u,

𝑋 :“ tDr.A u,

𝑌 :“ tDr.B u.

Then clearly ℒ |ù p𝑋 Ñ 𝑌 q, but
d
ℒ “ tA Ď B u, p

d
𝑋 Ď

d
𝑌 q “ pDr.A Ď Dr.Bq and therefored

ℒ |ù p
d
𝑋 Ď

d
𝑌 q. ♢

We now prove the main result of this section.

4.20 Theorem Let ℐ be a finite interpretation and let 𝑐 P r0, 1s. Let ℒ be a confident base of
Th𝑐pKℐq. Then the set

ℬ :“
l

ℒ “ t
l
𝑋 Ď

l
𝑌 | p𝑋 Ñ 𝑌 q P ℒ u

is a confident base of Th𝑐pℐq.

Proof We have to show that ℬ is sound and complete for Th𝑐pℐq, i. e. ℬ Ď Th𝑐pℐq and for each
p𝐶 Ď 𝐷q P Th𝑐pℐq follows ℬ |ù p𝐶 Ď 𝐷q.

To see that ℬ is sound let p
d
𝑋 Ñ

d
𝑌 q P ℬ. We have to show that confℐp

d
𝑋 Ñ

d
𝑌 q ě 𝑐.

To do this, we shall verify

confℐp
l
𝑋 Ď

l
𝑌 q “ confKℐ p𝑋 Ñ 𝑌 q.

Let p
d
𝑋qℐ ‰ H. Then by Proposition 4.12, 𝑋 1 ‰ H and hence

confℐp
l
𝑋 Ď

l
𝑌 q “

|p
d
𝑋 [

d
𝑌 qℐ |

|p
d
𝑋qℐ |

“
|p

d
p𝑋 Y 𝑌 qqℐ |

|p
d
𝑋qℐ |

“
|p𝑋 Y 𝑌 q1|

|𝑋 1|

“ confKℐ p𝑋 Ñ 𝑌 q.

If p
d
𝑋qℐ “ H, then 𝑋 1 “ H and therefore

confℐp
l
𝑋 Ď

l
𝑌 q “ 1 “ confKℐ p𝑋 Ñ 𝑌 q.

This shows that ℬ is sound for Th𝑐pℐq.

We shall now show that ℬ is complete for Th𝑐pℐq. For this we shall show that

i. ℬ |ù p
d
𝑈 Ď p

d
𝑈qℐℐq for each 𝑈 Ď𝑀ℐ ;
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ii. ℬ |ù Confpℐ, 𝑐q.

Recall from Theorem 4.8 that

ℬℐ “ t
l
𝑈 Ď p

l
𝑈qℐℐ | 𝑈 Ď𝑀ℐ u

is a finite base of ℐ. By Theorem 4.16, ℬℐ Y Confpℐ, 𝑐q is a confident base of Th𝑐pℐq. If we
show the two claims from above, we have shown ℬ |ù pℬℐ YConfpℐ, 𝑐qq which then implies that
ℬ is complete for Th𝑐pℐq as well.

For the first case let 𝑈 Ď 𝑀ℐ . Since ℒ is a confident base for Th𝑐pKℐq, it is complete for Kℐ
and therefore

ℒ |ù p𝑈 Ñ 𝑈2q.

Then Lemma 4.18 yields
ℬ |ù p

l
𝑈 Ď

l
𝑈2q

and Corollary 4.15 implies
d
𝑈2 ” p

d
𝑈qℐℐ , hence

ℬ |ù p
l
𝑈 Ď p

l
𝑈qℐℐq

as desired.

For the second case let p𝑈ℐ Ď 𝑉 ℐq P Confpℐ, 𝑐q, i. e. 𝑈, 𝑉 Ď ∆ℐ and confℐp𝑈
ℐ Ď 𝑉 ℐq P r𝑐, 1q.

By Proposition 4.12, 𝑈ℐ ”
d
𝑈 1 and 𝑉 ℐ ”

d
𝑉 1, since 𝑈ℐ , 𝑉 ℐ are expressible in terms of 𝑀ℐ

by Theorem 4.7. Therefore,

ℬ |ù p𝑈ℐ Ď 𝑉 ℐq ðñ ℬ |ù p
l
𝑈 1 Ď

l
𝑉 1q.

As before we see that
confℐp

l
𝑈 1 Ď

l
𝑉 1q “ confKℐ p𝑈

1 Ñ 𝑉 1q.

Since ℒ is a confident base for Th𝑐pKℐq it is true that ℒ |ù 𝑈 1 Ñ 𝑉 1, hence ℬ |ù p
d
𝑈 1 Ď

d
𝑉 1q

by Lemma 4.18 and therefore ℬ |ù p𝑈ℐ Ď 𝑉 ℐq. ˝

Since Th𝑐pKℐq is a confident base of itself, we immediately obtain that
d

Th𝑐pKℐq is a confident
base of Th𝑐pℐq.

In addition to entailing all confident GCIs, a base of Th𝑐pKℐq also compromises the knowledge
about when two concept descriptions 𝐶,𝐷 P 𝑀ℐ subsume each other. If 𝐶 Ď 𝐷, then the
corresponding implication t𝐶 u Ñ t𝐷 u always holds in Kℐ and is therefore entailed by any base
ℒ of Th𝑐pKℐq. However, this knowledge is not needed in the base

d
ℒ of Th𝑐pℐq, and therefore

may cause some redundancies in the base
d

ℒ. The following result shows that at least these
redundancies can be avoided.

4.21 Corollary Let ℐ be a finite interpretation, 𝑐 P r0, 1s and let ℒ Ď ImppKℐq be such that
ℒY 𝑆ℐ is a confident base of Th𝑐pKℐq. Then

d
ℒ is a confident base of Th𝑐pℐq.

Proof By Theorem 4.20,
d
ℒ[

d
𝑆ℐ “

d
pℒY 𝑆ℐq is a confident base of Th𝑐pℐq. Since

l
𝑆ℐ “ t𝐶 Ď 𝐷 | 𝐶,𝐷 P𝑀ℐ , 𝐶 Ď 𝐷 u

is valid in every interpretation, the set
d
ℒ is already a base of Th𝑐pℐq. ˝
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More generally, if a base ℒ of Th𝑐pKℐq is redundant, then there exists an implication p𝑋 Ñ 𝑌 q P ℒ
such that

ℒzt𝑋 Ñ 𝑌 u |ù 𝑋 Ñ 𝑌.

By Lemma 4.18 this yields
l

ℒzt
l
𝑋 Ď

l
𝑌 u |ù p

l
𝑋 Ď

l
𝑌 q,

i. e. redundancies in a set of implications yield redundancies in the corresponding set of GCIs.
Therefore, removing these redundancies is a good starting point for reducing the size of the
result set of GCIs.

One way to do this is to use the results from Section 2.4 in the following way: if ℒ is a (confident)
base of Th𝑐pKℐq, then we can reduce the size of the base by considering Canpℒq instead. As
Cnpℒq “ CnpCanpℒqq, we know that Canpℒq is a base of Th𝑐pKℐq. Also in this case does the
set

d
Canpℒq yield a base of Th𝑐pℐq.

4.22 Corollary Let ℐ be a finite interpretation, 𝑐 P r0, 1s and let 𝒦 Ď ImppKℐq be a base of
Th𝑐pKℐq. Then

d
𝒦 is a base of Th𝑐pℐq.

Proof By the observation after Theorem 4.20 we know that
d

Th𝑐pKℐq is a confident base of
Th𝑐pℐq. As 𝒦 is a base of Th𝑐pKℐq, from Lemma 4.18 we infer that

d
𝒦 is also a base ofd

Th𝑐pKℐq. Hence,
d
𝒦 entails all GCIs from Th𝑐pℐq. Therefore,

d
𝒦 is complete for Th𝑐pℐq.

Conversely, as 𝒦 is a base of Th𝑐pKℐq, Th𝑐pKℐq is also a base of 𝒦. But then 𝒦 is entailed by
Th𝑐pKℐq, i. e.

d
𝒦 is entailed by

d
Th𝑐pKℐq Ď Th𝑐pℐq. Therefore,

d
𝒦 is sound for Th𝑐pℐq and

hence a base of Th𝑐pℐq. ˝

However, the approach of considering Canpℒq instead of ℒ has the drawback that we cannot
guarantee anymore that Canpℒq Ď Th𝑐pKℐq, i. e. that

d
Canpℒq is a confident base of Th𝑐pℐq.

Another observation is that in general we cannot transfer non-redundancy of a base ℒY 𝑆ℐ of
Th𝑐pKℐq to non-redundancy of

d
ℒ. This is illustrated by the following example.

4.23 Example We want to find an interpretation ℐ, a number 𝑐 P r0, 1s and a non-redundant
set ℒ of implications of Kℐ such that ℒY 𝑆ℐ is a confident base of Th𝑐pKℐq but

d
ℒ contains

redundancies.

The main idea to obtain such an example is to construct the interpretation ℐ in such a way that
for two concept names A,B P 𝑁𝐶 , both implications tA u Ñ tB u and t Dr.A u Ñ t Dr.pA[ Bq u
have confidence at least 𝑐 in Kℐ . Of course, this immediately implies that both A Ď B and
Dr.A Ď Dr.pA[Bq have confidence at least 𝑐 in ℐ. Then, if we can include the two implications in
the set ℒ we are looking for, this will immediately result in

d
ℒ being redundant. If, in addition,

we can make sure that ℒ is a non-redundant set of implications such that ℒY 𝑆ℐ is a confident
base of Th𝑐pKℐq, then we have obtained our desired example.

Let 𝑁𝐶 “ tA,B u, 𝑁𝑅 “ t r u and consider the interpretation ℐ1 given in Figure 5, where every
edge denotes an r-edge. In this interpretation, it is true that

confℐ1
pA Ď Bq ě

1

2

confℐ1
pDr.A Ď Dr.pA[ Bqq ě

1

2
.

So, let us choose 𝑐 “ 1
2 . Then we want to find a non-redundant set ℒ Ď ImppKℐ1q such that

ℒY 𝑆ℐ1
is a confident base of Th𝑐pKℐ1

q and ptA u Ñ tB uq, pt Dr.A u Ñ t Dr.pA[ Bq uq P ℒ.

31



1

A

2

A

3

B

4

A,B

5

A,B

6

A,B

7

A,B

Figure 5: Example interpretation ℐ1
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2 . ˆ . . . ˆ . ˆ ˆ ˆ

3 . . ˆ . . ˆ . ˆ ˆ ˆ

4 . ˆ ˆ . . . . . . .
5 . ˆ ˆ . . . . . . .
6 . ˆ ˆ . . . . . . .
7 . ˆ ˆ . . . . . . .

Figure 6: Induced formal context of ℐ1

For this, we compute

𝑀ℐ1
“ tK,A,B, Dr.pA[ Dr.pA[ Bqq,

Dr.pB[ Dr.pA[ Bqq, Dr.pA[ Bq, Dr.Dr.pA[ Bq, Dr.A, Dr.B, Dr.Ju

and obtain the induced formal context Kℐ1
as shown Figure 6.

We can now compute an irredundant and complete subset ℒ1 of the confident base CanpKℐ1q Y

Confpℐ1, 𝑐q, which, after removing redundancies from ℒ1 with respect to 𝑆ℐ1
, contains the

following implications:

HÑ tA u

tA u Ñ tB u

t Dr.A u Ñ t Dr.pA[ Bq u

t Dr.B u Ñ t Dr.pA[ Bq u

t Dr.Ju Ñ tD𝑟.p𝐴[𝐵q u

tA,B, Dr.pA[ Bq u Ñ tK u

t Dr.Dr.pA[ Bq u Ñ tK u

t Dr.pB[ Dr.pA[ Bqq u Ñ tK u

t Dr.pA[ Dr.pA[ Bqq u Ñ tK u

As Canpℐ, 𝑐q Y Confpℐ, 𝑐q is a confident base of Th𝑐pKℐ1q, the set ℒ of all these implications is
such that ℒY𝑆ℐ1 is a confident base of Th𝑐pKℐ1q as well. Furthermore, the set ℒ is irredundant.
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However,
pA Ď Bq, pDr.A Ď Dr.pA[ Bqq P

l
ℒ,

and therefore
d
ℒ is not irredundant. ♢

5 Experiments with Confident GCIs

The main motivation to consider confident GCIs is the idea that they may provide helpful
information on finding errors in the data. But of course this is only a heuristic idea, and it is
not clear a-priori whether this approach really is useful. Indeed, it is at least very hard to give
some theoretical insight into the usefulness of this approach, as even formalizing the notion of
interpretations with errors in accordance to practical observations is far from obvious.

Therefore, in this section we want to show the usefulness of considering confident GCIs by means
of a real-world example. The data set we use stems from the DBpedia data set [8] as of March
2010, and is given as an interpretation ℐDBpedia that represents the child-relation in this data set.
A detailed construction of this interpretation has been given in [9], and we shall not repeat it
here. Instead, we can think of ℐDBpedia as an interpretation containing all elements that appear
in the child-relation of the DBpedia data set as of March 2010. For these elements, we can
collect properties such as Artist or Criminal, which then serve as concept names. As role name
we just use child. Collecting these information in the interpretation ℐDBpedia, we obtain 5626
elements and 60 concept names.

We have to mention a special peculiarity of this interpretation here, to not cause confusion
when we present our experimental results. One would expect that the child-relation only relates
persons to persons, i. e. only persons can be children of persons. However, DBpedia suffers
from the liberal structure of Wikipedia Infoboxes, where it draws its information from. These
infoboxes are not standardized in any way, and extracting information from them is really a
difficult task. If in such an infobox a link to another article appears under the rubric listing
children, then this link is collected as a children. However, sometimes there are some links under
this rubric that link to articles somehow related to these children. For example, in ℐDBpedia,
the element Ellen_Harper has as a child the element The_Carol_Burnett_Show, which is a
US american comedy show of the late 1960s and 1970s. This is because in the infobox of the
Wikipedia article on Ellen Harper, one of its children is related to the Carol Burnett Show, with
a link to the corresponding article.

Despite this oddity in the child-relation of DBpedia, the data set itself contains a lot of valuable
information. Even better, one could argue that because of this peculiar child-relation, the
interpretation ℐDBpedia is very well suited for our experiments, because this allows us to verify
in how far confident GCIs are able to detect some of these errors.

In the following, we want to assume that an ontology engineer wants to use ℐDBpedia to construct
an ontology that represents the properties of the child-relation. This ontology engineer want to
consider confident GCIs to overcome some of the errors present in this interpretation. To do
this, she has to extract some confident GCIs from ℐDBpedia and has to check them for usefulness.
This she has to do manually, and therefore this can be an expensive task. To show how much of
extra work this can be for our particular example of ℐDBpedia, we propose the following three
experiments:

i. We want to explicitly consider the sets ConfpℐDBpedia, 0.95q and ConfpℐDBpedia, 0.90q, to
see whether the GCIs thus obtained are of any use for our ontology engineer working on
ℐDBpedia.
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ii. We want to consider for all 𝑐 P t 0, 0.01, 0.02, . . . , 0.99 u the sizes of the set ConfpKℐDBpedia , 𝑐q,
to see how many GCIs have to be consider when varying the threshold on the minimal con-
fidence. During this, we may also want to consider the canonical base of ConfpKℐDBpedia , 𝑐q,
since this may give rise to a much smaller base of Th𝑐pℐq.

iii. Finally, we want to consider for all 𝑐 P t 0, 0.01, 0.02, . . . , 0.99 u sizes of the canonical base
of Th𝑐pKℐDBpediaq. The rationale behind this is the following: if we consider confident GCIs,
we assume that we can circumvent certain errors and can extract more general patterns
which are falsified by erroneous counterexamples. We therefore expect that, if we consider
confident GCIs as actually valid GCIs, that the resulting theory extracted from a finite
interpretation gets more succinct. With this experiment we want to examine in how far
this is true for ℐDBpedia for varying values of 𝑐.

5.1 Confident GCIs of ℐDBpedia for 𝑐 “ 0.95 and 𝑐 “ 0.90

In this section we want to show how our ontology engineer would examine confident GCIs
extracted for two particular choices of 𝑐. For this, we shall examine the sets ConfpℐDBpedia, 0.95q
and ConfpℐDBpedia, 0.90q and discuss whether the GCIs contained in these sets are “reasonable.”
Thereby we decide whether a GCI 𝐶 Ď 𝐷 is reasonable by considering the counterexamples to
𝐶 Ď 𝐷, for which we can decide whether they are valid counterexamples or not.

5.1.1 The Case of Minimal Confidence 0.95

We can compute the set 𝒞 :“ ConfpℐDBpedia, 0.95q to be1

𝒞 “ tPlace Ď PopulatedPlace,

Dchild.J Ď Person,

Dchild.Dchild.J[ Dchild.OfficeHolder

Ď Dchild.pOfficeHolder [ Dchild.Jqu

It is quite surprising that the set 𝒞 turns out to have only three elements. Let us now consider
every GCIs in more detail.

The set 𝒞 contains the GCI Dchild.J Ď Person, which indeed looks very natural. However,
ℐDBpedia contains four counterexamples, namely Teresa_Carpio, Charles_Heung, Adam_Cheng
and Lydia_Shum. However, all these elements name individuals which are artists from Hong
Kong, and therefore certainly are persons. In other words, these counterexamples are erroneous
and the corresponding GCIs is valid.

It is also convincing that the GCI Place Ď PopulatedPlace is reasonable as well (places named in
DBpedia appear because people have been born or lived there), and the only counterexample to
this GCI is Greenwich_Village, denoting a district of New York which certainly is populated.

The last GCI which remains to be considered is

Dchild.Dchild.J[ Dchild.OfficeHolder Ď Dchild.pOfficeHolder [ Dchild.Jq

Subjectively, this GCI appears to be too specific to be considered as a valid (or useful) GCI. The
only counterexample to this GCI is Pierre_Samuel_du_Pont_de_Nemours, denoting the french
government official Pierre Samuel du Pont de Nemours, who had two sons, namely Victor Marie

1We have removed some redundancies in the concept descriptions to make them more readable. The GCIs
extracted by the algorithm are actually much longer, but equivalent to those shown here.

34



du Pont and Eleuthère Irénée du Pont. The first got a french diplomat and is therefore listed
in ℐDBpedia as an instance of OfficeHolder. Although he had four children, none of them got
famous enough to be named in the Wikipedia infobox of the corresponding Wikipedia article2.
On the other hand, his brother Eleuthère Irénée du Pont became a famous american industrial
and had a lot of famous children, which are listed in the Wikipedia infobox and therefore appear
in ℐDBpedia.

From the point of view of the DBpedia data set, Pierre_Samuel_du_Pont_de_Nemours may be
considered a valid counterexample, when one considers the child relation in ℐDBpedia as denoting
only famous children (noteworthy by name in the Wikipedia infobox.) If one, however, considers
the child relation simply as having children, the counterexample is not correct (as the Wikipedia
article is not correct.) Deciding which of the choices to take is now up to the ontology engineer,
and depends on the actual domain the ontology is to represent.

A legitimate question now is what happens if we consider the GCIs Dchild.J Ď Person and
Place Ď PopulatedPlace as valid GCIs, i. e. how much does the base of ℐDBpedia change if we
include those GCIs as background knowledge? Let

ℱ :“ t t Dchild.Ju Ñ tPerson u, tPlace u Ñ tPopulatedPlace u u.

One way to find a complete set of ThpℐDBpediaq such that the mentioned GCIs are valid as well
is just to compute the canonical base of KℐDBpedia with the corresponding background knowledge,
i. e. we compute

ℒ :“ CanpKℐDBpedia , 𝑆ℐDBpedia Y ℱq.

The set ℒY 𝑆ℐDBpedia Y ℱ is then complete for KℐDBpedia , therefore

ℒY ℱ Y 𝑆ℐDBpedia |ù CanpKℐDBpedia , 𝑆ℐDBpediaq.

Since
d

CanpKℐDBpedia , 𝑆ℐDBpediaq is complete for ThpℐDBpediaq, the set
d
pℒ Y ℱq is complete

for ThpℐDBpediaq as well. Therefore
d
pℒY ℱq is a base of

ThpℐDBpediaq Y t Dchild.J Ď Person,Place Ď PopulatedPlace u. (5.1)

If we now compute the set ℒ, we obtain a set of 1245 implications, therefore
d
pℒYℱq is a base

of (5.1) of size 1247. Compared to the 1252 implications needed to axiomatize Thpℐq, we can
indeed observe a decrease in the size of the base, although this may not be very impressive.

Note, however, that another consequence of including the set ℱ into a base is of course, that the
size of the concept descriptions in the resulting GCIs will become smaller and more readable.

5.1.2 The Case of Minimal Confidence 0.90

Of course, it is true that ConfpℐDBpedia, 0.90q Ě ConfpℐDBpedia, 0.95q and hence we shall only
discuss the GCIs in

𝒟 :“ ConfpℐDBpedia, 0.90qzConfpℐDBpedia, 0.95q.

2as of 13. November 2012
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We can compute

𝒟 “ tPerson[ Dchild.pPerson[ Dchild.pPerson[ Dchild.pPerson[ Dchild.pPerson[ Dchild.Jqqqq
Ď Dchild.pPerson[ Dchild.pPerson[ Dchild.pPerson[ Dchild.pPerson[ Dchild.Personqqqq

Dchild.pArtist[Writer [ Dchild.Jq

Ď Writer [ Artist,

Dchild.Dchild.J[ Dchild.President

Ď Dchild.pPresident[ Dchild.Jq,

Monarch[ Dchild.pPerson[ Dchild.Jq

Ď Dchild.pMonarch[ Dchild.Jq,

Dchild.MemberOfParliament[ Politician

Ď MemberOfParliament,

Dchild.OfficeHolder [ Dchild.Dchild.Person

Ď Dchild.pOfficeHolder [ Dchild.Personq u.

These GCIs are all quite specific and it is doubtful whether they may be of any use for an
ontology designed who tries to extract GCIs from ℐDBpedia. But let us still have a look at the
counterexample for the given GCIs.

We shall start with the first GCI listed above, i. e.

Person[ Dchild.pPerson[ Dchild.pPerson[ Dchild.pPerson[ Dchild.pPerson[ Dchild.Jqqqq

Ď Dchild.pPerson[ Dchild.pPerson[ Dchild.pPerson[ Dchild.pPerson[ Dchild.Personqqqq. (5.2)

This GCI seems to be rather complicated, and one may assume a much more general GCI to be
true, namely

Dchild.J Ď Dchild.Person

which is the ℰℒ-approximation of the fact that all children should be persons. However, as
already discussed, this GCI is not true in ℐDBpedia (and has confidence only around 0.53.)
Now this GCI states that if you have generations of instances of Person of at least 5 gen-
erations, then the element at the fifth generation can be chosen to be a Person. The only
counterexample to this GCI is Mayer_Amschel_Rothschild, naming the founder of the Roth-
schild dynasty. The only two fifth-generation descendants not being instances of Person in
ℐDBpedia are Edouard_Etienne_de_Rothschild and David_René_de_Rothschild, which are
certainly persons. Therefore, this counterexample is invalid and this GCI is valid.

Let us now consider the remaining GCIs. In the order of appearance above, the following list
gives all the counterexamples in ℐDBpedia of the corresponding GCIs:

i. John_McManners

ii. Alois_Hitler

iii. Dejan_Dragaš

iv. Marion_Dewar, Ranasinghe_Premadasa

v. Pierre_Samuel_du_Pont_de_Nemours

The last counterexample has already been discussed in the previous case, so we shall focus our
discussions on the first four only.
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i. The individual John_McManners denotes an British clergyman and historian who had a son,
Hugh_McManners, a musician and writer, who itself has a son. However, John_McManners,
though being a famous writer, was not an artist. Therefore, this GCI is not correct.

ii. The individual Alois_Hitler names the father of Adolf Hitler, who was the only of the
children of Alois Hitler to rule a country. As he had no children on its own, the individual
serves as a correct counterexample to the given GCI, which is therefore incorrect.

iii. The individual Dejan_Dragaš denotes a 14th-century Serbian noblemen and despot of
Kumanovo. He had two sons, Constantine_Dragaš, who had children and was ruler of
parts of Serbia, but not a monarch, and Jovan_Dragaš, who was despot of Kumanovo, but
had no children. Again, this counterexample is correct and the GCI invalid.

iv. The individual Marion_Dewar is not a correct counterexample, as Marion Dewar was
member of the Canadian House of Commons from 1987 to 1988.

The other individual, Ranasinghe_Premadasa, denotes a former Prime Minister and later
President of Sri Lanka. It is, however, quite hard to tell whether this means that he has ever
been member of the Parliament of Sri Lanka. Hence, from the point of view of DBpedia
extracting available knowledge from the Wikipedia pages, this counterexamples can be
assumed correct, although further investigations by a human expert may be necessary.

5.1.3 Discussion

By considering ConfpℐDBpedia, 0.95q and ConfpℐDBpedia, 0.90q we have illustrated in which way
an ontology engineer can make use of confident GCIs. As a first observation, we have seen
that this may include non-trivial research for the ontology engineer. In particular, deciding
whether a counterexample present in the data is correct always involves the question whether
the counterexample is relevant for the particular domain the resulting ontology is to represent.
It may therefore happen that an otherwise correct counterexample is rejected since it does not
appear in the domain of discourse. With respect to this observation, one could also say that
confident GCIs may help to model domains from data that does not fully describe these domains,
but are merely an approximation of them.

5.2 Sizes of Bases of Th𝑐pℐDBpediaq

In this section we shall conduct the remaining two experiments presented in the introduction,
i. e. we shall examine the behavior of the size of ConfpℐDBpedia, 𝑐q, CanpConfpℐDBpedia, 𝑐qq and
of CanpTh𝑐pKℐDBpediaqq for varying values of 𝑐. For the first experiment, we shall obtain an
impression on how many extra GCIs an ontology engineer has to consider. For the second
experiment, we shall obtain an intuition on how many GCIs a resulting TBox will contain.

5.2.1 The Size of ConfpℐDBpedia, 𝑐q and CanpConfpℐDBpedia, 𝑐qq

For the first experiment, we consider as the set of values for the parameter 𝑐 the set

𝑉 “ t 0, 0.01, 0.02, . . . , 0.99 u

For each 𝑐 P 𝑉 , we compute |ConfpKℐDBpedia , 𝑐q|. The result is shown in Figure 7, where the
y-axis is scaled logarithmically.

The results given in this picture show that the number of confident GCIs the ontology engineer
has to check manually declines exponentially as the minimal confidence grows. Even for 𝑐 “ 0.86,
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Figure 7: Size of ConfpKℐDBpedia , 𝑐q for all 𝑐 P 𝑉

there are only 15 extra GCIs to investigate. Given the fact that a base of ℐDBpedia has 1252
elements, this extra effort is negligible.

Of course, it is not clear whether this behavior is typical or just particular to our data set.
However, it indicates that considering confident GCIs for data, where the quality is good enough
(i. e. where only few errors have been made), is not a noteworthy overhead.

A drawback for this experiment is that we ignore the fact that ConfpKℐDBpedia , 𝑐q does not
need to be irredundant. Of course, if our ontology engineer confirms a certain subset ℒ Ď
ConfpKℐDBpedia , 𝑐q, then all implications already entailed by ℒ do not need to be checked on
their own. The same is true if we consider the GCIs entailed by an already confirmed subset of
ConfpℐDBpedia, 𝑐q.

Therefore, we show in Figure 8 the size behavior of the canonical base of ConfpKℐDBpedia , 𝑐q for
all 𝑐 P 𝑉 . Note that this canonical base is irredundant, hence the aforementioned issue does
not arise anymore. And indeed, as we can see from the picture, the number of GCIs decreases
significantly, especially for small values of 𝑐. But we can also observe that for larger values of 𝑐,
say 𝑐 ě 0.8, the overall number of GCIs to be considered does not decrease that much. Indeed,
ConfpℐDBpedia, 0.8q contains 40 elements, whereas CanpConfpℐDBpedia, 0.8qq contains 32. One
could argue that this does not really help, but one also has to consider that checking every GCI
by hand may be such an expensive task that every GCI saved pays off.

5.2.2 The Size of CanpTh𝑐pKℐDBpediaqq

We now turn our attention to the last experiment. There, we consider the size of the sets
CanpTh𝑐pKℐDBpedia , 𝑐qq for all 𝑐 P 𝑉 . The results of the experiment are shown in Figure 9.

From this data plot, we can make a couple of observations. For high values of 𝑐, i. e. 𝑐 P r0.8, 1s,
the overall size of CanpTh𝑐pKℐDBpedia , 𝑐qq does not decrease significantly. We can see this as a
sign that the overall theory Th𝑐pKℐDBpedia , 𝑐q does not change significantly, i. e. that the errors we
can handle with the aforementioned values of 𝑐 do not significantly influence Th𝑐pKℐDBpedia , 𝑐q.
This is actually what we want to achieve with our method, namely correcting small errors
while preserving as much of the original theory as possible. Of course, this data plot is only an
indication that our methods achieves this in the particular example of ℐDBpedia. But as ℐDBpedia

38



0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

𝑐

|
C

an
pC

o
n

fp
K

ℐ D
B
p
ed

ia
,𝑐
qq
|

Figure 8: Size of CanpConfpKℐDBpedia , 𝑐qq for all 𝑐 P 𝑉
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arises from real-world data, we can be certain that this behavior is not accidental.

Of course, the more we decrease 𝑐, the more we depart from the original set Th𝑐pKℐDBpediaq

of implications. There are three points were this becomes especially apparent, namely around
𝑐 “ 0.66, 𝑐 “ 0.54 and 𝑐 “ 0.18, where the changes in the size of CanpTh𝑐pKℐDBpediaqq is more
significant then for other values of 𝑐. Incidentally, these are three special values for 𝑐, as

i. for 𝑐 ď 0.18 the implication H Ñ 𝑀ℐDBpedia is entailed by Th𝑐pKℐDBpediaq, resulting in a
singleton canonical base;

ii. for 𝑐 ď 0.54, the implication t Dchild.Ju Ñ tDchild.Person u is contained in Th𝑐pKℐDBpediaq,
eliminating a large number of special cases;

iii. for 𝑐 ď 0.66, the implicationHÑ tPerson u is contained in Th𝑐pKℐDBpediaq, also eliminating
a variety of special cases.

Indeed, adding the implication H Ñ tPerson u to ThpKℐDBpediaq results in the size of the
canonical base to drop from 1252 to 1210. If we additionally add the implication t Dchild.Ju Ñ
tDchild.Person u, the resulting canonical base then even only contains 1163 implications.3

To understand this phenomenon, we can take the following point of view: intuitively, the lower
the threshold 𝑐, the simpler the set Th𝑐pKℐDBpediaq gets, because we neglect more special cases
in our data set. If the change in size of the respective canonical base is as significant as observed
for the three values given above, we would assume that, either, a lot new implications have
been accepted, or that new implications are accepted that render a lot of other implications
redundant. Indeed, as we have seen above, the second case occurs (consider also Figure 7 to
see that the size of ConfpℐDBpedia, 𝑐q does not change significantly at those points.) We can
therefore consider those significant changes in the size of the canonical base of Th𝑐pKℐDBpediaq

as a sign of discovery of some general implications, which may be of interest for our ontology
engineer.

6 Unravelling Confident ℰℒKgfp-Bases to Confident ℰℒK-Bases

So far, we have only considered bases of Th𝑐pℐq formulated in the description logic ℰℒKgfp.
Although this description logic allows us to find such bases in an easy way, the resulting bases
may not be suitable for practical purposes. This is mainly due to the inherit incomprehensibility
of ℰℒKgfp-concept descriptions: the presence of cycles in these concept descriptions make it hard,
even for logicians, to find out what this concept description is supposed to mean. On the other
hand, ℰℒK-concept descriptions are normally easy to understand and their intention can be also
be deduced by non-experts.

Therefore, we want to discuss in this section a way to obtain confident ℰℒK-bases of Th𝑐pℐq
from confident ℰℒKgfp-bases of Th𝑐pℐq. The technique we are going to use for this is based
on unravelling ℰℒKgfp-concept descriptions as introduced in Section 3.4. The argumentation
presented here is a generalization of the argumentation of Distel [11], who showed a similar
result on obtaining ℰℒK-bases of ℐ from ℰℒKgfp-bases of ℐ.

Let 𝑐 P r0, 1s and let us assume that 𝒟 is a base of Th𝑐pℐq. We can partition 𝒟 “ ℬ Y 𝒞, where
ℬ Ď Thpℐq and 𝒞 X Thpℐq “ H. Without loss of generality, we can also assume that ℬ only
contains GCIs of the form 𝐸 Ď 𝐸ℐℐ .

3 Please note that, although J Ď Person entails Dchild.J Ď Dchild.Person, the implication H Ñ tPerson u does
not entail the implication t Dchild.J u Ñ tPerson u. Indeed, the implication t Dchild.J u Ñ t Dchild.Person u is not
even entailed by Th0.66pKℐDBpedia q.
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As a first step, we are going to define an auxiliary set 𝒳ℐ,𝑑 of ℰℒK-GCIs that “capture” entailment
relations between ℰℒKgfp-concept descriptions. For this recall that by Lemma 3.29 there exists a
𝑑 P N such that

𝐶ℐ “ p𝐶𝑑q
ℐ (6.1)

holds for each ℰℒKgfp-concept description 𝐶, where 𝐶𝑑 denotes the unravelling of 𝐶 up to depth
𝑑.

6.1 Definition Let ℐ be a finite interpretation and let 𝑑 P N be as in Lemma 3.29. Then define

𝒳ℐ,𝑑 :“ t p𝑋ℐq𝑑 Ď p𝑋ℐq𝑑`1 | 𝑋 Ď ∆ℐ , 𝑋 ‰ Hu. ♢

Note that 𝒳ℐ,𝑑 is a set of valid GCIs of ℐ, since for each 𝑋 Ď ∆ℐ , 𝑋 ‰ H, it is true that
pp𝑋ℐq𝑑q

ℐ “ 𝑋ℐℐ “ pp𝑋ℐq𝑑`1q
ℐ .

In the course of Distel’s argumentation [11, Theorem 21], the following property of 𝒳ℐ,𝑑 had
been shown.

6.2 Lemma Let ℐ be a finite interpretation and let 𝑑 P N as in Lemma 3.29. Then for each
𝑌 Ď ∆ℐ , 𝑘 P N, 𝑘 ě 𝑑 it is true that

𝒳ℐ,𝑑 |ù pp𝑌
ℐq𝑘 Ď p𝑌 ℐq𝑘`1q

and
𝒳ℐ,𝑑 |ù pp𝑌

ℐq𝑑 Ď 𝑌 ℐq.

Before we are going to prove this lemma we need to formulate a preliminary result from [11].
As its prove involves notions we have not introduced in this work, we shall not repeat it here.

6.3 Lemma (Lemma 5.19 of [11]) Let 𝐶,𝐷 be ℰℒgfp-concept descriptions. Then for each
𝑘 P N it is true that

i. pD𝑟.𝐶q𝑘 ” D𝑟.𝐶𝑘´1 for each 𝑟 P 𝑁𝑅 and

ii. p𝐶 [𝐷q𝑘 ” 𝐶𝑘 [𝐷𝑘.

We now prove Lemma 6.2.

Proof (Lemma 6.2) For the first claim observer that if 𝑌 “ H, 𝑌 ℐ “ K and nothing remains to
be shown. We therefore assume 𝑌 ‰ H and shall show the claim using induction on 𝑘. The case
𝑘 “ 𝑑 is clear as pp𝑌 ℐq𝑑 Ď p𝑌 ℐq𝑑`1q P 𝒳ℐ,𝑑. For the step-case assume that we already now that

𝒳ℐ,𝑑 |ù pp𝑍
ℐq𝑘´1 Ď p𝑍ℐq𝑘q

is true for all 𝑍 Ď ∆ℐ , 𝑍 ‰ H.

From Theorem 4.7 we know that 𝑌 ℐ is expressible in terms of 𝑀ℐ . As 𝑌 ‰ H, it is true that
𝑌 ℐ ‰ K and therefore

𝑌 ℐ ”
l
𝑈 [

l

p𝑟,𝑍qPΠ

D𝑟.𝑍ℐ

for some 𝑈 Ď 𝑁𝐶 and Π Ď 𝑁𝑅 ˆPp∆ℐq. By Lemma 6.3 we therefore obtain

p𝑌 ℐq𝑘 ”
l
𝑈 [

l

p𝑟,𝑍qPΠ

D𝑟.p𝑍ℐq𝑘´1.
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Now the induction hypothesis yields that p𝑍ℐq𝑘´1 Ď p𝑍ℐq𝑘 is entailed by 𝒳ℐ,𝑑 and hence 𝒳ℐ,𝑑
also entails

p𝑌 ℐq𝑘 Ď
l
𝑈 [

l

p𝑟,𝑍qPΠ

D𝑟.p𝑍ℐq𝑘

”
`

l
𝑈 [

l

p𝑟,𝑍qPΠ

D𝑟.𝑍ℐ˘

𝑘`1

” p𝑌 ℐq𝑘`1,

as required. This completes the step-case and proves the first claim.

Let 𝑌 Ď ∆ℐ . We shall now show the second claim, i. e.

𝒳ℐ,𝑑 |ù pp𝑌
ℐq𝑑 Ď 𝑌 ℐq.

Again, if 𝑌 “ H, then 𝑌 ℐ “ K and the claim is trivial. Therefore, let 𝑌 ‰ H and let 𝒥 be an
interpretation such that 𝒥 |ù 𝒳ℐ,𝑑. It is then true that

pp𝑌 ℐq𝑘q
𝒥 Ď pp𝑌 ℐq𝑘`1q

𝒥 Ď pp𝑌 ℐq𝑘`2q
𝒥 Ď . . .

From Lemma 3.29 we know that for some ℓ P N it is true that pp𝑌 ℐqℓq
𝒥 “ p𝑌 ℐq𝒥 . Assuming

without loss of generality that ℓ ě 𝑘 we immediately obtain that

pp𝑌 ℐq𝑘q
𝒥 Ď p𝑌 ℐq𝒥 ,

i. e. 𝒥 |ù pp𝑌 ℐq𝑘 Ď 𝑌 ℐq. Therefore 𝒳ℐ,𝑑 |ù pp𝑌
ℐq𝑘 Ď 𝑌 ℐq, as it has been claimed. ˝

We now construct the ℰℒK-base of Th𝑐pℐq from ℬ Y 𝒞. For this, let us define

ℬ0 :“ t𝐸𝑑 Ď p𝐸ℐℐq𝑑 | p𝐸 Ď 𝐸ℐℐq P ℬ u Y t𝐶𝑑 Ď p𝐶ℐℐq𝑑 | p𝐶 Ď 𝐷q P 𝒞 u,
𝒞0 :“ t p𝐶ℐℐq𝑑 Ď p𝐷ℐℐq𝑑 | p𝐶 Ď 𝐷q P 𝒞 u.

(6.2)

Note that ℬ0 Y 𝒞0 Y𝒳ℐ,𝑑 only contains ℰℒK-GCIs and that all GCIs in ℬ0 Y𝒳ℐ,𝑑 are valid in ℐ.
The claim now is that ℬ0 Y 𝒞0 Y 𝒳ℐ,𝑑 is a confident ℰℒK-base of Th𝑐pℐq.
6.4 Theorem Let ℐ be a finite interpretation, 𝑐 P r0, 1s and let 𝑑 P N be as in Lemma 3.29.
Let ℬ Y 𝒞 be a confident base of Th𝑐pℐq such that ℬ Ď Thpℐq, 𝒞 X Thpℐq “ H and ℬ only
contains GCIs of the form 𝐸 Ď 𝐸ℐℐ . Define the sets ℬ0 and 𝒞0 as in (6.2). Then the following
statements hold:

i. 𝒞0 Ď Th𝑐pℐq and ℬ0 Y 𝒞0 Y 𝒳ℐ,𝑑 |ù 𝒞.

ii. ℬ0 Y 𝒞0 Y 𝒳ℐ,𝑑 |ù ℬ.

In particular, the set ℬ0 Y 𝒞0 Y 𝒳ℐ,𝑑 is a confident ℰℒK-base of Th𝑐pℐq.
Proof To see 𝒞0 Ď Th𝑐pℐq, recall that p𝐶𝑑q

ℐ “ 𝐶ℐ is true for each concept description 𝐶. For
p𝐶 Ď 𝐷q P 𝒞 with |𝐶ℐ | ‰ H we therefore obtain:

confℐp𝐶 Ď 𝐷q “ confℐp𝐶
ℐℐ Ď 𝐷ℐℐq

“
|p𝐶ℐℐ [𝐷ℐℐqℐ |

|𝐶ℐℐℐ |

“
|pp𝐶ℐℐ [𝐷ℐℐq𝑑q

ℐ |

|pp𝐶ℐℐq𝑑qℐ |

“
|pp𝐶ℐℐq𝑑 [ p𝐷

ℐℐq𝑑q
ℐ |

|pp𝐶ℐℐq𝑑qℐ |

“ confℐpp𝐶
ℐℐq𝑑 Ď p𝐷ℐℐq𝑑q
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using Lemma 6.3. If 𝐶ℐ “ H, then p𝐶𝑑q
ℐ “ 𝐶ℐ “ H and

confℐp𝐶 Ď 𝐷q “ confℐp𝐶𝑑 Ď 𝐷𝑑q

is true as well. Overall, we obtain pp𝐶ℐℐq𝑑 Ď p𝐷ℐℐq𝑑q P Th𝑐pℐq and therefore 𝒞0 Ď Th𝑐pℐq as
required.

We now show ℬ0 Y 𝒞0 Y 𝒳ℐ,𝑑 |ù 𝒞. Let p𝐶 Ď 𝐷q P 𝒞. Then the following statements are true

H |ù p𝐶 Ď 𝐶𝑑q

ℬ0 |ù p𝐶𝑑 Ď p𝐶ℐℐq𝑑q

𝒞0 |ù pp𝐶ℐℐq𝑑 Ď p𝐷ℐℐq𝑑q

𝒳ℐ,𝑑 |ù pp𝐷
ℐℐq𝑑 Ď 𝐷ℐℐq

H |ù p𝐷ℐℐ Ď 𝐷q.

Therefore, ℬ0 Y 𝒞0 Y 𝒳ℐ,𝑑 |ù p𝐶 Ď 𝐷q as required.

We now consider the second claim, i. e. that ℬ0 Y 𝒞0 Y 𝒳ℐ,𝑑 |ù ℬ. Let p𝐸 Ď 𝐸ℐℐq P ℬ. Then it
is true that

H |ù p𝐸 Ď 𝐸𝑑q

ℬ0 |ù p𝐸𝑑 Ď p𝐸ℐℐq𝑑q

𝒳ℐ,𝑑 |ù pp𝐸
ℐℐq𝑑 Ď 𝐸ℐℐq

again using Lemma 6.2 for the last entailment. Therefore,

ℬ0 Y 𝒞0 Y 𝒳𝑑 |ù p𝐸 Ď 𝐸ℐℐq

and the claim is proven. ˝

7 Conclusions and Further Work

This work extended the results obtained in [9] in various ways. Firstly, we have given another
construction of a base of Th𝑐pℐq, which works by directly transforming bases of Th𝑐pKℐq into
confident bases of Th𝑐pℐq. Secondly, we have given experimental evidence that our approach
of considering confident GCIs may be helpful during the process of construction an ontology
from example data. Finally, we have shown that certain ℰℒKgfp-bases of Th𝑐pℐq can effectively
be transformed into ℰℒK-bases of Th𝑐pℐq by generalizing the corresponding technique of [11].

From the viewpoint of both theory and practical application of confident GCIs, the most
important next step is to generalize the exploration algorithm from [11] to our setting of
confident GCIs. This may simplify the exploration process in the way that certain, special
GCIs may not have to be considered as soon as a more general GCI, which may have some
erroneous counterexamples, has already been confirmed. As exploration has as its main purpose
to complete an ontology by missing statements, generalizing the exploration process to confident
GCIs may also unify two steps of the ontology construction, namely construction from data and
completing the ontology.

Certainly, another direction of research would be to clarify and formalize the vague argumentation
we have given in Section 5.2.2. For this, it may also be interesting to conduct experiments
directly with GCIs and not only with implications. This, however, would require a possibility to
compute a smallest base of a given set of GCIs, i. e. a method to minimize the cardinality of a
given TBox.
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