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Abstract

We present a general form of attribute exploration, a knowledge comple-
tion algorithm from formal concept analysis. The aim of this generalization
is to extend the applicability of attribute exploration by a general descrip-
tion. Additionally, this may also allow for viewing different existing variants
of attribute exploration as instances of a general form, as for example
exploration on partial contexts.

1 Introduction

Attribute exploration is a well known algorithm within formal concept analysis [9].
Its main application can be summarized as semi-automatic knowledge base comple-
tion. Within this process, a domain expert is asked about the validity of certain
implications in the domain of discourse. Based upon the answer of the domain
expert, the algorithm enhances its knowledge until all implications are known to
hold or not to hold in the domain, and the algorithm stops.

Attribute exploration has gained much attention since its first formulation, and
for certain problems, where the original algorithm was not applicable, variations
of attribute exploration have been devised. Those variations include attribute
exploration on partial context [3, 4] and exploration of models of the description
logic ℰℒ [1, 2], among others.

Of course, in all variations of attribute exploration that have been devised the
overall structure of the algorithm remains the same. Furthermore, all important
properties of attribute exploration remain, and one might be tempted to ask
whether a general form of attribute exploration can be found that subsumes
all many of these variations. The purpose of this work is to present some first
considerations into this direction.

*Supported by DFG Graduiertenkolleg 1763 (QuantLA)
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We shall proceed as follows. After introducing the mandatory definitions in the
first section, we briefly revisit the classical description of attribute exploration as it
is given in [9]. Starting from this, we motivate our generalizations and summarize
the resulting algorithm together with its properties in the succeeding section. We
shall have a close look at a special cases which involves pseudoclosed sets and
results in some very nice results about the attribute exploration algorithm. Finally,
we shall summarize our considerations and give an outlook on further questions.

2 Preliminaries

As attribute exploration is an algorithm from formal concept analysis, we shall
begin by introducing some basic definitions from within this field. This includes
notions like formal contexts, contextual derivations, implications, partial contexts
and pseudoclosed sets. We shall furthermore recall the notion of closure operators
on sets, which we need for our considerations.

Let 𝐺 and 𝑀 be two sets and let 𝐼 Ď 𝐺 ˆ𝑀 . Then the triple K :“ p𝐺,𝑀, 𝐼q
is called a formal context. We shall connect with it the following intuition: The
set 𝐺 is the set of objects of K, 𝑀 is the set of attributes of K and p𝑔,𝑚q is an
element of the incidence relation 𝐼 if and only if the object 𝑔 has the attribute
𝑚. We may also write 𝑔𝐼𝑚 if p𝑔,𝑚q P 𝐼. If K is a formal context, then the set
of objects, attributes and the incidence relation is denoted by 𝐺K, 𝑀K and 𝐼K,
respectively.

Let us fix a formal context K “ p𝐺,𝑀, 𝐼q. If 𝐴 Ď 𝐺, then the set of common
attributes of 𝐴 in K is denoted by

𝐴1 :“ t𝑚 P𝑀 | @𝑔 P 𝐴 : 𝑔𝐼𝑚 u

and likewise for 𝐵 Ď𝑀 ,

𝐵1 :“ t 𝑔 P 𝐺 | @𝑚 P 𝐵 : 𝑔𝐼𝑚 u

denotes the set of all common objects of 𝐵 in K. The sets 𝐴1 and 𝐵1 are called
the (contextual) derivations of the respective sets, and the operators named p¨q1
are hence called the derivation operators of K.

The derivation operators satisfy a number of useful properties, from which we
shall name some in the following lemma.

2.1 Lemma ([9]) Let K “ p𝐺,𝑀, 𝐼q be a formal context and let 𝐴,𝐴1, 𝐴2 Ď

𝑀,𝐵,𝐵1, 𝐵2 Ď 𝐺. Then the following statements hold:

i) 𝐴1 Ď 𝐴2 ùñ 𝐴12 Ď 𝐴11

ii) 𝐵1 Ď 𝐵2 ùñ 𝐵12 Ď 𝐵11
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iii) 𝐴 Ď 𝐴2

iv) 𝐵 Ď 𝐵2

v) 𝐴1 “ 𝐴3

vi) 𝐵1 “ 𝐵3

vii) 𝐴 Ď 𝐵1 ðñ 𝐴1 Ě 𝐵

As we view the elements of 𝐺 as objects with certain attributes from 𝑀 , we may
ask for two sets 𝐴,𝐵 Ď𝑀 whether all objects having all attributes from 𝐴 also
have all attributes from 𝐵. This can be rewritten in terms of the derivations
operators as 𝐴1 Ď 𝐵1. In this case, we can think of the attributes in 𝐴 to imply
the attributes in 𝐵. This motivates the definition of implications and valid
implications of a formal context.

An implication on 𝑀 is just a pair p𝐴,𝐵q and is often written as 𝐴 Ñ 𝐵. If K
is a formal context with attribute set 𝑀 , then we may also say that 𝐴 Ñ 𝐵 is
an implication of K. Then 𝐴 is called the premise and 𝐵 the conclusion of the
implication. If indeed 𝐴1 Ď 𝐵1, we shall call 𝐴Ñ 𝐵 a valid implication of K, and
we may write K |ù p𝐴Ñ 𝐵q. As 𝐴1 Ď 𝐵1 ðñ 𝐵 Ď 𝐴2, we can observe that

K |ù p𝐴Ñ 𝐵q ðñ 𝐵 Ď 𝐴2.

We shall denote with Impp𝑀q the set of all implications on 𝑀 , with ImppKq the
set of all implications of K and with ThpKq the set of all valid implications of K.

Let ℒ Ď ImppKq and let 𝐴 Ď𝑀 . The set 𝐴 is closed under ℒ if for all implications
p𝑋 Ñ 𝑌 q P ℒ it holds that 𝑋 Ę 𝐴 or 𝑌 Ď 𝐴. Let us further define

ℒ0
p𝐴q :“ 𝐴,

ℒ1
p𝐴q :“ 𝐴Y

ď

t𝑌 | p𝑋 Ñ 𝑌 q P ℒ, 𝑋 Ď 𝐴 u,

ℒ𝑖
p𝐴q :“ ℒ1

pℒ𝑖´1
p𝐴qq for 𝑖 ą 1,

ℒp𝐴q :“
ď

𝑖PN

ℒ𝑖
p𝐴q.

The set ℒp𝐴q is then the Ď-smallest superset of 𝐴 that is closed under ℒ.

Sets of implications can be quite large and representing them concisely is often
desirable. One way to do this is to use bases of sets of implications. For this, let 𝑀
be a finite set, ℒ Ď Impp𝑀q and let p𝐴Ñ 𝐵q P Impp𝑀q. Then ℒ entails 𝐴Ñ 𝐵,
written as ℒ |ù p𝐴Ñ 𝐵q, if and only if every formal context K “ p𝐺,𝑁, 𝐼q with
𝑁 Ě𝑀 satisfies

K |ù ℒ ùñ K |ù p𝐴Ñ 𝐵q.
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It is well known that

ℒ |ù p𝐴Ñ 𝐵q ðñ 𝐵 Ď ℒp𝐴q.

If 𝒦 Ď Impp𝑀q such that ℒ |ù p𝐴 Ñ 𝐵q for each p𝐴 Ñ 𝐵q P 𝒦, then we shall
also write ℒ |ù 𝒦.

A set ℬ Ď Impp𝑀q is called sound for ℒ if every implication from ℬ is entailed
by ℒ. ℬ is said to be complete for ℒ if every implication from ℒ is entailed by
ℬ. If ℬ is both sound and complete for ℒ, it is called a base for ℒ. It is called a
non-redundant base for ℒ if it is Ď-minimal with respect to this property.

Let us denote with Cnpℒq the set of all implications that are entailed by ℒ. Then

ℬ is sound for ℒ ðñ ℬ Ď Cnpℒq,
ℬ is complete for ℒ ðñ Cnpℬq Ě ℒ.

In particular, ℬ is a base for ℒ if and only if Cnpℬq “ Cnpℒq.

If ℒ “ ThpKq, then we call a base ℬ of ℒ also a base of K. Note that ℬ is sound
for ThpKq if and only if all implications in ℬ are valid in K. It is well known that
in this case there is an easy characterization of a set of valid implications of K to
be complete for ThpKq.

2.2 Lemma ([9]) Let K be a formal context and 𝒦 Ď ThpKq. Then if 𝒦p𝑆q “ 𝑆
implies 𝑆 “ 𝑆2 for each 𝑆 Ď𝑀 , then 𝒦 is complete for ThpKq.

Proof We show Cnp𝒦q Ě ThpKq. For this let p𝐴 Ñ 𝐵q P ThpKq. Then 𝐵 Ď 𝐴2.
Then 𝒦p𝒦p𝐴qq “ 𝒦p𝐴q implies 𝒦p𝐴q “ p𝒦p𝐴qq2 “ 𝐴2, and hence 𝐵 Ď 𝒦p𝐴q.
Thus p𝐴Ñ 𝐵q P Cnp𝒦q as required. ˝

From all possible bases for ℒ one can explicitly describe a canonical base for ℒ
which has the remarkable property that it has minimal cardinality among all bases
for ℒ. Let 𝑃 Ď𝑀 . Then 𝑃 is said to be pseudoclosed under ℒ if

1. 𝑃 ‰ ℒp𝑃 q and

2. for all pseudoclosed sets 𝑄 Ĺ 𝑃 it follows ℒp𝑄q Ď 𝑃 .

In particular, if ℒ “ ThpKq, then 𝑃 is said to be a pseudointent of K. Now the
canonical base for ℒ is defined as

Canpℒq :“ t𝑃 Ñ ℒp𝑃 q | 𝑃 pseudoclosed under ℒ u.

Formal contexts require a certain kind of complete knowledge about their objects:
If 𝑔 P 𝐺 and 𝑚 P 𝑀 then either 𝑔 has the attribute 𝑚 or not. Under certain
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circumstances this might be inappropriate, because it might not be known whether
𝑔 has the attribute 𝑚, or it is simply irrelevant for the task at hand. Therefore
we shall introduce partial contexts, as it has been done in [3].

Let 𝑀 be a set. Then a partial context K is a set of pairs p𝐴,𝐵q with 𝐴,𝐵 Ď𝑀
such that 𝐴 X 𝐵 “ H. Such a pair is called a partial object description if
𝐴 Y 𝐵 ‰ 𝑀 and a full object description if 𝐴 Y 𝐵 “ 𝑀 . Intuitively, one
can understand partial objects descriptions as a pair of positive attributes, i. e.
attributes the corresponding object definitively has, and negative attributes, i. e.
attributes the corresponding object definitively does not have. The objects itself
are not named in partial contexts.

An implication for K is just an implication on 𝑀 . Such an implication p𝐴Ñ 𝐵q P
Impp𝑀q is refuted by K if there exists a partial object description p𝑋, 𝑌 q P K
such that 𝐴 Ď 𝑋,𝐵 X 𝑌 ‰ H. If 𝐴 Ď 𝑀 , then the Ď-maximal set 𝐵 such that
𝐴Ñ 𝐵 is not refuted by K exists and is given by

Kp𝐴q :“ 𝐵 :“𝑀z
ď

t𝑌 | p𝑋, 𝑌 q P K, 𝐴 Ď 𝑋 u.

As it turns out, the operators p¨q2, ℒp¨q and Kp¨q are instances of the more abstract
notion of closure operators on sets. Let again 𝑀 be a set. Then a function
𝑐 : Pp𝑀q Ñ Pp𝑀q is said to be a closure operator on 𝑀 if and only if

i) 𝑐 is extensive, i. e. 𝐴 Ď 𝑐p𝐴q for all 𝐴 Ď𝑀 ,

ii) 𝑐 is idempotent, i. e. 𝑐p𝑐p𝐴qq “ 𝑐p𝐴q for all 𝐴 Ď𝑀 ,

iii) 𝑐 is monotone, i. e. 𝐴 Ď 𝐵 ùñ 𝑐p𝐴q Ď 𝑐p𝐵q for all 𝐴,𝐵 Ď𝑀 .

Both p¨q2 and ℒp¨q are closure operators on their corresponding sets of attributes.
A set 𝐴 Ď𝑀 is said to be closed under 𝑐 if 𝑐p𝐴q “ 𝐴. The set of all closed sets of
𝑐, i. e. the image of 𝑐, is denoted by im 𝑐. A set 𝑃 Ď𝑀 is said to be pseudoclosed
under 𝑐 if and only if

i) 𝑃 ‰ 𝑐p𝑃 q and

ii) for all pseudoclosed 𝑄 Ď 𝑃 , it holds that 𝑐p𝑄q Ď 𝑃 .

We shall write 𝑐1p¨q Ď 𝑐2p¨q for two closure operators 𝑐1, 𝑐2 on a set 𝑀 if and only
if 𝑐1p𝐴q Ď 𝑐2p𝐴q for all 𝐴 Ď𝑀 .

3 Classical Attribute Exploration

Given a finite set 𝑀 , attribute exploration semi-automatically tries to determine
the set of implications that are valid in a certain domain. Together with a set 𝒦
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of already known valid implications and a formal context K of valid examples,
attribute exploration generates implications 𝐴Ñ 𝐵 that hold in K but are not
entailed by 𝒦. Those implications are asked to the expert for validity. If 𝐴Ñ 𝐵
holds in the domain of discourse, it is added to the set 𝒦. Otherwise the expert
has to present a counterexample for 𝐴Ñ 𝐵 that is added to the formal context
K. The procedure terminates if there are no such implications left.

To describe attribute exploration more formally, let us define what is meant by a
domain expert.

3.1 Definition Let 𝑀 be a set. A domain expert on 𝑀 is a function

𝑝 : Impp𝑀q Ñ tJ u YPp𝑀q,

where J is a special symbol not equal to any subset of 𝑀 , such that the following
conditions hold:

i) If 𝑋 Ñ 𝑌 is an implication on 𝑀 such that 𝑝p𝑋 Ñ 𝑌 q “ 𝐶 ‰ J, then
𝑋 Ď 𝐶, 𝑌 Ę 𝐶. (𝑝 gives counterexamples for false implications)

ii) If 𝐴 Ñ 𝐵 and 𝑋 Ñ 𝑌 are implications on 𝑀 such that 𝑝p𝐴 Ñ 𝐵q “ J

and 𝑝p𝑋 Ñ 𝑌 q “ 𝐶 ‰ J, then 𝐶 is closed under t𝐴Ñ 𝐵 u, i. e. 𝐴 Ę 𝐶 or
𝐵 Ď 𝐶. (counterexamples do not invalidate correct implications)

If 𝑝p𝐴Ñ 𝐵q “ J, then we say that 𝑝 confirms 𝐴Ñ 𝐵. Otherwise we say that 𝑝
rejects the implication and we call the set 𝐶 “ 𝑝p𝐴Ñ 𝐵q ‰ J a counterexample
from 𝑝 for 𝐴Ñ 𝐵. Finally, the theory of 𝑝 is just the set of implications that 𝑝
confirms, i. e.

Thp𝑝q :“ 𝑝´1ptJ uq “ t𝐴Ñ 𝐵 | 𝑝p𝐴Ñ 𝐵q “ J u. ♢

An immediate consequence of the definition is the following observation.

3.2 Lemma Let ℒ be a set of implications such that a given domain expert 𝑝
confirms every implication in ℒ. If ℒ |ù p𝐴Ñ 𝐵q, then 𝑝 confirms 𝐴Ñ 𝐵 as well.

Proof Suppose that 𝑝p𝐴Ñ 𝐵q “ 𝐶 ‰ J. Then 𝐶 is closed under ℒ. This means
that ℒp𝐶q “ 𝐶. Since ℒ |ù p𝐴Ñ 𝐵q, from 𝐴 Ď 𝐶 it follows that

𝐵 Ď ℒp𝐴q Ď ℒp𝐶q “ 𝐶,

i. e. 𝐶 is not a counterexample for 𝐴Ñ 𝐵, a contradiction. ˝

Before we are able to describe the attribute exploration algorithm more formally,
we need to give another definition.
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3.3 Definition Let 𝑀 be a finite set and let ă be a total order on 𝑀 . Then for
𝐴,𝐵 Ď𝑀 and 𝑖 P𝑀 we define

𝐴 ă𝑖 𝐵 :ðñ 𝑖 “ minăp𝐴△𝐵q,

where 𝐴△𝐵 “ p𝐴z𝐵q Y p𝐵z𝐴q is the symmetric difference between 𝐴 and 𝐵.
If 𝐴 ă𝑖 𝐵, we say that 𝐴 is lectically smaller than 𝐵 at 𝑖. Furthermore, 𝐴 is
lectically smaller than 𝐵, written as 𝐴 ă 𝐵, if there exists 𝑖 P𝑀 such that 𝐴 ă𝑖 𝐵.
Finally,

𝐴 ĺ 𝐵 ðñ 𝐴 “ 𝐵 or 𝐴 ă 𝐵. ♢

It is easy to see that ĺ constitutes a linear ordering on Pp𝑀q. We may therefore
speak of the first lectic set and the next lectic set after a given subset of 𝑀 .

We are now able to describe the process of attribute exploration in a more formal
way.

3.4 Algorithm (Classical Attribute Exploration) Let 𝑀 be a finite set, K
be a formal context with attribute set 𝑀 and let 𝒦 Ď Impp𝑀q and let 𝑝 be a
domain expert on 𝑀 . Suppose that 𝒦 Ď Thp𝑝q Ď ThpKq.

i) Initialize 𝑃 to 𝒦pHq.

ii) If 𝑃 2 “ 𝑃 , then set 𝑃 to the lectically next closed of 𝒦, and repeat this step.
If there is no such set, terminate.

iii) If 𝑝 confirms 𝑃 Ñ 𝑃 2, then add 𝑟 to 𝒦.

iv) If 𝑝 gives a counterexample 𝐶 for 𝑃 Ñ 𝑃 2, add a new object to K which has
exactly the attributes in 𝐶.

v) Go to ii.

In any iteration, the current value of 𝒦 is called the set of currently known
implications and the current value of K is called the current working context. ♢

A first easy observation for this algorithm is the following: Suppose the expert
𝑝 is called with an implication 𝐴 Ñ 𝐵 during the run of the algorithm. Let
𝒦 be the currently known implications at this time, and let likewise K denote
the current working context. Then for each 𝑚 P 𝐵 both Thp𝑝q |ù p𝑃 Ñ t𝑚 uq
and Thp𝑝q ­|ù p𝑃 Ñ t𝑚 uq is possible. In other words, the question whether
Thp𝑝q |ù p𝑃 Ñ t𝑚 uq is not influenced by the values of 𝒦 and K but solely
depends on how the expert 𝑝 answers. Hence all questions to the expert can be
seen as non-redundant.

This property is very important especially in the presence of human experts which
may not only be expensive to answer but might also get impatient when getting
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asked implications the algorithm could have inferred by itself. Therefore, this
property should of course also hold for our generalized formulation of the attribute
exploration, and it does, as we shall see.

But first, we shall note some of the major properties of this attribute exploration
algorithm.

3.5 Theorem Let 𝑀 be a finite set, ă a total order on 𝑀 , K a formal context
with attribute set 𝑀 , 𝒦 a set of implications on 𝑀 and let 𝑝 be a domain expert
on 𝑀 , such that 𝑝 confirms 𝒦 and all implications confirmed by 𝑝 hold in K, i. e.
𝒦 Ď Thp𝑝q Ď ThpKq.

i) The attribute exploration algorithm terminates with K, 𝒦 and 𝑝 as input.

ii) Let 𝒦1 and K1 be the values corresponding to 𝒦 and K after the last iteration
of the attribute exploration algorithm. Then 𝒦1 is a base for ThpK1q.

iii) Thp𝑝q “ ThpK1q and the corresponding closure operator coincides with 𝒦1p¨q.

iv) The cardinality of 𝒦1z𝒦 is the smallest possible.

v) The premises in 𝒦1z𝒦 are the 𝒦-pseudoclosed of ThpK1q. Thereby, a set
𝑃 Ď 𝑀 is said to be 𝒦-pseudoclosed under ℒ for 𝒦,ℒ Ď Impp𝑀q, if and
only if

i) 𝑃 “ 𝒦p𝑃 q,
ii) 𝑃 ‰ ℒp𝑃 q,
iii) for each 𝒦-pseudoclosed set 𝑄 Ĺ 𝑃 of ℒ it holds that ℒp𝑄q Ď 𝑃 .

All but the last statement of the theorem are known from [6, 9, 10]. The last
statement has been mentioned partially in [10] and has been proven completely
in [5].

4 Generalizing Attribute Exploration

We shall now proceed by investigating the above description of attribute exploration
for possible generalizations. While doing so, besides generalizing the algorithm
formally, we shall also give some intuition on why we do the generalization as
proposed.

Let 𝑝 be a domain expert on a set 𝑀 . We start with an informal introduction of
our generalizations, of which we shall name three:
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1. The use of the initial formal context K and the background knowledge 𝒦 can
be reduced to their corresponding closure operators p¨q2 and 𝒦p¨q. The only
major problem here is the handling of counterexamples, which we shall discuss
latter in detail. Hence instead of passing the attribute exploration algorithm
a formal context and some background knowledge in the form of a set of valid
implications, we instead provide two closure operators 𝑐poss and 𝑐cert on the
set 𝑀 .

The closure operator 𝑐poss takes the place of ThpKqp¨q and represents the
possible knowledge we already have about our domain of discourse. If 𝐴 Ď𝑀
is a set of attributes, then 𝑐possp𝐴q represents the attributes that can follow
from 𝐴. Seen from another perspective, 𝑀z𝑐possp𝐴q is the set of attributes
that definitively do not follow from 𝐴.

In contrast to this, the closure operator 𝑐cert represents the certain knowledge
we already have. In other words, 𝑐certp𝐴q is the set of all attributes that
definitively follow from 𝐴. This closure operators hence takes the place of the
set 𝒦 of initially known implications.

Clearly, we need to have 𝑐certp¨q Ď Thp𝑝qp¨q Ď 𝑐possp¨q.

2. When providing counterexamples, we observe that we actually do not need to
completely specify them. It merely is sufficient to provide information on which
attributes a certain object has and which it not, as long as this information
contradicts a proposed implication. We shall take this approach and extend
the algorithm to store those counterexamples in a partial context. This idea
has also been discussed in [3, 4, 8].

3. The implications which are proposed to the expert are of a very special form,
which guarantees certain optimality statements about the algorithm. However,
for the main application of knowledge acquisition and knowledge completion,
this rather special form can be viewed as a certain kind of optimization.
To drop it, we may rather say that in any iteration step of the attribute
exploration algorithm, we search for an undecided implication with respect
to the current values of 𝑐cert and 𝑐poss, i. e. an implication 𝐴Ñ 𝐵 on 𝑀 such
that 𝑐certp𝐴q Ĺ 𝐵 Ď 𝑐possp𝐴q and where both 𝐴 and 𝐵 are finite. For such an
implication we cannot infer from 𝑐cert and 𝑐poss whether attributes 𝑐possp𝐴qz𝐵
follow from 𝐴 or not, and hence we have to ask the domain expert.

We shall take these observations as guidelines for our further considerations. We
start by generalizing our notion of a domain expert such that we allow partial
counter examples. Next we present and discuss our general form of attribute
exploration that incorporates the above mentioned ideas. For this we shall
also prove correctness and non-redundancy of the questions asked to the expert.
Subsequently, we shall have a closer look on how to compute undecided implications
in our general setting as it is done in the classical case.
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4.1 Definition Let 𝑀 be a set. A function 𝑞 : Impp𝑀q Ñ tJ uYPp𝑀q2 is said
to be a partial domain expert on 𝑀 if and only if J is an element not in Pp𝑀q2

and the following conditions hold:

1. If for p𝐴 Ñ 𝐵q P Impp𝑀q it holds that 𝑞p𝐴 Ñ 𝐵q “ p𝐶,𝐷q ‰ J, then
𝐶 X𝐷 “ H, 𝐴 Ď 𝐶 and 𝐵 X𝐷 ‰ H. (𝑞 gives sufficient counterexamples for
false implications)

2. If p𝐴 Ñ 𝐵q, p𝑋 Ñ 𝑌 q P Impp𝑀q are such that 𝑞p𝐴 Ñ 𝐵q “ J and 𝑞p𝑋 Ñ

𝑌 q “ p𝐶,𝐷q ‰ J, then if 𝐴 Ď 𝐶 then 𝐵 X𝐷 “ H. (counterexamples do not
refute correct implications)

As in the case for domain experts, we say that 𝑞 confirms an implication 𝐴Ñ 𝐵
if and only if 𝑞p𝐴Ñ 𝐵q “ J. Otherwise we say that 𝑞 rejects the implication and
we call 𝑞p𝐴Ñ 𝐵q ‰ J a counterexample from 𝑞 for 𝐴Ñ 𝐵. Thp𝑞q shall denote
the set of all implications on 𝑀 that are confirmed by 𝑞. ♢

The counterexamples given by a partial domain expert can be seen as partial
object descriptions that are enough to invalidate a given implication.

Let us first investigate immediate consequences from the definition. One of
those is the fact, as one would expect, that Thp𝑞q is closed under entailment, i. e.
CnpThp𝑞qq “ Thp𝑞q.

4.2 Lemma Let ℒ Ď Impp𝑀q for a set 𝑀 and let 𝑞 be a partial domain expert
on 𝑀 , such that 𝑞 confirms all implications in ℒ. If ℒ |ù p𝐴 Ñ 𝐵q for some
p𝐴Ñ 𝐵q P Impp𝑀q, then 𝑞 confirms 𝐴Ñ 𝐵 as well.

Proof Suppose that 𝑞p𝐴Ñ 𝐵q “ p𝐶,𝐷q is a counterexample from 𝑞 for 𝐴Ñ 𝐵.
Then 𝐴 Ď 𝐶. Now ℒp𝐶q Ď 𝑀z𝐷 by the second condition on partial domain
experts. Since ℒ |ù p𝐴 Ñ 𝐵q, it follows that 𝐵 Ď ℒp𝐴q Ď ℒp𝐶q Ď 𝑀z𝐷.
Therefore, 𝐵 X𝐷 “ H, contradicting the fact that p𝐶,𝐷q is a counterexample for
𝐴Ñ 𝐵 from 𝑞. ˝

4.3 Lemma If p𝐶,𝐷q is a counterexample given by a partial domain expert 𝑞 on
𝑀 , then Thp𝑞qp𝐶q X𝐷 “ H.

Proof By Lemma 4.2, 𝑞 confirms 𝐶 Ñ Thp𝑞qp𝐶q. Therefore, by the second
condition in the definition of 𝑞, it follows 𝐷 X Thp𝑞qp𝐶q “ H, as required. ˝

4.4 Lemma For a partial context K with attribute set 𝑀 and a partial domain
expert 𝑞 on 𝑀 it holds that Thp𝑞qp¨q Ď Kp¨q if and only if Thp𝑞qp𝐶q Ď𝑀z𝐷 for
each p𝐶,𝐷q P K.

Proof Thp𝑞qp¨q Ď Kp¨q implies Thp𝑞qp𝐶q X𝐷 “ H for each p𝐶,𝐷q P K, which is
equivalent to Thp𝑞qp𝐶q Ď𝑀z𝐷.
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For the converse let Thp𝑞qp𝐶q X𝐷 “ H for all p𝐶,𝐷q P K. Let 𝐴 Ď𝑀 . Then for
every p𝐶,𝐷q P K with 𝐴 Ď 𝐶, it follows that Thp𝑞qp𝐴qX𝐷 Ď Thp𝑞qp𝐶qX𝐷 “ H.
Therefore

Thp𝑞qp𝐴q X
ď

t𝐷 | p𝐶,𝐷q P K, 𝐴 Ď 𝐶 u “ H

and hence Thp𝑞qp𝐴q Ď Kp𝐴q as required. ˝

With those observations at hand, we are now able to state our generalized formu-
lation of the attribute exploration algorithm.

4.5 Algorithm (General Attribute Exploration) Let 𝑀 be a set, 𝑐cert, 𝑐poss
closure operators on 𝑀 and 𝑞 a partial domain expert 𝑀 , such that 𝑐certp¨q Ď
Thp𝑞qp¨q Ď 𝑐possp¨q.

i. Let K “ H.

ii. Let 𝐴 Ď 𝑀 be finite and such that there exists a finite set 𝐵 Ď 𝑀 with
𝑐certp𝐴q Ĺ 𝐵 Ď 𝑐possp𝐴q. If there is no such set, terminate with output K
and 𝑐cert. Otherwise consider the implication 𝐴Ñ 𝐵.

iii. If 𝑞 confirms 𝐴 Ñ 𝐵, then update 𝑐cert to be the closure operators whose
closed sets are exactly the closed sets of 𝑐cert that are also closed under
t𝐴Ñ 𝐵 u.

iv. Otherwise let p𝐶,𝐷q “ 𝑞p𝐴Ñ 𝐵q be a counterexample from 𝑞 for 𝐴Ñ 𝐵.
Add p𝐶,𝐷q to K.

v. Replace all counterexamples p𝐶,𝐷q P K by p𝐶 1, 𝐷1q, where

𝐶 1 :“ 𝑐certp𝐶q,

𝐷1 :“ 𝐷 Y t𝑚 P𝑀z𝐷 | 𝑐certp𝐶 Y t𝑚 uq X𝐷 ‰ Hu.

vi. Update 𝑐poss to be the closure operator given by

𝑋 ÞÑ 𝑐possp𝑋q XKp𝑋q

for all 𝑋 Ď𝑀 .

vii. Go to ii. ♢

We can see easily that this algorithm is a generalization of Algorithm 3.4. First
of all, we can turn every domain expert 𝑝 into a partial domain expert 𝑞 that
confirms the same implications and yields

𝑞p𝐴Ñ 𝐵q “ p𝑝p𝐴Ñ 𝐵q,𝑀z𝑝p𝐴Ñ 𝐵qq
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for each p𝐴Ñ 𝐵q P Impp𝑀q that is rejected by 𝑝.

Secondly, let K be a formal context such that Thp𝑝q Ď ThpKq. We can then
consider the closure operator p¨q2K of K as initial value for the closure operator
𝑐poss. Suppose that we are at the beginning of an iteration of the classical
attribute exploration algorithm, and let K̄ be the formal context made from all
counterexamples given so far. Let L be the subposition of K “ p𝐺,𝑀, 𝐼q and
K̄ “ p𝐺̄,𝑀, 𝐼q, i. e.

L :“ p𝐺Y 𝐺̄,𝑀, 𝐼 Y 𝐼q

(note that 𝐺 and 𝐺̄ are disjoint.) Let 𝐴 Ď𝑀 , and denote the derivations of 𝐴 in
L,K, K̄ by 𝐴1L, 𝐴

1
K and 𝐴1K̄, respectively; likewise for subsets of 𝐺Y 𝐺̄. Then

𝐴2L “ pp𝐴
1
L X𝐺q Y p𝐴1L X 𝐺̄qq1L

“ p𝐴1L X𝐺q1L X p𝐴
1
L X 𝐺̄q1L

“ 𝐴2K X 𝐴2K̄
“ 𝑐possp𝐴q X 𝐴2K̄.

Hence, we only have to augment the closure operator 𝑐poss by the closure operator
induced by K̄. This is done incrementally in step vi of Algorithm 4.5.

Furthermore, if 𝒦 Ď Impp𝑀q is a set of implications which is to be used as
background knowledge for classical attribute exploration, then for the case of
generalized attribute exploration the value of 𝑐cert can be taken to be 𝒦p¨q.

Finally, let us comment on step ii of the general algorithm. In this step, we
determine the next implication to be presented to the expert. We want to argue
that the statement of this step is a generalization of the corresponding step in
classical attribute exploration.

In the classical case, starting from a set 𝒦 of known implications, we consider sets
𝑃 Ď𝑀 in lectic order that are closed under 𝒦 but do not satisfy 𝑃 “ 𝑃 2L , where
L is the current working context. If 𝑃 Ñ 𝑃 2 is then confirmed by the expert, then
it is added to 𝒦. Otherwise, a counterexample for 𝑃 Ñ 𝑃 2 has to be provided by
the expert and the algorithm proceeds to find the next set 𝑄 ľ 𝑃 with 𝒦p𝑄q “ 𝑄
and 𝑄2L ‰ 𝑄.

In step ii of the general algorithm, we only demand that we find an implication
𝐴 Ñ 𝐵 such that 𝑐certp𝐴q Ĺ 𝐵. This is certainly a relaxation of the case of the
classical algorithm. However, in the general algorithm, we are allowed to search
for such an implication arbitrarily, i. e. not restricted to some lectic order. The
next theorem shows that in the case of classical attribute exploration, search
along a lectic order is not a restriction. In other words, if in the classical case,
there exists an implication 𝐴Ñ 𝐵 such that 𝐴2 Ĺ 𝐵, then 𝐴 is lectically larger
then the premise of the last implication presented to the expert. Note that this is
(of course) well known, as it is the basis of the correctness of classical attribute
exploration. The theorem formulates this result in the language developed so far.

12



4.6 Theorem Let K be a finite formal context, 𝑝 a domain expert on 𝑀K and
𝒦 Ď Impp𝑀q such that 𝒦 Ď Thp𝑝q Ď ThpKq. Let ă be a linear order on 𝑀 and
ă the lectic order on Pp𝑀q induced by ă.

Let 𝑃 be the ă-smallest element of Pp𝑀q such that 𝒦p𝑃 q “ 𝑃 and 𝑃 ‰ 𝑃 2, and
let 𝑃 Ĺ 𝑄 Ď 𝑃 2.

1. If 𝑝 confirms 𝑃 Ñ 𝑄 and if 𝑆 Ď𝑀 is ă-minimal with p𝒦Yt𝑃 Ñ 𝑄 uqp𝑆q “
𝑆 and 𝑆 ‰ 𝑆2, then 𝑃 ă 𝑆.

2. If 𝑝 rejects 𝑃 Ñ 𝑄 with counterexample 𝐶 Ď𝑀 , then let K̄ be the formal
context K augmented by the counterexample 𝐶. If then 𝑆 is ă-minimal
with 𝒦p𝑆q “ 𝑆 and 𝑆 ‰ 𝑆2K̄, then 𝑃 ĺ 𝑆.

Proof For the first statement let us assume that 𝑆 ă 𝑃 . Since p𝒦Yt𝑃 Ñ 𝑄 uqp𝑆q “
𝑆, 𝒦p𝑆q “ 𝑆. Hence 𝑆 “ 𝑆2 by the prerequisites of the theorem, a contradiction.
Therefore 𝑆 ľ 𝑃 , but 𝑆 “ 𝑃 is not possible since 𝑃 is not closed under t𝑃 Ñ 𝑄 u.

For the second statement assume again 𝑆 ă 𝑃 . Since K̄ has been obtained from
K by adding a new object,

𝑆2K̄ Ď 𝑆2K

for all 𝑆 Ď𝑀K. Now if 𝒦p𝑆q “ 𝑆, by the prerequisites of the theorem we obtain
𝑆 “ 𝑆2K and therefore 𝑆 “ 𝑆2K̄, a contradiction. Hence 𝑆 ľ 𝑃 as required. ˝

Starting from the reformulation in Algorithm 4.5 of attribute exploration we shall
now consider the properties this algorithm has. We shall show in this section that
the algorithm, as in the classical case, does not ask question its answers it could
infer itself. Furthermore, the algorithm is correct in the sense that it returns a
complete description of the domain the given partial domain expert represents.
Termination, however, cannot be shown in general, and we shall only give some
sufficient condition.

The results in the minimality of the resulting set of confirmed implications does
not hold in this general setting. For this, we have to generate the implications
asked to the expert in a way similar to the classical case. We shall discuss this in
more detail in the next section.

To discuss the properties of Algorithm 4.5, we need the following result.

4.7 Lemma At the end of every iteration of the generalized attribute exploration
algorithm it holds that 𝑐certp¨q Ď Thp𝑞qp¨q Ď 𝑐possp¨q for the current values of 𝑐cert
and 𝑐poss. In particular, 𝑐certp𝑋q Ď Kp𝑋q holds for all 𝑋 Ď𝑀 at the end of every
iteration.

Proof We prove the claim by induction. For the base case we observe that K “ H
and thereforeKp𝑋q “𝑀 for all𝑋 Ď𝑀 . Furthermore 𝑐certp¨q Ď Thp𝑞qp¨q Ď 𝑐possp¨q
by the prerequisites of the algorithm.
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For the induction step assume that 𝑐certp¨q Ď Thp𝑞qp¨q Ď 𝑐possp¨q holds at the
beginning of the current iteration. Assume 𝐴,𝐵 Ď𝑀 finite such that 𝑐certp𝐴q Ĺ
𝐵 Ď 𝑐possp𝐴q, for otherwise nothing has to be shown. We now distinguish two
cases:

i. 𝑞 confirms 𝐴Ñ 𝐵. Then 𝑐cert is updated to the value of

𝑐1cert “ 𝑋 ÞÑ 𝑐certpℒp𝑐certp𝑋qqq

where ℒ “ t𝐴Ñ 𝐵 u and 𝑋 Ď 𝑀 . Since 𝑞 confirms 𝐴 Ñ 𝐵 and 𝑐certp¨q Ď
Thp𝑞qp¨q, it follows that 𝑐1certp¨q Ď Thp𝑞qp¨q.

In the situation before step v, by Lemma 4.3 for every element p𝐶,𝐷q P K
it holds that Thp𝑞qp𝐶q X 𝐷 “ H and hence 𝑐1certp𝐶q X 𝐷 “ H. Moreover,
𝐶 1 :“ 𝑐1certp𝐶q is also disjoint to

𝐷1 :“ 𝐷 Y t𝑚 P𝑀z𝐷 | 𝑐1certp𝐶 Y t𝑚 uq X𝐷 ‰ Hu

and p𝐶 1 Ñ t𝑚 uq R Thp𝑞q for𝑚 P 𝐷1z𝐷. Therefore, after step v, Thp𝑞qp𝐶 1q Ď
𝑀z𝐷1 for every p𝐶 1, 𝐷1q P K. Then by Lemma 4.4, Thp𝑞qp¨q Ď Kp¨q and
therefore 𝑐1certp¨q Ď Thp𝑞qp¨q Ď 𝑐possp¨q XKp¨q as required.

ii. 𝑞 gives p𝑋, 𝑌 q as a counterexample for 𝐴Ñ 𝐵. Then in this iteration the
value of 𝑐cert is not changed. The counterexample that is effectively added
to K is then

p𝑋 1, 𝑌 1q “ p𝑐certp𝑋q, 𝑌 Y t𝑚 P𝑀z𝑌 | 𝑐certp𝑋 Y t𝑚 uq X 𝑌 ‰ Huq.

Since Thp𝑞qp𝑋 1q Ď𝑀z𝑌 1, from Lemma 4.4 and the induction hypothesis it
follows that Thp𝑞qp¨q Ď Kp¨q. Together with Thp𝑞qp¨q Ď 𝑐possp¨q we obtain
𝑐certp¨q Ď Thp𝑞qp¨q Ď 𝑐possp¨q XKp¨q as required. ˝

We shall at first investigate the already mentioned property that questions asked
to the expert are somehow non-redundant. We state this kind of non-redundancy
as the fact that the answer to a proposed implication is not predetermined by the
current knowledge or by the answers given so far.

4.8 Theorem Let 𝑀 be a set, 𝑐cert, 𝑐poss closure operators on 𝑀 and 𝑞 a partial
domain expert on 𝑀 such that 𝑐certp¨q Ď Thp𝑞qp¨q Ď 𝑐possp¨q. Suppose that we are
in the 𝑛` 1 iteration of Algorithm 4.5 and suppose that the implication 𝐴Ñ 𝐵
is asked to the expert 𝑞.

Then for each 𝑚 P 𝐵 there exist two partial domain experts 𝑞1, 𝑞2 which re-
turn the same values as 𝑞 in all iterations 𝑖 P t 1, . . . , 𝑛 u and satisfy 𝑐certp¨q Ď
Thp𝑞1qp¨q,Thp𝑞2qp¨q Ď 𝑐possp¨q, such that 𝑞1 rejects 𝐴 Ñ t𝑚 u and 𝑞2 confirms
𝐴Ñ t𝑚 u.
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Proof Let 𝑐𝑖cert, 𝑐𝑖poss,K𝑖 be the values of the corresponding closure operators and
the current working context in iteration 𝑖 P t 1, . . . , 𝑛 u, respectively. Furthermore,
let 𝐴𝑖 Ñ 𝐵𝑖 be the implication asked in iteration 𝑖. Finally, let J be a symbol not
equal to any subset of 𝑀 .

We then define 𝑞1 as follows:

𝑞1p𝐴Ñ 𝐵q “

$

’

&

’

%

𝑞p𝐴Ñ 𝐵q if p𝐴Ñ 𝐵q “ p𝐴𝑖 Ñ 𝐵𝑖q for some 𝑖,

J if 𝐵 Ď 𝑐𝑛certp𝐴q,

p𝑐certp𝐴q,𝑀z𝑐certp𝐴qq otherwise,

for all p𝐴 Ñ 𝐵q P Impp𝑀q. Then 𝑞1 is a partial domain expert on 𝑀 and
Thp𝑞1q “ Thp𝑐𝑛certq. Since 𝑐𝑛certp¨q Ď 𝑐possp¨q by Lemma 4.7 and 𝑚 R 𝑐𝑛certp𝐴q, 𝑞1
rejects 𝐴Ñ t𝑚 u.

To construct 𝑞2 we consider the formal context K with object set K𝑛, attribute
set 𝑀 and incidence relation 𝐼K given by

p𝐶,𝐷q𝐼K𝑥 ðñ

#

𝑥 P 𝑐𝑛certp𝐶 Y t𝑚 uq if 𝑚 R 𝐷

𝑥 P 𝐶 otherwise

for all p𝐶,𝐷q P K𝑛 and 𝑥 P𝑀 . By step v in Algorithm 4.5, all object intents of K
are closed under 𝑐𝑛cert, therefore Thp𝑐𝑛certq Ď ThpKq. Together with 𝑐certp¨q Ď 𝑐𝑛certp¨q
follows 𝑐certp¨q Ď ThpKqp¨q.

We now define 𝑞2 by

𝑞2p𝐴Ñ 𝐵q “

$

’

&

’

%

𝑞p𝐴Ñ 𝐵q if p𝐴Ñ 𝐵q “ p𝐴𝑖 Ñ 𝐵𝑖q for some 𝑖,

J if 𝐵 Ď 𝐴2 X 𝑐𝑛possp𝐴q,

p𝑋,𝑀z𝑋q with 𝑋 “ 𝐴2 X 𝑐𝑛possp𝐴q otherwise

for all p𝐴 Ñ 𝐵q P Impp𝑀q. Then 𝑞2 is a partial domain expert with Thp𝑞2q “
ThpKq X Thp𝑐𝑛possq. For this we observe that for p𝐶,𝐷q P K𝑛, if 𝑚 R 𝐷, then
𝑐𝑛certp𝐶 Y t𝑚 uq X 𝐷 “ H by step v. Therefore, the counterexamples given for
some implication 𝐴𝑖 Ñ 𝐵𝑖 from 𝑞 can also be given by 𝑞2.

Since 𝑐certp¨q Ď ThpKqp¨q and 𝑐certp¨q Ď 𝑐𝑛possp¨q, it follows that 𝑐certp¨q Ď Thp𝑞2qp¨q Ď
𝑐possp¨q.

Furthermore, 𝑚 P 𝑐𝑛possp𝐴q and since K𝑛 does not reject 𝐴 Ñ 𝐵, it follows that
for each p𝐶,𝐷q P K𝑛 with 𝐴 Ď 𝐶 that 𝑚 R 𝐷. Hence, 𝑚 P 𝐴2 and therefore 𝑞2
confirms 𝐴Ñ 𝐵 as required. ˝

One of the crucial features of attribute exploration is that it returns a complete
description of the domain of discourse upon termination. This property does also
hold for our generalized formulation.
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4.9 Theorem Let 𝑀 be a set, 𝑐cert, 𝑐poss closure operators on 𝑀 and let 𝑞 be
a partial domain expert on 𝑀 . Furthermore, suppose that 𝑐certp¨q Ď Thp𝑞qp¨q Ď
𝑐possp¨q.

Suppose that Algorithm 4.5 terminates on input 𝑐cert, 𝑐poss and 𝑞 and denote the
returned partial context by K and the returned closure operator by 𝑐. Let 𝑋 Ď𝑀
such that 𝑐p𝑋q is finite.

i. Thp𝑞qp𝑋q “ 𝑐p𝑋q.

ii. 𝑐p𝑋q “ 𝑐possp𝑋q XKp𝑋q.

iii. Let 𝒦 be the set of all implications which have been confirmed by 𝑞 during
the run of the algorithm. Define 𝑐1p𝑋q to be the smallest set that contains
𝑋 and is closed under both 𝑐cert and 𝒦p¨q. Then 𝑐1p𝑋q “ 𝑐p𝑋q.

iv. Let K̄ “ pK,𝑀, 𝐼q where

p𝐶,𝐷q𝐼𝑚 ðñ 𝑚 P 𝐶.

Then
𝑐p𝑋q “ 𝑐possp𝑋q X𝑋2,

where p¨q2 denotes the double derivation operator in K̄.

Proof By Lemma 4.7, 𝑐1certp¨q Ď Thp𝑞qp¨q Ď 𝑐1possp¨q holds at the end of every
iteration in the run of the algorithm, where 𝑐1cert and 𝑐1poss denote the current
values of the corresponding closure operators. Since the algorithm terminates,
𝑐1certp𝑌 q “ 𝑐1possp𝑌 q holds in the last iteration for all 𝑌 Ď 𝑀 if 𝑐1certp𝑌 q is finite.
Since 𝑐 “ 𝑐1cert and 𝑐1certp𝑋q Ď Thp𝑞qp𝑋q Ď 𝑐1possp𝑋q, the first assertion follows.

By induction on the number of iterations of the algorithm, one can see that at the
end of every iteration of the algorithm it holds that 𝑐1possp𝑋q “ 𝑐possp𝑋q XKp𝑋q,
where 𝑐1poss is the current value of the upper closure operator, 𝑐poss is the original
value of the upper closure operator and K is the current working context. Since
the algorithm terminates, 𝑐1possp𝑋q “ 𝑐p𝑋q holds in the last iteration and the
second claim follows.

Suppose that the algorithm is in a certain iteration and suppose that 𝒦1 is the set
of confirmed implications up to now. By induction we see that if 𝑐1cert is the current
value of the lower closure operator, then 𝑐1certp𝑋q is the smallest set containing 𝑋
that is closed both under 𝑐cert and 𝒦1p¨q. As 𝑐 is the last value of the lower closure
operator during the run of the algorithm, 𝑐p𝑋q “ 𝑐1p𝑋q, which shows the third
claim.
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For the last claim we observe the following relations:

𝑋2
“

č

p𝐶,𝐷qPK,𝑋Ď𝐶

𝐶

Ď
č

p𝐶,𝐷qPK,𝑋Ď𝐶

𝑀z𝐷

“ Kp𝑋q.

By step v of the algorithm, 𝐶 is closed under 𝑐 for every p𝐶,𝐷q P K. Therefore,
𝑐p𝑋q Ď 𝑋2. Together this yields

𝑐possp𝑋q X 𝑐p𝑋q Ď 𝑐possp𝑋q X𝑋2
Ď 𝑐possp𝑋q XKp𝑋q

and since 𝑐p𝑋q Ď 𝑐possp𝑋q and 𝑐p𝑋q “ 𝑐possp𝑋q XKp𝑋q, the last claim follows.˝

Termination of the generalized attribute exploration algorithm is not guaranteed
in general (i. e. when 𝑀 is infinite and 𝑐cert and 𝑐poss are arbitrary). Hence,
termination normally has to be shown for the concrete application at hand. We
can, however, give some sufficient condition which may still be helpful.

4.10 Theorem The general attribute exploration algorithm with input 𝑐cert, 𝑐poss
and a partial domain expert 𝑞 terminates if there are only finitely many closure
operators 𝑐 on 𝑀 such that 𝑐certp¨q Ĺ 𝑐p¨q Ĺ 𝑐possp¨q.

Proof The claim follows easily if we can show that in every iteration of attribute
exploration either the value of 𝑐cert is updated to a new value 𝑐1cert such that
𝑐cert Ĺ 𝑐1cert Ď 𝑐poss or, likewise, if the value for 𝑐poss is updated to a new value
𝑐1poss such that 𝑐cert Ď 𝑐1poss Ĺ 𝑐poss.

Let 𝐴 be such that 𝑐certp𝐴q ‰ 𝑐possp𝐴q and let 𝐵 Ď 𝑀 be finite such that
𝑐certp𝐴q Ĺ 𝐵 Ď 𝑐possp𝐴q. If 𝑞 confirms 𝐴Ñ 𝐵, then 𝑐cert is updated to the value

𝑐1certp𝑋q “ 𝑐certpℒp𝑐certp𝑋qqq,

where ℒ “ t𝐴Ñ 𝐵 u and 𝑋 Ď 𝑀 . Clearly, 𝑐certp¨q Ĺ 𝑐1certp¨q and by Lemma 4.7,
𝑐1certp¨q Ď 𝑐possp¨q.

If 𝑞 yields a counterexample p𝐶,𝐷q for 𝐴Ñ 𝐵, then the new value 𝑐1poss for 𝑐poss
is computed by

𝑐1possp𝑋q “ 𝑐possp𝑋q XKp𝑋q

for 𝑋 Ď𝑀 . It follows that 𝑐1possp¨q Ď 𝑐possp¨q and 𝑐1possp𝐴q Ď 𝑐possp𝐴qz𝐷 Ĺ 𝑐possp𝐴q,
since 𝐶 Ď 𝐴, 𝐵 Ď 𝑐possp𝐴q and 𝐵 X 𝐷 ‰ H. By Lemma 4.7 it follows that
𝑐certp𝑋q Ď Kp𝑋q for all 𝑋 Ď𝑀 . Hence 𝑐certp¨q Ď 𝑐1possp¨q Ĺ 𝑐possp¨q as required. ˝

Of course, if after finitely many iterations the situation of the theorem is reached,
the generalized attribute exploration will terminate as well.
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5 Computing Undecided Implications

Computing undecided implications is a crucial step in the algorithm. We therefore
want to pay some more attention on how the classical way of computing those
implications can be carried over to our generalized setting.

Firstly, let us observe that Theorem 4.6 also applies to the general setting of
Algorithm 4.5.

5.1 Theorem Let K be a partial formal context, 𝑞 a partial domain expert on
𝑀K and let 𝑐cert, 𝑐poss be closure operators on 𝑀K such that

𝑐certp𝐴q Ď Thp𝑞qp𝐴q Ď 𝑐possp𝐴q XKp𝐴q

is true for all 𝐴 Ď𝑀 . Let ă be a strict linear order on 𝑀 and ĺ the lectic order
on Pp𝑀q induced by ă. Let 𝑃 be the ă-smallest element of Pp𝑀q such that
𝑐certp𝑃 q “ 𝑃 , 𝑃 ‰ 𝑐possp𝑃 q XKp𝑃 q, and let 𝑃 Ĺ 𝑄 Ď 𝑐possp𝑃 q XKp𝑃 q.

1. If 𝑞 confirms 𝑃 Ñ 𝑄, then let 𝒦1 “ 𝒦 Y t𝑃 Ñ 𝑄 u and let K̄ be the
updated partial context as described in step v in Algorithm 4.5. If 𝑆 Ď𝑀
is ă-minimal with 𝒦1p𝑆q “ 𝑆 and 𝑆 ‰ 𝑐possp𝑆q X K̄p𝑆q, then 𝑃 ă 𝑆.

2. If 𝑞 rejects 𝑃 Ñ 𝑄 with counterexample p𝐶,𝐷q Ď 𝑀 , then let K̄ be the
formal context K augmented by the counterexample p𝐶,𝐷q. If 𝑆 is ă-
minimal with 𝒦p𝑆q “ 𝑆 and 𝑆 ‰ 𝑐possp𝑆q X K̄p𝑆q, then 𝑃 ĺ 𝑆.

Proof For the first statement let us assume that 𝑆 ă 𝑃 . Since 𝒦1p𝑆q “ 𝑆,
𝒦p𝑆q “ 𝑆. Hence 𝑆 “ 𝑐possp𝑆q XKp𝑆q by the prerequisites of the theorem. If we
denote with p𝐶, 𝐷̄q P K̄ the pairs originating from p𝐶,𝐷q P K, then

Kp𝑆q “𝑀Kz
ď

t𝐷 | p𝐶,𝐷q P K, 𝑆 Ď 𝐶 u

Ě𝑀Kz
ď

t 𝐷̄ | p𝐶, 𝐷̄q P K̄, 𝑆 Ď 𝐶 u

“ K̄p𝑆q,

since 𝐶 Ď 𝐶 and 𝐷 Ď 𝐷̄ for each p𝐶,𝐷q P K. Therefore, 𝑆 “ 𝑐possp𝑆q X K̄p𝑆q, a
contradiction. Thus 𝑆 ľ 𝑃 , but 𝑆 “ 𝑃 is not possible since 𝑃 is not closed under
t𝑃 Ñ 𝑄 u.

For the second statement assume again 𝑆 ă 𝑃 . Since K̄ has been obtained from
K by adding a new object,

K̄p𝑆q Ď Kp𝑆q

for all 𝑆 Ď 𝑀K. Now if 𝒦p𝑆q “ 𝑆, the prerequisites of the theorem imply
𝑆 “ 𝑐possp𝑆q XKp𝑆q and therefore 𝑆 “ 𝑐possp𝑆q X K̄p𝑆q, a contradiction. Hence
𝑆 ľ 𝑃 as required. ˝

18



Note that if there exists a finite set 𝑃 Ď 𝑀K with 𝑐certp𝑃 q “ 𝑃 and 𝑃 ‰

𝑐possp𝑃 q XKp𝑃 q, then the ă-minimal set under these constraints is also finite.

5.2 Lemma Let 𝑞 be a partial domain expert on a set 𝑀 and let 𝑐1, 𝑐2 be closure
operators on 𝑀 such that Thp𝑐1q Ď Thp𝑞q Ď Thp𝑐2q. If for all finite sets 𝑃 Ď𝑀 ,
𝑐1p𝑃 q “ 𝑃 implies 𝑐2p𝑃 q “ 𝑃 , then 𝑐1p𝑃 q “ 𝑐2p𝑃 q “ Thp𝑞qp𝑃 q holds for all
𝑃 Ď𝑀 whenever 𝑐1p𝑃 q is finite.

Proof Let 𝑃 Ď 𝑀 such that 𝑐1p𝑃 q is finite. Then 𝑐1p𝑐1p𝑃 qq “ 𝑐1p𝑃 q implies
𝑐2p𝑃 q “ 𝑐2p𝑐1p𝑃 qq “ 𝑐1p𝑃 q. Since 𝑐1p𝑃 q Ď Thp𝑞qp𝑃 q Ď 𝑐2p𝑃 q, the desired
equality follows. ˝

We have seen that a lot of the useful properties of attribute exploration remain
true in our generalized form of Algorithm 4.5. However, we have not discussed
the property of the classical attribute exploration that the number of questions
which the expert confirms is minimal. Indeed, we cannot expect that from our
generalization, as we have not opposed any restriction on the order in which
implications are asked. It is therefore possible to ask an implication 𝐴 Ñ 𝐵,
which is confirmed, just to ask in the next iteration an implication 𝐴Ñ 𝐶 with
𝐶 Ě 𝐵, which might also get confirmed. It is therefore advisable to always ask
implications with Ď-maximal conclusions. However, even in that case it might not
be clear whether the number of confirmed implications asked is really minimal.

We therefore want to discuss in this section whether it is possible to modify our
general attribute exploration such that the number of questions asked such that
the expert confirms is the smallest possible. For this we shall try to adapt the
computation of undecided implications from the classical case.

Let us recall how implications asked to a domain expert 𝑝 are computed in the case
of classical attribute exploration, as discussed in Algorithm 3.4. For this suppose
that we are in a certain iteration of the algorithm, with known implications 𝒦,
working context K and 𝑃 the last computed premise. Further suppose that we
have fixed a total order on the set 𝑀 before the start of the algorithm, which
induces a lectic order ĺ on Pp𝑀q. Then, in the classical case, we compute the
lectically smallest set 𝑄 Ď𝑀 after 𝑃 that is closed under 𝒦 and that is not an
intent of K. The implication 𝑄Ñ 𝑄2 is then asked to 𝑝.

Computing the lectically next set after a set 𝑃 can be done using the Next-
Closure algorithm [7]. However, for theoretical considerations we can neglect lectic
orderings, as we shall see in a moment.

Let 𝑀 be a finite set. To guarantee that the number of confirmed implications is
as small as possible, we change step ii to:

ii’. Let 𝐴 Ď𝑀 be such that 𝐴 “ 𝑐certp𝐴q Ĺ 𝑐possp𝐴q and 𝐴 is Ď-minimal with
respect to this property. Consider the implication 𝐴Ñ 𝑐possp𝐴q.
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This is a generalization of the corresponding step in the classical case: if, in the
classical case, 𝑃 is the premise of the last implication asked, then the lectically
next set 𝑄 after 𝑃 is a Ď-minimal set with 𝑄 “ 𝒦p𝑄q Ĺ 𝑄2, and the implication
𝑄Ñ 𝑄2 is asked next.

Before we give the formal statement of the fact that this indeed yields an algorithm
that always asks a minimal number of confirmed implications, we shall give the
following definition.

5.3 Definition Let 𝑐1, 𝑐2 be two closure operators on a finite set 𝑀 and let
𝑃 Ď𝑀 . Then 𝑃 is said to be 𝑐1-pseudoclosed under 𝑐2 if and only if

i. 𝑐1p𝑃 q “ 𝑃 ,

ii. 𝑐2p𝑃 q ‰ 𝑃 ,

iii. for all 𝑄 Ĺ 𝑃 being 𝑐1-pseudoclosed under 𝑐2 it follows that 𝑐2p𝑄q Ď 𝑃 . ♢

5.4 Theorem Consider Algorithm 4.5 with step ii replaced by step ii’.

Let 𝑀 be a finite set, 𝑞 a partial domain expert on 𝑀 , 𝑐cert, 𝑐poss closure operators
on 𝑀 such that 𝑐certp¨q Ď Thp𝑞qp¨q Ď 𝑐possp¨q. Let 𝒦 be the set of confirmed
implications during the run of the algorithm with input 𝑐cert, 𝑐poss and 𝑞, and let
𝑐 be the returned closure operator.

Then the premises of the implications in 𝒦 are exactly the 𝑐cert-pseudoclosed sets
of 𝑐.

Proof We show that a set 𝐴 Ď 𝑀 is a 𝑐cert-pseudoclosed set of 𝑐 if and only if
the implication 𝐴Ñ 𝑐p𝐴q is asked to and confirmed by 𝑞. We shall do so using
well-founded induction, which is possible since 𝑀 is finite.

Let 𝐴 be a premise of a confirmed implication 𝐴Ñ 𝐵. It follows that 𝐵 “ 𝑐1possp𝐴q
for the corresponding value of 𝑐1poss in the iteration in which 𝐴Ñ 𝐵 is asked to
𝑞. Then 𝐴 is closed under 𝑐cert and under all currently known implications, i. e.
under

t𝑋 Ñ 𝑌 | p𝑋 Ñ 𝑌 q P 𝒦, 𝑋 Ď 𝐴 u.

Suppose that their exists an implication p𝑋 Ñ 𝑌 q P 𝒦 such that 𝑋 Ď 𝐵. Then
𝑌 Ď 𝑐1possp𝐵q “ 𝑐1possp𝐴q “ 𝐵. Therefore, 𝐵 is closed under 𝒦 and hence 𝐵 “ 𝑐p𝐴q.

We shall show next that 𝐴 is a 𝑐cert-pseudoclosed set of 𝑐. We already know that
𝐴 is closed under 𝑐cert. Furthermore, since 𝐴 Ñ 𝐵 is asked to 𝑞, 𝐵 ‰ 𝐴 and
therefore 𝐴 ‰ 𝑐p𝐴q.

Let 𝑅 Ĺ 𝐴 be a 𝑐cert-pseudoclosed set of 𝑐. By the induction hypothesis, 𝑅Ñ 𝑐p𝑅q
is asked to and confirmed by 𝑞. Since 𝐴 is closed under all those implications, it
follows that 𝑐p𝑅q Ď 𝐴 as required.
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Conversely, let 𝐴 be a 𝑐cert-pseudoclosed set of 𝑐. By the induction hypothesis,
for all 𝑐cert-pseudoclosed sets 𝑅 Ĺ 𝐴 the implication 𝑅 Ñ 𝑐p𝑅q is asked to and
confirmed by 𝑞. Since 𝑐p𝑅q Ď 𝐴 and 𝑐certp𝐴q “ 𝐴 it follows that 𝐴 is Ď-minimal
with respect to being closed under 𝑐cert and all confirmed implications 𝑋 Ñ 𝑌
with 𝑋 Ď 𝐴. Therefore, 𝐴 Ñ 𝑐1possp𝐴q will be asked in a certain iteration, with
the corresponding value of 𝑐1poss. Since 𝑐p𝐴q Ď 𝑐1possp𝐴q and 𝐴 ‰ 𝑐p𝐴q, after a
finite number of counterexamples 𝐴Ñ 𝑐p𝐴q will be asked to and confirmed by 𝑞.˝

Recall the fact that the set

𝒦 :“ t𝑃 Ñ 𝑐p𝑃 q | 𝑃 is 𝑐cert-pseudoclosed set of 𝑐 u

has minimal cardinality such that every set 𝐴 Ď𝑀 is closed under 𝑐 if and only
if 𝐴 is closed under 𝑐cert and 𝒦. This has been proven in [5, 10] for the case of
𝑐cert “ 𝒦p¨q for a set 𝒦 Ď Impp𝑀q and 𝑐 “ p¨q2 for some given formal context K
with K |ù 𝒦. However, the proof given there also holds in our general setting.

5.5 Theorem ([5, 10]) Let 𝑐1, 𝑐2 be closure operators on a set 𝑀 such that
𝑐1p𝐴q Ď 𝑐2p𝐴q for all 𝐴 Ď𝑀 . We call a set 𝒦 Ď Impp𝑀q an 𝑐1-base of 𝑐2 if and
only if every set 𝐴 Ď𝑀 is closed under 𝑐2 if and only if 𝐴 is closed under 𝑐1 and
𝒦.

Now let
𝒦 :“ t𝑃 Ñ 𝑐2p𝑃 q | 𝑃 is 𝑐1-pseudoclosed set of 𝑐2 u.

Then 𝒦 is a 𝑐1-base of 𝑐2 with minimal cardinality among all 𝑐1-bases of 𝑐2.

Proof We first show that 𝒦 is a 𝑐1-base of 𝑐2. For this let 𝐴 Ď 𝑀 . Indeed, if
𝐴 “ 𝑐2p𝐴q, then 𝐴 Ď 𝑐1p𝐴q Ď 𝑐2p𝐴q, i. e. 𝐴 “ 𝑐1p𝐴q. Furthermore, if 𝑃 is a
𝑐1-pseudclosed set of 𝑐2 with 𝑃 Ď 𝐴, then 𝑐2p𝑃 q Ď 𝑐2p𝐴q “ 𝐴. Hence 𝐴 is closed
under 𝑐1 and 𝒦.

Conversely, let 𝐴 be closed under 𝑐1 and 𝒦. If 𝑃 is a 𝑐1-pseudoclosed set of
𝑐2 with 𝑃 Ď 𝐴, then 𝑐2p𝑃 q Ď 𝐴 as well. Hence, if 𝑃 ‰ 𝑐2p𝑃 q, then 𝑃 would
be a 𝑐1-pseudclosed set of 𝑐2 and p𝑃 Ñ 𝑐2p𝑃 qq P 𝒦, contradicting 𝑃 ‰ 𝑐2p𝑃 q.
Therefore, 𝑃 “ 𝑐2p𝑃 q and 𝒦 is a 𝑐1-base of 𝑐2.

We now prove that 𝒦 has minimal cardinality among all 𝑐1-bases of 𝑐2. Let ℒ
be another 𝑐1-base of 𝑐2. Without loss of generality we can assume that for each
p𝐴 Ñ 𝐵q P ℒ, 𝐵 “ 𝑐2p𝐴q. For this we shall show that for each 𝑐1-pseudoclosed
set 𝑃 of 𝑐2 there exists an implication p𝐴𝑃 Ñ 𝑐2p𝐴𝑃 qq P ℒ and that for two
𝑐1-pseudoclosed sets 𝑃,𝑄 of 𝑐2, 𝐴𝑃 “ 𝐴𝑄 always implies 𝑃 “ 𝑄.

Let 𝑃 be a 𝑐1-pseudclosed set of 𝑐2. Then 𝑃 ‰ 𝑐2p𝑃 q and since ℒp𝑃 q “ 𝑐2p𝑃 q,
there must exist an implication p𝐴𝑃 Ñ 𝑐2p𝐴𝑃 qq P ℒ with 𝐴𝑃 Ď 𝑃, 𝑐2p𝐴𝑃 q Ę 𝑃 .

Let 𝑄 be a 𝑐1-pseudoclosed set of 𝑐2 and assume that 𝐴𝑃 “ 𝐴𝑄 “ 𝐴. Then
𝐴 Ď 𝑃 X 𝑄 and hence 𝑐2p𝐴q Ď 𝑐2p𝑃 X 𝑄q. Furthermore, 𝑐2p𝑃 X 𝑄q Ę 𝑃 , for
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otherwise 𝑐2p𝐴q Ď 𝑐2p𝑃 X𝑄q Ď 𝑃 . Since 𝑐2p𝑃 X𝑄q Ę 𝑄 holds likewise, we obtain
𝑐2p𝑃 X 𝑄q Ę 𝑃 X 𝑄 and in particular 𝑃 X 𝑄 ‰ 𝑐2p𝑃 X 𝑄q. Furthermore, since
𝑃 “ 𝑐1p𝑃 q, 𝑄 “ 𝑐1p𝑄q, 𝑃 X𝑄 “ 𝑐1p𝑃 X𝑄q holds as well.

Since 𝑃 X𝑄 ‰ 𝑐2p𝑃 X𝑄q and 𝑃 X𝑄 “ 𝑐1p𝑃 X𝑄q, there must exists an implication
p𝐶 Ñ 𝑐2p𝐶qq P ℒ such that

𝐶 Ď 𝑃 X𝑄, 𝑐2p𝐶q Ę 𝑃 X𝑄.

Since 𝑐2p𝐶q Ę 𝑃 X𝑄, 𝑐2p𝐶q Ę 𝑃 or 𝑐2p𝐶q Ę 𝑄 holds, and we can assume without
loss of generality that 𝑐2p𝐶q Ę 𝑃 . But then 𝐶 Ď 𝑃, 𝑐2p𝐶q Ę 𝑃 and both 𝑃 and 𝐶
are 𝑐1-pseudoclosed sets of 𝑐2, hence they cannot be different. Therefore, 𝑃 “ 𝐶
and therefore

𝑃 Ď 𝑃 X𝑄 Ď 𝑄,

i. e. 𝑃 “ 𝑃 X𝑄. Then 𝑐2p𝑃 q “ 𝑐2p𝑃 X𝑄q Ę 𝑄 as we have seen before. Since both
𝑃 and 𝑄 are 𝑐1-pseudclosed sets of 𝑐2 and 𝑃 Ď 𝑄, 𝑐2p𝑃 q Ę 𝑄, 𝑃 and 𝑄 cannot be
different and 𝑃 “ 𝑄 follows, as desired. ˝

Summing up, we obtain our desired result.

5.6 Corollary The number of confirmed implications during the run of the
general attribute exploration algorithm 4.5, where step ii is replace by step ii’, is
as small as possible.

6 Conclusions

Starting from a classical formulation of attribute exploration using domain experts,
we have presented a more general formulation of attribute exploration that is
able to work with abstractly given closure operators and can handle partially
given counterexamples. We have also seen that most of the properties of classical
attribute exploration remain in general or, as in the case of minimality of confirmed
implications, under certain restrictions.

References
[1] Franz Baader and Felix Distel. A Finite Basis for the Set of ℰℒ-Implications

Holding in a Finite Model. In Raoul Medina and Sergei Obiedkov, editors,
Proceedings of the 6th International Conference on Formal Concept Analysis,
(ICFCA 2008), volume 4933 of Lecture Notes in Artificial Intelligence, pages
46–61. Springer Verlag, 2008.

22



[2] Franz Baader and Felix Distel. Exploring finite models in the description
logic ℰℒgfp. In Sébastien Ferré and Sebastian Rudolph, editors, Proceedings
of the 7th International Conference on Formal Concept Analysis, (ICFCA
2009), volume 5548 of Lecture Notes in Artificial Intelligence, pages 146–161.
Springer Verlag, 2009.

[3] Franz Baader, Bernhard Ganter, Ulrike Sattler, and Baris Sertkaya. Com-
pleting description logic knowledge bases using formal concept analysis. In
Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI-07), pages 230–235. AAAI Press, 2007.

[4] Peter Burmeister and Richard Holzer. Treating incomplete knowledge in
formal concept analysis. In Bernhard Ganter, Gerd Stumme, and Rudolf
Wille, editors, Formal Concept Analysis, volume 3626 of Lecture Notes in
Computer Science, pages 114–126. Springer, 2005.

[5] Felix Distel. Learning Description Logic Knowledge Bases from Data Using
Methods from Formal Concept Analysis. PhD thesis, TU Dresden, 2011.

[6] Bernhard Ganter. Attribute exploration with background knowledge. Theor.
Comput. Sci., 217(2):215–233, 1999.

[7] Bernhard Ganter. Two basic algorithms in concept analysis. In Léonard
Kwuida and Baris Sertkaya, editors, ICFCA, volume 5986 of Lecture Notes
in Computer Science, pages 312–340. Springer, 2010.

[8] Bernhard Ganter, Sergei Obiedkov, Sebastian Rudolph, and Gerd Stumme.
Conceptual Exploration. in preparation.

[9] Bernhard Ganter and Rudolph Wille. Formal Concept Analysis: Mathematical
Foundations. Springer, Berlin-Heidelberg, 1999.

[10] Gerd Stumme. Attribute exploration with background implications and
exceptions. In H.-H. Bock and W. Polasek, editors, Data Analysis and
Information Systems. Statistical and Conceptual approaches. Proc. GfKl’95.
Studies in Classification, Data Analysis, and Knowledge Organization 7, pages
457–469, Heidelberg, 1996. Springer.

23


	Introduction
	Preliminaries
	Classical Attribute Exploration
	Generalizing Attribute Exploration
	Computing Undecided Implications
	Conclusions

