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Abstract

Within formal concept analysis, attribute exploration is a powerful tool to semi-
automatically check data for completeness with respect to a given domain. However,
the classical formulation of attribute exploration does not take into account possible
errors which are present in the initial data. We present in this work a generalization
of attribute exploration based on the notion of confidence, which will allow for the
exploration of implications which are not necessarily valid in the initial data, but
instead enjoy a minimal confidence therein.

1 Introduction

Attribute exploration is one of the most important algorithms in the area of formal
concept analysis [GW99], a branch of mathematical order theory with applications in
artificial intelligence, machine learning and data mining. The main purpose of this
algorithm is to check a given set of initial data for completeness, in the sense that
this algorithm assists a domain expert in checking whether this initial data completely
represents the particular domain the expert is interested in. In doing so, the algorithm
presents implications to the expert, who has to either validate them or has to provide a
counterexample from the domain of discourse. When the algorithm has finished, the
initial data has been extended to a complete set of examples whose valid implications
completely describe all implications valid in the domain.

However, this approach requires the initial data to be free of errors in the sense that
all the data really stems from the domain. In practical applications, this may not
be reasonable to assume, as it may likewise not be reasonable to check the data for
correctness. However, the data itself may still be of “high quality” and therefore could
be useful, yet only applying attribute exploration is not possible anymore.

One way to consider of a data set to be of “high quality” is to say that errors occur only
“rarely.” To handle a scenario like this, we propose an approach based on the notion of
confidence from data mining [AIS93]. The idea of this approach is not only to explore
the implications which are valid in the initial data set, but also those who satisfy a
certain lower bound on their confidence. Of course, this will only provide us with a

*Supported by DFG Graduiertenkolleg 1763 (QuantLA)

1



heuristic algorithm, but in a setting like this, where errors can occur randomly, this is
the best we can expect to get. Moreover, an exploration by confidence has to be thought
of as a first step in a completion process, where the resulting set of implications and
set of data should be used further on. As an example, the implications obtained from
the exploration by confidence could be used as a background knowledge for a classical
attribute exploration which starts out with an empty data set.

The contributions of this work are twofold. Of course, the main result is the development
of algorithms for exploration by confidence, which we shall discuss in Section 4. However,
these algorithms will be instances of more general formulations of attribute exploration,
both with and without optimal interaction strategies. These generalizations are discussed
in Section 3 and are derived from the classical case of attribute exploration. Because of
their abstract formulation, they might be of use beyond the goals of this work, which is
why we consider them as our second main result.

2 Implications and Confidence

In order to make our considerations self-contained we shall introduce the necessary
definitions from formal concept analysis in this section. To this end, we shall first
provide the basic notions in Section 2.1. Thereafter, we shall also introduce the notion
of confidence and confident implications in Section 2.2.

2.1 Basic Notions from Formal Concept Analysis

The main research direction of formal concept analysis we are interested in here is
attribute exploration. For this, we need to introduce the notions of formal contexts and
implications in formal contexts.

A formal context is a triple K “ p𝐺,𝑀, 𝐼q consisting of two sets 𝐺,𝑀 and a relation
𝐼 Ď 𝐺ˆ𝑀 . The set 𝐺 is normally thought of as the set of objects and the set 𝑀 as the
set of attributes of the formal context K. We shall furthermore say that an object 𝑔 P 𝐺
has an attribute 𝑚 P𝑀 (in the formal context K) if and only if p𝑔,𝑚q P 𝐼. In this case,
we shall also write 𝑔 𝐼 𝑚.

For a set 𝐴 Ď𝑀 of attributes we shall denote the set of all objects which share all the
attributes in 𝐴 by 𝐴1. More formally,

𝐴1 “ t 𝑔 P 𝐺 | @𝑚 P 𝐴 : 𝑔 𝐼 𝑚 u.

Likewise, for a set 𝐵 Ď 𝐺 of objects we denote with 𝐵1 the set of all common attributes
of all objects in 𝐵, i. e.

𝐵1 “ t𝑚 P𝑀 | @𝑔 P 𝐵 : 𝑔 𝐼 𝑚 u.

The sets 𝐴1 and 𝐵1 are called the derivations of 𝐴 and 𝐵 in K, respectively. The
corresponding mappings 𝐴 ÞÑ 𝐴1 and 𝐵 ÞÑ 𝐵1 are called the derivation operators of K.
Note that, despite the fact that these two functions share the same name, it is usually
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clear from the context which one is meant. If not, then we shall add extra syntax to
make the distinction clear.

Let 𝐴,𝐵 Ď𝑀 . In the formal context K it might be the case that whenever an objects
𝑔 has all the attributes from 𝐴 it also has all the attributes from 𝐵. In other words,
there is a dependency between the attribute sets 𝐴 and 𝐵 in that 𝐴 implies 𝐵. We
can formalize this notion by calling a pair p𝐴,𝐵q of sets 𝐴,𝐵 Ď 𝑀 of attributes an
implication on 𝑀 . We shall write 𝐴 Ñ 𝐵 instead of p𝐴,𝐵q to make clear that we
consider the pair as an implication. The set of all implications on 𝑀 is denoted by
Impp𝑀q. We shall say that 𝐴Ñ 𝐵 holds (is valid) in K if and only if every objects that
has all the attributes from 𝐴 also has all the attributes from 𝐵, or equivalently 𝐴1 Ď 𝐵1.
We shall write K |ù p𝐴Ñ 𝐵q if and only if 𝐴Ñ 𝐵 holds in K. The subset of Impp𝑀q of
all implications which are valid in K is denoted by ThpKq and is called the theory of K.

Let ℒ Ď Impp𝑀q be a set of implications, and let p𝐴Ñ 𝐵q P Impp𝑀q. The set ℒ entails
p𝐴Ñ 𝐵q if and only if in all formal contexts L with attribute set 𝑀 , it is true that if all
implications from ℒ are valid in L, then p𝐴Ñ 𝐵q is valid in L as well. In other words,

L |ù ℒ ùñ L |ù p𝐴Ñ 𝐵q,

if we write L |ù ℒ to mean that all implications in ℒ are valid in L. If ℒ entails p𝐴Ñ 𝐵q
we shall also write ℒ |ù p𝐴 Ñ 𝐵q. The subset of Impp𝑀q which is entailed by ℒ is
denoted by Cn𝑀 pℒq. We shall drop the subscript if the set 𝑀 is clear from the context.

Entailment between implications can be characterized in a different manner. For this we
introduce the notion of closure operators induced by sets of implications. More precisely,
we define for 𝐴 Ď𝑀

ℒ1p𝐴q :“ 𝐴Y t𝑌 | p𝑋 Ñ 𝑌 q P ℒ, 𝑋 Ď 𝐴 u,

ℒ𝑖`1p𝐴q :“ ℒ𝑖pℒ1p𝐴qq p𝑖 P Ną0q,

ℒp𝐴q :“
ď

𝑖PNą0

ℒ𝑖p𝐴q.

We shall call the mapping 𝐴 ÞÑ ℒp𝐴q the closure operator induced by ℒ, and we shall
call the set 𝐴 to be ℒ-closed if and only if 𝐴 “ ℒp𝐴q. The closure operator induced by
ℒ can now be used to characterize entailment of implications as follows:

ℒ |ù p𝐴Ñ 𝐵q ðñ 𝐵 Ď ℒp𝐴q.

Let 𝒦 Ď Impp𝑀q be another set of implications. We shall call ℒ a base of 𝒦 if and only
if Cnpℒq “ Cnp𝒦q. In other words, all implications in 𝒦 are entailed by ℒ and vice
versa. If 𝒦 “ ThpKq, then we shall call ℒ a base of K. Note that a base of 𝒦 is always a
base of Cnp𝒦q, and vice versa.

Bases allow us to represent sets 𝒦 of implications in a different way. This fact is mostly
exploited by searching for bases of 𝒦 which are of considerable smaller size than 𝒦 itself.
Those bases are preferably non-redundant or even minimal. More precisely, if ℒ is a
base of 𝒦, then ℒ is called non-redundant if no proper subset of ℒ is a base of 𝒦 as well.
ℒ is called minimal if and only if there does not exist another base ℒ1 of 𝒦 satisfying
|ℒ1| ă |ℒ|.
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If we search for bases of 𝒦, it might be the case that we do not want to include a certain
set ℒback of implications which we already “know.” We can think of these implications as
given a-priori, or as background knowledge. If we have given such background knowledge,
to find a base of 𝒦 it then suffices to find a base of all those implications in 𝒦zCnpℒbackq.
Therefore, we shall call a set ℒ Ď Impp𝑀q a base of 𝒦 relative to ℒback (or a base of 𝒦
with background knowledge ℒback) if and only if ℒY ℒback is a base of 𝒦. The notions of
non-redundancy and minimality for relative bases are the same as in the case of bases.
Note that if the background knowledge is empty, then relative bases are just bases.

A particular relative base from which it is known to have minimal cardinality is the
canonical base Canp𝒦,ℒbackq. To define this base, we need to introduce the notion of
ℒback-pseudo-closed sets of 𝒦. Let 𝑃 Ď𝑀 . Then 𝑃 is called an ℒback-pseudo-closed set
of 𝒦 if and only if the following conditions hold.

i. 𝑃 “ ℒbackp𝑃 q;

ii. 𝑃 ‰ 𝒦p𝑃 q;

iii. for all 𝑄 Ĺ 𝑃 , which are ℒback-pseudo-closed sets of 𝒦 it is true that 𝒦p𝑄q Ď 𝑃 .

Then

Canp𝒦,ℒbackq :“ t𝑃 Ñ 𝒦p𝑃 q | 𝑃 Ď𝑀 an ℒback-pseudo-closed set of 𝒦 u.

It is well-known that Canp𝒦,ℒbackq is a base of 𝒦 with background-knowledge ℒback of
minimal cardinality; see [GW99; Dis11] for a proof on this.1

Computing the canonical base can be done using the NextClosure algorithm [Gan10;
GW99]. This algorithm makes use of particular order relations on the subsets of 𝑀 ,
which are called lectic orders. Since attribute exploration also uses lectic orders, we shall
briefly recall the main definitions.

Let ă be a strict linear order on 𝑀 , i. e. ă is an irreflexive and transitive relation on
𝑀 . Let 𝐴,𝐵 Ď 𝑀 , and let 𝑖 P 𝑀 . We shall say that 𝐴 is lectically smaller than 𝐵 at
position 𝑖 if and only if

minăp𝐴△𝐵q “ 𝑖 and 𝑖 P 𝐵

where 𝐴△𝐵 :“ p𝐴z𝐵q Y p𝐵z𝐴q is the symmetric difference of 𝐴 and 𝐵. In other words,
𝐴 is lectically smaller than 𝐵 at position 𝑖 if and only the ă-smallest element in which
𝐴 and 𝐵 differ is equal to 𝑖, and 𝑖 P 𝐵. We shall write 𝐴 ă𝑖 𝐵 in this case. We say that
𝐴 is lectically smaller than 𝐵, written 𝐴 ă 𝐵, if and only if 𝐴 ă𝑖 𝐵 for some 𝑖 P 𝑀 .
Finally, we write 𝐴 ĺ 𝐵 if and only if 𝐴 ă 𝐵 or 𝐴 “ 𝐵. The relation ĺ is called the
lectic order on Pp𝑀q induced by ă.

It is easy to see that ĺ is a linear order relation on Pp𝑀q, i. e. it is reflexive, antisymmetric,
transitive, and for each two 𝐴,𝐵 P Pp𝑀q it is true that 𝐴 ĺ 𝐵 or 𝐵 ĺ 𝐴. Furthermore,
it is easy to see that ĺ extends the usual subset order on Pp𝑀q, i. e. if 𝐴 Ď 𝐵, then
𝐴 ĺ 𝐵.

1This proof is only for the special case 𝒦 “ ThpKq, which however is equivalent to our general case.
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2.2 Confidence and Confident Implications

Implications may not be valid in a formal context. However, it might be the case that
such implications are “valid most of the time,” i. e. the number of counterexamples for
implications can be “small” compared to the number of examples where it is valid. To
formalize these rather subjective conception, we shall introduce the notion of confi-
dence for implications. It is a straight-forward adaption of the same notion from data
mining [AIS93].

Let K “ p𝐺,𝑀, 𝐼q be a formal context, and let p𝐴Ñ 𝐵q P Impp𝑀q. A counterexample
(negative example) for p𝐴Ñ 𝐵q in K is an object 𝑔 P 𝐴1z𝐵1. It is obvious that 𝐴Ñ 𝐵
is valid in K if and only if K does not contain counterexample for 𝐴Ñ 𝐵. Conversely,
we call 𝑔 a model of 𝐴Ñ 𝐵 if and only if 𝑔 R 𝐴1 or 𝑔 P 𝐵1.

The confidence of p𝐴Ñ 𝐵q in K is defined as

confKp𝐴Ñ 𝐵q :“

#

1 if 𝐴1 “ H
|p𝐴Y𝐵q1|
|𝐴1| otherwise .

In other words, confKp𝐴 Ñ 𝐵q is the conditional probability that a randomly chosen
objects 𝑔 P 𝐺 (in a uniform way), which has all the attributes from 𝐴 also has all the
attributes from 𝐵. It is clear that 𝐴Ñ 𝐵 holds in K if and only if its confidence in K is
1.

Let 𝑐 P r0, 1s. We shall denote the set of all implications in Impp𝑀q whose confidence is
at least 𝑐 by Imp𝑐pKq. If 𝑐 is chosen properly, we may think of Imp𝑐pKq as the set of
implications which are “almost valid” in K. Finding a base ℒ for this set might therefore
be desirable, as introduced in the previous section. However, the set Imp𝑐pKq is not
closed under entailment, and thus ℒ Ď Imp𝑐pKq may not necessarily be true. However, a
base of Imp𝑐pKq might be of more use if the element of the base are also “almost valid,”
i. e. have a confidence in K which is at least 𝑐. We shall therefore call ℒ a confident
base of Imp𝑐pKq (or just K, if 𝑐 is clear from the context) if and only if ℒ is a base of
Imp𝑐pKq and ℒ Ď Imp𝑐pKq.

3 Attribute Exploration

It is the purpose of this section to introduce attribute exploration as it is needed in
the exposition of this paper. This shall include a description of the classical attribute
exploration algorithm, which we shall give in the following Section 3.1. Thereafter,
we shall discuss a generalized form of attribute exploration in Section 3.2, which uses
similar ideas but is different from the one given in [Bor13]. Finally, we shall discuss in
Section 3.3 a weaker generalization of attribute exploration, which lacks the optimality
of the classical case, but provides more freedom in the way questions are generated.
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3.1 Classical Attribute Exploration

As already mentioned, attribute exploration is an algorithm which assists experts in
completing implicational knowledge about a certain domain of interest. More specifically,
let us suppose that we have fixed a set 𝑀 of attributes which are relevant for our
considerations. We then can understand the domain of interest as a collection 𝒟 of
objects where each possesses some attributes from 𝑀 . In other words, a domain 𝒟 on a
set 𝑀 is nothing else than a formal context. Let us furthermore suppose that we are
given a set 𝒦 of implications from which we definitively know that they are valid in our
domain 𝒟. Finally, we assume that we have an initial collection of some examples from
our domain, given again as a formal context.

We are now interested to find all implications which hold in our domain, i. e. to find all
implications which are not invalidated by objects from the domain 𝒟. The difficulty of this
problems stems from the fact that enumerating all these objects may be algorithmically
infeasible. What we can assume, however, is that we have given an expert which is
able to provide us with the information whether there exists, for a given implication
p𝐴Ñ 𝐵q P Impp𝑀q, an object in our domain 𝒟 which is a counterexample for (i. e. not
a model of) 𝐴Ñ 𝐵.

Abstractly, attribute exploration now proceeds as follows. From all implications in
Cnp𝒦q, we already known that they are valid in our domain 𝒟. Furthermore, for all
implications which are invalidated by objects from K, we known that they are not valid
in 𝒟. For all other implications, we do not know whether they hold in 𝒟 or not, i. e. all
implications in

𝑈pK,𝒦q :“ ThpKqzCnp𝒦q
are undecided in the sense that they could be valid in 𝒟 or not. For those implications
in 𝑈pK,𝒦q, we have to consult the expert. Attribute exploration now does this in a
systematic and somehow efficient way, provided that 𝑀 is finite.

To make this more precise, we shall proceed by describing attribute exploration in a
formal way. This description shall be much more formal as usual, to provide the necessary
notions we need for our generalized attribute exploration. First, we shall first provide
some necessary definitions. After that, we give a formal description of the algorithm.
Finally, we shall note some well-known properties of attribute exploration.

We shall start by formalizing our initial, subjective notion of a domain expert. Intuitively,
a domain expert for a domain 𝒟 is just a “function” 𝑝 that, given an implication 𝐴Ñ 𝐵,
returns “true” if 𝐴Ñ 𝐵 is not invalidated in 𝒟, or returns an object from 𝒟 which is a
counterexample for 𝐴Ñ 𝐵. We shall take this understanding as the motivation for the
following definition. See also [Bor13].

3.1 Definition Let 𝑀 be a set. A domain expert on 𝑀 is a function

𝑝 : Impp𝑀q Ñ tJ u YPp𝑀q,

where J R Pp𝑀q, such that the following conditions hold:

i. If p𝑋 Ñ 𝑌 q P Impp𝑀q such that 𝑝p𝑋 Ñ 𝑌 q “ 𝐶 ‰ J, then 𝐶 |ù p𝑋 Ñ 𝑌 q, i. e.
𝑋 Ď 𝐶, 𝑌 Ę 𝐶. (𝑝 gives counterexamples for false implications)
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ii. If p𝐴 Ñ 𝐵q, p𝑋 Ñ 𝑌 q P Impp𝑀q such that 𝑝p𝐴 Ñ 𝐵q “ J, 𝑝p𝑋 Ñ 𝑌 q “ 𝐶 ‰ J,
then 𝐶 |ù p𝐴Ñ 𝐵q. (counterexamples do not invalidate correct implications)

We say that 𝑝 confirms an implication 𝐴Ñ 𝐵 if and only if 𝑝p𝐴Ñ 𝐵q “ J. Otherwise,
we say that 𝑝 rejects 𝐴Ñ 𝐵 with counterexample 𝑝p𝐴Ñ 𝐵q. The theory Thp𝑝q of 𝑝 is
the set of all implications on 𝑀 confirmed by 𝑝. ♢

3.2 Lemma Let 𝒟 be domain on a set 𝑀 . For each p𝐴 Ñ 𝐵q P Impp𝑀q for which
there exists a counterexample in 𝒟, let 𝐶𝐴Ñ𝐵 such a counterexample. Then the mapping

𝑝𝒟p𝑋 Ñ 𝑌 q :“

#

𝐶𝑋Ñ𝑌 if 𝐶𝑋Ñ𝑌 exists
J otherwise

is a domain expert on 𝑀 .

Note that the definition of 𝑝𝒟 depends on the particular choice of the counterexamples,
therefore 𝒟 may give rise to more then one domain expert.

Proof For the first claim we observe that 𝑝𝒟 gives counterexamples to false implication
by definition. Furthermore, all counterexamples returned by 𝑝𝒟 are elements of 𝒟, and
𝑝𝒟p𝑋 Ñ 𝑌 q “ J if and only if there does not exist a counterexample for 𝑋 Ñ 𝑌 in 𝒟.
This shows that counterexamples provided by 𝑝𝒟 do not invalidate correct implications.˝

Let
𝒟𝑝 :“ t 𝑝p𝐴Ñ 𝐵q | p𝐴Ñ 𝐵q P Impp𝑀q uztJ u.

Then clearly 𝒟𝑝 is a domain, and it is easy to see that each domain expert 𝑝 on 𝑀 can
be obtained as a domain expert of the form 𝑝𝒟𝑝 , and that for each domain 𝒟 on 𝑀 it is
true that 𝒟 “ 𝒟𝑝𝒟 .

The crucial observation is now that domain experts can answer the question of validity
in the domains they represent.

3.3 Lemma Let 𝑀 be a set and let 𝑝 be a domain expert on 𝑀 . The for each
p𝐴Ñ 𝐵q P Impp𝑀q it is true that

p𝐴Ñ 𝐵q is valid in 𝒟𝑝 ðñ 𝑝p𝐴Ñ 𝐵q “ J.

Proof Let 𝐴Ñ 𝐵 be valid in 𝒟𝑝. Then 𝑝p𝐴Ñ 𝐵q cannot be a subset of 𝑀 , since this
would be an element of 𝒟𝑝 falsifying 𝐴 Ñ 𝐵. Therefore, 𝑝p𝐴 Ñ 𝐵q “ J and hence
p𝐴Ñ 𝐵q P Thp𝑝q.

Conversely, let 𝑝p𝐴Ñ 𝐵q “ J. Since counterexamples from 𝑝 do not invalidate correct
implications, for each implication p𝑋 Ñ 𝑌 q P Impp𝑀q where 𝑝p𝑋 Ñ 𝑌 q Ď 𝑀 , the
set 𝑝p𝑋 Ñ 𝑌 q is not a counterexample for 𝐴 Ñ 𝐵. Hence, 𝒟𝑝 does not contain a
counterexample for 𝐴Ñ 𝐵, i. e. 𝐴Ñ 𝐵 is valid in 𝒟𝑝. ˝

We have formally captured the notion of an expert, and we are now ready to describe
the algorithm of attribute exploration. In this exposition, we assume that the set 𝑀
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is equipped with a strict linear order, which then gives rise to a lectic order as it has
been described in Section 2. For better readability, we denote a formal context that
arises from another formal context K by adding a new object with attributes from 𝐶 by
K` 𝐶.

Algorithm 1

Input A domain expert 𝑝 on a finite set 𝑀 , a set 𝒦 Ď Impp𝑀q and a formal context
K with attribute set 𝑀 such that 𝒦 Ď Thp𝑝q Ď ThpKq.

Procedure

i. Initialize 𝑖 :“ 0, 𝑃𝑖 :“ 𝒦pHq,𝒦𝑖 :“ 𝒦,K𝑖 :“ K.

ii. Let 𝑃𝑖`1 be the smallest 𝒦𝑖-closed set lectically larger or equal to 𝑃𝑖, which
is not an intent of K𝑖. If no such set exists, terminate.

iii. If 𝑝 confirms 𝑃 Ñ 𝑃 2, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖 Y t𝑃 Ñ 𝑃 2 u,
∙ K𝑖`1 :“ K𝑖.

iv. If 𝑝 provides a counterexample 𝐶 for 𝑃 Ñ 𝑃 2, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖,
∙ K𝑖`1 :“ K𝑖 ` 𝐶.

v. Set 𝑖 :“ 𝑖` 1 and go to ii.

Output Return 𝒦𝑖 and K𝑖. ˝

Note that the computation of the set 𝑃𝑖`1 from 𝑃𝑖, 𝒦𝑖 and K𝑖 and ℒ𝑖 can be done by
using the well-known Next-Closure algorithm [Gan10; GW99]. As the details are not
relevant for our further discussion, we refer the interested reader to the given resources.

The following results are well known properties of Algorithm 1.

3.4 Theorem Let 𝑝, 𝒦 and K be valid input for Algorithm 1. Then Algorithm 1
terminates with input 𝑝, 𝒦 and K. If 𝒦1 and K1 are the corresponding values returned
by the algorithm, then the following statements are true:

i. 𝒦 Ď 𝒦1 Ď ThpK1q Ď ThpKq.

ii. Thp𝑝q “ ThpK1q “ Cnp𝒦1q.

iii. The cardinality of 𝒦1z𝒦 is the smallest possible with respect to Thp𝑝q “ Cnp𝒦1q.
More specifically, 𝒦1z𝒦 “ CanpK1,𝒦q.

The claims of this theorem are shown in [GW99; Gan99; Stu96; Dis11].
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3.2 Generalized Form of Attribute Exploration

We have given a precise formulation of attribute exploration in the previous section.
However, this formulation is not applicable to our setting of exploring implications with
a certain minimal confidence. To address this issue, we shall develop in this section a
more general formulation of attribute exploration which goes beyond the classical one.

To make this a reasonable undergoing, we shall first clarify which problem we want to
solve with attribute exploration. In the classical case, we have given a formal context
K and a set of implications 𝒦 Ď ThpKq. Furthermore, we have given a domain expert
𝑝, who confirms all implications in 𝒦 and where all implications confirmed by 𝑝 are
contained in ThpKq. The task attribute exploration then solves is to provide a method
to guide the expert 𝑝 through all implications in ThpKqzCnp𝒦q for deciding whether
these implications are valid in the domain or not. At the end, attribute exploration both
provides a set of implications which is a relative base of all valid implications of the
domain 𝑝 represents, and a set of objects from the domain such that an implication is
valid in the domain if and only if all these objects are models of this implication. This
set of objects forms itself a domain, and it can be thought of as a sufficient excerpt of
the domain represented by 𝑝.

We want to try to lift this description of attribute exploration to the case of exploration
by confidence. There, our setting is a bit more involved. As in the case of classical
attribute exploration, we have given a domain expert 𝑝, a formal context K and a set
of implications 𝒦. Additionally, we have given a 𝑐 P r0, 1s, the confidence threshold for
our exploration. Then, in contrast to the classical setting, exploration by confidence
considers not only the implications ThpKq, but also those in Imp𝑐pKq. Therefore, we can
assume that 𝒦 is a set of implications with confidence at least 𝑐, that all implications
in 𝒦 are confirmed by 𝑝 and that all implications which are in 𝒦 are also contained in
Imp𝑐pKq. In other words, 𝒦 Ď Thp𝑝q and 𝒦 Ď Imp𝑐pKq.

An attribute exploration algorithm which then works in this setting should guide the
expert through the implications in Imp𝑐pKqzCnp𝒦q, asking whether some implications
are correct or not. The counterexamples which are provided by the expert are then used
to falsify certain implications in Imp𝑐pKq. They are not used, however, for computing
the confidence; this is solely done in the initial context K. At the end, the attribute
exploration algorithm should both compute a set ℒ of implications and a formal context
L such that each implication in Imp𝑐pKq is either not valid in L or follows from ℒY𝒦.

One might be tempted to think that this problem actually has an easy (theoretical)
solution. Namely, one can observe that the set Imp𝑐pKq, as any set of implications,
induces a closure operator. Then it is possible to represent this closure operator by
means of a formal context LImp𝑐pKq [GW99; Bor11]. Using this formal context, one could
then just do classical attribute exploration, since the set 𝒦 of initially given implications
is now valid in LImp𝑐pKq.

However, this approach solves a different problem than the one we have described above.
The problem is that the set Imp𝑐pKq cannot be represented by a formal context, since it
is not closed under entailment. In other words, it is in general true that

CnpImp𝑐pKqq Ľ Imp𝑐pKq.
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However, if we would consider the approach sketched in the last paragraph, we would
actually consider all implications in CnpImp𝑐pKqq instead of only those in Imp𝑐pKq. This
is also the reason why we cannot use the generalized attribute exploration algorithm as
described in [Bor13].

That this could be a problem can be seen as follows. It may be the case that for
two implications p𝐴 Ñ 𝐵q, p𝐵 Ñ 𝐶q P Imp𝑐pKq, 𝐴 Ď 𝐵 Ď 𝐶, it is true that p𝐴 Ñ

𝐶q R Imp𝑐pKq (because confKp𝐴 Ñ 𝐶q “ confKp𝐴 Ñ 𝐵q ¨ confKp𝐵 Ñ 𝐶q.) However,
p𝐴Ñ 𝐶q P CnpImp𝑐pKqq. Now, assume that the expert may provide a counterexample
for the implication 𝐴Ñ 𝐵. Then in the case of only considering the set Imp𝑐pKq, the
implication 𝐴 Ñ 𝐶 could immediately be falsified as well, since 𝐴 Ñ 𝐵 and 𝐵 Ñ 𝐶
might have been the only reason that p𝐴Ñ 𝐶q P CnpImp𝑐pKqq. However, if we consider
the whole set CnpImp𝑐pKqq, then the implication 𝐴Ñ 𝐶 is still present, and it might
very well happen that the counterexample provided by the expert does not invalidate this
implication. In the worst case, the implication 𝐴Ñ 𝐶 has to be considered separately
by the expert, which is not what we want, since confKp𝐴Ñ 𝐶q ď 𝑐.

Therefore, what we really need is a modified (i. e. more general) formulation of attribute
exploration that is applicable to the above setting of exploration by confidence. For this,
we shall develop in the remainder of this section a general formulation of attribute explo-
ration that works with a set of certain implications and a set of interesting implications
and provides a method to guide an expert through the set of undecided implications,
until no more are left. The properties this algorithm should have should be the same
as in the classical case, as far as this is possible. Then later on, we shall apply this
algorithm to our setting of exploration of confidence.

To this end, let us recapitulate our setting for the exploration algorithm, this time a
bit more general: we have given a finite set 𝑀 , a domain expert 𝑝 on 𝑀 , and two sets
𝒦,ℒ of implications. In our classical case, ℒ “ ThpKq for some formal context K; in our
setting of exploration by confidence, we would have ℒ “ Imp𝑐pKq, again for some formal
context K. We assume that 𝒦 Ď Thp𝑝q and 𝒦 Ď ℒ. We then consider the set 𝒦 as the
set of implications which we definitively know to be confirmed by 𝑝. Let us therefore
call this set the (initial) set of certain implications. Furthermore, for our exploration
we only consider implications in ℒ, therefore we shall call this set the set of interesting
implications. Finally, for each implication in ℒzCnp𝒦q it is not clear yet whether 𝑝
confirms it or not. Therefore, we call this set the (current) set of undecided implications.

An exploration for this abstract setting now should compute a relative base of ℒXThp𝑝q
with background knowledge 𝒦 by interacting with the expert 𝑝. At best, this interaction
is kept at a minimum (i. e. the number of times the expert is invoked is as small as
possible), as expert interaction can normally be assumed to be expensive.

Considering the classical attribute exploration, it is not very difficult to come up with a
reformulation which is reasonably applicable to this general setting. For the remainder
of this section, let us fix a finite set 𝑀 and a lectic order ĺ on Pp𝑀q.

Algorithm 2 (General Attribute Exploration)

Input A domain expert 𝑝 on a finite set 𝑀 and sets 𝒦,ℒ Ď Impp𝑀q such that
𝒦 Ď Thp𝑝q and 𝒦 Ď ℒ.
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Procedure

i. Initialize 𝑖 :“ 0, 𝑃𝑖 :“ 𝒦pHq,𝒦𝑖 :“ 𝒦,ℒ𝑖 :“ ℒ,L𝑖 :“ pH,𝑀,Hq.

ii. Let 𝑃𝑖`1 be the smallest 𝒦𝑖-closed set lectically larger or equal to 𝑃𝑖, which
is not ℒ𝑖-closed. If no such set exists, terminate.

iii. If 𝑝 confirms 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖 Y t𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q u,
∙ ℒ𝑖`1 :“ ℒ𝑖,
∙ L𝑖`1 :“ L𝑖.

iv. If 𝑝 provides a counterexample 𝐶 for 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖,
∙ ℒ𝑖`1 :“ t p𝐴Ñ 𝐵q P ℒ𝑖 | 𝐶 |ù p𝐴Ñ 𝐵q u,
∙ L𝑖`1 :“ L𝑖 ` 𝐶.

v. Set 𝑖 :“ 𝑖` 1 and go to ii.

Output Return 𝒦𝑖 and L𝑖. ˝

The properties we now require this algorithm to have are correctness and optimality. In
other words, we want the algorithm to terminate for every legal input 𝑀,𝑝,𝒦,ℒ, and if
�̂� and L are the computed results, we want that

Cnp�̂�q “ CnpThp𝑝q X ℒq,

and for each implication in ℒ, we demand that either 𝑝 confirms it or it is invalidated
by a counterexample in L. Finally, we want that the number of implications in �̂�z𝒦 to
be as small as possible under the assumption of correctness, i. e. the number of times
the expert confirms an implication is as small possible while the algorithm still returns
the correct result.

Before we are going to prove these claims, we start by some simple observations. First of
all, it is easy to see that 𝒦𝑖 Ď ThpL𝑖q is true for every iteration 𝑖, since all implications
in 𝒦𝑖 have been confirmed by 𝑝, and L𝑖 only contains counterexamples from 𝑝 and 𝑝
does not provide counterexamples which invalidate confirmed implications. Secondly, we
also see easily that ℒ𝑖 Ě Thp𝑝q Xℒ, i. e. implications which would be confirmed by 𝑝 are
never removed from ℒ𝑖. Again, the argument is that the counterexamples from 𝑝 do not
invalidate any implication in Thp𝑝q X ℒ.

We first consider termination of the algorithm, and show as a byproduct that 𝒦𝑖 Ď Cnpℒ𝑖q

is true for all possible 𝑖.

3.5 Proposition Let 𝑝,𝒦,ℒ be valid input for Algorithm 2. Then for iteration 𝑖 of
the algorithm for this input, 𝒦𝑖 Ď Cnpℒ𝑖q. Furthermore, 𝒦𝑖 Ď 𝒦𝑖`1 and ℒ𝑖 Ě ℒ𝑖`1, and
exactly one of these inclusions is proper.

Proof Suppose that we are in iteration 𝑖. It is immediate from the formulation of
the algorithm that 𝒦𝑖 Ď 𝒦𝑖`1 and ℒ𝑖 Ě ℒ𝑖`1. If 𝑝 confirms 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q, then
𝒦𝑖 Ĺ 𝒦𝑖`1. If 𝑝 rejects 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q, then 𝑝 provides a counterexample 𝐶, i. e.
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𝐶 |ù p𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1qq. Then there exists at least one implication in ℒ𝑖 for which 𝐶 is
not a model, i. e. ℒ𝑖 Ľ ℒ𝑖`1.

We show the claim 𝒦𝑖 Ĺ Cnpℒ𝑖q by induction. For 𝑖 “ 0, it is true that 𝒦𝑖 “ 𝒦 and
ℒ𝑖 “ ℒ and thus 𝒦 Ď ℒ Ď Cnpℒq.

Now assume 𝒦𝑖 Ď Cnpℒ𝑖q, and we consider the set 𝑃𝑖`1. Then 𝑃𝑖`1 “ 𝒦𝑖p𝑃𝑖`1q and
𝑃𝑖`1 ‰ ℒ𝑖p𝑃𝑖`1q.

If 𝑝 confirms 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q, then ℒ𝑖 “ ℒ𝑖`1. Since 𝒦𝑖 Ď Cnpℒ𝑖q and p𝑃𝑖`1 Ñ

ℒ𝑖p𝑃𝑖`1qq P Cnpℒ𝑖q, it is true that 𝒦𝑖`1 Ď Cnpℒ𝑖`1q.

If 𝑝 rejects 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q, then let 𝐶 be the counterexample given by 𝑝. Then

ℒ𝑖`1 “ ThpL𝑖`1q X ℒ𝑖,

where L𝑖`1 arises from L𝑖 by adding 𝐶 as a counterexample. As already noted, 𝒦𝑖`1 Ď

ThpL𝑖`1q. Therefore,

Cnpℒ𝑖`1q “ CnpThpL𝑖`1q X ℒ𝑖q

“ CnpThpL𝑖`1q X Cnpℒ𝑖qq

Ě Cnp𝒦𝑖`1 X𝒦𝑖q

“ 𝒦𝑖`1,

since Cnpℒ𝑖q Ě 𝒦𝑖 by induction hypothesis, and 𝒦𝑖 “ 𝒦𝑖`1. ˝

From Proposition 3.5, we immediately obtain the termination of Algorithm 2 on valid
input.

3.6 Theorem Let 𝑝,𝒦,ℒ be valid input for Algorithm 2. Then the algorithm with this
input terminates after finitely many steps.

Proof Note that the algorithm stops if Cnp𝒦𝑖q “ Cnpℒ𝑖q. From Proposition 3.5 we
know that 𝒦𝑖 Ĺ 𝒦𝑖`1 or ℒ𝑖 Ľ ℒ𝑖`1, and that 𝒦𝑖 Ď Cnpℒ𝑖q. Since all sets are finite, the
condition Cnp𝒦𝑖q “ Cnpℒ𝑖q will eventually be reached and the algorithm stops. ˝

Now that we established termination of our algorithm, we consider its correctness. The
following result is crucial for our following argumentation.

3.7 Proposition In every iteration 𝑖 of Algorithm 2, it is true that for all 𝐴 ă 𝑃𝑖`1, if
𝐴 is 𝒦𝑖-closed, then 𝐴 is also ℒ𝑖-closed.

Proof We show the claim by induction on 𝑖. For 𝑖 “ 0, the claim is vacuously true, as
𝑃𝑜 is the lectically smallest 𝒦𝑖-closed set. Now assume the validity of the proposition
for 𝑖. We then need to show that for each 𝐴 ă 𝑃𝑖`2, if 𝐴 is 𝒦𝑖`1-closed, then 𝐴 is also
ℒ𝑖`1-closed.

We first consider the case 𝐴 ă 𝑃𝑖`1, and we assume that 𝐴 is 𝒦𝑖`1-closed. Since
𝒦𝑖 Ď 𝒦𝑖`1, 𝐴 is also 𝒦𝑖-closed. By induction hypothesis, 𝐴 is ℒ𝑖-closed. Since ℒ𝑖`1 Ď ℒ𝑖,
𝐴 is also ℒ𝑖`1-closed, completing the proof for this case.
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If 𝑃𝑖`1 “ 𝑃𝑖`2, then nothing remains to be shown. We therefore assume 𝑃𝑖`1 ă 𝑃𝑖`2.
Then the remaining case 𝑃𝑖`1 ĺ 𝐴 ă 𝑃𝑖`2 can be reduced to 𝑃𝑖`1 “ 𝐴, since all
sets lectically between 𝑃𝑖`1 and 𝑃𝑖`2, which are 𝒦𝑖`1-closed are also ℒ𝑖`1-closed, by
construction of 𝑃𝑖`2.

Hence we consider the case 𝐴 “ 𝑃𝑖`1, and we assume that 𝐴 is 𝒦𝑖`1-closed. Since
𝑃𝑖`1 ‰ 𝑃𝑖`2, we know that then 𝑃𝑖`1 must also be ℒ𝑖`1-closed, as otherwise the
algorithm would choose 𝑃𝑖`2 “ 𝑃𝑖`1. This finishes the induction step and the proof of
the proposition. ˝

3.8 Corollary Let 𝑝,𝒦,ℒ be valid input for Algorithm 2, and let 𝑛 be the last iteration
of the algorithm. Then

Cnp𝒦𝑛q “ Cnpℒ𝑛q.

Proof As we have already noted, 𝒦𝑛 Ď Cnpℒ𝑛q is true. Furthermore, by the previous
proposition we know that when the algorithm finishes, all 𝒦𝑛-closed subsets of 𝑀 are also
ℒ𝑛-closed. Now if p𝑋 Ñ 𝑌 q P Cnpℒ𝑛q, then 𝑌 Ď ℒ𝑛p𝑋q Ď ℒ𝑛p𝒦𝑛p𝑋qq. Now 𝒦𝑛p𝑋q is
𝒦𝑛-closed, therefore ℒ𝑛p𝒦𝑛p𝑋qq “ 𝒦𝑛p𝑋q. Thus, 𝑌 Ď 𝒦𝑛p𝑋q and p𝑋 Ñ 𝑌 q P Cnp𝒦𝑛q,
showing the claimed equality. ˝

3.9 Corollary Let 𝑝,𝒦,ℒ be valid input for Algorithm 2, and let 𝑛 be the last iteration
of the algorithm. Then

ℒ𝑛 “ Thp𝑝q X ℒ.

Proof We already know that ℒ𝑛 Ě Thp𝑝q Xℒ. Since Cnpℒ𝑛q “ Cnp𝒦𝑛q, all implications
in Cnpℒ𝑛q are confirmed by 𝑝. In particular, ℒ𝑛 Ď Thp𝑝q, and together with ℒ𝑛 Ď ℒ we
obtain the desired equality. ˝

From the two corollaries just given, the main property of our generalized attribute
exploration algorithm follows immediately.

3.10 Theorem Let 𝑝,𝒦,ℒ be valid input for Algorithm 2, and let 𝒦𝑛 and L𝑛 be the
values returned by the algorithm. Then

Cnp𝒦𝑛q “ CnpThp𝑝q X ℒq.

In our argumentation given so far, the formal contexts L𝑖 do not appear. Indeed, they
are not necessary for the correctness of the algorithm. However, the counterexamples
accumulated in these contexts allow us to formulate the following result, which is useful
on its own.

3.11 Theorem Let 𝑝,𝒦,ℒ be valid input for Algorithm 2, and let 𝒦𝑛 and L𝑛 be the
values returned by the algorithm. Then for each p𝐴Ñ 𝐵q P ℒ, either p𝐴Ñ 𝐵q P Cnp𝒦𝑛q

or p𝐴Ñ 𝐵q R ThpL𝑛q.

Proof We know that Thp𝑝q X ℒ “ ℒ𝑛 “ ThpL𝑛q X ℒ. Suppose that p𝐴Ñ 𝐵q R Cnp𝒦𝑛q.
Because of Cnp𝒦𝑛q “ CnpThp𝑝q X ℒq “ CnpThpL𝑛q X ℒq, we obtain p𝐴 Ñ 𝐵q R
CnpThpL𝑛q X ℒq. But this implies p𝐴Ñ 𝐵q R ThpL𝑛q, since p𝐴Ñ 𝐵q P ℒ. ˝
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We have now established the correctness of our algorithm. However, one crucial feature of
classical attribute exploration is its optimality with respect to the number of implications
asked to the expert. We shall see now that this property also holds in our general setting.

3.12 Theorem Let 𝑝,𝒦,ℒ be valid input for Algorithm 2, and let 𝑛 be the last iteration
of the algorithm. Then

CanpThp𝑝q X ℒ,𝒦q “ 𝒦𝑛z𝒦.

Proof We first observe that for each implication p𝑃𝑘 Ñ ℒ𝑘´1p𝑃𝑘qq P 𝒦𝑛z𝒦, it is true
that ℒ𝑘´1p𝑃𝑘q “ 𝒦𝑛p𝑃𝑘q. This follows from the fact that

𝒦𝑛p𝑃𝑘q Ď ℒ𝑘´1p𝑃𝑘q Ď ℒ𝑛p𝑃𝑘q “ 𝒦𝑛p𝑃𝑘q.

Secondly, it is easy to see that 𝒦𝑛z𝒦 is an irredundant base of 𝒦𝑛 with background
knowledge 𝒦.

We are now going to show that the premises in 𝒦𝑛z𝒦 are actually all 𝒦-pseudoclosed
sets of 𝒦𝑛. For this, we shall show by induction the following claim:

For every iteration 𝑖, the 𝑘 :“ |𝒦𝑖z𝒦| lectically first 𝒦-pseudoclosed sets of
𝒦𝑛 are precisely the premises of 𝒦𝑖z𝒦. If the p𝑘 ` 1qst 𝒦-pseudoclosed set
of 𝒦𝑛 exists, then 𝑃𝑖`1 exists and if 𝑄 denotes this set, then 𝑃𝑖`1 ĺ 𝑄.

The base case 𝑖 “ 0 is clear, as |𝒦0z𝒦| “ 0. If 𝑄 is the first 𝒦-pseudoclosed set of
𝒦𝑛, it is 𝒦-closed, but not 𝒦𝑛-closed. Then 𝑄 is also not ℒ-closed, since 𝒦𝑛 Ď ℒ. By
construction, 𝑃1 exists and 𝑃1 ĺ 𝑄.

For the induction step, assume that the claim is true for an iteration 𝑖. Let 𝑘 :“ |𝒦𝑖z𝒦|.
If there is no more 𝒦-pseudoclosed set of 𝒦𝑛, then 𝒦𝑖 is a 𝒦-base of 𝒦𝑛. Hence 𝒦𝑖 “ 𝒦𝑛,
since 𝒦𝑛 is irredundant. Then 𝑖 “ 𝑛, or |𝒦𝑖`1z𝒦| “ 𝑘 and the claim is true for iteration
𝑖` 1 as well.

Now assume that 𝑄 is the p𝑘 ` 1qst 𝒦-pseudoclosed set of 𝒦𝑛. By induction hypothesis,
𝑃𝑖`1 exists and 𝑄 ĺ 𝑃𝑖`1. We distinguish two cases.

Case 𝑄 “ 𝑃𝑖`1: If ℒ𝑖p𝑃𝑖`1q Ď 𝒦𝑛p𝑃𝑖`1q, then 𝑝 accepts the implication 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q,
which is then an element of 𝒦𝑖`1. Thus the |𝒦𝑖`1z𝒦| “ 𝑘 ` 1 lectically first 𝒦-
pseudoclosed sets of 𝒦𝑛 are precisely the premises of 𝒦𝑖`1z𝒦.

If �̄� is the p𝑘 ` 2qnd 𝒦-pseudoclosed set of 𝒦𝑛, then in particular �̄� is closed under
𝒦𝑖`1, as for each 𝒦-pseudoclosed set 𝑃ℓ Ď �̄�, it is true that 𝒦𝑛p𝑃ℓq Ď �̄�. Furthermore,
�̄� is not 𝒦𝑛-closed, thus also not ℒ𝑖`1-closed. Therefore, by construction the set 𝑃𝑖`2

exists and 𝑃𝑖`2 ĺ 𝑄.

Now if ℒ𝑖p𝑃𝑖`1q Ę 𝒦𝑛p𝑃𝑖`1q, then 𝑝 rejects the implication 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q, and
provides a counterexample. Then 𝒦𝑖`1 “ 𝒦𝑖. Since 𝑃𝑖`1 “ 𝑄, the set 𝑃𝑖`1 will not be
ℒ𝑖`1-closed, since otherwise it would also be 𝒦𝑛-closed. Thus 𝑃𝑖`2 “ 𝑃𝑖`1 and 𝑃𝑖`2 ĺ 𝑄,
as required.

Case 𝑃𝑖`1 ă 𝑄: In this case, the set 𝑃𝑖`1 must be 𝒦𝑛-closed, since otherwise it would
be a 𝒦-pseudoclosed set of 𝒦𝑛 and 𝑃𝑖`1 ľ 𝑄 would hold. To see this, first observe that
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𝑃𝑖`1 is 𝒦𝑖-closed by construction, hence also 𝒦-closed. Furthermore, if �̄� Ĺ 𝑃𝑖`1 is a
𝒦-pseudoclosed set of 𝒦𝑛, then by induction hypothesis, �̄� is a premise of 𝒦𝑖, hence
𝒦𝑛p�̄�q Ď 𝑃𝑖`1 is true as well.

Furthermore, 𝑃𝑖`1 is not ℒ𝑖-closed by construction. However, since 𝑃𝑖`1 is 𝒦𝑛-closed,
the expert 𝑝 rejects the implication 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q. Then 𝒦𝑖`1 “ 𝒦𝑖 and 𝑃𝑖`2 is the
lectically smallest 𝒦𝑖`1-closed, not ℒ𝑖`1-closed set which is lectically greater or equal to
𝑃𝑖`1. Since 𝑄 is also 𝒦𝑖`1-closed (by induction hypothesis, as it is a 𝒦-pseudoclosed
set of 𝒦𝑛) but not ℒ𝑖`1-closed (since 𝑄 is not 𝒦𝑛-closed), it is true that 𝑃𝑖`2 ĺ 𝑄 by
construction. The claim follows.

This finishes the proof of the inductive step.

We shall now use the claim to show the theorem. Since 𝑛 is the last iteration of the
algorithm, the set 𝑃𝑛`1 does not exist. Therefore, there does not exist a 𝒦-pseudoclosed
set of 𝒦𝑛 that is not a premise in 𝒦𝑛z𝒦. Thus

𝒦𝑛z𝒦 “ Canp𝒦𝑛,𝒦q
“ Canpℒ𝑛,𝒦q
“ CanpThp𝑝q X ℒ,𝒦q.

Here, the third equality holds since 𝒦𝑛 and ℒ𝑛 are equivalent, and the last equality
holds since ℒ𝑛 “ Thp𝑝q X ℒ. ˝

3.3 A Weaker Generalization of Attribute Exploration

For our considerations about exploration by confidence it may be necessary to drop the
optimality property of attribute exploration as it has been stated in Theorem 3.12. This
may be due to the fact that computing ℒ𝑖p𝑃𝑖`1q may be too costly, as the set ℒ𝑖 may not
be given explicitly. For example, the set ℒ𝑖 can just be the set of all implications with
confidence greater or equal for some 𝑐 P r0, 1s, which are invalidated by some already
given counterexample (this will be the case for setting of exploration by confidence).
Then, computing ℒ𝑖p𝑃𝑖`1q may be infeasible.

When computing the closure ℒ𝑖p𝑃𝑖`1q is too expensive, we have to resort to the heuristic
that it is feasible to find at least some elements 𝑃𝑖`1 Ĺ 𝑄 Ď ℒ𝑖p𝑃𝑖`1q.2 If we have found
such elements, we simply ask the expert the resulting implication 𝑃𝑖`1 Ñ 𝑄. For all
other elements ℒ𝑖p𝑃𝑖`1qz𝑄, we have to ensure that they are asked in another iteration.
It may very well be that to ensure this, we also have to ask additional implications
𝑋 Ñ 𝑌 for which the set 𝑋 is not closed under the set of currently known implications.

Finally, we have to be able to determine whether a set 𝑃 is closed under the set ℒ𝑖 or
not. Note that this may not require to compute the set ℒ𝑖p𝑃 q.

We collect these ideas in the following algorithm.

Algorithm 3 (A Weaker General Attribute Exploration)
2If even this is not feasible, then it is questionable whether exploration itself can be conducted

effectively.
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Input A domain expert 𝑝 on a finite set 𝑀 and sets 𝒦,ℒ Ď Impp𝑀q such that
𝒦 Ď Thp𝑝q and 𝒦 Ď ℒ.

Procedure

i. Initialize 𝑖 :“ 0,𝒦𝑖 :“ 𝒦,ℒ𝑖 :“ ℒ,L𝑖 :“ pH,𝑀,Hq. Let 𝑃𝑖 be such that
𝑃𝑖 ĺ 𝒦pHq.

ii. Let 𝑃 be the smallest 𝒦𝑖-closed set lectically larger or equal to 𝑃𝑖, which is
not ℒ𝑖-closed. If no such set exists, terminate.
Otherwise, let 𝑃𝑖`1 be such that 𝑃𝑖 ĺ 𝑃𝑖`1 ĺ 𝑃 and 𝑃𝑖`1 not ℒ𝑖-closed. Let
𝑄 be such that 𝑃𝑖`1 Ĺ 𝑄 Ď ℒ𝑖p𝑃𝑖`1q.

iii. If 𝑝 confirms 𝑃𝑖`1 Ñ 𝑄, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖 Y t𝑃𝑖`1 Ñ 𝑄 u,
∙ ℒ𝑖`1 :“ ℒ𝑖,
∙ L𝑖`1 :“ L𝑖.

iv. If 𝑝 provides a counterexample 𝐶 for 𝑃𝑖`1 Ñ 𝑄, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖,
∙ ℒ𝑖`1 :“ t p𝐴Ñ 𝐵q P ℒ𝑖 | 𝐶 |ù p𝐴Ñ 𝐵q u,
∙ L𝑖`1 :“ L𝑖 ` 𝐶.

v. Set 𝑖 :“ 𝑖` 1 and go to ii.

Output Return 𝒦𝑖 and L𝑖. ˝

As this algorithm is quite similar to Algorithm 2, most of its argumentation is also valid
for it. The main difference is that this algorithm is allowed to ask some questions “in
between” those that would be asked in Algorithm 2.

We shall now show that this weaker form of attribute exploration is still correct. However,
it can be seen easily that this algorithm is not optimal anymore.

Firstly, termination can be argued as in the case of Algorithm 2. Thus the analogue of
Theorem 3.6 holds.

3.13 Theorem Let 𝑝,𝒦,ℒ be valid input for Algorithm 3. Then the algorithm with
this input terminates after finitely many steps.

Furthermore, it can be seen easily that Proposition 3.7 is also valid for our weaker
form of attribute exploration, with the same proof. We shall repeat this proof here
nevertheless for easier comparison.

3.14 Proposition In every iteration 𝑖 of Algorithm 3, it is true that for all 𝐴 ă 𝑃𝑖`1,
if 𝐴 is 𝒦𝑖-closed, then 𝐴 is also ℒ𝑖-closed.

Proof We show the claim by induction on 𝑖. For 𝑖 “ 0, the claim is vacuously true, as
𝑃0 is not lectically greater than the lectically smallest 𝒦𝑖-closed set. Now assume the
validity of the proposition for 𝑖. We then need to show that for each 𝐴 ă 𝑃𝑖`2, if 𝐴 is
𝒦𝑖`1-closed, then 𝐴 is also ℒ𝑖`1-closed.
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We only have to consider that case that 𝑃𝑖`1 ĺ 𝐴 ă 𝑃𝑖`2 and 𝐴 being 𝒦𝑖`1-closed. In
particular, this means that 𝑃𝑖`1 ă 𝑃𝑖`2, i. e. 𝑃𝑖`1 ‰ 𝑃𝑖`2. Then 𝑃𝑖`1 “ 𝐴 is the only
remaining case, since all sets lectically between 𝑃𝑖`1 and 𝑃𝑖`2 which are 𝒦𝑖`1-closed are
also ℒ𝑖`1-closed by construction of 𝑃𝑖`2. Since 𝑃𝑖`1 ‰ 𝑃𝑖`2 we know that then 𝑃𝑖`1

must also be ℒ𝑖`1-closed, as otherwise the algorithm would choose 𝑃𝑖`2 “ 𝑃𝑖`1. This
finishes the induction step and the proof of the proposition. ˝

3.15 Theorem Let 𝑝,𝒦,ℒ be valid input for Algorithm 3. Let 𝑛 be the last iteration of
the algorithm. Then Cnp𝒦𝑛q “ Cnpℒ𝑛q, ℒ𝑛 “ Thp𝑝qXℒ and Cnp𝒦𝑛q “ CnpThp𝑝qXℒq.
Furthermore, for each p𝐴Ñ 𝐵q P ℒ, either p𝐴Ñ 𝐵q P Cnp𝒦𝑛q or p𝐴Ñ 𝐵q R ThpL𝑛q.

4 Exploration by Confidence

Let K “ p𝐺,𝑀, 𝐼q be a finite and non-empty formal context, 𝑐 P r0, 1s, 𝒦 Ď Imp𝑐pKq
and let 𝑝 be a domain expert on 𝑀 . In the following two subsections, we shall make use
of our generalized attribute exploration algorithms from the previous section to develop
two different algorithms which provide an exploration by confidence, as we it has already
been described in Section 3.2. In a nutshell, we are interested in representing the set
of implications in Imp𝑐pKq which are confirmed by 𝑝 in a compact way using 𝒦 as our
background knowledge, i. e. we are looking for a base ℬ of the set Thp𝑝q X Imp𝑐pKq with
background knowledge 𝒦. Preferably, this base is small, and minimal at best.

For the first algorithm, we shall use the generalization of Section 3.2. For this it is
enough to discuss a way to compute the closure operator under a set of implications of
the form

Imp𝑐pKq X ThpL𝑖q (1)

in a certain iteration 𝑖 of Algorithm 2. As soon as we can compute this closure operator,
Algorithm 2 can be used directly as an algorithm for exploration by confidence. This is
what will be done in Section 4.1.

However, the computation of the closure under the implications from (1) may be too
expensive for a practical exploration process. Because of this, we shall present in
Section 4.2 another approach to exploration by confidence which is based on our weaker
form of attribute exploration which we have discussed in Section 3.3. Within this
algorithm, computing undecided implications will be much easier. However, we have to
pay for this by loosing optimality of the number of questions confirmed by the expert.

4.1 Exploration by Confidence with Optimality

The approach of this section is quite simple: we instantiate the general attribute
exploration algorithm from Section 1 with our particular setup. The only thing that
remains to be done is to discuss how to compute the closure operator ℒ𝑖p𝑃𝑖`1q (using
the notation from Algorithm 2).

To make the following considerations easier to follow, let us first restate the generalized
exploration algorithm from Section 3.1 adapted for our particular setting.
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Algorithm 4 (Optimal Exploration by Confidence)

Input A domain expert 𝑝 on a finite set 𝑀 , a formal context K, 𝑐 P r0, 1s and a set
𝒦 Ď Imp𝑐pKq such that 𝒦 Ď Thp𝑝q.

Procedure

i. Initialize 𝑖 :“ 0, 𝑃𝑖 :“ 𝒦pHq,𝒦𝑖 :“ 𝒦,ℒ𝑖 :“ Imp𝑐pKq,L𝑖 :“ pH,𝑀,Hq.

ii. Let 𝑃𝑖`1 be the smallest 𝒦𝑖-closed set lectically larger or equal to 𝑃𝑖, which
is not ℒ𝑖-closed. If no such set exists, terminate.

iii. If 𝑝 confirms 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖 Y t𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q u,
∙ ℒ𝑖`1 :“ ℒ𝑖,
∙ L𝑖`1 :“ L𝑖.

iv. If 𝑝 provides a counterexample 𝐶 for 𝑃𝑖`1 Ñ ℒ𝑖p𝑃𝑖`1q, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖,
∙ ℒ𝑖`1 :“ t p𝐴Ñ 𝐵q P ℒ𝑖 | 𝐶 |ù p𝐴Ñ 𝐵q u,
∙ L𝑖`1 :“ L𝑖 ` 𝐶.

v. Set 𝑖 :“ 𝑖` 1 and go to ii.

Output Return 𝒦𝑖 and L𝑖. ˝

From Theorem 3.6, Corollary 3.9 and Theorem 3.12 we immediately obtain that Algo-
rithm 4 is a correct and optimal with respect to the number of questions confirmed by
the expert.

4.1 Corollary Let K “ p𝐺,𝑀, 𝐼q be a finite and non-empty formal context, 𝑐 P r0, 1s,
𝑝 be a domain expert on 𝑀 and 𝒦 Ď Imp𝑐pKq X Thp𝑝q. Then Algorithm 4 terminates
with input 𝑝, 𝑐 and 𝒦. Let 𝑛 be the last iteration of this run of the algorithm. Then

i. Cnp𝒦𝑛q “ CnpThp𝑝q X Imp𝑐pKqq.

ii. CanpThp𝑝q X Imp𝑐pKq,𝒦q “ 𝒦𝑛z𝒦.

To make this algorithm effectively usable, we need a way to compute ℒ𝑖p𝐴q for sets
𝐴 Ď𝑀 . Of course, since ℒ𝑖 “ Imp𝑐pKqXThpL𝑖q, this could be done by just enumerating
all elements of Imp𝑐pKq, and using these implications directly. Clearly, this is not very
practical. Therefore, in the remainder of this section we concentrate on different ways
on how to compute the closure of 𝐴 under the set Imp𝑐pKq X ThpL𝑖q.

The following considerations will involve derivations in a number of formal contexts,
namely in K, L𝑖 and in the subposition of K and L𝑖, i. e. in the formal context

K
L𝑖

:“ p𝐺Y𝐺𝑖,𝑀, 𝐼 Y 𝐼𝑖q,
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where L𝑖 “ p𝐺𝑖,𝑀, 𝐼𝑖q, and where we assume both 𝐺,𝐺𝑖 and 𝐼, 𝐼𝑖 to be disjoint. To
cause no confusion, we shall denote the derivation in K by ¨2K, the derivation in L𝑖 by ¨2L𝑖

and the derivation in K
L𝑖

by 2𝑖 .

Let us start with some simple observations. First of all, it is quite easy to see that

𝐴2𝑖 Ď ℒ𝑖p𝐴q. (2)

The fact that this is true is because the implication 𝐴 Ñ 𝐴2K is valid in K and thus
p𝐴 Ñ 𝐴2Kq P Imp𝑐pKq. Since 𝐴 Ď 𝐴2𝑖 Ď 𝐴2K, the implication 𝐴 Ñ 𝐴2𝑖 is valid in K as
well. Furthermore, this implication is also valid in L𝑖, hence

p𝐴Ñ 𝐴2𝑖q P Imp𝑐pKq X ThpL𝑖q “ ℒ𝑖.

Therefore, 𝐴2𝑖 Ď ℒ𝑖p𝐴q.

Recall that the set ℒ𝑖p𝐴q is computed as

ℒ𝑖p𝐴q “
ď

𝑘PNą0

ℒ𝑘
𝑖 p𝐴q,

where

ℒ1
𝑖 p𝐴q “ 𝐴Y t𝑌 | p𝑋 Ñ 𝑌 q P ℒ𝑖, 𝑋 Ď 𝐴 u

ℒ𝑘`1
𝑖 p𝐴q “ ℒ𝑘

𝑖 pℒ1
𝑖 p𝐴qq

for 𝑘 P N. By our previous considerations we know that 𝐴2𝑖 Ď ℒ1
𝑖 p𝐴q. To compute the

set ℒ1
𝑖 p𝐴q completely, we have to find all implications p𝑋 Ñ 𝑌 q P ℒ𝑖 such that 𝑋 Ď 𝐴.

Note that if 𝑋 Ñ 𝑌 is a valid implication of K and L𝑖, then we already know that
𝑌 Ď 𝐴2𝑖 . Thus it is sufficient to search only for those implications 𝑋 Ñ 𝑌 which are
not valid in K, i. e. where

1 ą confKp𝑋 Ñ 𝑌 q ě 𝑐 (3)

is true. Note that we can assume that |𝑌 | “ 1, since

confKp𝑋 Ñ t 𝑦 uq ě confKp𝑋 Ñ 𝑌 q

is true for all 𝑦 P 𝑌 . Note also that p𝑋 Ñ 𝑌 q P ThpL𝑖q, therefore 𝑌 Ď 𝑋2
L𝑖

.

To sum up, we essentially have to consider all subsets 𝑋 Ď 𝐴, and all elements in
𝑦 P 𝑋2

L𝑖
z𝐴 for which we have to check whether

confKp𝑋 Ñ t 𝑦 uq ě 𝑐

is true or not. All such 𝑦 then constitute the missing part of ℒ1
𝑖 p𝐴q.

4.2 Proposition Let K and L𝑖 be two formal contexts with attribute set 𝑀 and disjoint
object sets. Furthermore, let 𝑐 P r0, 1s. Define ℒ𝑖 “ Imp𝑐pKq X ThpL𝑖q. Then for each
𝐴 Ď𝑀 it is true that

ℒ1
𝑖 p𝐴q “ 𝐴2𝑖 Y t 𝑦 P 𝐴2L𝑖

| D𝑋 Ď 𝐴 : 𝑦 P 𝑋2
L𝑖
z𝐴2𝑖 ^ confKp𝑋 Ñ t 𝑦 uq ě 𝑐 u,

where the derivation operators are denoted as before.
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It may be quite difficult for an element 𝑦 P ℒ𝑖p𝐴qz𝐴
2𝑖 to find a set 𝑋 such that 𝑦 P 𝑋2

L𝑖
z𝐴

and confKp𝑋 Ñ t 𝑦 uq ě 𝑐. It is thusly desirable to reduce the number of sets 𝑋 we have
to consider for this search.

A first observation into this direction is the well-known fact that

confKp𝑋 Ñ t 𝑦 uq “ confKp𝑋
2
K Ñ t 𝑦 uq.

This idea is known in the realm of data mining as the approach to consider only frequent
closed itemsets : it is enough to consider only intents of K as premises for the implications
we are looking for.

Using this idea we can proceed as follows: when searching for a set for 𝑦, it is not necessary
to consider two different sets 𝑋1, 𝑋2 Ď 𝐴 if p𝑋1q

2
L𝑖
“ p𝑋2q

2
L𝑖

and p𝑋1q
2
K “ p𝑋2q

2
K.

However, this means that p𝑋1q
2𝑖 “ p𝑋2q

22 , since

p𝑋1q
2𝑖 “ p𝑋1q

2
L𝑖
X p𝑋1q

2
K

“ p𝑋2q
2
L𝑖
X p𝑋2q

2
K

“ p𝑋2q
2𝑖 .

On the other hand p𝑋1q
2𝑖 “ p𝑋2q

22 readily implies

p𝑋1q
2
L𝑖
“ pp𝑋1q

2𝑖q2L𝑖
“ pp𝑋2q

2𝑖q2L𝑖
“ p𝑋2q

2
L𝑖

since 𝑋1 Ď p𝑋1q
2𝑖 Ď p𝑋1q

2
L𝑖

. In the same way it can be shown that p𝑋1q
2
K “ p𝑋2q

2
K.

Therefore,

p𝑋1q
2
L𝑖
“ p𝑋2q

2
L𝑖
^ p𝑋1q

2
K “ p𝑋2q

2
K ðñ p𝑋1q

2𝑖 “ p𝑋2q
2𝑖 . (4)

The essence of this equivalence is that in Proposition 4.2, instead of considering all
subsets of 𝐴, we only have to consider intents 𝑋 of the subposition of K and L𝑖 which
are generated by subsets of 𝐴. But we can also relax this condition in the following way:

ℒ1,conf
𝑖 p𝐴q “ 𝐴2𝑖 Y t 𝑦 P 𝐴2L𝑖

| D𝑋2𝑖 Ď 𝐴2𝑖 : 𝑦 P 𝑋2
L𝑖
z𝐴2𝑖 ^ confKp𝑋

2
K Ñ t 𝑦 uq ě 𝑐 u,

ℒ𝑘`1,conf
𝑖 p𝐴q “ ℒ𝑘,conf

𝑖 pℒ1,conf
𝑖 p𝐴qq,

ℒconf
𝑖 p𝐴q “

ď

𝑖PNą0

ℒ1,conf
𝑖 p𝐴q,

(note that we now search for intents which are subsets of 𝐴2𝑖 instead of subsets of 𝐴).
Then the following statement is true.

4.3 Proposition Let K and L𝑖 be two formal contexts with attribute set 𝑀 and disjoint
object sets. Furthermore, let 𝑐 P r0, 1s. Define ℒ𝑖 “ Imp𝑐pKq X ThpL𝑖q. Then for each
𝐴 Ď𝑀 it is true that

ℒ1
𝑖 p𝐴q Ď ℒ1,conf

𝑖 p𝐴q Ď ℒ𝑖p𝐴q.

In particular, ℒconf
𝑖 p𝐴q “ ℒ𝑖p𝐴q.

Note that we can use the NextClosure algorithm to efficiently enumerate the intents
of the subposition of K and L𝑖 which are subsets of 𝐴2𝑖 .
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Our final reduction of the search space for the sets 𝑋 uses a lower bound size of |𝑋 1
K|.

More specifically, we know that the sets 𝑋 we are interested in satisfy the constraint

1 ą confKp𝑋 Ñ t 𝑦 uq ě 𝑐.

This immediately implies 𝑋 1
K ‰ H. More generally, it is true that

|𝑋 1
K| ą |𝑋

1
K X t 𝑦 u

1
K|

because there exists at least on object in 𝑋 1
K which does not have the attribute 𝑦.

Moreover, the condition confKp𝑋 Ñ t 𝑦 uq ě 𝑐 means nothing else but

|𝑋 1
K X t 𝑦 u

1
K| ě 𝑐 ¨ |𝑋 1

K|.

From the two inequalities above, we can infer |𝑋 1
K| ´ 1 ě 𝑐 ¨ |𝑋 1

K|, or equivalently
|𝑋 1

K| ě p1´ 𝑐q´1, if 𝑐 ‰ 1. So, to compute ℒ1,conf
1 p𝐴q, it is enough to consider only those

intents 𝑋 of the subposition of K and L𝑖 which satisfy |𝑋 1
K| ě p1´ 𝑐q´1. Note that the

NextClosure algorithm can be adapted to this setting, i. e. it can be modified in such
a way that it only enumerates intents 𝑋 which satisfy this cardinality constraint.

4.2 A Faster Exploration by Confidence

The algorithm for computing closures of the form ℒ𝑖p𝐴q which we have described in the
previous section might be not efficient enough for practical purposes. Even worse, in
classical attribute exploration it may be the case that the time between to questions
grows exponentially with the number of questions already asked [Dis10], see [BD11]
for an example of this on a real-world data set. The computation of closures under ℒ𝑖

combined with this quite disadvantageous property may render the whole algorithm
impractical.

To circumvent this defect of our current form of exploration by confidence, we shall
make use of our weaker form of attribute exploration we have developed in Section 3.3.
To obtain from the weak form of attribute exploration an algorithm for exploration by
confidence, we have to consider the questions on how to decide whether a set is closed
under ℒ𝑖 and on how to compute the sets 𝑃𝑖`1 and 𝑄 from the algorithm.

Let 𝐴 Ď𝑀 be a set. To decide whether 𝐴 is closed under the set ℒ𝑖, it would be ideal
if we could do the following (recall that ℒ𝑖 “ Imp𝑐pKq X ThpL𝑖q):

𝐴 “ ℒ𝑖p𝐴q ðñ @𝑚 P 𝐴2L𝑖
z𝐴 : confKp𝐴Ñ t𝑚 uq ă 𝑐.

In other words, the set 𝐴 is closed if and only if all attributes 𝑚 P 𝐴2L𝑖
such that

confKp𝐴Ñ t𝑚 uq ě 𝑐 are already elements of 𝐴. So, instead of considering all subsets
of 𝑋 and to check whether confKp𝑋 Ñ t𝑚 uq ě 𝑐, it would be sufficient to just check
the set 𝐴 itself.

Of course, the above mentioned equivalence is not true in general, only the direction
from left to right is correct. On the other hand, the sets we check for closeness in our
exploration algorithm always have an additional property: they are closed under the set
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𝒦𝑖 of already confirmed implications. We shall therefore try to construct the set 𝒦𝑖 in
such a way that the above equivalence is true, thus enormously simplifying the test for
closeness under ℒ𝑖.

To this end, we start with the following observation.

4.4 Proposition Let K “ p𝐺,𝑀, 𝐼q be a formal context and let 𝑐 P r0, 1s. Let L𝑖

be another formal context with attribute set 𝑀 and object set disjoint to 𝐺. Define
ℒ𝑖 “ Imp𝑐pKq X ThpL𝑖q.

Let 𝐴 Ď 𝑀 and let 𝒦𝑖 Ď Cnpℒ𝑖q be such that for every intent 𝑋 Ĺ 𝐴 of K
L𝑖

, it is true
that

@𝑚 P 𝑋2
L𝑖

: confKp𝑋 Ñ t𝑚 uq ě 𝑐 ùñ 𝑚 P 𝒦𝑖p𝑋q. (5)

Suppose that 𝐴 is closed under 𝒦𝑖. Then 𝐴 is closed under ℒ𝑖 if and only if

𝐴 “ 𝐴2𝑖 and @𝑚 P 𝐴2L𝑖
z𝐴 : confKp𝐴Ñ t𝑚 uq ă 𝑐. (6)

Proof Suppose that 𝐴 is closed under ℒ𝑖. Since the implication 𝐴Ñ 𝐴2𝑖 is valid in K
and L𝑖, it is true that p𝐴Ñ 𝐴2𝑖q P ℒ𝑖. Therefore, 𝐴 “ ℒp𝐴q Ě 𝐴2𝑖 . On the other hand,
𝐴 Ď 𝐴2𝑖 , therefore 𝐴 “ 𝐴2𝑖 . Furthermore, if 𝑚 P 𝐴2L𝑖

and confKp𝐴Ñ t𝑚 uq ě 𝑐, then
p𝐴Ñ t𝑚 uq P ℒ𝑖, thus 𝑚 P ℒ𝑖p𝐴q “ 𝐴.

Now suppose that 𝐴 is not closed under ℒ𝑖 and additionally that 𝐴 “ 𝐴2𝑖 is true. Then
there exists a set 𝑋 Ď 𝐴 and an attribute 𝑚 P 𝐴2L𝑖

z𝐴 such that p𝑋 Ñ t𝑚 uq P ℒ𝑖. Since
𝐴 “ 𝐴2𝑖 , 𝑋 Ď 𝐴 implies 𝑋2𝑖 Ď 𝐴. Suppose that 𝑋2𝑖 Ĺ 𝐴. Then confKp𝑋

2𝑖 Ñ t𝑚 uq “
confKp𝑋 Ñ t𝑚 uq ě 𝑐, thus 𝑚 P 𝒦𝑖p𝑋

2𝑖q Ď 𝒦𝑖p𝐴q “ 𝐴, a contradiction. Therefore,
𝑋2𝑖 “ 𝐴 and we have shown that the attribute 𝑚 P 𝐴2L𝑖

z𝐴 satisfies confKp𝐴Ñ t𝑚 uq ě
𝑐. ˝

This proposition will guide our further development of the algorithm. Essentially,
what we have to ensure is the correctness of property (5) for all intents of K

L𝑖
which

are lectically before the premise we consider in iteration 𝑖. To this end, we shall ask
additional questions: in addition to asking the expert implications 𝐴Ñ 𝐵, where the
set 𝐴 is 𝒦𝑖-closed, we shall also ask questions of the form 𝐴 Ñ t𝑚 u, where 𝐴 is an
intent of K

L𝑖
and 𝑚 P 𝐴2L𝑖

z𝒦𝑖p𝐴q satisfies confKp𝐴Ñ t𝑚 uq ě 𝑐. We formalize this idea
in Algorithm 5.

To prove that this algorithm indeed implements our perception of an exploration by
confidence, we shall show that Algorithm 5 is of the form of Algorithm 3, i. e. is an
instance of our weak generalization of attribute exploration, where ℒ “ Imp𝑐pKq. To
this end, we have to argue that

i. 𝑃0 ĺ 𝒦pHq and

ii. in every iteration 𝑖, the lectically smallest 𝒦𝑖-closed, not ℒ𝑖-closed set 𝑃 lectically
greater or equal to 𝑃𝑖 satisfies

𝑃𝑖 ĺ 𝑃𝑖`1 ĺ 𝑃 . (7)

Furthermore, 𝑃𝑖`1 is not ℒ𝑖-closed and 𝑄 satisfies

𝑃𝑖`1 Ĺ 𝑄 Ď ℒ𝑖p𝑃𝑖`1q.
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Algorithm 5 (Exploration by Confidence with Faster Generation of Questions)

Input A domain expert 𝑝 on a finite set 𝑀 , a formal context K, 𝑐 P r0, 1s and a set
𝒦 Ď Imp𝑐pKq X Thp𝑝q.

Procedure

i. Initialize 𝑖 :“ 0,𝒦𝑖 :“ 𝒦,ℒ𝑖 :“ Imp𝑐pKq,L𝑖 :“ pH,𝑀,Hq. Let 𝑃𝑖 :“
minĺp𝒦𝑖pHq,H

2𝑖q.

ii. Let 𝑃 1
𝑖`1 be the lectically smallest intent of K

L𝑖
greater or equal to 𝑃𝑖 such

that there exists an attribute 𝑚 P p𝑃 1
𝑖`1q

2
L𝑖
z𝒦𝑖p𝑃

1
𝑖`1q satisfying confKp𝑃

1
𝑖`1 Ñ

t𝑚 uq ě 𝑐. If no such set exists, let 𝑃 1
𝑖`1 “ 𝑀 . Otherwise, set 𝑄1

𝑖`1 “

𝑃 1
𝑖`1 Y t𝑚 u.

Let 𝑃 2
𝑖`1 be the lectically smallest closed set of 𝒦𝑖 greater or equal to 𝑃𝑖

which is not an intent of K
L𝑖

. If no such set exists, set 𝑃 2
𝑖`1 “𝑀 . Otherwise,

set 𝑄2
𝑖`1 “ p𝑃

2
𝑖`1q

2𝑖 .
Define 𝑃𝑖`1 “ minĺp𝑃

1
𝑖`1, 𝑃

2
𝑖`1q. If 𝑃𝑖`1 “ 𝑀 , terminate. Otherwise, if

𝑃𝑖`1 “ 𝑃 1
𝑖`1, then define 𝑄𝑖`1 “ 𝑄1

𝑖`1, else 𝑄𝑖`1 “ 𝑄2
𝑖`1.

iii. If 𝑝 confirms 𝑃𝑖`1 Ñ 𝑄𝑖`1, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖 Y t𝑃𝑖`1 Ñ 𝑄𝑖`1 u,
∙ ℒ𝑖`1 :“ ℒ𝑖,
∙ L𝑖`1 :“ L𝑖.

iv. If 𝑝 provides a counterexample 𝐶 for 𝑃𝑖`1 Ñ 𝑄𝑖`1, then

∙ 𝒦𝑖`1 :“ 𝒦𝑖,
∙ ℒ𝑖`1 :“ t p𝐴Ñ 𝐵q P ℒ𝑖 | 𝐶 |ù p𝐴Ñ 𝐵q u,
∙ L𝑖`1 :“ L𝑖 ` 𝐶.

v. Set 𝑖 :“ 𝑖` 1 and go to ii.

Output Return 𝒦𝑖 and L𝑖. ˝
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This is enough, since the steps iii, iv and v are identical in both algorithms.

The first statement is obviously true, since 𝑃0 :“ minĺp𝒦pHq,H2𝑖q. Also the condition
on 𝑄 is clearly satisfied: if 𝑃𝑖`1 “ 𝑃 1

𝑖`1, then 𝑄 “ 𝑃 1
𝑖`1 Y t𝑚 u, where 𝑚 P p𝑃 1

𝑖`1q
2
L𝑖

and
confKp𝑃

1
𝑖`1 Ñ t𝑚 uq ě 𝑐. Then p𝑃 1

𝑖`1 Ñ t𝑚 uq P Imp𝑐pKq X ThpL𝑖q “ ℒ𝑖 and therefore
𝑄 Ď ℒ𝑖p𝑃𝑖`1q. If 𝑃𝑖`1 “ 𝑃 2

𝑖`1, then 𝑄 “ p𝑃 2
𝑖`1q

2𝑖 . Then 𝑃 2
𝑖`1 Ñ 𝑄 is valid in K and

thus has confidence 1. It is also valid in L𝑖, thus p𝑃 2
𝑖`1 Ñ 𝑄q P Imp𝑐pKq X ThpL𝑖q “ ℒ𝑖,

therefore 𝑄 Ď ℒ𝑖p𝑃𝑖`1q also holds in this case.

It thus only remains to prove the correctness of (7). For this, we shall first show that
condition (5) is indeed satisfied in every iteration of the algorithm.

4.5 Proposition Let 𝑖 be an iteration of a run of Algorithm 5. Then for all intents
𝑋 ă 𝑃𝑖 of K

L𝑖
it is true that

@𝑚 P 𝑋2
L𝑖

: confKp𝑋 Ñ t𝑚 uq ě 𝑐 ùñ 𝑚 P 𝒦𝑖p𝑋q. (8)

Proof We show the claim by induction. For 𝑖 “ 0, the claim is vacuously true. Thus
suppose the claim (8) for 𝑖. Then to show (8) for 𝑖` 1, let 𝑋 ă 𝑃𝑖`1 be an intent of K

L𝑖`1

and 𝑚 P 𝑋2
L𝑖`1

such that confKp𝑋 Ñ t𝑚 uq ě 𝑐. We need to show that 𝑚 P 𝒦𝑖`1p𝑋q.
To this end, we distinguish two cases.

Case 𝑋 ă 𝑃𝑖: If L𝑖 “ L𝑖`1, then 𝑋 being an intent of K
L𝑖`1

is trivially also an intent of
K
L𝑖

. By induction hypothesis we obtain that 𝑚 P 𝒦𝑖p𝑋q. Since 𝒦𝑖 Ď 𝒦𝑖`1, we obtain
𝑚 P 𝒦𝑖`1p𝑋q as required.

If L𝑖 ‰ L𝑖`1, then a counterexample 𝐶 has been added to L𝑖 to obtain L𝑖`1. Since
𝐶 is a counterexample for the implication 𝑃𝑖`1 Ñ 𝑄𝑖`1, it follows that 𝑃𝑖`1 Ď 𝐶. In
particular, 𝑋 ă 𝑃𝑖`1 ĺ 𝐶. Therefore, 𝐶 Ę 𝑋 and it follows that 𝑋2

L𝑖
“ 𝑋2

L𝑖`1
. Thus 𝑋

being an intent of K
L𝑖`1

is also an intent of K
L𝑖

. Again, by induction hypothesis, it is true
that 𝑚 P 𝒦𝑖p𝑋q “ 𝒦𝑖`1p𝑋q.

Case 𝑃𝑖 ĺ 𝑋 ă 𝑃𝑖`1: Since 𝑃𝑖`1 ĺ 𝑃 1
𝑖`1, it follows that 𝑋 being an intent of K

L𝑖
also

satisfies 𝑚 P 𝒦𝑖p𝑋q. ˝

We now use this result to show (7).

4.6 Proposition Let 𝑖 be an iteration of a run of Algorithm 5, and let 𝑃 be the
lectically smallest 𝒦𝑖-closed lectically greater or equal to 𝑃𝑖 which is not ℒ𝑖-closed. Then
𝑃𝑖`1 ĺ 𝑃 .

Proof We first observe that 𝑃 2
𝑖`1 is 𝒦𝑖-closed, but not ℒ𝑖-closed, since p𝑃 2

𝑖`1q
2𝑖 ‰ 𝑃 2

𝑖`1.
This implies 𝑃 ĺ 𝑃 2

𝑖`1. If 𝑃 “ 𝑃 2
𝑖`1, we are done. Therefore, we assume that 𝑃 ă 𝑃 2

𝑖`1.

In this case, by the construction of 𝑃 2
𝑖`1 and since 𝑃 is 𝒦𝑖-closed, the set 𝑃 must be

an intent of K
L𝑖

. Since 𝑃 is not ℒ𝑖-closed, there exists 𝑚 P 𝑃 2L𝑖
z𝑃 and 𝑃 Ď 𝑃 satisfying

confKp𝑃 Ñ t𝑚 uq ě 𝑐. Additionally, we can assume that 𝑃 is an intent of K
L𝑖

. If 𝑃 ă 𝑃𝑖,
then by Proposition 4.5 it would be true that 𝑚 P 𝒦𝑖p𝑃 q Ď 𝒦𝑖p𝑃 q “ 𝑃 , a contradiction.
Therefore, 𝑃𝑖 ĺ 𝑃 . Since 𝑃 Ď 𝑃 , it is true that 𝑃 ĺ 𝑃 . By construction, 𝑃 1

𝑖`1 ĺ 𝑃 , and
thus 𝑃 1

𝑖`1 ĺ 𝑃 ĺ 𝑃 , as required. ˝
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By establishing these results we have shown that Algorithm 5 is indeed of the form of
our weak generalization of attribute exploration, namely Algorithm 3. In particular,
Algorithm 5 has all the properties Algorithm 3 has.

4.7 Corollary Let 𝑝,K, 𝑐 and 𝒦 be valid input for Algorithm 5. Then the algorithm
with this input will terminate after finitely many steps. Let 𝑛 be the last iteration of
the algorithm. Then Cnp𝒦𝑛q “ Cnpℒ𝑛q,ℒ𝑛 “ Thp𝑝qX Imp𝑐pKq and for each p𝐴Ñ 𝐵q P
Imp𝑐pKq it is true that either p𝐴Ñ 𝐵q P Cnp𝒦𝑛q or p𝐴Ñ 𝐵q R ThpL𝑛q.

5 Future Work

The goal of this work was to develop a generalization of the classical attribute exploration
algorithm to allow for the exploration of the confident implications of a formal context.
For this generalized formulation we have shown in Section 3.2 that the main properties of
attribute exploration are retained. In particular, this generalized formulation is optimal
in the sense that the number of confirmed implications is as small as possible. We
have also seen, by developing a weaker form of our generalized attribute exploration in
Section 3.3, that we can relax the constraints on how to choose implications to be asked
to the expert. However, this relaxation causes in general the exploration algorithm not
to be optimal anymore. On the other hand, the relaxation may allow a computational
simplification.

In Section 4, following the considerations on generalized formulations of attribute
exploration, we have turned our attention to the special case of exploration by confidence.
After formally specifying the actual problem, we have used our generalized formulations of
attribute exploration to develop two algorithms which provide exploration by confidence.
The first algorithm has been based on the generalization which retained optimality,
and the only step that remained to make it applicable for exploration by confidence
was to argue on how to compute the closures under sets of implications of the form
Imp𝑐pKq X ThpL𝑖q. This has been discussed in detail in Section 4.1. Although this can
be done effectively, the actual computation might be too costly. For this case, we have
made use of the weaker form of attribute exploration to exploit a special strategy of
undecided implications, discussed in Section 4.2. This strategy allowed us to compute
these implications more easily, accepting the fact that we may loose the optimality of
the exploration algorithm.

The algorithms we have presented in Section 4 are effective and can easily be implemented.
Such an implementation would give more insight into the actual behavior of these
algorithms, both in runtime and resulting bases. In particular, it would be interesting
to know if the computation of closures under Imp𝑐pKq X ThpL𝑖q is really expensive or
not. Furthermore, experimentally comparing the questions asked by Algorithm 4 and
Algorithm 5 would give additional insight into the actual overhead which results from
the non-optimal asking behavior of Algorithm 5.

Another direction of research which should be quite promising is to generalize our
algorithms for exploration by confidence to the setting of the description logic ℰℒK, in
the same way as classical attribute exploration has been generalized into this setting
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by [BD09]. This would extent the results of [Bor12b; Bor12a] to allow the construction
of TBoxes from erroneous data to include both confidence and expert interaction.
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