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Abstract

We present an extensions of our previous work on axiomatizing confident general concept
inclusions in given finite interpretations. Within this extension we allow external experts to
interactively provide counterexamples to general concept inclusions with otherwise enough
confidence in the given data. This extensions allows us to distinguish between erroneous
counterexamples in the data and rare, but valid counterexamples.

1 Introduction

In recent works [1–3, 5, 6], we have investigated the possibility of learning general concept
inclusions (GCIs) from erroneous data based on the notion of confidence. For this we have
argued that, instead of learning valid GCIs from finite interpretations, considering GCIs whose
confidence is above a preselected threshold 𝑐 P r0, 1s in some given interpretation ℐ may be
more promising, as it allows us to handle errors which may be present in ℐ. However, we have
also argued that this approach itself is intrinsically heuristic, as it does not distinguish between
errors in the data and rare but valid counterexamples. Distinguishing those two cannot be done
by unsupervised algorithms, as an external source of information is necessary.

To this end we envisioned a supervised learning algorithms for GCIs with high confidence based
on the algorithm of attribute exploration, a supervised learning algorithm from the area of formal
concept analysis that enables us to extract implications from domains which are representable
as formal contexts. This algorithm has already been extended to model exploration to allow
for learning valid GCIs from finite interpretations [7], so an extension towards GCIs with high
confidence seems reasonable.

However, attribute exploration itself is more concerned with the question of completeness of the
initial data, i. e. with the question of whether all relevant (valid) counterexamples are already
present in the data. The role of the expert in attribute exploration is then to provide missing
counterexamples, by posing questions of the form “does 𝐴 Ñ 𝐵 hold in your domain?” and
asking for valid counterexamples if this is not the case. In doing so, the implication 𝐴Ñ 𝐵 is
always true in the already given data.

An extension of model exploration to cover also GCIs with high confidence thus requires some
more effort. Luckily, an attribute exploration which extends the classical algorithm to allow also
for asking non-valid implications 𝐴Ñ 𝐵 with high confidence in the initial data has been devised
in [4]. Since the original model exploration from [7] has been built upon classical attribute
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exploration, and algorithm for model exploration of GCIs with high confidence could be devised
in a similar way, this time based on the extended exploration algorithm from [4].

It is the purpose of this report to give a detailed derivation of such an algorithm for model
exploration of GCIs with high confidence. To this end, we mimic the argumentation of [7] for
his development of model exploration and carry it over to consider GCIs with high confidence
instead of only valid ones. Therefore, we give a detailed overview of Distel’s model exploration
in Section 4, and the corresponding adaption to GCIs with high confidence in Section 5. As the
considerations itself are quite technical, we summarize in Section 3 the main ideas of how an
algorithm for model exploration of GCIs with high confidence should work in principle.

2 Preliminaries

We introduce the some notions necessary to keep this report self contained. To this end, we
first cover some basic notions from description logics in Section 2.1, such as interpretations, the
descriptions logics ℰℒK and ℰℒKgfp as well as general concept inclusions. This will also include
the definition of confidence of general concept inclusions in finite interpretations.

Thereafter we shall recall in Section 2.2 some basic definitions from formal concept analysis, the
mathematical area from which the classical attribute exploration algorithm has originated.

2.1 The Description Logics ℰℒK and ℰℒK
gfp

Description logics are a family of logic-based knowledge representation formalisms that allow
for effective decision procedure for various kinds of reasoning tasks. The different flavors of
description logic differ in both expressiveness and complexity of reasoning, and the particular
choice of which description logic to use usually depends on the underlying application.

In this work, we concentrate on the description logic ℰℒK and, for technical reasons, on ℰℒKgfp,
and extension of ℰℒK by greatest fixpoint semantics. However, as defining the semantics of
ℰℒKgfp is rather involved, and not really needed for the purpose of this work, we shall refrain to
do this here. Instead, we refer to [1, 7] and the works cited therein.

As any logic, ℰℒK is constituted of a syntax and a semantics. Both syntax and semantics depend
on the set of concept names 𝑁𝐶 and the set of role names 𝑁𝑅. We demand that 𝑁𝐶 and 𝑁𝑅

are disjoint. For the syntactic part of ℰℒK we define an ℰℒK concept description to be a term 𝐶
formed according to the rule

𝐶 ::“ 𝐴 | K | 𝐶 [ 𝐶 | D𝑟.𝐶

where 𝐴 P 𝑁𝐶 and 𝑟 P 𝑁𝑅.

The intuitive understanding behind concept descriptions is that they describe individuals which
satisfy certain properties, described by those concept descriptions. In doing so, the intuition
behind [ is conjunction, while an existential restriction of the form D𝑟.𝐶 states that an individual
satisfies this description if and only if there exists some 𝑟-related individual which satisfies 𝐶.

Before we are going to make this more precise by introducing the notion of an interpretation, let
us first consider a simple example. Let us choose 𝑁𝐶 “ tMale,Emacs u and 𝑁𝑅t uses u. Then
the concept description

Male[ Duses.Emacs

can be understood as a description of all individuals which are male and use Emacs, i. e. of all
male Emacs users.
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To make this understanding more precise we introduce the notion of an interpretation. Inter-
pretations ℐ “ p∆ℐ , ¨ℐq consist of a set ∆ℐ of individuals and a function ¨ℐ mapping concept
names 𝐴 to sets of individuals 𝐴ℐ and role names 𝑟 to sets 𝑟ℐ of pairs of individuals, i. e.

𝐴ℐ Ď ∆ℐ p𝐴 P 𝑁𝐶q,

𝑟ℐ Ď ∆ℐ ˆ∆ℐ p𝑟 P 𝑁𝑅q.

The mapping ¨ℐ is then extended in the obvious way to the set of all ℰℒK concept descriptions
by

Kℐ “ H,

p𝐶 [𝐷qℐ “ 𝐶ℐ X𝐷ℐ ,

pD𝑟.𝐶qℐ “ t𝑥 P ∆ℐ | D𝑦 P ∆ℐ : p𝑥, 𝑦q P 𝑟ℐ and 𝑦 P 𝐶ℐ u,

for 𝐶,𝐷 being ℰℒK concept descriptions and 𝑟 P 𝑁𝑅.

As already mentioned, we also need to consider an extension of ℰℒK by greatest fixpoint semantics.
This is mostly due to the fact that model-based most-specific concept descriptions, which we
shall introduce in Section 4.1 and which are crucial for our considerations, do not necessarily
exist in ℰℒK, but do in ℰℒKgfp.

As we have already noted, the semantics of ℰℒKgfp are quite involved, and since they are not
strictly necessary for our considerations, we shall spare to define it here. However, we shall give
a brief overview over the syntax of ℰℒKgfp to give some intuition for this description logic.

Again, let 𝑁𝐶 and 𝑁𝑅 be two disjoint sets, and let 𝑁𝐷 be another, non-empty set being disjoint
to both 𝑁𝐶 and 𝑁𝑅, the set of defined concept names. Then an ℰℒKgfp concept description 𝐶 is
either of the form 𝐶 “ K or of the form

𝐶 “ p𝐴, 𝒯 q,

where 𝐴 P 𝑁𝐷 and 𝒯 is a normalized ℰℒK-TBox with defined concept names 𝑁𝐷. Here an
ℰℒK-TBox with defined concept names 𝑁𝐷 is a finite set of primitive concept definitions, i. e.
expressions of the form

𝐵 ” 𝐷

such that 𝐵 P 𝑁𝐷 and 𝐷 being an ℰℒK concept description with concept names in 𝑁𝐶 Y𝑁𝐷

and role names in 𝑁𝑅. Additionally, for each 𝐵 P 𝑁𝐷 there is exactly one concept definition of
the form 𝐵 ” 𝐷 in 𝒯 .

We say that the primitive concept definition 𝐵 ” 𝐷 is normalized if 𝐷 is of the form

𝐷 “ 𝐵1 [ ¨ ¨ ¨ [𝐵𝑚 [ D𝑟1.𝐷1 [ . . . D𝑟𝑛.𝐷𝑛

for some 𝑚,𝑛 P N, 𝐵1, . . . , 𝐵𝑚 P 𝑁𝐶 and 𝐷1, . . . , 𝐷𝑛 P 𝑁𝐷. We say that 𝒯 is normalized if all
the concept definitions in 𝒯 are normalized.

Let us consider a toy example. For this, let 𝑁𝐶 “ tNerd,Emacs,Vim u, 𝑁𝑅 “ t uses, dislikes u,
𝑁𝐷 “ tEmacsUser,VimUser,E,V u. Then we can define typical users of Emacs as

pEmacsUser, tEmacsUser ” Nerd[ Duses.E[ Ddislikes.VimUser,

E ” Emacs,

VimUser ” Nerd[ Duses.V [ Ddislikes.EmacsUser,

V ” Vim uq.
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In this example, an EmacsUser is defined to be a Nerd that uses Emacs and that dislikes someone
who is a VimUser.1 However, the concept of a VimUser is also defined in terms of EmacsUser,
expressing a cyclic dependency between these two concepts. Thus, ℰℒKgfp concept descriptions
allow us to express some kind of local recursion. To resolve these cyclic dependencies, ℰℒKgfp
makes use of greatest fixpoint semantics, which we are not discussing here. See [7] and the
references therein for more details on this.

In the following, we may speak of concept descriptions without explicitly noting the description
logic used (like in ℰℒKgfp concept description). In this case, the actual description logic used
is not relevant, and the considerations are then meant to be valid for both ℰℒK and ℰℒKgfp.
Furthermore, we shall also not mention the sets 𝑁𝐶 , 𝑁𝑅 and 𝑁𝐷 explicitly if they are clear from
the context.

For some interpretation ℐ and some concept descriptions 𝐶,𝐷 it may be the case that for each
𝑥 P ∆ℐ it is always true that 𝑥 P 𝐶ℐ implies 𝑥 P 𝐷ℐ – in other words, 𝐶ℐ Ď 𝐷ℐ . In this case
we can say that if the concept description 𝐶 holds, then the concept description 𝐷 holds as
well. This implication-like connection between the two concept descriptions 𝐶 and 𝐷 can be
captured by the notion of a general concept inclusion (GCI). GCIs are written as 𝐶 Ď 𝐷, and
such a GCI is said to be valid in ℐ (or holds in ℐ) if and only if 𝐶ℐ Ď 𝐷ℐ . If 𝐶 Ď 𝐷 is true in
every interpretation ℐ, then we say that 𝐶 is subsumed by 𝐷, and write 𝐶 Ď 𝐷 (meant as a
statement, not an expression). The set of all GCIs which are valid in ℐ is denoted with Thpℐq.

The kind of knowledge represented by GCIs can be very useful, and learning which GCIs are
valid in ℐ can be of practical importance, for example when creating knowledge bases. However,
it can be seen quite easily that the number of GCIs valid in ℐ is infinite in general (i. e. if
𝑁𝑅 ‰ H), since then if 𝐶 Ď 𝐷 is valid in ℐ, so is D𝑟.𝐶 Ď D𝑟.𝐷 for each 𝑟 P 𝑁𝑅. Therefore,
learning all GCIs which are valid in ℐ is practically unreasonable.

In [7] it has be shown that if ℐ is finite, then there exists a finite set ℬ of valid GCIs of ℐ which
is complete in the sense that every GCIs which is valid in ℐ already follows from ℬ. Such finite
and complete sets of valid GCIs of ℐ are called finite bases of ℐ.

For practical applications it may be relevant to allow the interpretation ℐ to contain errors, in
the sense that sometimes 𝑥 P 𝐶ℐ may hold although it should not, and vice versa, for 𝑥 P ∆ℐ

and some concept description 𝐶. In this case it may happen that some GCIs which actually
should be true in ℐ are not, since some errors inhibit this. In this case, learning only valid GCIs
of ℐ will miss those incidentally invalidated GCIs, although they may be of practical value.

Of course, without further specification of what kinds of errors we actually allow in our data,
the problem of learning all those GCIs which would actually be valid if all those errors were not
present does not have a satisfying theoretical solution. However, we can approach this problem
heuristically using the notion of confidence as it is used in data mining: assuming that errors
are rare enough, a GCI 𝐶 Ď 𝐷 which actually has “few” counterexamples compared to the
number of individuals where it actually holds can be assumed to be only falsified by errors (since
otherwise counterexamples in the data would be more frequent). Here the phrase “individuals
where it actually holds” is meant to describe all individuals 𝑥 P ∆ℐ which satisfy 𝑥 P p𝐶 [𝐷qℐ .
Those individuals can be thought of as positive examples for 𝐶 Ď 𝐷, where counterexamples
are negative examples for 𝐶 Ď 𝐷. Then, intuitively speaking, 𝐶 Ď 𝐷 has “high” confidence if
and only if the number of positive examples for 𝐶 Ď 𝐷 is “much higher” then the number of
negative ones.

1Actually, what we would like to express here is that every Emacs user does not like every Vim user and vice
versa. However, this cannot be expressed in ℰℒK

gfp, and for the sake of keeping the example simple, we just stick
with the formulation as given.
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To put this formally, we define for 𝐶 Ď 𝐷 its confidence in ℐ to be

confℐp𝐶 Ď 𝐷q :“

#

1 if 𝐶 “ H,
|p𝐶[𝐷qℐ |

|𝐶ℐ | otherwise.

Then to say that a GCI has only “few” errors, we choose a threshold 𝑐 P r0, 1s and require
conf⟩p𝐶 Ď 𝐷q ě 𝑐. The set of all GCIs which have confidence at least 𝑐 in ℐ is denoted with
Th𝑐pℐq, and elements of this set are sometimes called GCIs with high confidence or just confident
GCIs (where it is clear from the context which threshold is meant).

Learning GCIs from Th𝑐pℐq can be promising if ℐ contains errors which are rare. However, since
Thpℐq Ď Th𝑐pℐq, the set Th𝑐pℐq is infinite in general, and also in general not even closed under
entailment of GCIs. However, it has been shown in previous works [1–3, 5, 6] that if ℐ is finite,
it is possible to effectively construct finite sets ℬ of Th𝑐pℐq which are sound for Th𝑐pℐq, in the
sense that all elements of ℬ are entailed by Th𝑐pℐq, and also complete for Th𝑐pℐq, in the sense
that each element of Th𝑐pℐq is entailed by ℬ. Such sets ℬ are called finite bases of Th𝑐pℐq. If
even ℬ Ď Th𝑐pℐq, then ℬ is called a confident base of Th𝑐pℐq.

2.2 Formal Concept Analysis

Formal concept analysis provides the method of attribute exploration on which we want to built
our model exploration of confident GCIs. The field of formal concept analysis originally started
out as an attempt to restructure mathematical lattice theory, and in particular to provide
meaning to ordered structures as structures of concepts or as conceptual hierarchies. However,
it has since then evolved into a broad theory with applications beyond its original scope, for
example in artificial intelligence and data mining. Indeed, we shall see very little from this
original motivation of formal concept analysis in this report.

The most basic notion of formal concept analysis is the one of a formal context, a triple
K “ p𝐺,𝑀, 𝐼q where 𝐺 and 𝑀 are sets and 𝐼 Ď 𝐺 ˆ𝑀 . A classical intuition behind this
definition is that the set 𝐺 is thought of as a set of objects, the set 𝑀 as a set of attributes
and p𝑔,𝑚q P 𝐼 is to be understood as that the object 𝑔 has the attribute 𝑚. However, this
interpretation is only one among many.

Formal contexts are a basic way to represent data, and with the above interpretation we can
pose simple questions to this data. For example, if 𝐴 Ď𝑀 is a set of attributes, then we can
ask for all objects 𝐴1 in K which have all attributes in 𝐴, i. e.

𝐴1 :“ t 𝑔 P 𝐺 | @𝑚 P 𝐴 : p𝑔,𝑚q P 𝐼 u.

Dually, if 𝐵 Ď 𝐺 is a set of objects, then we can look for all attributes 𝐵1 which are shared by
all objects in 𝐵, i. e. for the set 𝐵1 which is defined as

𝐵1 :“ t𝑚 P𝑀 | @𝑔 P 𝐵 : p𝑔,𝑚q P 𝐼 u.

The mappings denoted both by p¨q1 are called the derivation operators of K, and the sets 𝐴1 and
𝐵1 are called the derivations of 𝐴 and 𝐵 in K, respectively.

In the formal context K it may happen that for two sets 𝐴,𝐵 Ď𝑀 of attributes that whenever
an object has all attributes from 𝐴, it also has all attributes from 𝐵. In other words, it may be
the case that

𝐴1 Ď 𝐵1.

This dependency between sets of attributes of formal contexts is captured in the notion of
an implication. Formally, an implication on the set 𝑀 is just a pair p𝐴,𝐵q where 𝐴,𝐵 Ď 𝑀 .
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To make the intention more clear, implications are mostly written as 𝐴 Ñ 𝐵. The set of all
implications on 𝑀 is denoted by Impp𝑀q. We say that an implication holds in K, written
K |ù p𝐴Ñ 𝐵q, if and only if 𝐴1 Ď 𝐵1, i. e. if and only if each object which has all the attributes
from 𝐴 also has all the attributes from 𝐵. The set of all valid implications of K is denoted with
ThpKq.

Let ℒ Ď Impp𝑀q and let p𝐴Ñ 𝐵q P Impp𝑀q. We say that ℒ entails 𝐴Ñ 𝐵 if and only if for
each formal context L with attribute set 𝑀 , it is true that if all implications in ℒ are valid in L,
then 𝐴Ñ 𝐵 is also valid in L. The set of all implications which are entailed by ℒ is denoted by
Cn𝑀 pℒq. If the set 𝑀 is clear from the context, then we may drop the subscript from Cn𝑀 .

Let 𝑋 Ď𝑀 . Then the set 𝑋 is said to be closed under ℒ if and only if for all p𝐴Ñ 𝐵q P Impp𝑀q,
it is true that if 𝐴 Ď 𝑋, then 𝐵 Ď 𝑋. It can be shown that there always exists a Ď-minimal set
�̄� satisfying 𝑋 Ď �̄� such that �̄� is closed under ℒ. This set shall be denoted by ℒp𝑋q.

If the formal context K is finite, i. e. if both 𝐺 and 𝑀 are finite, then the number of valid
implications of K is finite as well. However, this set can be quite large, and it may be desirable
to find smaller sets of implications which are sufficient. For this, let ℒ,𝒦 Ď Impp𝑀q. Then we
say that 𝒦 is a base of ℒ if and only if Cnp𝒦q “ Cnpℒq. In other words, 𝒦 is a base of ℒ if and
only if it entails all implications which are entailed by ℒ and nothing more. If ℒ “ ThpKq, then
bases of ℒ are also called bases of K.

The idea behind this notion is to find, given a set ℒ, a considerable smaller base 𝒦 of ℒ. This
base 𝒦 then still has the same properties as the set ℒ in terms of entailment, but might be
practically more relevant because of its reduced size. Of course, the best solution here would be
to find bases 𝒦 which are somehow “smallest.” In particular, we say that 𝒦 is non-redundant if
no strict subset of 𝒦 is a base of ℒ, and we say that 𝒦 is minimal if there does not exist another
base of ℒ with fewer elements than 𝒦.

Bases can be formed according to some known background knowledge. Let ℒ,𝒦1 Ď Impp𝑀q be
again sets of implications such that Cnp𝒦1q Ď Cnpℒq. We may consider the set 𝒦1 as implications
we “already know,” and we may be interested in finding a set 𝒦 Ď Impp𝑀q such that 𝒦 together
with 𝒦1 is a base of ℒ, i. e. such that Cnp𝒦 Y𝒦1q “ Cnpℒq. In this case, we call 𝒦 a base of ℒ
with background knowledge 𝒦1. The notions or non-redundancy and minimality of bases 𝒦 with
background knowledge 𝒦1 are as in the case for bases.

A particularly interesting base of a formal context K, which is also a minimal base, is the
canonical base of K. To define this base we need to introduce the notion of pseudo-intents of
K with respect to some background knowledge 𝒦 Ď ThpKq. Let 𝑃 Ď 𝑀 . Then 𝑃 is called a
pseudo-intent of K if and only if

i. 𝑃 ‰ 𝑃 2,

ii. 𝑃 “ 𝒦p𝑃 q, and

iii. for each pseudo-intent 𝑄 Ĺ 𝑃 it is true that 𝑄2 Ď 𝑃 .

Then the canonical base of K with background knowledge 𝒦 is defined as

CanpK,𝒦q :“ t𝑃 Ñ 𝑃 2 | 𝑃 pseudo-intent of K u.

The canonical base is always a minimal base of K.

To compute the canonical base, one commonly uses an algorithm which is base on Next-
Closure [8]. Next-Closure is an algorithm which allows for the enumeration of all closed sets of
ℒ in a particular order, the lectic order.
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Algorithm 1 The Next-Closure Algorithm

0 define next-closed-set(𝑀 , ă, 𝑃 , ℒ)
1 ă := induced lectic order of ă
2 for each 𝑖 P sort(ą, 𝑀) do ; i.e from largest to smallest
3 𝑃 := ℒpt 𝑎 P 𝐴 | 𝑎 ă 𝑖 u Y t 𝑖 uq
4 if 𝑃 ă𝑖 𝑃 then
5 return 𝑃
6 end
7 end
8 return null
9 end

Let ă be a strict order on 𝑀 , i. e. a transitive and irreflexive binary relation on 𝑀 . Then for
two sets 𝐴,𝐵 Ď𝑀 and 𝑖 P𝑀 we say that 𝐴 is lectically smaller then 𝐵 at position 𝑖, written
𝐴 ă𝑖 𝐵, if and only if

minăp𝐴△𝐵q “ 𝑖 P 𝐵.

We say that 𝐴 is lectically smaller than 𝐵 if and only if 𝐴 ă𝑖 𝐵 for some 𝑖 P 𝑀 . We write
𝐴 ă 𝐵 in this case and call ă on lectic order induced by ă on 𝑀 . We write 𝐴 ĺ 𝐵 if and only
if 𝐴 ă 𝐵 or 𝐴 “ 𝐵.

It can be shown quite easily that lectic orders are linear orders on the powerset of 𝑀 , and that
these orders extent the usual subset order, i. e.

𝐴 Ď 𝐵 ùñ 𝐴 ĺ 𝐵

is true for all 𝐴,𝐵 Ď𝑀 .

Now given a set ℒ Ď Impp𝑀q of implications on 𝑀 , and a set 𝑃 Ď 𝑀 , the Next-Closure
algorithm is able to compute the lectically next set 𝑃 after 𝑃 which is closed under ℒ, i. e.

𝑃 “ mină t𝑄 Ď𝑀 | 𝑃 ă 𝑄 and 𝑄 is closed under ℒ u.

The algorithm is shown as Algorithm 1. Note that we shall not discuss the details of this
algorithm here, see [8, 9] for a more thorough introduction.

It is now true that
𝑃 “ next-closed-setp𝑀,ă, 𝑃,ℒq.

If ℒ “ ThpKq, we may also write 𝑃 “ next-closed-setp𝑀,ă, 𝑃,Kq.

The canonical base of K with respect to some background knowledge 𝒦 can be computed with
the help of the Next-Closure algorithm. However, instead of giving an explicit algorithm to
achieve this, we shall instead the algorithm of attribute exploration, which is closely related to
computing the canonical base. Indeed, it is rather easy to extract from attribute exploration an
algorithm for computing the canonical base.

Attribute exploration is an algorithm which approaches the problem of checking a formal context
for completeness with respect to representing a certain domain of interest. More precisely,
suppose that we are interested in the implicational theory of a certain domain formed of certain
instances, from which we assume that they can be modeled as objects of a formal context.
However, we also assume that actually constructing this formal context is not feasible, or at
least not desired, and that instead a base of all implications which hold in this domain is of
interest. We assume furthermore that we have access to an expert which is able to answer
questions of the form “Does the implication 𝐴Ñ 𝐵 holds in the domain?” for every implication
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Algorithm 2 Attribute Exploration

0 define attribute-exploration(K “ p𝐺,𝑀, 𝐼q, 𝒦)
1 𝑃 := H

2 forever do
3 𝑃 := mină t𝑄 Ď𝑀 | 𝑃 ĺ 𝑄,𝑄 “ 𝒦p𝑄q, 𝑄 ‰ 𝑄2 u
4 if 𝑃 “ null then
5 return K, 𝒦
6 else if expert accepts 𝑃 Ñ 𝑃 2 then
7 𝒦 :“ 𝒦 Y t𝑃 Ñ 𝑃 2 u
8 else
9 K := K augmented with a counterexample for 𝑃 Ñ 𝑃 2

10 end
11 end
12 end

p𝐴Ñ 𝐵q P Impp𝑀q. If the expert answers no, she is required to provide a counterexample for
the implication 𝐴Ñ 𝐵, i. e. a set 𝐶 Ď𝑀 such that 𝐴 Ď 𝐶 and 𝐵 Ę 𝐶.

In this setup we can employ attribute exploration to obtain a base of all valid implications of the
domain of interest. To this end, the algorithm successively computes implications 𝐴Ñ 𝐵 and
poses them to the expert, collecting provided counterexamples if the expert rejects 𝐴Ñ 𝐵, or
remembering the implication 𝐴Ñ 𝐵 if the expert accepts it. By collecting those counterexamples,
the algorithm completes the initial formal context to contain all objects and their corresponding
attributes which are relevant to extract a base of all valid implications of the domain of interest.

The algorithm proceeds in detail as follows: starting with an initial working context K which
is supposed to contain instances from the domain of interest, and a set 𝒦 of initially known
implications, which are supposed to be true in the domain, the algorithm computes the lectically
first closed set 𝑃 of 𝒦 which is not an intent of K. It then poses the question

𝑃 Ñ 𝑃 2

to the expert. If the expert accepts this implication, it is added to 𝒦. If the expert rejects this
implication, the provided counterexample is added to the working context K as a new object.
The formal context K is then called the current working context and the set 𝒦 is called the set
of currently known implications.

In any case, the algorithm continues with computing the ă-smallest set 𝑄 satisfying 𝑃 ĺ 𝑄
and not being an intent of K. If 𝑄 exists, the expert is asked the implication 𝑄Ñ 𝑄2 and the
answer is handled as before. If no such set 𝑄 exists, both K and 𝒦 are returned, which are then
called the final working context and the final set of known implications, respectively. In this
case, 𝒦 is a base of all implications which are valid in the domain of interest, and is equal to the
canonical base of K with the initially known implications as background knowledge [9].

An implementation of attribute exploration is shown as Algorithm 2. The expression

mină t𝑄 Ď𝑀 | 𝑃 ĺ 𝑄,𝑄 ‰ 𝑄2 u

which appears in this listing is computed by repeated calls to the Next-Closure algorithm. It is
supposed to be evaluated to null if the set is empty.
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3 An Overview over Model Exploration

The main focus of this work is to introduce an algorithm that allows for the exploration of all
general concept inclusions that enjoy a certain minimal confidence in a given finite interpretation.
As the following considerations are going to be quite technical, we want to ensure that the reader
does not miss this goal. To this end, we want to provide a high-level description of the desired
algorithm in this section. Additionally, we shall also introduce some nomenclature that we are
going to use throughout our argumentation.

Let us first state the main setting for such an algorithm that implements model exploration by
confidence. For this, assume that we are interested to learn knowledge from a particular domain
of interest. From this domain we assume that it can be represented as a finite interpretation
ℐback, which we shall call the background interpretation. Furthermore, we assume that we do
not explicitly have access to this background interpretation, because it may only exist implicitly.
However, we can access the interpretation ℐback through an external expert, which has the ability
to answer questions.

This external expert should, given a GCI 𝐶 Ď 𝐷, be able to determine if this GCI holds in ℐback
or not. If it is the case, then the expert confirms this GCI. If 𝐶 Ď 𝐷 does not hold in ℐback,
then the expert should provide a counterexample, i. e. an element 𝑥 from the interpretation ℐback
such that 𝑥 P 𝐶ℐback and 𝑥 R 𝐷ℐback . It is also possible (and, as we shall later, may even be
necessary) to not only provide the element 𝑥 but also a small subinterpretation ℐ 1 of ℐback such
that 𝐶ℐ1 Ę 𝐷ℐ1 .

The goal of an exploration algorithm in this setting is now to axiomatize valid GCIs of ℐback by
posing questions to this expert. Intuitively, this is done by computing GCIs and giving them to
the expert. If the expert confirms, those GCIs are stored. If the expert rejects, the provided
counterexample is stored as well. Subsequently, GCIs are computed such that they neither
follow from already confirmed GCIs nor are invalidated by already provided counterexamples,
to avoid unnecessary questions to the expert. The algorithm terminates if no such GCIs can be
computed anymore, in which case the set of known GCIs constitutes an axiomatization of the
valid GCIs of ℐback. Of course, termination of such an algorithm is not clear per se, and heavily
depends on the order in the GCIs asked to the expert are computed. That such an algorithm
exists has been shown in [7].

In every iteration, the set of GCIs already confirmed by the expert is called the current background
knowledge, and the interpretation which is constituted as the union of all counterexamples
provided so far is called the current working interpretation. It is also possible to provide
some initial background knowledge and an initial working interpretation as arguments to the
exploration. Clearly, the initial background knowledge should be valid in ℐback.

However, in contrast to the exploration algorithm in [7], we do not require the initial working
interpretation to be a subinterpretation of ℐback. This we allow because we want to consider an
initial working interpretation as an “approximation” of (parts of) the background interpretation,
to allow also data that is actually not part of the background interpretation to be used as input
for an exploration process. In that way, we make exploration applicable to data which itself
not correct, but contains only few errors (i. e. , is of “high quality”), a scenario which is quite
common for practical applications.

To illustrate why this can happen, let us consider the following fictional scenario. We have access
to an expert from the domain of diseases, and we have given an interpretation that contains
diseases as elements (among others). To goal is to extract knowledge about diseases from the
expert, using the initial interpretation to reduce the number of GCIs to be considered. However,
the data itself might very likely contain errors (as all real-world data does), and therefore it
cannot be considered as part of the underlying background interpretation. On the other hand,
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the number of errors might be small enough, i. e. the interpretation might be of high quality,
and simply discarding the data because of some small errors seems wasteful.

To make exploration applicable here, recall that the working interpretation is used to exclude
certain GCIs from being asked to the expert because those GCIs are not valid in the working
interpretation. If the interpretation contains errors, this approach cannot be followed anymore,
as the errors contained in the working interpretation may accidentally invalidate GCIs which
actually hold in the background interpretation. However, if we assume that the interpretation
contains not too many errors, we can still use this data by not asking GCIs that have “enough”
counterexamples in the data. To make this more precise, we use the notion of confidence of
GCIs to quantify when a GCI has “enough” counterexamples in the data.

An algorithm that implements this idea would abstractly work as follows. As initial arguments,
the algorithm would receive

i. an initial working interpretation ℐ,

ii. a confidence threshold 𝑐 P r0, 1s, and

iii. a set ℬ of known general concept inclusions, satisfying that every element of ℬ should have
confidence at least 𝑐 in ℐ.

Given these arguments, the algorithm then successively computes general concept inclusions
𝐶 Ď 𝐷 whose confidence is at least 𝑐 in ℐ, that are not entailed by GCIs from ℬ or GCIs
previously confirmed by the expert, and that are not invalidated by any counterexample provided
by the expert so far. As above, those GCIs having been confirmed by the expert during this
process are collected. Upon termination, this set of GCIs constitutes a finite axiomatization of
the GCIs which are both valid in the domain represented by the expert and have confidence at
least 𝑐 in ℐ.

Note that we demand the confidence of 𝐶 Ď 𝐷 to always be computed in the initial working
interpretation, and not in the current working interpretation. The reason for this is twofold.
Firstly, the counterexamples added by the expert are of a different “quality,” since we assume
them to come directly from the background interpretation. Therefore, considering them while
computing the confidence of GCIs seems unreasonable. Secondly, recall that the initial purpose
of allowing an initial working interpretation is to reduce the number of GCIs to be considered
during the exploration. In our particular setting now, we do this by considering only those GCIs
to be relevant to the expert that enjoy a certain confidence in ℐ. Then, during the exploration,
we use the counterexamples provided by the expert to reduce this set of GCIs until it is empty.
However, computing the confidence of GCIs in the whole working interpretation would do
something completely different.

The remainder of this work is devoted to develop such an exploration algorithm and to prove
the claims given here. In particular, it remains to discuss how to compute GCIs to be asked to
expert. To this end, we shall first have a look on how model exploration in the case of valid
GCIs can be achieved (i. e. in the case where the initial working interpretation is actually part of
the background interpretation), as it has been described first by Distel [7]. This is the subject
of Section 4. The argumentation used there will guide us in Section 5 in our development of a
model exploration for confident GCIs, as it has been sketched above.

4 Model Exploration with Valid GCIs

The argumentation we are going to use to develop our algorithm for model exploration with
confident GCIs is similar to the argumentation of Distel [7] for his development of a model
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exploration algorithm for valid GCIs. Therefore, to make our considerations more comprehensible
and to allow comparisons between our exploration algorithm and Distel’s, we are going to give a
brief description of his model exploration algorithm in the following sections. However, we shall
refrain from giving any proofs, as this is not the purpose of this report. Instead, we shall give
detailed references to the corresponding passages in [7].

4.1 Axiomatizing GCIs of Finite Models

The algorithm for model exploration developed by Distel relies on a generalization of an algorithm
that computes bases of valid GCIs of finite given models, also developed by him [7]. Therefore,
to understand the reasoning behind Distel’s model exploration algorithm, we shall give a brief
introduction into axiomatizing finite models first.

Let ℐ “ p∆ℐ , ¨ℐq a finite interpretation. The main idea behind Distel’s approach in axiomatizing
ℐ is to transform this interpretation into a finite formal context Kℐ in such a way that a base of
the valid implications of Kℐ yield finite bases of ℐ.

To construct a finite base in such a way, we shall first introduce the notion of model-based
most-specific concept descriptions. For this, let 𝑋 Ď ∆ℐ be a set of individuals. Then a concept
description 𝐶 is a model-based most-specific concept description for 𝑋 in ℐ if and only if

i. 𝑋 Ď 𝐶ℐ and

ii. for all concept descriptions 𝐷 with 𝑋 Ď 𝐷ℐ it is true that 𝐶 Ď 𝐷.

In other words, 𝐶 is the most specific concept description that “describes” 𝑋 in ℐ.

It can be seen easily that if model-based most-specific concept descriptions exist, then they
are unique up to equivalence. Therefore, we can denote model-based most-specific concept
descriptions by a separate name, and we choose to call it 𝑋ℐ , because mapping 𝑋 to its model-
based most-specific concept description can be considered as reverse operations to mapping a
concept description 𝐶 to its extension 𝐶ℐ , in the very same way as the derivation operators p¨q1
in formal contexts are reverse operations of each other.2 To ease notation, we shall write 𝑋ℐℐ

instead of p𝑋ℐqℐ and 𝐶ℐℐ instead of p𝐶ℐqℐ for sets 𝑋 of individuals and concept descriptions
𝐶.

However, it can also be seen quite easily that model-based most-specific concept descriptions do
not necessarily exist in the description logic ℰℒK. For this, we consider the case of 𝑁𝐶 “ H,
𝑁𝑅 “ t r u and 𝒥 “ pt 𝑎 u, ¨𝒥 q where 𝑟𝒥 “ t p𝑎, 𝑎q u. Then the set 𝑋 “ t 𝑎 u is the extension of
the ℰℒK concept descriptions

J, Dr.J, Dr.Dr.J, . . .

and there is no most-specific concept descriptions 𝐶 such that 𝑋 Ď 𝐶ℐ .

Therefore we consider the description logic ℰℒKgfp instead of ℰℒK. For this logic, it can be shown
that model-based most-specific concept descriptions always exist, and that they can be computed
effectively [7, Theorem 4.7]. Moreover, considering ℰℒKgfp instead of ℰℒK is not a restriction, as
it can be shown that any finite base of ℐ in ℰℒKgfp can effectively be transformed into a finite
base of ℐ in ℰℒK [7, Theorem 5.21].

Model-based most-specific concept descriptions provide a way to mimic the derivation operators
from formal concept analysis. Recalling our goal of transforming ℐ into a finite formal context,

2Indeed, the mappings 𝐶 ÞÑ 𝐶ℐ and 𝑋 ÞÑ 𝑋ℐ a very similar to the derivations operators in formal concept
analysis. In particular, they resemble a Galois connection between the set of concept descriptions ordered by
subsumption and the subsets of Δℐ ordered by set inclusion.
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we shall introduce the notion of induced contexts next.

Let 𝑀 be a set of concept descriptions. Then the formal context K𝑀,ℐ “ p∆
ℐ ,𝑀,∇q, where

𝑥∇𝐶 :ðñ 𝑥 P 𝐶ℐ

for 𝑥 P ∆ℐ and 𝐶 P𝑀 is called the induced formal context of 𝑀 and ℐ.

Induced contexts exemplify many commonalities between the operators p¨qℐ and the derivation
operators p¨q1. One of them is shown in the following result.

4.1 Lemma (partly Lemma 4.10 from [7]) Let 𝑀 be a set of concept descriptions and let
ℐ be an interpretation. Then for each 𝑈 Ď𝑀 it is true that

p
l

𝑈qℐ “ 𝑈 1.

Recall that for a formal context K “ p𝐺,𝑀, 𝐼q the set t𝐴Ñ 𝐴2 | 𝐴 Ď𝑀 u is always a base
of K. In particular, this is true for induced formal contexts K𝑀,ℐ . Now given the similarities
between p¨qℐ and p¨q1, a desirable result would be to obtain that the set

ℬ :“ t
l

𝑈 [ p
l

𝑈qℐℐ | 𝑈 Ď𝑀 u (1)

is a base of ℐ. While this is not true in general, we can establish the validity of this result by
considering a the particular set

𝑀ℐ “ tKu Y𝑁𝐶 Y t D𝑟.𝑋
ℐ | 𝑋 Ď ∆ℐ u,

which in addition is also finite, as ∆ℐ is a finite set. Then it is shown in [7, Theorem 5.10] that
the set ℬ from (1) is indeed a finite base of ℐ, when choosing 𝑀 “𝑀ℐ . As the set 𝑀ℐ has this
remarkable property, we shall denote the induced formal context K𝑀ℐ ,ℐ of 𝑀ℐ and ℐ simply by
Kℐ and shall call it the induced formal context of ℐ.

The set 𝑀ℐ also enjoys another important property: if 𝑋 Ď ∆ℐ is a set of individuals, then its
model-based most-specific concept description 𝑋ℐ is expressible in terms of 𝑀ℐ , i. e. it can be
expressed (up to equivalence) as a conjunction of concept descriptions from 𝑀ℐ [7, Lemma 5.9].
Formally, for each such set 𝑋 there exists a set 𝑁 Ď𝑀ℐ such that

𝑋ℐ ”
l

𝑁.

With this property it can be shown that the intents of Kℐ are in a one-to-one correspondence
with the model-based most-specific concept descriptions of ℐ. A crucial step towards this result
is formulated in the following lemma.

4.2 Lemma (Proposition 4.7 from [1]) Let ℐ be a finite interpretation and let 𝑀 be a set
of concept descriptions. Let 𝐴 Ď ∆ℐ . Then

l
𝐴1 ” 𝐴ℐ ,

where the derivation is done in Kℐ .

If now 𝑈 Ď𝑀ℐ , then we obtain from this and Lemma 4.1

p
l

𝑈2q ” p𝑈 1qℐ “ p
l

𝑈qℐℐ . (2)

It can now be shown that bases of Kℐ can be transformed into bases of ℐ. More precisely, if ℒ
is a base of Kℐ such that all implications in ℒ are of the form 𝑈 Ñ 𝑈2, then the set

ℬ2 :“ t
l

𝑈 Ď p
l

𝑈qℐℐ | p𝑈 Ñ 𝑈2q P ℒ u

12



is a base of ℐ [7, Theorem 5.12].

However, the base ℬ2 contains some redundancies, as the base ℒ of Kℐ has to entail all
implications t𝐶 u Ñ t𝐷 u, where 𝐶 Ď 𝐷, 𝐶,𝐷 P 𝑀ℐ . Although these implications are non-
trivial in Kℐ , the resulting GCIs 𝐶 Ď 𝐷 are trivially true in any interpretation, and thus do not
need to be contained in ℬ2. We can circumvent this flaw by introducing the set

𝒮ℐ :“ t t𝐶 u Ñ t𝐷 u | 𝐶,𝐷 P𝑀⟩, 𝐶 Ď 𝐷 u

and computing bases ℒ of Kℐ with background-knowledge 𝒮ℐ . Then again, if ℒ is such a base,
the set

ℬ3 :“ t
l

𝑈 Ď p
l

𝑈qℐℐ | p𝑈 Ñ 𝑈2q P ℒ u

is a base of ℐ [7, Theorem 5.12]. Furthermore, if ℒ is a base of minimal cardinality (like the
canonical base CanpKℐq of Kℐ), then the resulting base ℬ3 is also of minimal cardinality among
all bases of ℐ [7, Theorem 5.18].

4.2 Growing Sets of Attributes

Distel based his development of a model-exploration algorithm on the classical attribute explo-
ration algorithm from formal concept analysis. The rough idea is to do attribute exploration in
the induced context Kℐ of ℐ. However, there are a number of substantial differences between
just exploring a formal context and exploring the induced context Kℐ of ℐ.

One of these differences is the fact that the set of attributes 𝑀ℐ of Kℐ arises from the inter-
pretation ℐ, which however is not known completely at the beginning of an exploration, as the
expert may add counterexamples later on, and thus cannot be computed before the exploration
starts. To handle this situation, Distel extends the axiomatization algorithm to allow a growing
set of attributes during the axiomatization process. With this extension, he is able to extend the
algorithm that computes bases of ℐ in such a way that the elements of 𝑀ℐ are not computed in
advance, but one by one during the process.

The argumentation for this algorithm starts by extending the classical formal concept analysis
algorithm for computing the canonical base of a given formal context. For this we observe that
this algorithm makes use of the next-closure algorithm, which in turn computes the necessary
intents from starting segments with respect to the lectic order of the set of attributes of the
formal context. Thus, the natural idea is now to just put new attributes at the end of the set of
attributes. In this way, the algorithm would behave as if all attributes would have been present
right from the beginning.

An algorithm that implements this idea is shown in Algorithm 3. Since the algorithm makes
use of different formal contexts K𝑘, we denote the derivations in these formal contexts by
2𝑘 , respectively. The algorithm starts with a given initial formal context K0 and background
knowledge 𝒮0 and computes the pseudo-intents of the formal context as usual. However, in every
iteration 𝑘 we read in a new formal context K𝑘`1 that extends the previous formal context K𝑘

with new attributes, i. e. 𝑀𝑘 Ď𝑀𝑘`1 and 𝐼𝑘 “ 𝐼𝑘`1 X𝑀𝑘 ˆ𝑀𝑘. Moreover, we also allow the
set 𝒮𝑘 of background knowledge to grow during the exploration.

Note, however, that the extension of the formal contexts during the computation cannot be
unlimited, i. e. at a certain point ℓ, we need to have 𝑀𝑘 “𝑀ℓ for all remaining iterations 𝑘 ě ℓ.
If this is the case, then we can not only guarantee the termination of Algorithm 3 (since from
this point on, the computation behaves similarly to the usual computation of the canonical
base), but also that if 𝑛 is the final iteration of the algorithm, that then ℒ𝑛 is a base of K𝑛 with
background knowledge 𝒮𝑛.
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Algorithm 3 (Algorithm 8 from [7]) Computing a Base of a Formal Context with Growing
Sets of Attributes and Background Knowledge

0 define base/growing-set-of-attributes(K0, 𝒮0)
1 ;; initialization
2 𝑘 := 0
3 𝑃0 := H

4 ℒ𝑘 := H

5

6 ;; computation
7 while 𝑃𝑘 ‰ null do
8 ;; add new attributes
9 read K𝑘`1 “ p𝐺,𝑀𝑘`1, 𝐼𝑘`1q where 𝑀𝑘 Ď𝑀𝑘`1 and 𝐼𝑘 “ 𝐼𝑘`1 X𝑀𝑘 ˆ𝑀𝑘

10 read 𝒮𝑘`1 where 𝒮𝑘 Ď 𝒮𝑘`1 Ď ThpK𝑘`1q

11

12 ;; update ℒ𝑘`1

13 ℒ𝑘`1 := t𝑃𝑟 Ñ 𝑃
2𝑘`1
𝑟 | 𝑃𝑟 ‰ 𝑃

2𝑘`1
𝑟 , 𝑟 P t 0, . . . , 𝑘 u u

14

15 ;; next closed set
16 if 𝑃𝑘 “𝑀𝑘 “𝑀𝑘`1 then
17 𝑃𝑘`1 := null
18 else
19 𝑃𝑘`1 := next-closed-set(𝑀𝑘`1, ă, 𝑃𝑘, ℒ𝑘`1 Y 𝒮𝑘`1)
20 end
21 𝑘 := 𝑘 ` 1
22 end
23

24 ;; return result
25 return ℒ𝑘

26 end
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K0 “ K1 “

A

1 ˆ

2

K2 “ K3 “

A B

1 ˆ

2 ˆ

K3 “ K4 “ K5 “

A B C

1 ˆ ˆ

2 ˆ

Figure 1: Formal Contexts for Example 4.4

4.3 Theorem (Theorems 6.2 and 6.4 from [7]) In a run of Algorithm 3, let ℓ P N be such
that 𝑀𝑘 “ 𝑀ℓ is true for all iterations 𝑘 ě ℓ. Then Algorithm 3 terminates. If 𝑛 is the last
iteration of this algorithm, then ℒ𝑛 is a base of K𝑛 with background knowledge 𝒮𝑛.

Note that in contrast to the classical computation of bases of formal contexts, we cannot discard
intents 𝑃𝑘 we encounter during our computation. This is because these sets are only known to
be intents of the current context K𝑘, and it might very well happen that in a later iteration ℓ
the set of attributes is extended in a way such that 𝑃𝑘 is not an intent of Kℓ anymore. In this
case, the existence of 𝑃𝑘 is crucial to guarantee that the algorithm computes a base of the final
formal context K𝑛.

Unfortunately, the fact that we have to keep all the sets 𝑃𝑘 has as a consequence that the
resulting bases ℒ𝑛 are not necessarily irredundant. This is shown by the following example.

4.4 Example (Example 6.1 from [7]) We consider the following run of Algorithm 3 with
input K0 and 𝒮0 “ H “ 𝒮1 “ . . . “ 𝒮6:

𝑘 𝑀𝑘`1z𝑀𝑘 ℒ𝑘 𝑃𝑘

0 H H H

1 H H tA u
2 tB u H tB u
3 H H tA,B u
4 tC u t tA u Ñ tA,C u, tA,B u Ñ tA,B,C u u tC u
5 H ttA u Ñ tA,C u, tA,B u Ñ tA,B,C u, tC u Ñ tA,C u u tA,B,C u
6 H ttA u Ñ tA,C u, tA,B u Ñ tA,B,C u, tC u Ñ tA,C u u null

In iterations 2 and 4, the new attributes B and C are added, as shown in Figure 1. The
algorithm terminates in iteration 6 with output ℒ6, which is clearly non-redundant: the
implication tA,B u Ñ tA,B,C u is entailed by tA u Ñ tA,C u. ♢

4.3 Computing Bases in a Given A-Priori Model

We have seen how to utilize the fact that we can use the next-closure algorithm for computing
bases to allow for attribute sets which grow over time. In this section, we shall discuss how we
can apply this utilization to our setting of computing bases of finite interpretations ℐ. Recall
that one of our main problems in adapting classical attribute exploration to finite interpretations
was the fact that we do not know the complete interpretation ℐ in advance, as the expert may
add counterexamples during the exploration. Therefore, we are not able to compute the set 𝑀ℐ
right away, and instead can only use the parts of the interpretation we already know. To remedy
this, we use the algorithm from the previous section, and compute the set 𝑀ℐ incrementally.
The main result is then that the resulting base delivered by the algorithm yields a base of the
final interpretation ℐ in a canonical way.

As a first step into this direction, we assume in this section that the interpretation ℐ is given
completely, but that we add elements of 𝑀ℐ successively during the computation. In the next
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section we shall see how we can relax the condition on knowing ℐ, namely by replacing it with
expert interaction, yielding the desired exploration algorithm for finite interpretations.

Adding elements of 𝑀ℐ while the algorithm is running is achieved in the following way: we start
with the set

𝑀0 :“ 𝑁𝐶 Y tKu

and add elements from the set t D𝑟.𝑋ℐ | 𝑋 Ď ∆ℐ , 𝑋 ‰ Hu on the fly. For this, whenever a new
set 𝑃𝑘 is computed, we add the concept expressions

D𝑟.p
l

𝑃𝑘q
ℐℐ , 𝑟 P 𝑁𝑅 (3)

to the set 𝑀𝑘 to obtain the set 𝑀𝑘`1. More specifically, we only add those concept descriptions
of the above form for which there do not already exist equivalent concept descriptions in 𝑀𝑘.
In other words, we add only those concept descriptions which are not contained in 𝑀𝑘 up to
equivalence. We shall denote this with the same symbol Y since there is no danger of confusion.

The above idea to add only concept descriptions of the form D𝑟.p
d
𝑃𝑘q

ℐℐ is motivated by the
following fact. Obviously, all concept descriptions of the form (3) are elements of 𝑀ℐ . On the
other hand, if we consider a concept description D𝑟.𝑋ℐ P𝑀ℐ , then 𝑋ℐ ” 𝑋ℐℐℐ “ p𝑋ℐqℐℐ , and
𝑋ℐ is expressible in terms of 𝑀ℐ . Therefore, there exists a set 𝑈 Ď𝑀ℐ such that

𝑋ℐ ”
l

𝑈.

It can now be shown that p
d
𝑈2𝑛qℐ ” p

d
𝑈qℐ , where ¨2𝑛 denotes the derivation in the induced

context of 𝑀𝑛 and ℐ, and where 𝑛 is the last iteration of the algorithm [7, Lemma 4.10]. This
implies that

D𝑟.𝑋ℐ ” D𝑟.𝑋ℐℐℐ ” D𝑟.p
l

𝑈2𝑛qℐℐ .

Therefore, it suffices to consider only intents 𝑈2𝑛 of the current final context K𝑛. Another result
by Distel shows that all those intents are among the sets 𝑃𝑘.

4.5 Lemma (partly Lemma 6.3 from [7]) Consider a terminating run of Algorithm 3 with
𝑛 iterations. Let 𝑄 Ď𝑀𝑛 such that 𝑄 “ 𝑄2𝑛 . Then 𝑄 “ 𝑃𝑘 for some 𝑘 P t 0, . . . , 𝑛 u.

This motivates the idea that the concept descriptions given in (3) may be sufficient. Therefore,
we instantiate Algorithm 3 for the following setting:

∙ the sets 𝑀𝑘`1 are defined as already discussed, i. e. 𝑀𝑘`1 “𝑀𝑘 Y tD𝑟.p
d
𝑃𝑘q

ℐ | 𝑟 P 𝑁𝑅 u,

∙ the formal context K𝑘`1 will be the induced context of 𝑀𝑘`1 and ℐ, and

∙ the background knowledge will be 𝒮𝑘`1 “ t t𝐴 u Ñ t𝐵 u | 𝐴,𝐵 P𝑀𝑘`1, 𝐴 Ď 𝐵 u.

This instantiation yields Algorithm 4.

Note that since Algorithm 4 is a special case of Algorithm 3, we can easily argue that it will
terminate for any finite interpretation ℐ as input. This is because all elements which are added
as new attributes during the run of the algorithm are, up to equivalence, elements of the set
𝑀ℐ , which is finite. Therefore, there exists an iteration ℓ P N such that for all 𝑘 ě ℓ it is true
that 𝑀𝑘 “𝑀ℓ. Therefore, the algorithm has to terminate.

For the correctness of the algorithm we just note that the rather intuitive argumentation we
have provided before can be transformed into a proper proof, showing the following result.
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Algorithm 4 (Algorithm 9 from [7]) Computing a Base of an A-Priori Given Model

0 define base/a-priori-model(ℐ “ p∆ℐ , ¨ℐq)
1 ;; initialization
2 𝑘 := 0
3 𝑃𝑘 := H

4 𝑀𝑘 := 𝑁𝐶 Y tKu

5 ℒ𝑘 := H

6 𝒮𝑘 := t tK u Ñ t𝐴 u | 𝐴 P 𝑁𝐶 u

7

8 ;; computation
9 while 𝑃𝑘 ‰ null do

10 ;; add new attributes (up to equivalence)
11 𝑀𝑘`1 := 𝑀𝑘 Y t D𝑟.p

d
𝑃𝑘q

ℐℐ | 𝑟 P 𝑁𝑅 u

12

13 ;; update K𝑘`1,𝒮𝑘`1 and ℒ𝑘`1

14 K𝑘`1 := induced-context(ℐ, 𝑀𝑘`1)
15 ℒ𝑘`1 := t𝑃𝑟 Ñ 𝑃

2𝑘`1
𝑟 | 𝑃𝑟 ‰ 𝑃

2𝑘`1
𝑟 , 𝑟 P t 0, . . . , 𝑘 u u

16 𝒮𝑘`1 := t t𝐴 u Ñ t𝐵 u | 𝐴,𝐵 P𝑀𝑘`1, 𝐴 Ď 𝐵 u
17

18 ;; next closed set
19 if 𝑃𝑘 “𝑀𝑘 “𝑀𝑘`1 then
20 𝑃𝑘`1 := null
21 else
22 𝑃𝑘`1 := next-closed-set(𝑀𝑘`1, ă, 𝑃𝑘, ℒ𝑘`1 Y 𝒮𝑘`1)
23 end
24 𝑘 := 𝑘 ` 1
25 end
26

27 ;; return result
28 return t

d
𝑃 Ď p

d
𝑃 qℐℐ | p𝑃 Ñ 𝑃 2𝑘q P ℒ𝑘 u

29 end
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4.6 Theorem (Theorem 6.9 from [7]) Let ℐ be a finite interpretation and let 𝑛 be the total
number of iterations of Algorithm 4. Then the set

t
l

𝑃 Ď p
l

𝑃 qℐℐ | p𝑃 Ñ 𝑃 2𝑛q P ℒ𝑛 u

is a base of ℐ.

The main idea to obtain a proof of this result is to show that the resulting set 𝑀𝑛 of attributes
is equal, up to equivalence, to the set 𝑀ℐ . It can be shown [7, Corollary 5.14] that in this case
bases of the induced context of 𝑀𝑛 and ℐ yield bases of ℐ, in a very similar way as described in
the above theorem.

4.4 An Algorithm for Exploring Interpretations

We have promised that in this last section we shall develop an exploration algorithm based on
Algorithm 4. Indeed, a close inspection of the algorithm reveals that the only dependence to the
background interpretation ℐback, which is not available during exploration, is for the computation
of concept expressions of the form D𝑟.p

d
𝑃𝑘q

ℐbackℐback . A crucial observation to turn Algorithm 4
into an exploration algorithm is now that we can compute this model-based most-specific concept
description using only parts of the background interpretation ℐback, provided that an external
expert confirms a certain GCI. Therefore, we can lift the requirement of knowing the complete
background interpretation ℐback if we allow for expert interaction.

However, allowing expert interaction is not enough. As we have already mentioned, attribute
exploration relies on the fact that the expert provides counterexamples for invalid GCIs. In
the setting of exploring finite interpretations, these counterexamples are provided as parts of
the interpretation. The difficulty that arises here is that interpretations employ closed world
semantics – concept names or role successors which are not present in the interpretation are
assumed to also not exist in the background interpretation. Therefore, if we want to provide
counterexamples which stem from parts of an interpretation, we have to ensure that, while
adding these counterexamples to our known interpretation, all its valid concept names as well
as all its role successors and its concept names etc. are added as well. The notion to formalize
this is the one of connected subinterpretations, which we shall introduce shortly.

So, the two main difficulties we have to deal with when extending Algorithm 4 to an exploration
algorithm for interpretations are

∙ computing model-based most-specific concept descriptions D𝑟.p
d

𝑃𝑘q
ℐbackℐback without the

knowledge of the interpretation ℐback, and

∙ ensuring that the counterexamples provided by the expert are complete in the sense that
they contain all the information contained in the background interpretation.

We start addressing these difficulties by discussing the second point first. For this, we introduce
the notion of connected subinterpretations.

4.7 Definition (Definition 6.1 from [7]) Let ℐ be an interpretation with concept names
from 𝑁𝐶 and role names from 𝑁𝑅. We define the following mappings

namesℐp𝑥q “ t𝐶 P 𝑁𝐶 | 𝑥 P 𝐶
ℐ u,

succℐp𝑥, 𝑟q “ t 𝑦 P ∆ℐ | p𝑥, 𝑦q P 𝑟ℐ u

for 𝑥 P ∆ℐ and 𝑟 P 𝑁𝑅.
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An interpretation 𝒥 with concept names form 𝑁𝐶 and role names from 𝑁𝑅 is called a subinter-
pretation of ℐ if and only if

∙ ∆𝒥 Ď ∆ℐ ,

∙ namesℐp𝑥q “ names𝒥 p𝑥q for all 𝑥 P ∆𝒥 , and

∙ succ𝒥 p𝑥, 𝑟q Ď succℐp𝑥, 𝑟q for all 𝑥 P ∆𝒥 and 𝑟 P 𝑁𝑅.

The interpretation 𝒥 is called a connected subinterpretation of ℐ if 𝒥 is a subinterpretation of ℐ
and in addition it is true that

succ𝒥 p𝑥, 𝑟q “ succℐp𝑥, 𝑟q

for all 𝑥 P ∆𝒥 and 𝑟 P 𝑁𝑅. In this case we shall say that ℐ extends 𝒥 . ♢

The main difficulty when adding counterexamples lies in the fact that these new counterexamples
must not violate any GCI valid in the background interpretation. To avoid this, Distel restricts
the way the expert can add counterexamples in the sense that, if ℐℓ is the current working
interpretation and the expert wants to add counterexamples for a proposed GCI, that the new
interpretation ℐℓ`1 has to extend ℐℓ. That this is sufficient is shown in the following results.

4.8 Lemma (Lemma 6.12 from [7]) Let 𝒥 “ p∆𝒥 , ¨𝒥 q be a connected subinterpretation of
ℐ. For every ℰℒKgfp concept description 𝐶 it is true that

𝐶𝒥 “ 𝐶ℐ X∆𝒥 .

This lemma has the immediate consequence that GCIs valid in interpretations are also valid in
connected subinterpretations.

4.9 Theorem (Corollary 6.13 from [7]) Let ℐ be an interpretation, 𝒥 a connected subin-
terpretation of ℐ and let 𝐶 Ď 𝐷 be an ℰℒKgfp GCI. Then if 𝐶 Ď 𝐷 is valid in ℐ, it is also valid in
𝒥 .

Proof Since 𝐶 Ď 𝐷 holds in ℐ, it is true that 𝐶ℐ Ď 𝐷ℐ . Using Lemma 4.8, we immediately
obtain

𝐶𝒥 “ 𝐶ℐ X∆𝒥 Ď 𝐷ℐ X∆𝒥 “ 𝐷𝒥 ,

therefore, 𝐶 Ď 𝐷 is valid in 𝒥 as well. ˝

To sum up, if we extend the working interpretation by counterexamples such that we always
obtain connected subinterpretations of the background interpretation, then we do not introduce
unwanted counterexamples to valid GCIs.

We now turn our attention to the problem of computing model-based most-specific concept
descriptions of the form D𝑟.p

d
𝑃𝑘q

ℐbackℐback without complete knowledge of the actual background
interpretation ℐback. The moment we want to compute this model-based most-specific concept
description in Algorithm 4 is in iteration 𝑘, thus obviously what we can compute is the concept
description D𝑟.p

d
𝑃𝑘q

ℐ𝑘ℐ𝑘 . However, being able to compute this concept description does not
help if we cannot guarantee the equivalence of this concept description to D𝑟.p

d
𝑃𝑘q

ℐbackℐback .
Fortunately, this guarantee can be achieve with expert interaction.

4.10 Lemma (Lemma 6.14 from [7]) Let 𝒥 be a connect subinterpretation of ℐ, and let 𝐶
be an ℰℒKgfp concept description. Then if 𝐶 Ď 𝐶𝒥𝒥 is valid in ℐ, then 𝐶ℐℐ ” 𝐶𝒥𝒥 .
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Algorithm 5 (Algorithm 11 from [7]) An Exploration Algorithm for Interpretations

0 define model-exploration(ℐ “ p∆ℐ , ¨ℐq)
1 ;; initialization
2 𝑘 := 0
3 𝑃𝑘 := H

4 𝑀𝑘 := 𝑁𝐶 Y tKu

5 ℒ𝑘 := H

6 𝒮𝑘 := t tK u Ñ t𝐴 u | 𝐴 P 𝑁𝐶 u

7 𝑙 := 0
8 ℐ𝑙 := ℐ
9

10 ;; computation
11 while 𝑃𝑘 ‰ null do
12 ;; expert interaction
13 while expert refutes

d
𝑃𝑘 Ď p

d
𝑃𝑘q

ℐ𝑙ℐ𝑙 do
14 ℐ𝑙`1 := new interpretation such that
15 ´ ℐ𝑙`1 extends ℐ𝑙
16 ´ ℐ𝑙`1 contains counterexamples for

d
𝑃𝑘 Ď p

d
𝑃𝑘q

ℐ𝑙ℐ𝑙 .
17 𝑙 := 𝑙 ` 1
18 end
19

20 ;; add new attributes (up to equivalence)
21 𝑀𝑘`1 := 𝑀𝑘 Y t D𝑟.p

d
𝑃𝑘q

ℐℐ | 𝑟 P 𝑁𝑅 u

22

23 ;; update K𝑘`1,𝒮𝑘`1 and ℒ𝑘`1

24 K𝑘`1 := induced-context(ℐ, 𝑀𝑘`1)
25 ℒ𝑘`1 := t𝑃𝑟 Ñ 𝑃

2𝑘`1
𝑟 | 𝑃𝑟 ‰ 𝑃

2𝑘`1
𝑟 , 𝑟 P t 0, . . . , 𝑘 u u

26 𝒮𝑘`1 := t t𝐴 u Ñ t𝐵 u | 𝐴,𝐵 P𝑀𝑘`1, 𝐴 Ď 𝐵 u
27

28 ;; next closed set
29 if 𝑃𝑘 “𝑀𝑘 “𝑀𝑘`1 then
30 𝑃𝑘`1 := null
31 else
32 𝑃𝑘`1 := next-closed-set(𝑀𝑘`1, ă, 𝑃𝑘, ℒ𝑘`1 Y 𝒮𝑘`1)
33 end
34 𝑘 := 𝑘 ` 1
35 end
36

37 ;; return result
38 return t

d
𝑃 Ď p

d
𝑃 qℐℐ | p𝑃 Ñ 𝑃 2𝑘q P ℒ𝑘 u

39 end
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Using the expert, we can check whether 𝐶 Ď 𝐶ℐ𝑘ℐ𝑘 is valid in the background interpretation or
not. Using this fact together with our discussion on adding counterexamples, we are able to
extend Algorithm 4 to our desired model exploration algorithm as shown in Algorithm 5.

Note that the set 𝑀ℐback
is finite, as our background interpretation is supposed to be finite.

Therefore, there are only finitely many possible values for sets 𝑃𝑘, thus there eventually must
exist a 𝑘 P N such that 𝑃𝑘 “ null, and the algorithm must terminate. Hence, the algorithm
terminates for every valid input.

Furthermore, as expected, upon termination of Algorithm 5, the set of implications collected so
far in the set ℒ𝑘 gives rise to a set of GCIs in the usual way that is an axiomatization of the
background interpretation ℐback.

4.11 Theorem (Theorem 6.16 of [7]) Suppose a run of Algorithm 5 with background in-
terpretation ℐback, and suppose that the algorithm terminates in the 𝑛-th iteration with ℐℓ as
final working interpretation. Then the set

t
l

𝑃 Ñ p
l

𝑃 qℐℓℐℓ | p𝑃 Ñ 𝑃 2𝑛q P ℒ𝑛 u

is an axiomatization of ℐback.

5 Model Exploration with Confident GCIs

In Section 3, we have sketched on a very abstract level how a model exploration with confident
GCIs should look like. Furthermore, we have seen in sufficient detail in the previous Section 4
how such a model exploration can be achieved in the case of considering only valid GCIs, i. e.
for the case of confidence equal to 1.

The purpose of this part of the present work is to extend the argumentation of Distel to the case
of confident GCIs. To this end, we shall devise an algorithm that allows an expert to explore the
confident theory of a given finite interpretation as described in Section 3. The argumentation
we want to use for this is very similar to the one used in the previous section: we shall first
investigate in Section 5.2 the case of confident implications and how they can be axiomatized in
the presence of a growing set of attributes. Thereafter, we extend in Section 5.3 the obtained
results to GCIs in the case where the background interpretation ℐback is completely known,
but the set 𝑀ℐback

is computed not advance, but during the axiomatization. Finally, we show
in Section 5.4 how expert interaction can be used to relax the condition that the background
interpretation is known beforehand.

There is, however, a difference in exploring confident GCIs that is not (yet) paralleled in the
considerations for a model exploration for valid GCIs. The exploration in the latter case is based
on an algorithm to axiomatize valid GCIs from a given finite interpretation. This fact is used in
the way that a given initial working interpretation is extended by counterexamples in a way such
that the original algorithm always “receives” relevant counterexamples when they are needed,
i. e. they are added to the working interpretation when they are needed to invalidate a GCI.

Transferring this observation to the case of a model exploration for confident GCIs, we see that
our counterexamples are handled in a different way. The main reason for this is that we do
not demand our initial working interpretation to be a part of the background interpretation.
Recall that what we want to do during the exploration process is that we want to axiomatize
the confident GCIs of the initial working interpretation that are valid in the interpretation that
is constituted by the counterexamples received so far. We then can regard the initial working
interpretation as a set of untrusted individuals, and the set of counterexamples provided by
the expert as a set of trusted individuals. Then, if we would have an algorithm which allows
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us to axiomatize all GCIs that are valid for all trusted individuals, and have confidence high
enough in the set of trusted individuals, we could think of a model exploration for confident
GCIs as an extensions of such an algorithm that “receives” the relevant counterexamples from
the background interpretation when they are needed.

Finding an algorithm that allows for computing axiomatizations in the presence of trusted and
untrusted individuals is not hard, and we shall present such an algorithm in Section 5.1, before
our actual considerations regarding a model exploration for confident GCIs.

5.1 Trusted and Untrusted Individuals

Let ℐ be an interpretation, and let 𝒥 be subinterpretation of ℐ. In our course of devising an
exploration algorithm for confident GCIs, we may think of the interpretation 𝒥 as the initial
working interpretation, and of the interpretation

ℐz𝒥 :“ p∆ℐz∆𝒥 , ¨ℐz𝒥 q

as the interpretation which is constituted by all counterexamples provided by the expert, where

𝐴ℐz𝒥 :“ 𝐴ℐ X∆ℐz∆𝒥 “ 𝐴ℐz∆𝒥 ,

𝑟ℐz𝒥 :“ 𝑟ℐ X p∆ℐz∆𝒥 q ˆ p∆ℐz∆𝒥 q

for 𝐴 P 𝑁𝐶 , 𝑟 P 𝑁𝑅. With respect to this understanding, we shall call 𝒥 the interpretation of
untrusted individuals, and ℐz𝒥 the interpretation of trusted individuals.

The aim of this section is to devise an algorithm that allows us to axiomatize all GCIs that are
valid for all trusted individuals, and whose confidence in the untrusted individuals is above a
predefined threshold. More precisely, let us define for 𝑐 P r0, 1s the set

Th𝑐pℐ,𝒥 q :“ t𝐶 Ď 𝐷 | 𝐶ℐz∆𝒥 Ď 𝐷ℐz∆𝒥 and |p𝐶 [𝐷qℐ X∆𝒥 | ě 𝑐 ¨ |𝐶ℐ X∆𝒥 | u

What we are seeking for now is an algorithm that computes a finite base of the set Th𝑐pℐ,𝒥 q.
The results of this section have partly been published in [2].

Before we start with our actual considerations, observe that in the definition of Th𝑐pℐ,𝒥 q we
have given the constraint on the confidence of a GCI 𝐶 Ď 𝐷 by stating

|p𝐶 [𝐷qℐ X∆𝒥 | ě 𝑐 ¨ |𝐶ℐ X∆𝒥 |. (4)

However, as in the case of model exploration with valid GCIs, it will turn out that the
counterexamples provided by the expert must be given by connected subinterpretations of the
background interpretation. In particular this means that both interpretations 𝒥 and ℐz𝒥 are
connected subinterpretations of ℐ (i. e. there are no roles between individuals from 𝒥 and ℐz𝒥 ).

This can be used to simplify the constraints on the confidence of 𝐶 Ď 𝐷 a bit. More precisely,
recall that from Lemma 4.8 it now follows that

𝐶ℐ X∆𝒥 “ 𝐶𝒥

p𝐶 [𝐷qℐ X∆𝒥 “ p𝐶 [𝐷q𝒥 .

Therefore, further observing that for 𝑐 P r0, 1s, |p𝐶 [𝐷q𝒥 | ě 𝑐 ¨ |𝐶𝒥 | is equivalent to conf𝒥 p𝐶 Ď

𝐷q ě 𝑐 , we can simplify Equation 4 to

Th𝑐pℐ,𝒥 q :“ t𝐶 Ď 𝐷 | 𝐶ℐz∆𝒥 Ď 𝐷ℐz∆𝒥 and conf𝒥 p𝐶 Ď 𝐷q ě 𝑐 u

“ Thpℐz𝒥 q X Th𝑐p𝒥 q.
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The last equation can be seen as follows: observe if 𝒥 is a connected subinterpretation of ℐ,
then

𝑟ℐz𝒥 “ 𝑟ℐzp∆𝒥 ˆ∆𝒥 q

is true for all 𝑟 P 𝑁𝑅. Then ℐz𝒥 is also a connected subinterpretation of ℐ, and thus we obtain
for all concept descriptions 𝐶

𝐶ℐz𝒥 “ 𝐶ℐ X p∆ℐz∆𝒥 q “ 𝐶ℐz∆𝒥 .

Thus, 𝐶ℐz∆𝒥 Ď 𝐷ℐz∆𝒥 is true if and only if 𝐶ℐz𝒥 Ď 𝐷ℐz𝒥 is, i. e. if p𝐶 Ď 𝐷q P Thpℐz𝒥 q.

To find a base for the set Th𝑐pℐ,𝒥 q, we again make use of ideas we have already used to
construct bases of all confident GCIs of finite interpretations. To this end, we observe that

Thpℐq Ď Th𝑐pℐ,𝒥 q.

Therefore, since we can find bases of Thpℐq, it suffices to find bases for the “rest” Th𝑐pℐ,𝒥 qzThpℐq.
More precisely, if we consider the base ℬ2 from Section 4.1, it suffices to find a complete subset
𝒞 Ď Th𝑐pℐ,𝒥 qzThpℐq to make the set

ℬ2 Y 𝒞

a base of Th𝑐pℐ,𝒥 q.

Therefore, we shall concentrate in the remainder of this section on finding complete subsets 𝒞 of
Th𝑐pℐ,𝒥 qzThp𝒥 q. For this, we first observe that

p𝐶 Ď 𝐷q P Th𝑐pℐ,𝒥 q ðñ p𝐶ℐℐ Ď 𝐷ℐℐq P Th𝑐pℐ,𝒥 q. (5)

This is because for all ℰℒKgfp concept descriptions 𝐸,𝐹 it is true that

𝐸ℐℐℐ “ 𝐸ℐ

p𝐸ℐℐ [ 𝐹 ℐℐqℐ “ p𝐸 [ 𝐹 qℐ .

Consequently, we obtain

𝐶ℐz∆𝒥 Ď 𝐷ℐz∆𝒥 ðñ 𝐶ℐℐℐz∆𝒥 Ď 𝐷ℐℐℐ Ď ∆𝒥 ,

conf𝒥 p𝐶 Ď 𝐷q “ conf𝒥 p𝐶
ℐℐ Ď 𝐷ℐℐq,

which yields the validity of (5).

Furthermore, if ℬ is a base of ℐ, then

ℬ Y t𝐶ℐℐ Ď 𝐷ℐℐ u |ù p𝐶 Ď 𝐷q

for all ℰℒKgfp concept descriptions 𝐶,𝐷. This is because ℬ |ù p𝐶 Ď 𝐶ℐℐq, as 𝐶 Ď 𝐶ℐℐ is valid in
ℐ, and 𝐷ℐℐ Ď 𝐷 is valid in all interpretations. Thus,

ℬ Y t𝐶ℐℐ Ď 𝐷ℐℐ u |ù p𝐶 Ď 𝐶ℐℐ Ď 𝐷ℐℐ Ď 𝐷q.

Having these two observations in mind, we define

Confpℐ, 𝑐,𝒥 q :“ t𝐶ℐℐ Ď 𝐷ℐℐ | p𝐶ℐℐ Ď 𝐷ℐℐq P Th𝑐pℐ,𝒥 q u.

Since ℐ is finite, the set of model-based most-specific concept descriptions is, up to equivalence,
finite as well. Therefore, we immediately obtain the following result.
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5.1 Theorem Let ℐ be a finite interpretation, 𝒥 be a connected subinterpretation of ℐ and let
𝑐 P r0, 1s. If ℬ is a finite base of ℐ, then

ℬ Y Confpℐ, 𝑐,𝒥 q

is a finite base of Th𝑐pℐ,𝒥 q.

This theorem already solves the initially stated problem of learning GCIs in the presence of
trusted and untrusted individuals. However, in the light of our overall goal of devising a model
exploration algorithm for confident GCIs, it would be preferable if we could reduce such an
axiomatization to a method which is based on formal contexts. An adaption of the classical
attribute exploration starting from such an algorithm should be much more promising.

Such a method is provided by the following theorem. In this theorem, let us denote with Kℐ |𝑋
for 𝑋 Ď ∆ℐ the formal context that arises from the induced context Kℐ “ p∆

ℐ ,𝑀ℐ ,∇q by
restricting the set of objects ∆ℐ to 𝑋. In other words,

Kℐ |𝑋 :“ p𝑋,𝑀ℐ ,∇X𝑋 ˆ𝑀ℐq.

We start with an auxiliary lemma that provides a connection between entailment of implications
and entailment of GCIs. To keep the notation simple, we shall use for a set 𝑀 of concept
descriptions and ℒ Ď Impp𝑀q of implications the abbreviation

l
ℒ :“ t

l
𝑋 ĎĎ 𝑌 | p𝑋 Ñ 𝑌 q P ℒ u.

5.2 Lemma Let 𝑀 be a set of concept descriptions, and let ℒ Ď Impp𝑀q and p𝑋 Ñ 𝑌 q P
Impp𝑀q. Then ℒ |ù p𝑋 Ñ 𝑌 q implies

d
ℒ |ù p

d
𝑋 Ď

d
𝑌 q.

Proof Let 𝒥 “ p∆𝒥 , ¨𝒥 q be an interpretation such that 𝒥 |ù
d
ℒ. Let K𝑀,𝒥 be the induced

formal context of 𝑀 and 𝒥 .

We shall show now that K𝑀,𝒥 |ù ℒ. Let p𝐸 Ñ 𝐹 q P ℒ. Then p
d

𝐸q𝒥 Ď p
d

𝐹 q𝒥 , since 𝒥 |ù
d
ℒ.

From Lemma 4.1 we obtain p
d
𝐸q𝒥 “ 𝐸1, where the derivation is done in K𝑀,𝒥 . Therefore, it

is true that 𝐸1 Ď 𝐹 1, and thus K𝑀,𝒥 |ù p𝐸 Ñ 𝐹 q holds.

Since ℒ |ù p𝑋 Ñ 𝑌 q, it is now true that K𝑀,𝒥 |ù p𝑋 Ñ 𝑌 q, i. e. 𝑋 1 Ď 𝑌 1. As p
d

𝑋q𝒥 “ 𝑋 1,
we can infer p

d
𝑋q𝒥 Ď p

d
𝑌 q𝒥 , i. e. 𝒥 |ù p

d
𝑋 Ď

d
𝑌 q. As 𝒥 has been chosen arbitrarily, we

obtain
d

ℒ |ù p
d
𝑋 Ď

d
𝑌 q. ˝

We now provide a context-based approach to finding bases of confident GCIs in the presence of
trusted individuals.

5.3 Theorem Let ℐ be a finite interpretation, let 𝒥 be a connected subinterpretation of ℐ,
and let 𝑐 P r0, 1s. Let

𝒯 :“ Th𝑐pKℐ |Δ𝒥 q X ThpKℐ |ΔℐzΔ𝒥 q

and let ℒ Ď 𝒯 be a complete subset of 𝒯 . Then
d

ℒ is a finite base of Th𝑐pℐ,𝒥 q.

The proof is an adaptation of the proof given in [2, Appendix A].

Proof We need to show two claims, namely

i.
d
ℒ Ď Th𝑐pℐ,𝒥 q and

ii.
d
ℒ is complete for Th𝑐pℐ,𝒥 q.
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For the first claim we need to show that for every p
d

𝑋 Ď
d
𝑌 q P

d
ℒ it is true that

i. conf𝒥 p
d
𝑋 Ď

d
𝑌 q ě 𝑐

ii. p
d
𝑋qℐz∆𝒥 Ď p

d
𝑌 qℐz∆𝒥

For the first subclaim, we observe that confKℐ |Δ𝒥 p𝑋 Ñ 𝑌 q ě 𝑐 for all p𝑋 Ñ 𝑌 q P ℒ, i. e.

|p𝑋 Y 𝑌 q1 X∆𝒥 | ě 𝑐 ¨ |𝑋 1 X∆𝒥 |

Since p
d
𝑋qℐ “ 𝑋 1 by Lemma 4.1, we obtain

|p
l
p𝑋 Y 𝑌 qqℐ X∆𝒥 | ě 𝑐 ¨ |p

l
𝑋qℐ X∆𝒥 |,

and from
d
p𝑋 Y 𝑌 q ”

d
𝑋 [

d
𝑌 it follows immediately that

|p
l

𝑋 [
l

𝑌 qℐ X∆𝒥 | ě 𝑐 ¨ |p
l

𝑋qℐ X∆𝒥 |.

Since 𝒥 is a connected subinterpretation of ℐ, we can simply this fact to

|p
l

𝑋 [
l

𝑌 q𝒥 | ě 𝑐 ¨ |p
l

𝑋q𝒥 |,

which means nothing else but conf𝒥 p
d
𝑋 Ď

d
𝑌 q ě 𝑐.

For the second subclaim, we observe that 𝑋 1z∆𝒥 Ď 𝑌 1z∆𝒥 , since 𝑋 Ñ 𝑌 is valid in the formal
context Kℐ |ΔℐzΔ𝒥 . Since 𝑋 1 “ p

d
𝑋qℐ and 𝑌 1 “ p

d
𝑌 qℐ the claim follows.

We have therefore shown that
d
ℒ Ď Th𝑐pℐ,𝒥 q.

We now show that
d
ℒ is complete for Th𝑐pℐ,𝒥 q. To this end, we shall show that

i.
d
ℒ |ù p

d
𝑈 Ď p

d
𝑈qℐℐq for all 𝑈 Ď𝑀ℐ ; in particular

d
ℒ |ù ℬ2;

ii.
d
ℒ |ù Confpℐ, 𝑐,𝒥 q.

If we can establish these claims, then by Theorem 5.1 we obtain from
d

ℒ |ù ℬ2 YConfpℐ, 𝑐,𝒥 q
the completeness of

d
ℒ for Th𝑐pℐ,𝒥 q.

Let 𝑈 Ď𝑀ℐ . Since ℒ entails all valid implications of Kℐ , we obtain

ℒ |ù p𝑈 Ñ 𝑈2q.

By Lemma 5.2, it follows that ℒ |ù p
d

𝑈 Ď p
d
𝑈2qq. Equation (2) implies p

d
𝑈2q ” p

d
𝑈qℐℐ ,

and we obtain the validity of the subclaim.

For the second subclaim, let p𝐶ℐℐ Ď 𝐷ℐℐq P Confpℐ, 𝑐,𝒥 q. We define 𝑈 :“ 𝐶ℐ , 𝑉 :“ 𝐷ℐ . Then
by Lemma 4.2 it is true that 𝑈ℐ ”

d
𝑈 1 and 𝑉 ℐ ”

d
𝑉 1, so

l
ℒ |ù p𝑈ℐ Ď 𝑉 ℐq ðñ

l
ℒ |ù p

l
𝑈 1 Ď

l
𝑉 1q.

It thus suffices to show ℒ |ù p𝑈 1 Ñ 𝑉 1q. For this we recall that conf𝒥 p𝐶
ℐℐ Ď 𝐷ℐℐq ě 𝑐. Since

𝒥 is a connected subinterpretation of ℐ, this is equivalent to

|p𝐶ℐℐ [𝐷ℐℐqℐ X∆𝒥 | ě 𝑐 ¨ |p𝐶ℐℐqℐ X∆𝒥 |
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Now since
d
𝑈 1 ” 𝑈ℐ ” 𝐶ℐℐ and

d
𝑉 1 ” 𝐷ℐℐ , we obtain

|p
l

𝑈 1 [
l

𝑉 1qℐ X∆𝒥 | ě 𝑐 ¨ |p
l

𝑈 1qℐ X∆𝒥 |

As shown before, this implies that

|p𝑈 1 Y 𝑉 1q1 X∆𝒥 | ě 𝑐 ¨ |𝑈2 X∆𝒥 |,

where the derivations are conducted in Kℐ . In other words, it is true that

confKℐ |Δ𝒥 p𝑈
1 Ñ 𝑉 1q ě 𝑐.

Thus, ℒ |ù p𝑈 1 Ñ 𝑉 1q, and Lemma 5.2 implies
d

ℒ |ù p
d

𝑈 1 Ď
d
𝑉 1q, thus

d
ℒ |ù p𝑈ℐ Ď 𝑉 ℐq “

p𝐶ℐℐ Ď 𝐷ℐℐq, as required. ˝

5.2 Axiomatizing Confident Implications with Growing Sets of At-
tributes

Theorem 5.3 establishes a new bridge between the worlds of formal concept analysis and
description logics. More precisely, if we have given an algorithm that computes bases of sets
of implications which are valid in one induced context Kℐz𝒥 , and enjoy confidence constraints
in another induced context K𝒥 , then the resulting base can easily be transferred into a base
of Th𝑐pℐ,𝒥 q. Therefore, we obtain from such an algorithm working on formal contexts an
algorithm that allows us to axiomatize GCIs in the presence of trusted and untrusted individuals.

The purpose of this section is to devise such an algorithm that allows us to axiomatize sets of
implications which are given in the form of

Th𝑐pK1q X ThpK2q (6)

where the attribute sets of K1 and K2 are the same. Given such an algorithm, we shall invoke
Theorem 5.3 to convert it into an algorithm for axiomatizing GCIs in the presence of trusted
and untrusted individuals. The details for this latter step are going to be worked out in the
next section.

Note that this section corresponds to the line of argumentation given in Section 4.2. To complete
the analogy we shall also consider the possibility here that the sets of attributes may grow
during the computation, in the sense that they are not completely available a-priori. Recall that
this honors that fact that, during an envisioned model exploration algorithm for confident GCIs,
the interpretation of all counterexamples is not known completely, and thus the set 𝑀ℐ cannot
be computed in advance, but instead has to be computed on the fly. Since the set 𝑀ℐ is used as
the set of attributes in the induced contexts Kℐz𝒥 and K𝒥 , we have to add the possibility of
growing sets of attributes to the algorithms of this section.

Before we shall investigate how to obtain bases of (6), we shall start with a simpler problem
first: Let K “ p𝐺,𝑀, 𝐼q be a finite and non-empty formal context and let 𝑐 P r0, 1s. We then
want to devise an algorithm to axiomatize the confident implications Th𝑐pKq of K, where the
set 𝑀 is not given in advance, but is computed during the computation. Note that this is a
special case of axiomatizing sets of implications of the form (6) by just choosing K1 “ K and
K2 “ pH,𝑀,Hq.

Of course, we can obtain an axiomatization of Th𝑐pKq by simply taking the set Th𝑐pKq itself,
but we aim here at finding a potentially much smaller set of implications which is sufficient to
axiomatize Th𝑐pKq. Moreover, as we seek to use this algorithm as a basis for our forthcoming
model exploration algorithm, we would like to not compute implications which can be answered
by already computed ones.
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An algorithm that honors these criteria can be achieved by suitable adaption of the classical
algorithm to compute the canonical base of a formal context, i. e. of Algorithm 2. Recall that in
this algorithm, we successively compute sets 𝑃 of attributes in lectic order that are closed under
the already known implications, but are not intents of the context. If such sets are found, the
implication 𝑃 Ñ 𝑃 2 is added, and the computation stops if no such sets 𝑃 exist.

It is not difficult to adapt this algorithmic idea to the case of growing sets of attributes, and
indeed, we have already seen how this can be done in Algorithm 3. The main idea to transfer
this algorithm to the setting of confident implications is to change the closure operator p¨q2 to
an operator that reflects that fact that we are also considering implications whose confidence is
not 1. A natural attempt would be to use the closure operator induced by Th𝑐pKq. However,
computing closures under this operator may be practically infeasible (see [4] for a discussion on
this.)

To remedy this, we use another approach discussed in [4]. To this end, let 𝑃 Ď𝑀 . We define

𝑃K,𝑐 :“ t𝑚 P𝑀 | confKp𝑃 Ñ t𝑚 uq ě 𝑐 u.

It is imminent from this definition that 𝑃 2 Ď 𝑃K,𝑐 holds, and that the mapping p¨qK,𝑐 is extensive.
But it is also not hard to see that in general p¨qK,𝑐 is not monotone and that 𝑃K,𝑐 ‰ p𝑃K,𝑐qK,𝑐.
Because of this, we have to add some more changes to the part of the algorithm that successively
computes new implications, to ensure that the resulting set of implications is indeed complete
for Th𝑐pKq. These changes mainly affect the way we compute premises for implications: instead
of only considering sets as premises which are closed under the currently known implications (as
we do when computing the canonical base), we shall also consider intents of the formal context
as premises. The idea behind this is inspired by similar considerations from [4, Section 4.2]:
intents of K may not be closed under p¨qK,𝑐, and thus implications of the form 𝑃 Ñ 𝑃K,𝑐 may
be non-trivial. Furthermore, if we know for a set 𝑄 Ď𝑀 and all intents 𝑃 Ĺ 𝑄 all implications
𝑃 Ñ 𝑃K,𝑐, then computing the closure Th𝑐p𝑄q is comparably easy: an element 𝑚 P 𝑀 is in
Th𝑐p𝑄q if it is in the closure of 𝑄 under all implications 𝑃 Ñ 𝑃K,𝑐, 𝑃 Ĺ 𝑄, or it is an element
of 𝑄K,𝑐. Thus, if 𝑄 is already closed under all those implications 𝑃 Ñ 𝑃K,𝑐, then

Th𝑐p𝑄q “ 𝑄K,𝑐.

We are not going to show these claims here, see [4] for a more thorough discussion on this.

Instead, we consider Algorithm 6, which incorporates all these ideas, and shall show that this
algorithm allows us to compute bases of Th𝑐pKq. Note that, as in the case of argumentation
from Section 4.2, we demand that all attributes in the sets 𝑀𝑖 are strictly linearly ordered by
virtue of a relation ă, such that for all 𝑖 ă 𝑗 and that all new attributes in 𝑀𝑖`1z𝑀𝑖 are less
then all elements in 𝑀𝑖, i. e. , for all 𝑥 P𝑀𝑖, 𝑦 P𝑀𝑖`1z𝑀𝑖, it is true that 𝑦 ă 𝑥.

Clearly, Algorithm 6 is not guaranteed to terminate if we do not pose any restrictions on the
growth of the sets of attributes. However, our target application of Algorithm 6 is to eventually
apply it to growing subsets of 𝑀ℐback

, i. e. to have that the sequence p𝑀𝑖 | 𝑖 P Nq in the algorithm
is a monotonically increasing sequence of subsets of 𝑀ℐback

. Since our background interpretation
ℐback is finite, so is 𝑀ℐback

, and thus the sets 𝑀𝑖 will finally become stationary, i. e. there exists
𝑛 P N such that for all 𝑖 ě 𝑛 it is true that 𝑀𝑖 “𝑀𝑛. In this case, termination of the algorithm
can be verified easily.

To argue that upon termination the resulting set 𝒦𝑛 of implications yields an axiomatization of
Th𝑐pK𝑛q, where 𝑛 is the index of the last iteration, we mimic the argumentation from [7], as it
has been presented in Section 4.2.

In the following, we shall encounter contextual derivations in various contexts. To keep the
notation unambiguous, where necessary we shall from now on use the notation p¨q2K to denote
derivations in a context K, respectively.
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Algorithm 6 (Axiomatize Confident Implications with Growing Sets of Attributes)

0 define base-confident-implications/growing-attributes(𝑐 P r0, 1s)
1 ;; initialization
2 𝑖 := 0
3 𝑀𝑖 := 𝐼𝑖 := 𝒮𝑖 := 𝑃𝑖 := 𝒦𝑖 := H

4

5 ;; computation
6 forever do
7

8 ;; obtain new attributes and new background knowledge
9 Retrieve K𝑖`1 “ p𝐺,𝑀𝑖`1, 𝐼𝑖`1q,𝒮𝑖`1 Ď Th𝑐pK𝑖`1q such that

10 ´ 𝑀𝑖 Ď𝑀𝑖`1,
11 ´ 𝒮𝑖 Ď 𝒮𝑖`1,
12 ´ 𝐼𝑖 “ p𝐺ˆ𝑀𝑖q X 𝐼𝑖`1.
13

14 ;; update known implications
15 𝒦𝑖`1 := t𝑃𝑘 Ñ 𝑃

K𝑖`1,𝑐
𝑘 | 𝑘 P t 0, . . . , 𝑖 u, 𝑃𝑘 ‰ 𝑃

K𝑖`1,𝑐
𝑘 u

16

17 ;; compute next candidate
18 𝑃 1

𝑖`1 := next-closed-set(𝑀𝑖`1, ă, 𝑃𝑖, K𝑖`1)
19 𝑃 2

𝑖`1 := next-closed-set(𝑀𝑖`1, ă, 𝑃𝑖, 𝒮𝑖`1 Y𝒦𝑖`1)
20

21 if 𝑃 1
𝑖`1 “ null and 𝑃 2

𝑖`1 “ null do
22 exit
23 end
24

25 𝑃𝑖`1 := minĺp𝑃
1
𝑖`1, 𝑃

2
𝑖`1q.

26 𝑖 := 𝑖` 1
27 end
28

29 ;; return result
30 return 𝒦𝑖

31 end
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5.4 Proposition In a terminating run of Algorithm 6 let 𝑛 be the last value of the variable 𝑖.
Let 𝑄 Ď𝑀𝑛. Then the following statements are true:

i. If 𝑄 ‰ 𝑄2K𝑛 , then 𝑄 is not p𝒮𝑛 Y𝒦𝑛q-closed;

ii. If 𝑄 “ 𝑄2K𝑛 , then 𝑄 “ 𝑃𝑘 for some 𝑘 P t 0, . . . , 𝑛 u.

Proof The case 𝑄 “ H “ 𝑃0 can be handled quite easily: if 𝑄 ‰ 𝑄2K𝑛 , then 𝑄 ‰ 𝑄K𝑛,𝑐, hence
p𝑄Ñ 𝑄K𝑛,𝑐q P 𝒦𝑛 and thus 𝑄 is not p𝒮𝑛 Y 𝒦𝑛q-closed. If on the other hand 𝑄 “ 𝑄2K𝑛 , then
𝑄 “ 𝑃0 shows the second claim.

We now consider the case 𝑄 ‰ H. Then there exists 𝑘 P t 0, . . . , 𝑛 u such that

𝑃𝑘´1 ă 𝑄 ĺ 𝑃𝑘. (7)

As in the proof of [7, Lemma 6.3] we argue that 𝑄 Ď 𝑀𝑘. Suppose that this is not the case,
and let 𝑚 P 𝑄z𝑀𝑘. Since 𝑚 R𝑀𝑘, it is smaller than every element in 𝑀𝑘, therefore 𝑀𝑘 ă t𝑚 u.
Since t𝑚 u Ď 𝑄, it follows that 𝑀𝑘 ă 𝑄, in contradiction to 𝑄 ĺ 𝑃𝑘 ĺ 𝑀𝑘. Therefore 𝑄 Ď𝑀𝑘.

We first consider the case 𝑄 ‰ 𝑄2K𝑛 . Assume by contradiction that 𝑄 is p𝒮𝑛Y𝒦𝑛q-closed. Then
by construction of 𝑃 2

𝑘 , it is true that 𝑄 ľ 𝑃 2
𝑘 ľ 𝑃𝑘. Then (7) implies 𝑄 “ 𝑃𝑘. But then the

condition 𝑄 ‰ 𝑄2K𝑛 means that 𝑃𝑘 ‰ p𝑃𝑘q
2K𝑛 , thus

p𝑃𝑘 Ñ p𝑃𝑘q
2K𝑛 q P 𝒦𝑛

and 𝑄 “ 𝑃𝑘 is not p𝒮𝑛 Y𝒦𝑛q-closed, contradiction.

Now consider the case 𝑄 “ 𝑄2K𝑛 . We then have to show that 𝑄 “ 𝑃ℓ for some ℓ P t 0, . . . , 𝑛 u.
Since 𝑄 “ 𝑄2K𝑛 , it is true that 𝑄 “ 𝑄2K𝑘 , since the incidence relation 𝐼𝑘 of K𝑘 satisfies
𝐼𝑘 “ p𝐺ˆ𝑀𝑛q X 𝐼𝑛. This implies that 𝑄 ľ 𝑃 1

𝑘 ľ 𝑃𝑘, thus together with (7) we obtain 𝑄 “ 𝑃𝑘

as desired. ˝

5.5 Theorem Let 𝑐 P r0, 1s. Suppose that Algorithm 6 applied to 𝑐 terminates and let 𝑛 be
the index of the last iteration. Then 𝒦𝑛 is a base of Th𝑐pK𝑛q with background knowledge 𝒮𝑛.

Proof It is clear from the construction that 𝒦𝑛 Ď CnpTh𝑐pK𝑛qq. It thus remains to show that
𝒮𝑛 Y 𝒦𝑛 is complete for Th𝑐pK𝑛q. For this we shall show that every set 𝑄 Ď 𝑀𝑛 which is
𝒮𝑛 Y𝒦𝑛-closed is also Th𝑐pK𝑛q-closed.

We show the claim by contradiction. To this end, let us assume that 𝑄 is p𝒮𝑛 Y𝒦𝑛q-closed, but
not Th𝑐pK𝑛q-closed. Then there exists an implication p𝑃 Ñ t𝑚 uq P Th𝑐pK𝑛q such that 𝑃 Ď 𝑄
and 𝑚 R 𝑄. Since 𝑄 is p𝒮𝑛 Y 𝒦𝑛q-closed, it follows from Proposition 5.4 that 𝑄 “ 𝑄2K𝑛 . We
can therefore assume that 𝑃 “ 𝑃 2K𝑛 , since

confK𝑛
p𝑃 Ñ t𝑚 uq “ confK𝑛

p𝑃 2K𝑛 Ñ t𝑚 uq.

Again by Proposition 5.4 it follows that 𝑃 “ 𝑃𝑘 for some 𝑘, and thus

p𝑃 Ñ 𝑃K𝑛,𝑐q P 𝒦𝑛.

(Note that 𝑚 P 𝑃K𝑛,𝑐, but 𝑚 R 𝑃 , thus 𝑃 ‰ 𝑃K𝑛,𝑐.) Since 𝑄 is 𝒦𝑛-closed and 𝑃 Ď 𝑄, it is true
that 𝑃K,𝑐 Ď 𝑄. But since 𝑚 P 𝑃K,𝑐 we obtain 𝑚 P 𝑄, a contradiction. ˝

Having established the correctness of Algorithm 6 we now can consider some simple modifications
thereof. Of course, instead of collection implications of the form 𝑃𝑘 Ñ p𝑃𝑘q

K𝑖,𝑐, one can also
collect

𝑃𝑘 Ñ p𝑃𝑘q
K𝑖,𝑐z𝒮𝑖p𝑃𝑘q
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and adapt the algorithm correspondingly. Furthermore, the algorithm does not ensure that
𝒦𝑖 Ď Th𝑐pK𝑛q, i. e. that all implications in 𝒦𝑖 satisfy the constraint that their confidence is at
least 𝑐. However, if this is needed it can easily be achieved by splitting up the conclusions of the
implications in 𝒦𝑖 into singleton sets. Then, by the definition of p¨qK,𝑐, the resulting implications
will all have confidence at least 𝑐 in K𝑛.

We have now covered the case of finding axiomatizations of Th𝑐pKq, where the attribute set of
K is allowed to grow during the run of the computation. We shall now consider our initially
stated problem of finding axiomatizations of sets of implications of the form (6), i. e. of sets of
implications which are true in some part of a given formal context, and enjoy a certain confidence
in the other. For this, we shall adapt Algorithm 6 accordingly.

The main differences to Algorithm 6 is now that we have to deal with two formal contexts K1

and K2, instead of only one context K1. We achieve an extension of Algorithm 6 that can handle
this extended setup by partitioning the working context into the two parts K𝑖 and L𝑖, and by
replacing the expression 𝑃

K𝑖`1,𝑐
𝑘 by 𝑃

K𝑖`1,𝑐
𝑘 X p𝑃𝑘q

2L𝑖`1 . Here, the formal context K𝑖 is meant
to contain the untrusted objects, and thus plays the role of the context K1, where the formal
context L𝑖 contains the trusted ones, and thus corresponds to K2. The working context itself
is then simply the subposition of the contexts K𝑖 and L𝑖, which is denoted by K𝑖

L𝑖
or (to save

vertical space) K𝑖 ˜ L𝑖. The result of these adaptions is shown in Algorithm 7.

Now since
𝑃 2K𝑖˜L𝑖 Ď 𝑃K𝑖,𝑐 X 𝑃 2L𝑖 ,

the proofs of Proposition 5.4 and Theorem 5.5 can be carried over almost literally to the setting
of Algorithm 7, by essentially just replacing all occurrences of p¨q2K𝑖 by p¨q2K𝑖˜L𝑖 and 𝑃

K𝑖`1,𝑐
𝑘 by

𝑃
K𝑖`1,𝑐
𝑘 X p𝑃𝑘q

2L𝑖`1 . We therefore obtain the validity of the following statements.

5.6 Proposition In a terminating run of Algorithm 7 let 𝑛 be the last value of the variable 𝑖.
Let 𝑄 Ď𝑀𝑛. Then the following statements are true:

i. If 𝑄 ‰ 𝑄2K𝑛˜L𝑛 , then 𝑄 is not p𝒮𝑛 Y𝒦𝑛q-closed;

ii. If 𝑄 “ 𝑄2K𝑛˜L𝑛 , then 𝑄 “ 𝑃𝑘 for some 𝑘 P t 0, . . . , 𝑛 u.

5.7 Theorem Let 𝑐 P r0, 1s. Suppose that Algorithm 7 applied to 𝑐 terminates and let 𝑛 be the
index of the last iteration. Then 𝒦𝑛 is a base of Th𝑐pK𝑛qXThpL𝑛q with background knowledge
𝒮𝑛.

5.3 Exploring Confident GCIs with Known Background Interpreta-
tion

This section brings together the results of the previous Sections 5.1 and 5.2. This we want to
do for the purpose of obtaining an algorithm that allows us to axiomatize confident GCIs in
the presence of trusted individuals, satisfying the additional constraint that the set 𝑀ℐ is not
computed in advance, but during the run of the algorithm. This not only has the benefit of
speeding up the axiomatization process as a whole, but also serves as a basis for our further
development of an algorithm implementing confident model exploration.

The argumentation of this section is actually quite simple: given an interpretation ℐ and a
connected subinterpretation 𝒥 of ℐ, we want to find an axiomatization of Th𝑐pℐ,𝒥 q. To this
end, we simply consider the induced formal context Kℐ of ℐ, represented as the subposition of
the formal contexts Kℐ |ΔℐzΔ𝒥 of trusted objects and Kℐ |Δ𝒥 of untrusted objects. Then, we
apply Algorithm 7 to these contexts, where we extent the set of attributes successively during the
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Algorithm 7 (Adding Trusted Objects)

0 define base-confident-implications/growing-attributes-trusted-objects(𝑐 P r0, 1s)
1 ;; initialization
2 𝑖 := 0
3 𝑀𝑖 := 𝐼𝑖 := 𝒮𝑖 := 𝑃𝑖 := 𝒦𝑖 := H

4

5 ;; computation
6 forever do
7

8 ;; obtain new attributes and background knowledge
9 Retrieve K𝑖`1 “ p𝐺1,𝑀𝑖`1, 𝐼𝑖`1q,L𝑖`1 “ p𝐺2,𝑀𝑖`1, 𝐽𝑖`1q,𝒮𝑖`1 Ď Th𝑐pK𝑖`1q X ThpL𝑖`1q

10 such that
11 ´ 𝑀𝑖 Ď𝑀𝑖`1,
12 ´ 𝒮𝑖 Ď 𝒮𝑖`1,
13 ´ 𝐼𝑖 “ p𝐺1 ˆ𝑀𝑖q X 𝐼𝑖`1,
14 ´ 𝐽𝑖 “ p𝐺2 ˆ𝑀𝑖q X 𝐽𝑖`1

15

16 ;; update known implications
17 𝒦𝑖`1 := t𝑃𝑘 Ñ 𝑃

K𝑖`1,𝑐
𝑘 X p𝑃𝑘q

2L𝑖`1 | 𝑘 P t 0, . . . , 𝑖 u, 𝑃𝑘 ‰ 𝑃
K𝑖`1,𝑐
𝑘 X p𝑃𝑘q

2L𝑖`1 u

18

19 ;; compute next candidate
20 𝑃 1

𝑖`1 := next-closed-set(𝑀𝑖`1, ă, 𝑃𝑖,
K𝑖`1

L𝑖`1
)

21 𝑃 2
𝑖`1 := next-closed-set(𝑀𝑖`1, ă, 𝑃𝑖, 𝒮𝑖`1 Y𝒦𝑖`1)

22

23 if 𝑃 1
𝑖`1 “ null and 𝑃 2

𝑖`1 “ null do
24 exit
25 end
26

27 𝑃𝑖`1 := minĺp𝑃
1
𝑖`1, 𝑃

2
𝑖`1q.

28 𝑖 := 𝑖` 1
29 end
30

31 ;; return result
32 return 𝒦𝑖

33 end
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computation. The final set of implications obtained is then a base of ThpKℐ |ΔℐzΔ𝒥 qXTh𝑐pKℐ |Δ𝒥 q

by Theorem 5.7, and thus gives rise to a base of Th𝑐pℐ,𝒥 q by Theorem 5.3.

Algorithm 8 shows an instance of Algorithm 7 that follows this line of argumentation (we
shall show in a moment that this is indeed the case). In addition, we also make use of
the possibility to use background knowledge during our axiomatization process to get rid of
implications t𝐶 u Ñ t𝐷 u, where 𝐶,𝐷 are ℰℒKgfp concept descriptions satisfying 𝐶 Ď 𝐷. While
those implications are non-trivial, the resulting GCIs are, and thus they can be considered as
background knowledge.

We claimed that Algorithm 8 is a special case of Algorithm 7. To see this, we need to verify that
the way we compute the values for the variables 𝑀𝑖`1,K𝑖`1,L𝑖`1,𝒮𝑖`1 satisfies the constraints
of Algorithm 7, and moreover, that the extra initializations we do in Line 4 is still within the
general setting of Algorithm 7.

The former is clear from the definition of the variable values, and the latter can be argued quite
easily: the initial values for 𝑀0 could have equally well be added during the first iteration of
the main loop, when the value of 𝑀1 is computed. So, instead of initializing 𝑀0 to tK u Y𝑁𝐶 ,
one could have equivalently set 𝑀0 to H, and could have added a special case for 𝑖 “ 1, namely

𝑀1 :“ tKu Y𝑁𝐶 Y t D𝑟.H
ℐℐ | 𝑟 P 𝑁𝑅 u,

Therefore, the separate initialization in Line 4 is within the general setting of Algorithm 7.

Note that since the input interpretation ℐ we are considering here is always finite, the sets 𝑀𝑖 in
Algorithm 8 have to stabilize from a certain iteration on. Therefore, as we have argued similarly
for Algorithm 6, Algorithm 8 always terminates.

Moreover, upon termination, the resulting set of implications gives rise to a base of Th𝑐pℐ,𝒥 q
in the usual way.

5.8 Theorem Let ℐ be a finite interpretation, 𝒥 a connected subinterpretation of ℐ and
𝑐 P r0, 1s. Let 𝒦𝑛 be the result obtained from applying Algorithm 8 to ℐ, 𝒥 and 𝑐. Then

d
𝒦𝑛

is a base of Th𝑐pℐ,𝒥 q.

The main idea for showing this result has already been sketched at the beginning of this section.
The main technical difficulty we have to overcome is to connect the results from Theorem 5.3 and
Theorem 5.7: note that while Theorem 5.3 talks about induced formal contexts with attribute
set 𝑀ℐ , Theorem 5.7 talks about arbitrary formal contexts with attribute sets 𝑀𝑛. To connect
those theorems, we shall show that 𝑀𝑛 “ 𝑀ℐ is true up to equivalence. In this case, upon
termination the subposition K𝑛

L𝑛
in Algorithm 8 can be seen as the induced context of ℐ, and we

can apply Theorem 5.3.

The argumentation we shall follow in the sequel is almost identical to the one used by [7] to
prove a corresponding result for the case of valid GCIs [7, Theorem 6.9]. The only difference is
that we need to use Proposition 5.4 instead of its corresponding version [7, Lemma 6.3] for valid
GCIs in the proof of the following result.

5.9 Proposition (Adapted from Lemma 6.7 of [7]) Consider a terminating run of Algo-
rithm 8 with 𝑛 iterations. Then for every 𝑈 Ď𝑀𝑛 and 𝑟 P 𝑁𝑅 it is true that

D𝑟.p
l

𝑈qℐℐ P𝑀𝑛

up to equivalence.

Proof Note that the formal context K𝑛 ˜ L𝑛 is the induced formal context of 𝑀𝑛 and ℐ.
Therefore, we obtain from Lemma 4.1 that

p
l

𝑈2K𝑛˜L𝑛 qℐ “ 𝑈3K𝑛˜L𝑛 “ 𝑈 1K𝑛˜L𝑛 “ p
l

𝑈qℐ
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Algorithm 8

0 define base-confident-gcis/trusted-objects(𝑐, ℐ, 𝒥 )
1 ;; initialization
2 𝑖 := 0
3 𝑃𝑖 := 𝒦𝑖 := 𝒮𝑖 := H

4 𝑀0 := tK u Y𝑁𝐶

5

6 ;; computation
7 forever do
8

9 ;; obtain new attributes and background knowledge
10 𝑀𝑖`1 := 𝑀𝑖 Y t D𝑟.p

d
𝑃𝑖q

ℐℐ | 𝑟 P 𝑁𝑅 u ;; union up to equivalence
11 K𝑖`1 := induced-context(𝑀𝑖`1, 𝒥 )
12 L𝑖`1 := induced-context(𝑀𝑖`1, ℐz𝒥 )
13 𝒮𝑖`1 := t t𝐶 u Ñ t𝐷 u | 𝐶,𝐷 P𝑀𝑖`1, 𝐶 Ď 𝐷 u
14

15 ;; update known implications
16 𝒦𝑖`1 := t𝑃𝑘 Ñ 𝑃

K𝑖`1,𝑐
𝑘 X p𝑃𝑘q

2L𝑖`1 | 𝑘 P t 0, . . . , 𝑖 u, 𝑃𝑘 ‰ 𝑃
K𝑖`1,𝑐
𝑘 X p𝑃𝑘q

2L𝑖`1 u

17

18 ;; compute next candidate
19 𝑃 1

𝑖`1 := next-closed-set(𝑀𝑖`1, ă, 𝑃𝑖,
K𝑖`1

L𝑖`1
)

20 𝑃 2
𝑖`1 := next-closed-set(𝑀𝑖`1, ă, 𝑃𝑖, 𝒮𝑖`1 Y𝒦𝑖`1)

21

22 if 𝑃 1
𝑖`1 “ null and 𝑃 2

𝑖`1 “ null do
23 exit
24 end
25

26 𝑃𝑖`1 := minĺp𝑃
1
𝑖`1, 𝑃

2
𝑖`1q.

27 𝑖 := 𝑖` 1
28 end
29

30 ;; return result
31 return 𝒦𝑖

32 end
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Therefore, it is true that
D𝑟.p

l
𝑈2K𝑛˜L𝑛 qℐℐ ” D𝑟.p

l
𝑈qℐℐ .

Since Algorithm 8 is a special case of Algorithm 7, we can invoke Proposition 5.4 to obtain a
𝑘 P t 0, . . . , 𝑛´ 1 u such that 𝑈2K𝑛˜L𝑛 “ 𝑃𝑘. Since D𝑟.p

d
𝑃𝑘q

ℐℐ P𝑀𝑘`1 Ď𝑀𝑛, we obtain

D𝑟.p
l

𝑈qℐℐ ” D𝑟.p
l

𝑈2K𝑛˜L𝑛 qℐℐ ” D𝑟.p
l

𝑃𝑘q
ℐℐ P𝑀𝑛

as required. ˝

The proof of Theorem 5.8 employs induction of the role depth of acyclic ℰℒKgfp concept descriptions.
However, as our concept descriptions are allowed to be cyclic, we need an extra argument to
ensure that restricting our attention to acyclic concept descriptions is enough.

5.10 Lemma (Corollary 5.6 from [7]) Let 𝐶 be an ℰℒKgfp concept description and let ℐ be
a finite interpretation. Then there exists an acyclic ℰℒKgfp concept description 𝐷 such that

𝐶ℐ “ 𝐷ℐ and 𝐶 Ď 𝐷.

We also need the following technical result about model-based most-specific concept descriptions.

5.11 Lemma Let 𝐶,𝐷 be two ℰℒKgfp concept descriptions and let ℐ “ p∆ℐ , ¨ℐq be an interpre-
tation. Then the following statements are true:

i. p𝐶ℐℐ [𝐷qℐ “ p𝐶 [𝐷qℐ ,

ii. pD𝑟.𝐶ℐℐqℐ “ pD𝑟.𝐶qℐ .

Having now these results in place, we are finally able to prove our main claim of this section.
Parts of the proof are the same as for [7, Lemma 6.8, Theorem 6.9], and are repeated here for
completeness.

Proof (Theorem 5.8) We first show that 𝑀𝑛 “𝑀ℐ is true up to equivalence. For this we note
that 𝑀𝑛 Ď𝑀ℐ is true up to equivalence, as all elements of 𝑀𝑛 are either of the form D𝑟.p

d
𝑃𝑘q

ℐℐ

for some set 𝑃𝑘 of ℰℒKgfp concept descriptions, or are in tK u Y𝑁𝐶 Ď𝑀ℐ .

To verify that 𝑀ℐ Ď𝑀𝑛 is true up to equivalence, we shall show that for each set 𝑋 Ď ∆ℐ and
𝑟 P 𝑁𝑅 there exists 𝐶 P𝑀𝑛 such that 𝐶 ” D𝑟.𝑋ℐ . To show this, we note that by Lemma 5.10
there exists for the concept description 𝑋ℐ an acyclic ℰℒKgfp concept description 𝐷 such that

𝐷ℐ “ 𝑋ℐℐ .

Now, since 𝐷ℐℐ “ 𝑋ℐℐℐ “ 𝑋ℐ , it is sufficient for our claim to show that for each acyclic concept
description 𝐷 and for each 𝑟 P 𝑁𝑅, it is true that

D𝑟.𝐷ℐℐ P𝑀𝑛

up to equivalence. We show this claim by induction on the role depth of 𝐷.

Base Case 𝐷 “ K or 𝐷 is a conjunction of concept names. The case 𝐷 “ K is trivial, as
D𝑟.𝐷ℐℐ ” K P𝑀𝑛. If 𝐷 “

d
𝑆 for some 𝑆 Ď 𝑁𝐶 , then since 𝑆 Ď𝑀𝑛, Proposition 5.9 implies

D𝑟.𝐷ℐℐ ” D𝑟.p
l

𝑆qℐℐ P𝑀𝑛

up to equivalence.
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Step Case Let 𝐷 be an acyclic concept description of role depth 𝑑 ą 0, 𝑟 P 𝑁𝑅 and assume that
D𝑠.𝐸ℐℐ P 𝑀𝑛 is true up to equivalence for all acyclic ℰℒKgfp concept descriptions 𝐸 with role
depth smaller than 𝑑 and role names 𝑠 P 𝑁𝑅.

Since 𝐷 is acyclic, there are concept names 𝑈 Ď 𝑁𝐶 , roles 𝑟1, . . . , 𝑟𝑘 and acyclic ℰℒKgfp concept
descriptions 𝐸1, . . . , 𝐸𝑘 with role depth smaller then 𝑑 such that

𝐷 ”
l

𝑈 [

𝑛l

𝑖“1

D𝑟𝑖.𝐸𝑖.

Then by Lemma 5.11

𝐷ℐℐ “ p
l

𝑈 [

𝑛l

𝑖“1

D𝑟𝑖.𝐸𝑖q
ℐℐ

” p
l

𝑈 [

𝑛l

𝑖“1

D𝑟𝑖.𝐸
ℐℐ
𝑖 qℐℐ .

By induction hypothesis, D𝑟𝑖.𝐸ℐℐ
𝑖 P𝑀𝑛 up to equivalence. As 𝑈 Ď𝑀𝑛, Proposition 5.9 implies

that
D𝑟.𝐷ℐℐ ” D𝑟.p

l
p𝑈 Y t D𝑟𝑖.𝐸

ℐℐ
𝑖 | 𝑖 P t 1, . . . , 𝑛 u uqqℐℐ P𝑀𝑛

is true up to equivalence. This completes the induction step.

We have now shown that 𝑀𝑛 “𝑀ℐ holds up to equivalence. By Theorem 5.7 we know that 𝒦𝑛

is a base of
Th𝑐pK𝑛q X ThpL𝑛q

with background knowledge 𝒮𝑛 “ t t𝐶 u Ñ t𝐷 u | 𝐶,𝐷 P𝑀𝑛, 𝐶 Ď 𝐷 u. Since 𝑀𝑛 “𝑀ℐ holds
up to equivalence, 𝒦𝑛 is, up to equivalence, also a base of

Th𝑐pKℐ |Δ𝒥 q X ThpKℐ |ΔℐzΔ𝒥 q.

Therefore, by Theorem 5.3 the set
d
p𝒦𝑛Y𝒮𝑛q is a base of Th𝑐pℐ,𝒥 q. Since

d
p𝒦𝑛Y𝒮𝑛q ”

d
𝒦𝑛,d

𝒦𝑛 is already a base of Th𝑐pℐ,𝒥 q, which shows the claim. ˝

5.4 Exploring Confident GCIs with Expert Interaction

We have finally reached the point to present an algorithm for model exploration with confident
GCIs. As in the line of argumentation for model exploration in Section 4.4, we shall take our
Algorithm 8 that allows for axiomatizing confident GCIs for given background interpretations
and replace every reference to the background interpretation by suitable expert interaction. This
way we can avoid the need for explicitly knowing the background interpretation a-priori, and
hence we obtain an algorithm for model exploration with confident GCIs.

If we consider Algorithm 8, we note that there are two explicit references to the background
interpretation ℐ:

i. In the computation of concept descriptions of the form D𝑟.p
d

𝑃𝑖q
ℐℐ (line 10), and

ii. In the computation of the formal context L𝑖`1 as the induced context of 𝑀𝑖`1 and ℐz𝒥
(line 12).

For the first point, we use the same idea as Distel used in his model exploration, formulated in
Lemma 4.10: if the expert confirms the GCI

l
𝑃𝑖 Ď p

l
𝑃𝑖q

ℐℓℐℓ
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for some connected subinterpretation ℐℓ of the background interpretation ℐ, then we can infer
that p

d
𝑃𝑖q

ℐℓℐℓ ” p
d
𝑃𝑖q

ℐℐ .

The second point is more difficult: we have to use expert interaction to ensure that the context
L𝑖`1 contains all relevant counterexamples needed for both computing the set 𝒦𝑖`1 of currently
known implications, as well as for computing the next candidate set 𝑃 1

𝑖`1. As it turns out, both
of this can be achieved by expert interaction, which, regrettably, is much more involved than
the one described in the previous paragraph.

To ensure that all implications computed for 𝒦𝑖`1 are correct, we just present them to the
expert, thus obtaining all the relevant counterexamples.

To ensure that the computation of the set 𝑃 1
𝑖`1 can be done without accessing the background

interpretation directly, we propose a rather straight-forward solution. For this we observe that
the computation of 𝑃 1

𝑖`1 would not be correct if the lectically first intent of the current working
context in Algorithm 8 would not be an intent of the working context of the adapted algorithm
using expert interaction. If we denote the latter context with K̄𝑖`1 ˜ L̄𝑖`1, then this would
mean that

𝑃 1
𝑖`1 ‰ p𝑃

1
𝑖`1q

2K̄𝑖`1˜L̄𝑖`1 .

But then, since the all the implications in 𝒮𝑖`1 Y 𝒦𝑖`1 are correct in L̄𝑖`1, and the formal
context K̄𝑖`1 is already confirmed to be equivalent to K𝑖`1, we obtain that

p𝒮𝑖`1 Y𝒦𝑖`1qp𝑃
1
𝑖`1q ‰ p𝒮𝑖`1 Y𝒦𝑖`1qp𝑃

1
𝑖`1q

2L̄𝑖`1 .

However, 𝑃 1
𝑖`1 is an intent of L𝑖`1, i. e.

p𝒮𝑖`1 Y𝒦𝑖`1qp𝑃
1
𝑖`1q “ p𝒮𝑖`1 Y𝒦𝑖`1qp𝑃

1
𝑖`1q

2L𝑖`1 .

Therefore, the implication

p𝒮𝑖`1 Y𝒦𝑖`1qp𝑃
1
𝑖`1q ‰ p𝒮𝑖`1 Ñ 𝒦𝑖`1qp𝑃

1
𝑖`1q

2L̄𝑖`1

must be rejected by the expert, providing the necessary counterexamples missing in L̄𝑖`1. Thus,
if we ask all possible implications of the above form, we can ensure that the context L̄𝑖`1

contains all relevant counterexamples needed for the computation of 𝑃 1
𝑖`1.

An algorithm that implements all these ideas can now derived easily from Algorithm 8, and the
result is shown as Algorithm 9.

To see that this algorithm always terminates if the expert represents a finite background
interpretation, we recall that Algorithm 8 terminates if the input background interpretation is
finite. Therefore, if we can show that both Algorithm 8 and Algorithm 9 compute the same
values up to equivalence in every step of their iterations, we can not only ensure that our
confident model exploration terminates eventually, but also that the computed results are as
desired.

Let us introduce some notation to make the argumentation of the following proof a bit clearer:
if 𝑃 and 𝑄 are sets of concept descriptions, then we write 𝑃 ” 𝑄 to denote the fact that each
element of 𝑃 is equivalent to some element in 𝑄 and vice versa. Likewise, if 𝑀 and 𝑁 are sets of
implications where both premise and conclusion are sets of concept descriptions, then we write
𝑀 ” 𝑁 to denote the fact that for each implication p𝑋1 Ñ 𝑌1q P𝑀 , there exists an implication
p𝑋2 Ñ 𝑌2q P 𝑁 such that 𝑋1 ” 𝑋2 and 𝑌1 ” 𝑌2 is true, and vice versa.

5.12 Theorem Assume that an expert represents a finite background interpretation, and that
Algorithm 9 is applied to the input 𝒥 and 𝑐 P r0, 1s using this expert.

Then the run of this algorithm terminates. If 𝑛 is the number of iterations of the algorithm, and
if ℐℓ denotes the final working interpretation of the algorithm, then the set

d
𝒦𝑛 is a base of

Th𝑐pℐℓ,𝒥 q “ Th𝑐p𝒥 q X Thpℐℓz𝒥 q.
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Algorithm 9

0 define confident-model-exploration(𝒥 , 𝑐)
1 𝑖 := ℓ := 0
2 ℐℓ := 𝒥
3 𝑃𝑖 := �̄�𝑖 := 𝒮𝑖 := H

4 �̄�0 := tK u Y𝑁𝐶

5

6 forever do
7 ;; present new GCI to the expert
8 while expert rejects

d
𝑃𝑖 Ď p

d
𝑃𝑖q

ℐℓℐℓ do
9 ℐℓ`1 := expert-defined extension of ℐℓ

10 ℓ := ℓ + 1
11 end
12

13 𝑀𝑖`1 := 𝑀𝑖 Y t D𝑟.p
d
𝑃𝑖q

ℐℓℐℓ | 𝑟 P 𝑁𝑅 u ;; union up to equivalence
14

15 ;; ensure relevant counterexamples for already known GCIs

16 while expert rejects
d
𝑃𝑘 Ď

d
p𝑃

K𝒥 ,�̄�𝑖`1
,𝑐

𝑘 X p𝑃𝑘q
2Kℐℓz𝒥 ,�̄�𝑖`1 q do

17 ℐℓ`1 := expert-defined extension of ℐℓ
18 ℓ := ℓ + 1
19 end
20

21 K̄𝑖`1 := induced-context(�̄�𝑖`1, 𝒥 )
22 L̄𝑖`1 := induced-context(�̄�𝑖`1, ℐℓz𝒥 )
23 𝒮𝑖`1 := t t𝐶 u Ñ t𝐷 u | 𝐶,𝐷 P �̄�𝑖`1, 𝐶 Ď 𝐷 u
24

25 �̄�𝑖`1 := t𝑃𝑘 Ñ 𝑃
K̄𝑖`1,𝑐
𝑘 X p𝑃𝑘q

2L̄𝑖`1 | 𝑘 P t 0, . . . , 𝑖 u, 𝑃𝑘 ‰ 𝑃
K̄𝑖`1,𝑐
𝑘 X p𝑃𝑘q

2L̄𝑖`1 u

26

27 ;; additional expert interaction
28 forall 𝑄 ľ 𝑃 being p�̄�𝑖`1 Y 𝒮𝑖`1q-closed do
29 while expert rejects

d
𝑄 Ď

d
𝑄
2L̄𝑖`1 do

30 ℐℓ`1 := expert-defined extension of ℐℓ
31 ℓ := ℓ + 1
32 L̄𝑖`1 := induced-context(�̄�𝑖`1, ℐℓz𝒥 )
33 end
34 end
35

36 𝑃 1
𝑖`1 := next-closed-set(�̄�𝑖`1, ă, 𝑃𝑖,

K̄𝑖`1

L̄𝑖`1
)

37 𝑃 2
𝑖`1 := next-closed-set(�̄�𝑖`1, ă, 𝑃𝑖, 𝒮𝑖`1 Y �̄�𝑖`1)

38

39 if 𝑃 1
𝑖`1 “ null and 𝑃 2

𝑖`1 “ null do
40 exit
41 end
42

43 𝑃𝑖`1 := minĺp𝑃
1
𝑖`1, 𝑃

2
𝑖`1q.

44 𝑖 := 𝑖` 1
45 end
46

47 return �̄�𝑖

48 end
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Proof We show that Algorithm 9 with input 𝒥 and 𝑐 has the same output as Algorithm 8 with
input ℐℓ, up to equivalence. The claims then follow from the results about Algorithm 8, see
Theorem 5.8.

To this end, we shall show that for all 𝑘 P t 0, . . . , 𝑛 u it is true that 𝑃𝑘 ” 𝑃𝑘, �̄�𝑘 ”𝑀𝑘, �̄�𝑘 ”

𝒦𝑘,𝒮𝑘 ” 𝒮𝑘. We show this claim by induction over 𝑘.

Base Case: For 𝑘 “ 0, 𝑃0 “ H “ 𝑃0, �̄�0 “ tKu Y 𝑁𝐶 “ 𝑀0, �̄�0 “ H “ 𝒦0 and 𝒮0 “

t tK u Ñ t𝐴 u | 𝐴 P 𝑁𝐶 u “ 𝒮0. Thus the claim holds.

Step Case: Let us assume that 𝑖 ă 𝑛 and that the claim holds for all 𝑚 ď 𝑖. Denote with
ℐ𝑙 the current working interpretation when the algorithm has reached line 13. The algorithm
can only reach this line if the expert has confirmed

d
𝑃𝑖 Ď p

d
𝑃𝑖q

ℐ𝑙ℐ𝑙 . Since ℐ𝑙 is a connected
subinterpretation of ℐℓ, we obtain by Lemma 4.10 that p

d
𝑃𝑖q

ℐ𝑙ℐ𝑙 ” p
d
𝑃𝑖q

ℐℓℐℓ . Since �̄�𝑖 ”𝑀𝑖,
it is true that �̄�𝑖`1 ”𝑀𝑖`1. This also implies 𝒮𝑖`1 ” 𝒮𝑖`1, since these sets depend on �̄�𝑖`1

and 𝑀𝑖`1 only.

To show that �̄�𝑖`1 ” 𝒦𝑖`1, it is sufficient to verify that

𝑃 K̄𝑖`1,𝑐
𝑚 X p𝑃𝑚q

2L̄𝑖`1 ” 𝑃K𝑖`1,𝑐
𝑚 X p𝑃𝑚q

2L𝑖`1 (8)

is true for all 0 ď 𝑚 ď 𝑖.

To this end we first observe that K̄𝑖`1 only depends on 𝒥 and �̄�𝑖`1, and likewise, K𝑖`1 only
depends on 𝒥 and 𝑀𝑖`1. In particular, as �̄�𝑖`1 ”𝑀𝑖`1 and 𝑃𝑚 ” 𝑃𝑚 for all 𝑚 ď 𝑖, we obtain

𝑃 K̄𝑖`1,𝑐
𝑚 ” 𝑃K𝑖`1,𝑐

𝑚 . (9)

Now let ℐ𝑚 be the working interpretation when reaching line 21 of Algorithm 9, and recall
that L𝑖`1 is the induced context of ℐℓz𝒥 and 𝑀𝑖`1, and that L̄𝑖`1 is the induced context
of ℐ𝑚z𝒥 and �̄�𝑖`1. Therefore, p𝑃𝑚q

2L̄𝑖`1 Ě p𝑃𝑚q
2L𝑖`1 (up to equivalence), simply because

p𝑃𝑚q
1L̄𝑖`1 Ď p𝑃𝑚q

1L𝑖`1 .

Suppose by contradiction that

𝑃 K̄𝑖`1,𝑐
𝑚 X p𝑃𝑚q

2L̄𝑖`1 ı 𝑃K𝑖`1,𝑐
𝑚 X p𝑃𝑚q

2L𝑖`1

is true for some 𝑚 ď 𝑖. Then there exists a 𝐶 P 𝑃
K̄𝑖`1,𝑐
𝑚 X p𝑃𝑚q

2L̄𝑖`1 that is not equivalent to
any element in 𝑃

K𝑖`1,𝑐
𝑚 X p𝑃𝑚q

2L𝑖`1 . Then

i. The expert confirmed l
𝑃𝑚 Ď

l
p𝑃 K̄𝑖`1,𝑐

𝑚 X p𝑃𝑚q
2L̄𝑖`1 q,

in particular, the GCI
d
𝑃𝑚 Ď 𝐶 is valid in ℐℓz𝒥 .

ii. The GCI
d
𝑃𝑚 Ď 𝐶 is not confirmed by the expert. To see this, observe that since

𝐶 P �̄�𝑖`1, there exists an equivalent 𝐶 P 𝑀𝑖`1. Then if
d
𝑃𝑚 Ď 𝐶 were confirmed by

the expert, it would be true that 𝐶 P p𝑃𝑚q
2L𝑖`1 . Furthermore, confK̄𝑖`1

p𝑃𝑚 Ñ t𝐶 uq “

confK𝑖`1
p𝑃𝑚 Ñ t𝐶 uq, since 𝑃𝑚 ” 𝑃𝑚, �̄�𝑖`1 ” 𝑀𝑖`1 and 𝐶 ” 𝐶. As 𝐶 P 𝑃

K̄𝑖`1,𝑐
𝑚 , it is

true that confK̄𝑖`1
p𝑃𝑚 Ñ t𝐶 uq ě 𝑐, thus confK𝑖`1

p𝑃𝑚 Ñ t𝐶 uq ě 𝑐 and hence 𝐶 P 𝑃
K𝑖`1,𝑐
𝑚 .

In other words, using (9), it would be true that

𝐶 ” 𝐶 and 𝐶 P 𝑃K𝑖`1,𝑐
𝑚 X p𝑃𝑚q

2L𝑖`1 ,

contradicting our assumption about 𝐶. In particular,
d

𝑃𝑚 Ď 𝐶 is not valid in ℐℓz𝒥 .
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However, as 𝑃𝑚 ” 𝑃𝑚, the fact that
d
𝑃𝑚 Ď 𝐶 is valid in ℐℓz𝒥 but

d
𝑃𝑚 Ď 𝐶 is not yields the

desired contradiction. Thus, we have shown the validity of (8) and can infer that �̄�𝑖`1 ” 𝒦𝑖`1.

It remains to be shown that
𝑃𝑖`1 ” 𝑃𝑖`1. (10)

It is clear from the corresponding definitions and the preceding argumentation that 𝑃 2
𝑖`1 ” 𝑃 2

𝑖`1,
since 𝑃𝑖 ” 𝑃𝑖 and �̄�𝑖`1 Y 𝒮𝑖`1 ” 𝒦𝑖`1 Y 𝒮𝑖`1 are true. Thus, to show (10), it is sufficient to
verify

𝑃 1
𝑘`1 ” 𝑃 1

𝑘`1. (11)

For this, note that since �̄�𝑖`1 ”𝑀𝑖`1, the contexts K̄𝑖`1 and K𝑖`1 can be considered the same
up to equivalence, and the formal context L̄𝑖`1 can be seen as a subcontext of L𝑖`1, again up to
equivalence. From this we can infer that 𝑃 1

𝑖`1 ľ 𝑃 1
𝑖`1 holds up to equivalence.

Suppose by contradiction that 𝑃 1
𝑖`1 ŋ 𝑃𝑖`1. Then 𝑃 1

𝑖`1 viewed as a subset of �̄�𝑖`1 is not an
intent of K̄𝑖`1

L̄𝑖`1
, as otherwise 𝑃 1

𝑖`1 ĺ 𝑃𝑖`1. Since K̄𝑖`1 and K𝑖`1 can be considered the same up

to equivalence, and since 𝑃 1
𝑖`1 is an intent of K𝑖`1

L𝑖`1
, we can infer that

p𝑃 1
𝑖`1q

2L̄𝑖`1 zp𝑃 1
𝑖`1q

2L𝑖`1 ‰ H.

Let 𝐷 P p𝑃 1
𝑖`1q

2L̄𝑖`1 zp𝑃 1
𝑖`1q

2L𝑖`1 . Now since �̄�𝑘`1 Y 𝒮𝑘`1 is sound for L𝑖`1 up to equivalence,
we obtain

pp�̄�𝑖`1 Y 𝒮𝑖`1qp𝑃
1
𝑖`1qq

2L𝑖`1 “ p𝑃 1
𝑖`1q

2L𝑖`1

and thus
𝐷 R pp�̄�𝑖`1 Y 𝒮𝑖`1qp𝑃

1
𝑖`1qq

2L𝑖`1 .

Therefore, the implication

p�̄�𝑖`1 Y 𝒮𝑖`1qp𝑃
1
𝑖`1q Ñ pp�̄�𝑖`1 Y 𝒮𝑖`1qp𝑃

1
𝑖`1qq

2L̄𝑖`1

does not hold in L𝑖`1, because

pp�̄�𝑖`1 Y 𝒮𝑖`1qp𝑃
1
𝑖`1qq

2L̄𝑖`1 Ę pp�̄�𝑖`1 Y 𝒮𝑖`1qp𝑃
1
𝑖`1qq

2L𝑖`1 .

Therefore, the corresponding GCI
l
p�̄�𝑖`1 Y 𝒮𝑖`1qp𝑃

1
𝑖`1q Ď

l
pp�̄�𝑖`1 Y 𝒮𝑖`1qp𝑃

1
𝑖`1qq

2L̄𝑖`1 (12)

will be rejected by the expert, since L𝑖`1 is the induced context of ℐℓz𝒥 .

However, when computing 𝑃 1
𝑖`1, we have passed the lines 28 up to 34, and the expert has

confirmed the GCI given in (12), contradiction. Therefore, our initial assumption that 𝑃 1
𝑖`1 ŋ

𝑃 1
𝑖`1 is not true, and thus we have shown 𝑃 1

𝑖`1 ” 𝑃 1
𝑖`1, which finishes the proof. ˝

6 Conclusions

In practical applications, automatically generating valid knowledge from data has to always face
the problem errors. To distinguish such errors from real facts an additional source of knowledge,
an expert, has to be used, and in the best case the answers of such an expert are much more
reliable. In this case, one can then generate knowledge from erroneous data by conducting
supervised learning from the initial data, consulting the expert to check whether the obtained
knowledge is valid or not.
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In this work we have considered a special case of this general scenario, namely to learn termino-
logical knowledge expressible in the description logic ℰℒK (or ℰℒKgfp) from interpretations. To
achieve a supervised learning algorithm as sketched above, we have extended the algorithm
of model exploration as developed by Distel to the case of interpretations which are allowed
to contain errors. To this end, we have adapted Distel’s argumentation to allow for general
concept inclusions which are not necessarily valid in the interpretation, but whose confidence
therein is large enough, i. e. above a chosen threshold 𝑐 P r0, 1s. This way, rare errors do not
inhibit general concept inclusions from being considered, and the expert can decide whether the
counterexamples contained in the interpretation are valid ones, errors, or can provide new, valid
counterexamples.

While the motivation of such a method can be argued quite naturally, its practical usefulness
remains to be proven. This is especially the case with our Algorithm 9, as it makes extensive
use of expert interaction. As we consider expert interaction to be expensive, this high amount
of expert interaction diminishes our expectations of the practicability of Algorithm 9. Therefore,
a necessary step to improve the results of this work, beside investigating practical use-cases,
is to consider simplifications of Algorithm 9 that significantly reduce the number of questions
asked to the expert. In the best case, an algorithm which does a minimal number of expert
interaction can be devised, as in the case of classical attribute exploration.

Another practicability issue is our assumption that the expert itself does not make errors. This
assumption is mainly motivated to keep the theoretical considerations simple, but cannot be
upheld for practical applications. A modification of Algorithm 9 that allows experts to revoke
previously confirmed implications or provided counterexamples would thus be highly desirable.

Finally, our algorithm of model exploration with confident GCIs can be seen from a completely
different point of view: during the exploration, the expert is potentially faced with the question
of whether counterexamples in the given data are proper counterexamples or just errors. In case
the expert declines that some counterexamples are valid, she implicitly conducts a form of error
correction in the initial data, thereby improving its overall quality. Therefore, one could think
of an adaptation of model exploration with confident GCIs that allows for correcting errors in
the data which are relevant for the logical fragment of GCIs expressible in ℰℒK. As ℰℒK is quite
a simple logic, such an error correction may be much more accessible than letting the expert
consider the whole data on its own and conduction a detailed error correction. Therefore, model
exploration with confident GCIs could provide a practical method for improving the quality of
data.
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